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Abstract - Multi-instrument data sets present an interesting

challenge to feature extraction algorithm developers.

Beyond the immediate problems of spatial co-registration,

the remote sensing scientist must explore a complex

algorithm space in which both spatial and spectral

signatures may be required to identify a feature of interest.

We describe a genetic programming/supervised classifier

software system, called Genie, which evolves and combines

spatio-spectral image processing tools for remotely sensed

imagery. We describe our representation of candidate

image processing pipelines, and discuss our set of primitive

image operators.  Our primary application has been in the

field of geospatial feature extraction, including wildfire

scars and general land-cover classes, using publicly

available multi-spectral imagery (MSI) and hyper-spectral

imagery (HSI).  Here, we demonstrate our system on

Landsat 7 Enhanced Thematic Mapper (ETM+) MSI.  We

exhibit an evolved pipeline, and discuss its operation and

performance.
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1 Genetic programming with supervised

classification

GENIE
 
[1-4] is an evolutionary computation (EC) software

system, using a genetic algorithm
 
(GA) [5-7]

 
to assemble

image-processing algorithms from a collection of low-level

(“primitive”) image processing operators (e.g., edge

detectors, texture measures, spectral operations, and various

morphological filters). This system has been shown to be

effective in looking for complex terrain features, such as,

e.g., golf courses
 

[8]. GENIE can sequentially extract

multiple features for the same scene to produce terrain

classifications
 

[9]. GENIE has been described at length

elsewhere ([1-4]), so we will only present a brief description

of the system here.

GENIE follows the classic evolutionary paradigm: a

population of candidate image-processing algorithms is

randomly generated, and the fitness of each individual

assessed from its performance in its environment, which for

our case is a user-provided training scene. After fitness has

been assigned, reproduction with modification follows via

the evolutionary operators of selection, crossover, and

mutation, applied to the most fit members of the population.

The process of fitness evaluation and reproduction with

modification is iterated until some stopping condition is

satisfied.

The algorithms assembled by GENIE will generally

combine spatial and spectral processing, and the system was

in fact designed to enable spatio-spectral image processing

experimentation.  Each individual chromosome in the

population consists of a fixed-length string of genes.  Each

gene in Genie corresponds to a primitive image processing

operation, and so the whole chromosome describes an

algorithm consisting of a sequence of primitive image

processing steps.  We now briefly describe our method of

providing training data, our encoding of image-processing

algorithms as chromosomes for manipulation by the GA,

and our method for evaluating the fitness of individuals in

the population.

1.1 Training Data

The environment for the population consists of one or a

number of training scenes.  Each training scene contains a

raw multi-spectral image data cube, together with a weight

plane and a truth plane.  The weight plane identifies the

pixels to be used in training, and the truth plane locates the

features of interest in the training data. Providing sufficient

quantities of good training data is crucial to the success of

any machine learning technique. In principle, the weight and

truth planes may be derived from an actual ground campaign

(i.e., collected on the ground at the time the image was

taken), may be the result of applying some existing

algorithm, and/or may be marked-up by hand using the best

judgement of an analyst looking at the data.  We have

developed a graphical user interface (GUI), called Aladdin,

for manual marking up of raw imagery. Using Aladdin, the

analyst can view a multi-spectral image in a variety of ways,

and can mark up training data by painting directly on the



image using a mouse. Training data is ternary-valued, with

the possible values being “true”, “false”, and “unknown”.

True defines areas where the analyst is confident that the

feature of interest does exist.  False defines areas where the

analyst is confident that the feature of interest does not exist.

Unknown pixels do not influence the fitness of a candidate

algorithm.

1.2 Representation of Image-Processing

Algorithms

Traditional genetic programming
 
(GP) [10] uses a variable

sized (within limits) tree representation for algorithms. Our

representation differs in that it allows for reuse of values

computed by sub-trees, i.e. the resulting algorithm is a graph

rather than a tree.  The image processing algorithm that a

given chromosome represents can be thought of as a

directed acyclic graph where the non-terminal nodes are

primitive image processing operations, and the terminal

nodes are individual image planes extracted from the multi-

spectral image used as input. In our representation, the total

number of nodes is fixed, although not all of these may

actually be used in the final graph, and crossover is carried

out directly on the linear representation.

We have restricted our “gene pool” to a set of useful

primitive image processing operators (“genes”).  These

include spectral, spatial, logical, and thresholding operators.

The set of morphological operators is restricted to function-

set processing morphological operators, i.e., gray-scale

morphological operators having a flat structuring element.

The sizes and shapes of the structuring elements used by

these operators is also restricted to a pre-defined set of

primitive shapes, which includes the square, circle,

diamond, horizontal cross and diagonal cross, and

horizontal, diagonal, and vertical lines.  The shape and size

of the structuring element are defined by operator

parameters.  Other local neighborhood/windowing operators

such as mean, median, etc., specify their kernels/windows in

a similar way.  The spectral operators have been chosen to

permit weighted sums, differences and ratios of data and/or

“scratch” planes, where a scratch plane is a block of

memory for storing intermediate calculations within a

candidate image-processing algorithm.

A single gene consists of an operator, plus a number of

input arguments specifying from which planes input is read,

output arguments specifying to which planes output is

written, and any additional parameters that specify how the

specific operator works (e.g., the diameter and shape of a

structuring element used in a morphological filter). The

operators used in Genie take one or more distinct image

planes as input, and generally produce a single image plane

as output.  Input can be taken from any data or scratch plane

in the training data image cube.  Output is written to one of a

number of scratch planes, temporary workspaces where an

image plane can be stored.  Genes can also take input from

scratch planes, but only if that scratch plane has been written

to by another gene positioned earlier in the chromosome

sequence. We use a notation for genes
 
[1] that is most easily

illustrated by an example: the gene [ADDP rD0 rS1 wS2]

applies pixel-by-pixel addition to two input planes, read

from data plane 0 and from scratch plane 1, and writes its

output to scratch plane 2.

Note that although all chromosomes have the same fixed

number of genes, the effective length of the resulting

algorithm may be smaller than this.  For instance, an

operator may write to a scratch plane that is then overwritten

by another gene before anything reads from it.  GENIE

performs an analysis of chromosome graphs when they are

created and only carries out those processing steps that

actually affect the final result.  Therefore, the fixed length of

the chromosome acts as a maximum effective length.

1.3  Supervised Classification and Fitness

Evaluation

Each candidate image-processing algorithm generates a

number of intermediate feature planes (or “scratch” planes),

which are then combined to generate a Boolean-valued mask

for the feature of interest.  This combination is achieved

using a standard supervised classifier (we use the Fisher

linear discriminant
 
[11]), and an optimal threshold function.

Complete (or “hard”) classification requires that the

image-processing algorithm produce a binary-valued output

plane for any given scene.  It is possible to treat, e.g., the

contents of the first scratch plane as the final output for that

candidate image-processing algorithm (thresholding would

generally be required to obtain a binary result, though Genie

can choose to apply its own Boolean thresholding

functions).  However, we have found it useful to perform the

combination of the data and scratch planes using a non-

evolutionary method, and have implemented a supervised

classifier backend.  To do this, we first select a subset of the

scratch planes and data planes to be “signature” planes. For

the present experiments, this subset consists of just the

scratch planes.  We then use the provided training data and

the contents of the signature planes to derive the Fisher

Discriminant, which is the linear combination of the

signature planes that maximizes the mean separation in

spectral terms between those pixels marked up as “true ”and

those pixels marked up as “false”, normalized by the total

variance in the projection defined by the linear combination.

The output of the discriminant-finding phase is a real-valued

single-plane “answer” image.  This is reduced to a binary

image by exhaustive search over all the training pixels to

find the threshold value that minimizes the total number of

misclassified pixels (false positives plus false negatives) on

the training data.



The fitness of a candidate solution is given by the degree

of agreement between the final binary output plane and the

training data. This degree of agreement is determined by the

Hamming distance between the final binary output of the

algorithm and the training data, with only pixels marked as

true or false (as recorded in the weight plane) contributing

towards the metric.  The Hamming distance is then

normalized so that a perfect score is 1000.

1.4 Example: Remote sensing of forest fires

Between May 6 and May 18, 2000, the Cerro Grande/Los

Alamos wildfire burned approximately 43,000 acres (17,500

ha) of forest and 235 residences in the town of Los Alamos,

New Mexico (USA). Initial estimates of forest damage

included 17,000 acres (6,900 ha) suffering 70-100% tree

mortality (Fig. 1). Restoration efforts following the fire were

complicated by the large scale of the fire, and by the

presence of extensive natural and man-made hazards. These

conditions forced a reliance on remote sensing techniques

for mapping and classifying the burn region. During and

after the fire, remote-sensing data was acquired from a

variety of aircraft-based and satellite-based sensors,

including Landsat 7, to evaluate the impact of the fire.

Remote sensing of forest fires has traditionally involved

human interpretation of visible wavelength and/or infrared

photography.  Since the introduction of aircraft- and

satellite-mounted multi-spectral imaging instruments, e.g.,

the Advanced Very High Resolution Radiometer (AVHRR)

[12] on the NOAA Polar-orbiting Operational

Environmental Satellite (POES) series, and the Thematic

Mapper (TM) and Enhanced Thematic Mapper (ETM+)

instruments on the Landsat series of Earth observation

satellites [13], several physics-based and empirical

algorithms for detecting forest fires have appeared in the

literature.  Two general approaches exist: detection of “hot-

spots” and fire fronts, using, e.g., thresholds on brightness

temperature [14-18] in AVHRR band 3 (3.7µm), and

mapping of post-fire burn scars. For the present work, we

are interested in mapping and classifying the post-fire burn

scar.

A number of researchers have investigated the use of

Landsat TM imagery for measuring wildfire impact by

mapping of the burn scar.  For example, Lobo et al [19]

apply a combination of spectral image segmentation and

hierarchical clustering to the mapping and analysis of fires

in Mediterranean forests.  Kushla and Ripple [20] use

Landsat imagery to map forest survival following a wildfire

in western Oregon (USA), and investigate linear

combinations of post-fire and multi-temporal TM band

ratios and differences.

We now report on the application of a machine learning

technique to the classification of forest fire burn severity

using Landsat 7 ETM+ multispectral imagery. The details of

this automatic classification are compared to a manually

produced burn classification, which was derived from field

observations and human photo-interpretation of high-

resolution aerial color/near infrared photography.

 2 Training and results

2.1  Training Data

The remotely-sensed images used in this paper are Landsat 7

ETM+ 30 meter multi-spectral data (ETM+ bands 1–5 and

7). These scenes are Level 1G radiance corrected and

georeferenced standard data products obtained via the U.S.

Geological Survey (USGS) EarthExplorer
 
[21]

 
web site.  We

used a post-fire Landsat scene from July 17, 2000, Path 34

and Row 35. A Landsat 7 Path/Row swath has an across-

track field-of-view of approximately 185 km, with similar

along-track length, resulting in a field-of-view of

approximately 34,000 sq.km, which is larger than needed for

this study.  Hence, we spatially subset the image to a 1000

pixel x 1000 pixel region centered on the Los Alamos

National Laboratory.  We chose not to use the 60m thermal

or 15m panchromatic data in the following analysis.  In

future work, we plan to extend our software to combine data

of different spatial resolutions.

We did not have any atmospheric measurements available

for the scene, so we did not attempt to carry out any

corrections for haze or atmosphere. The topography of Los

Alamos is complex, consisting of a dormant volcano (the

Jemez Mountains) rising to approximately 10,000 feet

Figure 1. Landsat 7: Post-fire, July 19, 2000: Bright

region in center of image is the burn scar (also see

Fig.2).  Los Alamos town lies against the underside of

the burn scar. Topography changes from forested

mountains (left) to bare mesas.



(3.3km), surrounded by a radiating network of mesas at

7,000 feet, falling off to the Rio Grande river valley at

approximately 6,000 feet elevation.  Traditionally,

illumination effects due to complex topography can be

approximately “factored out” by using band ratios, or

removed using principal components analysis (see, e.g.,

[22]).  Here, we are interested in the GENIE software’s

ability to derive results based on the raw imagery, and do

not add any additional band ratio or band difference planes.

Our training data was based on the official Cerro Grande

Burned-Area Emergency Rehabilitation (BAER) Team’s

burn severity map, Fig. 2, which was produced by trained

observers flying over the fire, and visual inspection of high-

resolution (~1 meter) aerial color/infrared photography

collected during and immediately after the fire.  Using this

map as a guide, we marked up several regions of the Landsat

image as almost certainly “burn”, and several regions as

almost certainly “non-burn”, as shown in Fig. 3. The BAER

Team assign “burn severity” on the basis of tree mortality –

low burn severity corresponds to grass fire and low tree

mortality, medium severity burn classification implies crown

fire and majority tree mortality (more than half of the trees

in the marked region are dead), and the high severity burn

classification requires that 70 – 100% of the trees are dead.

The Cerro Grande wildfire tended to produce either high

severity or low severity burn, with only a relatively small

fraction of the burn classified as medium burn severity in the

BAER Team maps.  This was mostly due to the over-grown

nature of the Ponderosa  pine/mixed conifer
 
forest which

suffered most of the damage. Note that we have also

evolved algorithms from training data based purely on

photo-interpretation of the 30m Landsat scene, and have

obtained similar results.  This is most likely due to the fact

that in the case of the Cerro Grande wildfire, the burn

damage was sufficiently catastrophic that simple inspection

of the 30m imagery allows accurate marking of “burn” and

“non-burn” regions.

2.2 Evolved Image-Processing Algorithm

The system was run with a population of 50 chromosomes,

each having a fixed length of 20 genes, and 3 intermediate

feature (“scratch”) planes. The GA was allowed to evolve

for 30 generations, in this case, evaluating 1282 distinct

candidate image processing algorithms, which is very small

compared to the search space of possible algorithms allowed

by our representation.  This evolution required

approximately 7 hours of wall-clock time running on a

500MHz Linux/Intel Pentium-class workstation.  This

evolution time is a one-off cost: the final “best” image

processing tool evolved by Genie only requires a few 10’s

of seconds to execute on the training scene, and is similarly

fast executing on other Landsat 7 imagery.

The best evolved image-processing algorithm had the

chromosome (using our mnemonic convention to label

primitive image processing operators),

Figure 2. BAER Team burn-severity map overlaid on

a topographic map: Medium gray region marks high

severity burn, pale gray region marks low severity/un-

burned region: http://www.baerteam.org/cerrogrande

Figure 3. Training Data over Landsat imagery: White

patches mark “burn” regions.  Gray patches mark

“non-burn” regions. Note: this image is presented at a

larger spatial scale than Figure 2.



[OPEN rD1 wS1 1 1][ADDS rD4 wS3 0.34][NEG rS1

wS1][MULTP rD4 rS3 wS2][LINCOMB rS1 rD6 wS3

0.11][ADDP rS1 rS3 wS1][SUBP rS1 rD5 wS1].

In words, the image-processing algorithm works as follows.

Note that GENIE converts the byte-valued raw data to real-

valued data (64 bit doubles) and keeps that precision

through all its calculations.

1. Data plane D1 (ETM+ band 1, visible blue 0.48µm)

undergoes a grayscale morphological opening operation

(node 1. OPEN) using a “circular” structuring element

with diameter equal to 3 pixels (equivalent to a 3x3

square with corners removed) and the result is written to

scratch plane S1,

2. The negative of this plane is taken (node 3. NEG), i.e.,

S1 → – S1,

3. The new S1 is linearly combined (node 5. LINCOMB)

with data plane D6 (ETM+ band 7, medium wavelength

infrared (MWIR) 2.22µm) with linear weights:

0.11*S1 + 0.89*D6 and the result written to scratch

plane S3 (its final value),

4. Scratch planes S1 and S3 are summed (node 6. ADDP),

and the difference (node 7. SUBP) of  this sum and data

plane D5 (ETM+ band 5, MWIR 1.65µm), S1 + S3 –

D5, is written to S1 (its final value),

5. Data plane D4 (ETM+ band 4, near infrared 0.83µm)

has a constant, 0.34 times a DATASCALE variable

equal to the range of the input raw data values, added to

each pixel (node 2. ADDS) and is multiplied by D4

again to form the linear combination D4*D4 +

(0.34*DATASCALE)*D4, which is written to scratch

plane S2 (its final value).

The final values of S1, S2, and S3 are then combined in

the linear sum, where the coefficients and intercept have

been chosen by the Fisher discriminant, as described in

Section 2.3, above, to produce our real-valued answer plane

A (Fig. 4):

A = 0.0147*S1 − 0.0142*S2 + 0.0134*S3 + 1.554

The optimal threshold found by GENIE, given the training

data, was 0.3437.  Converting A to a Boolean mask at that

threshold value produces Fig. 5.  In relation to the BAER

map (Fig. 2), we see that the system has extracted the high,

medium, and low severity burn regions, but also presents a

number of false positives.  On inspection, these turn out to

correspond to two physical categories of land cover: bare

ground/rock, and cloud shadows.  The histogram of A shows

a bimodal distribution (Fig. 6), as expected if the burn/non-

burn classes are separable. Adjusting the threshold on A to

fall at the between-peak minimum of the histogram at

0.7930 (a different optimization criterion for the threshold

than that used by default by GENIE) produces a new Boolean

mask (Fig. 7), in which almost all the false positives have

been removed, and the remaining pixels marked as “burn”

correspond very closely to the high severity burn regions in

the BAER map.  For more details, see [23].

Figure 4. Real-valued Answer Plane: Regions

classified as “burn” are bright. This image has been

histogram-equalized to increase contrast.

Figure 5. Burn mask: pixels classified as “burn” are

shown black. GENIE determines an optimal threshold

for converting the real-valued answer plane to a

Boolean mask.  Misidentified pixels are mostly cloud

shadows (e.g., compact regions on left), or bare

ground/rock (lower right and bottom).



2.3 Application to Non-Training Data

The evolved algorithm can now be applied to any scene.  To

check the reasonableness of our algorithm’s performance,

we ran the image-processing algorithm over a larger fraction

of the Landsat scene, encompassing the entire Jemez

mountain range.  The result is shown in Fig. 8.  We claim

that this overall result is quite reasonable, and only fails

where the Landsat swath ends (which can be easily masked

out).  Of particular interest is the persistent detection of a

severe burn site on the Western side of the Jemez

mountains, Fig. 9,  which cannot obviously be excluded due

to cloud shadows or data drop-out.  In fact, this turns out to

be a true detection of a second wildfire, the Stable wildfire

(affecting Stable Stream and School House Mesa in the

Jemez Mountains of northern New Mexico), which

destroyed approximately 800 acres of forest in

September/October of 1999, including 200-400 acres of

high-severity crown fire.  As GENIE had no knowledge of

this fire during its training, we find this detection, together

with the reasonable behavior of the evolved image-

processing algorithm over this large region, as quite

encouraging for the future usefulness of this machine

learning technique.

Figure 7. Final burn mask: Thresholding the answer

plane at the between-peak minimum of the bimodal

distribution produces this burn mask, which has almost

eliminated false positives. There is substantial

agreement with the details of the BAER map (Fig.2).

Figure 8 Testing the evolved image-processing

algorithm: Extended region (top: image size is 80km

by 60km) and burn mask (bottom). The evolved

image-processing algorithm continues to work well,

except at the edge of the Landsat swath (bottom image,

lower right).  The small black region on the left of the

burn mask represents a true detection of a second

recent wildfire, the 1999 Stable wildfire.

Figure 6. Histogram of the Answer Plane: The bimodal

distribution indicates that “burn” and “non-burn” are

indeed separable classes.



2.4 Classification of burn severity

The algorithm described above successfully maps high-

severity burn regions, but we are also interested in mapping

medium and low severity burn regions.  There are several

possible approaches to this multiple-category classification

problem. The GENIE software is designed to extract one

feature at a time, so for this problem we chose to construct

three hierarchical training sets, based on the BAER team

burn severity map. These consisted of a high severity burn

vs. (medium or low severity or no burn) classification

problem, a (high or medium severity burn) vs. (low severity

or no burn) classification problem, and a (high or medium or

low severity burn) vs. no burn classification problem.  In

this way, we expect the difference regions between

classifications to correspond to the individual high, medium

and low burn severity regions.

For this work, we used airborne Daedalus 3600 MSI,

which provides 6 bands of visible through thermal IR at

approximately 25 meter spatial resolution, and which is

quite similar to the 30 meter Landsat 7 ETM+ bands. Full

details of the algorithms will be presented elsewhere, as they

are quite similar to the algorithm described at length above.

Similar results have been obtained with Landsat 7 ETM+.

We chose to combine these individual results by

overlaying the “true” pixels of each classification , as shown

in Fig. 10 for a region neighboring the town of Los Alamos

(a color version of this figure is available at

http://www.daps.lanl.gov/genie/gallery.html). Compared to

the BAER map, we found good qualitative agreement for all

three burn severity categories. More high and medium

severity burn is indicated south of the town than was

indicated on the BAER map.  We have compared this result

with field survey data collected post-fire, and again find

good qualitative agreement between the evolved map and

these field reports.  We are currently working to

quantitatively validate this result.

3 Conclusions

We have investigated evolution of an image-processing

algorithm to extract wildfire burn scars in Landsat 7 ETM+

imagery, and have described the operation of the evolved

algorithm in some detail.  The evolved algorithm shows a

good qualitative fit to the  published BAER Team burn-

severity map of the May 2000 Cerro Grande/Los Alamos

wildfire, specifically in comparison to their high-severity

burn class (70-100% tree mortality regions). The algorithm

can be confused by dark cloud shadows, and by bare

ground/rock outcrops which are physically very similar to

the charred remains of the severely burned forest, but

adjustment of its final threshold can significantly improve

this behavior.  Applying the algorithm outside the training

area showed that it continued to produce reasonable results

over a large spatial region, and in fact was able to detect a

second small wildfire on the west side of the Jemez

mountains (September/October 1999 Stable stream

wildfire).  We find these results quite encouraging for the

future application of this machine learning technique.

Figure 9. Detail of the second detected burn: Grayscale

image, ETM+ band 7. Location, surrounded by the

white circle, agrees with the known location of the

1999 Stable stream wildfire.

Figure 10.  Burn severity classification, overlaid on a

grayscale image of the region neighboring Los Alamos

town (top center). A color version of this image is

available at http://www.daps.lanl.gov/genie/gallery.html.

High severity burn regions dominate the mountains north

and west of town   (top left, shown in dark gray) and also

occur in isolated pockets south of the town.  Medium

severity (pale gray) and low severity (white) burn regions

border and link the high severity regions.  The pattern of

burn severity agrees well with the BAER map and with

field survey data.



The GENIE system is the result of the combined efforts of
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authors of this paper: Jeffrey J. Bloch, Reid B. Porter, Mark
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