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Abstract - Multi-instrument data sets present an interesting
challenge to feature extraction algorithm developers.
Beyond the immediate problems of spatial co-registration,
the remote sensing scientist must explore a complex
algorithm space in which both spatial and spectral
signatures may be required to identify a feature of interest.
We describe a genetic programming/supervised classifier
software system, called Genie, which evolves and combines
spatio-spectral image processing tools for remotely sensed
imagery. We describe our representation of candidate
image processing pipelines, and discuss our set of primitive
image operators. Our primary application has been in the
field of geospatial feature extraction, including wildfire
scars and general land-cover classes, using publicly
available multi-spectral imagery (MSI) and hyper-spectral
imagery (HSI). Here, we demonstrate our system on
Landsat 7 Enhanced Thematic Mapper (ETM+) MSI. We
exhibit an evolved pipeline, and discuss its operation and
performance.

Keywords: Evolutionary Computation, Genetic
Programming, Image Processing, Remote Sensing, Multi-
spectral Imagery, Panchromatic imagery

1 Genetic programming with supervised
classification

GENIE [1-4] is an evolutionary computation (EC) software
system, using a genetic algorithm (GA) [5-7] to assemble
image-processing algorithms from a collection of low-level
(“primitive”) image processing operators (e.g., edge
detectors, texture measures, spectral operations, and various
morphological filters). This system has been shown to be
effective in looking for complex terrain features, such as,
e.g., golf courses [8]. GENIE can sequentially extract
multiple features for the same scene to produce terrain
classifications [9]. GENIE has been described at length
elsewhere ([1-4]), so we will only present a brief description
of the system here.

GENIE follows the classic evolutionary paradigm: a
population of candidate image-processing algorithms is

randomly generated, and the fitness of each individual
assessed from its performance in its environment, which for
our case is a user-provided training scene. After fitness has
been assigned, reproduction with modification follows via
the evolutionary operators of selection, crossover, and
mutation, applied to the most fit members of the population.
The process of fitness evaluation and reproduction with
modification is iterated until some stopping condition is
satisfied.

The algorithms assembled by GENIE will generally
combine spatial and spectral processing, and the system was
in fact designed to enable spatio-spectral image processing
experimentation.  Each individual chromosome in the
population consists of a fixed-length string of genes. Each
gene in Genie corresponds to a primitive image processing
operation, and so the whole chromosome describes an
algorithm consisting of a sequence of primitive image
processing steps. We now briefly describe our method of
providing training data, our encoding of image-processing
algorithms as chromosomes for manipulation by the GA,
and our method for evaluating the fitness of individuals in
the population.

1.1 Training Data

The environment for the population consists of one or a
number of training scenes. Each training scene contains a
raw multi-spectral image data cube, together with a weight
plane and a truth plane. The weight plane identifies the
pixels to be used in training, and the truth plane locates the
features of interest in the training data. Providing sufficient
quantities of good training data is crucial to the success of
any machine learning technique. In principle, the weight and
truth planes may be derived from an actual ground campaign
(i.e., collected on the ground at the time the image was
taken), may be the result of applying some existing
algorithm, and/or may be marked-up by hand using the best
judgement of an analyst looking at the data. We have
developed a graphical user interface (GUI), called Aladdin,
for manual marking up of raw imagery. Using Aladdin, the
analyst can view a multi-spectral image in a variety of ways,
and can mark up training data by painting directly on the



image using a mouse. Training data is ternary-valued, with
the possible values being “true”, “false”, and “unknown”.
True defines areas where the analyst is confident that the
feature of interest does exist. False defines areas where the
analyst is confident that the feature of interest does not exist.
Unknown pixels do not influence the fitness of a candidate
algorithm.

1.2 Representation of Image-Processing
Algorithms

Traditional genetic programming (GP) [10] uses a variable
sized (within limits) tree representation for algorithms. Our
representation differs in that it allows for reuse of values
computed by sub-trees, i.e. the resulting algorithm is a graph
rather than a tree. The image processing algorithm that a
given chromosome represents can be thought of as a
directed acyclic graph where the non-terminal nodes are
primitive image processing operations, and the terminal
nodes are individual image planes extracted from the multi-
spectral image used as input. In our representation, the total
number of nodes is fixed, although not all of these may
actually be used in the final graph, and crossover is carried
out directly on the linear representation.

We have restricted our “gene pool” to a set of useful
primitive image processing operators (“‘genes”). These
include spectral, spatial, logical, and thresholding operators.
The set of morphological operators is restricted to function-
set processing morphological operators, i.e., gray-scale
morphological operators having a flat structuring element.
The sizes and shapes of the structuring elements used by
these operators is also restricted to a pre-defined set of
primitive shapes, which includes the square, circle,
diamond, horizontal cross and diagonal cross, and
horizontal, diagonal, and vertical lines. The shape and size
of the structuring element are defined by operator
parameters. Other local neighborhood/windowing operators
such as mean, median, etc., specify their kernels/windows in
a similar way. The spectral operators have been chosen to
permit weighted sums, differences and ratios of data and/or
“scratch” planes, where a scratch plane is a block of
memory for storing intermediate calculations within a
candidate image-processing algorithm.

A single gene consists of an operator, plus a number of
input arguments specifying from which planes input is read,
output arguments specifying to which planes output is
written, and any additional parameters that specify how the
specific operator works (e.g., the diameter and shape of a
structuring element used in a morphological filter). The
operators used in Genie take one or more distinct image
planes as input, and generally produce a single image plane
as output. Input can be taken from any data or scratch plane
in the training data image cube. Output is written to one of a
number of scratch planes, temporary workspaces where an
image plane can be stored. Genes can also take input from

scratch planes, but only if that scratch plane has been written
to by another gene positioned earlier in the chromosome
sequence. We use a notation for genes [1] that is most easily
illustrated by an example: the gene [ADDP rDO rS1 wS2]
applies pixel-by-pixel addition to two input planes, read
from data plane 0 and from scratch plane 1, and writes its
output to scratch plane 2.

Note that although all chromosomes have the same fixed
number of genes, the effective length of the resulting
algorithm may be smaller than this. For instance, an
operator may write to a scratch plane that is then overwritten
by another gene before anything reads from it. GENIE
performs an analysis of chromosome graphs when they are
created and only carries out those processing steps that
actually affect the final result. Therefore, the fixed length of
the chromosome acts as a maximum effective length.

1.3 Supervised Classification and Fitness
Evaluation

Each candidate image-processing algorithm generates a
number of intermediate feature planes (or “scratch” planes),
which are then combined to generate a Boolean-valued mask
for the feature of interest. This combination is achieved
using a standard supervised classifier (we use the Fisher
linear discriminant [11]), and an optimal threshold function.

Complete (or “hard”) classification requires that the
image-processing algorithm produce a binary-valued output
plane for any given scene. It is possible to treat, e.g., the
contents of the first scratch plane as the final output for that
candidate image-processing algorithm (thresholding would
generally be required to obtain a binary result, though Genie
can choose to apply its own Boolean thresholding
functions). However, we have found it useful to perform the
combination of the data and scratch planes using a non-
evolutionary method, and have implemented a supervised
classifier backend. To do this, we first select a subset of the
scratch planes and data planes to be “signature” planes. For
the present experiments, this subset consists of just the
scratch planes. We then use the provided training data and
the contents of the signature planes to derive the Fisher
Discriminant, which is the linear combination of the
signature planes that maximizes the mean separation in
spectral terms between those pixels marked up as “true “and
those pixels marked up as “false”, normalized by the total
variance in the projection defined by the linear combination.
The output of the discriminant-finding phase is a real-valued
single-plane “answer” image. This is reduced to a binary
image by exhaustive search over all the training pixels to
find the threshold value that minimizes the total number of
misclassified pixels (false positives plus false negatives) on
the training data.



The fitness of a candidate solution is given by the degree
of agreement between the final binary output plane and the
training data. This degree of agreement is determined by the
Hamming distance between the final binary output of the
algorithm and the training data, with only pixels marked as
true or false (as recorded in the weight plane) contributing
towards the metric. The Hamming distance is then
normalized so that a perfect score is 1000.

1.4 Example: Remote sensing of forest fires

Between May 6 and May 18, 2000, the Cerro Grande/Los
Alamos wildfire burned approximately 43,000 acres (17,500
ha) of forest and 235 residences in the town of Los Alamos,
New Mexico (USA). Initial estimates of forest damage
included 17,000 acres (6,900 ha) suffering 70-100% tree
mortality (Fig. 1). Restoration efforts following the fire were
complicated by the large scale of the fire, and by the
presence of extensive natural and man-made hazards. These
conditions forced a reliance on remote sensing techniques
for mapping and classifying the burn region. During and
after the fire, remote-sensing data was acquired from a
variety of aircraft-based and satellite-based sensors,
including Landsat 7, to evaluate the impact of the fire.

Remote sensing of forest fires has traditionally involved
human interpretation of visible wavelength and/or infrared
photography.  Since the introduction of aircraft- and
satellite-mounted multi-spectral imaging instruments, e.g.,
the Advanced Very High Resolution Radiometer (AVHRR)
[12] on the NOAA Polar-orbiting  Operational
Environmental Satellite (POES) series, and the Thematic
Mapper (TM) and Enhanced Thematic Mapper (ETM+)
instruments on the Landsat series of Earth observation
satellites [13], several physics-based and empirical
algorithms for detecting forest fires have appeared in the
literature. Two general approaches exist: detection of “hot-
spots” and fire fronts, using, e.g., thresholds on brightness
temperature [14-18] in AVHRR band 3 (3.7um), and
mapping of post-fire burn scars. For the present work, we
are interested in mapping and classifying the post-fire burn
scar.

A number of researchers have investigated the use of
Landsat TM imagery for measuring wildfire impact by
mapping of the burn scar. For example, Lobo et al [19]
apply a combination of spectral image segmentation and
hierarchical clustering to the mapping and analysis of fires
in Mediterranean forests. Kushla and Ripple [20] use
Landsat imagery to map forest survival following a wildfire
in western Oregon (USA), and investigate linear
combinations of post-fire and multi-temporal TM band
ratios and differences.

We now report on the application of a machine learning
technique to the classification of forest fire burn severity
using Landsat 7 ETM+ multispectral imagery. The details of
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Figure 1. Landsat 7: Post-fire, July 19, 2000: Bright
region in center of image is the burn scar (also see
Fig.2). Los Alamos town lies against the underside of
the burn scar. Topography changes from forested
mountains (left) to bare mesas.

this automatic classification are compared to a manually
produced burn classification, which was derived from field
observations and human photo-interpretation of high-
resolution aerial color/near infrared photography.

2 Training and results

2.1 Training Data

The remotely-sensed images used in this paper are Landsat 7
ETM+ 30 meter multi-spectral data (ETM+ bands 1-5 and
7). These scenes are Level 1G radiance corrected and
georeferenced standard data products obtained via the U.S.
Geological Survey (USGS) EarthExplorer [21] web site. We
used a post-fire Landsat scene from July 17, 2000, Path 34
and Row 35. A Landsat 7 Path/Row swath has an across-
track field-of-view of approximately 185 km, with similar
along-track length, resulting in a field-of-view of
approximately 34,000 sq.km, which is larger than needed for
this study. Hence, we spatially subset the image to a 1000
pixel x 1000 pixel region centered on the Los Alamos
National Laboratory. We chose not to use the 60m thermal
or 15m panchromatic data in the following analysis. In
future work, we plan to extend our software to combine data
of different spatial resolutions.

We did not have any atmospheric measurements available
for the scene, so we did not attempt to carry out any
corrections for haze or atmosphere. The topography of Los
Alamos is complex, consisting of a dormant volcano (the
Jemez Mountains) rising to approximately 10,000 feet



(3.3km), surrounded by a radiating network of mesas at
7,000 feet, falling off to the Rio Grande river valley at
approximately 6,000 feet elevation. Traditionally,
illumination effects due to complex topography can be
approximately “factored out” by using band ratios, or
removed using principal components analysis (see, e.g.,
[22]). Here, we are interested in the GENIE software’s
ability to derive results based on the raw imagery, and do
not add any additional band ratio or band difference planes.

Our training data was based on the official Cerro Grande
Burned-Area Emergency Rehabilitation (BAER) Team’s
burn severity map, Fig. 2, which was produced by trained
observers flying over the fire, and visual inspection of high-
resolution (~1 meter) aerial color/infrared photography
collected during and immediately after the fire. Using this
map as a guide, we marked up several regions of the Landsat
image as almost certainly “burn”, and several regions as
almost certainly “non-burn”, as shown in Fig. 3. The BAER
Team assign “burn severity” on the basis of tree mortality —
low burn severity corresponds to grass fire and low tree
mortality, medium severity burn classification implies crown
fire and majority tree mortality (more than half of the trees
in the marked region are dead), and the high severity burn
classification requires that 70 — 100% of the trees are dead.
The Cerro Grande wildfire tended to produce either high
severity or low severity burn, with only a relatively small
fraction of the burn classified as medium burn severity in the
BAER Team maps. This was mostly due to the over-grown
nature of the Ponderosa pine/mixed conifer forest which
suffered most of the damage. Note that we have also
evolved algorithms from training data based purely on
photo-interpretation of the 30m Landsat scene, and have
obtained similar results. This is most likely due to the fact
that in the case of the Cerro Grande wildfire, the burn
damage was sufficiently catastrophic that simple inspection
of the 30m imagery allows accurate marking of “burn” and
“non-burn” regions.

2.2 Evolved Image-Processing Algorithm

The system was run with a population of 50 chromosomes,
each having a fixed length of 20 genes, and 3 intermediate
feature (“scratch”) planes. The GA was allowed to evolve
for 30 generations, in this case, evaluating 1282 distinct
candidate image processing algorithms, which is very small
compared to the search space of possible algorithms allowed
by our representation. This evolution required
approximately 7 hours of wall-clock time running on a
500MHz Linux/Intel Pentium-class workstation.  This
evolution time is a one-off cost: the final “best” image
processing tool evolved by Genie only requires a few 10’s
of seconds to execute on the training scene, and is similarly
fast executing on other Landsat 7 imagery.

Figure 2. BAER Team burn-severity map overlaid on
a topographic map: Medium gray region marks high
severity burn, pale gray region marks low severity/un-
burned region: http://www.baerteam.org/cerrogrande

Figure 3. Training Data over Landsat imagery: White

patches mark “burn” regions. Gray patches mark
“non-burn” regions. Note: this image is presented at a
larger spatial scale than Figure 2.

The best evolved image-processing algorithm had the
chromosome (using our mnemonic convention to label
primitive image processing operators),



[OPEN rD1 wS1 1 I1]J[ADDS rD4 wS3 0.34][NEG rS1
wSI1][MULTP rD4 1S3 wS2][LINCOMB 1S1 rD6 wS3
0.11][ADDP rS1 rS3 wS1][SUBP rS1 rD5 wS1].

In words, the image-processing algorithm works as follows.
Note that GENIE converts the byte-valued raw data to real-
valued data (64 bit doubles) and keeps that precision
through all its calculations.

1. Data plane D1 (ETM+ band 1, visible blue 0.48um)
undergoes a grayscale morphological opening operation
(node 1. OPEN) using a “circular” structuring element
with diameter equal to 3 pixels (equivalent to a 3x3
square with corners removed) and the result is written to
scratch plane S1,

2. The negative of this plane is taken (node 3. NEG), i.e.,
S1 — -SI1,

3. The new Sl1 is linearly combined (node 5. LINCOMB)
with data plane D6 (ETM+ band 7, medium wavelength
infrared (MWIR) 2.22um) with linear weights:
0.11*S1 + 0.89*D6 and the result written to scratch
plane S3 (its final value),

4. Scratch planes S1 and S3 are summed (node 6. ADDP),
and the difference (node 7. SUBP) of this sum and data
plane D5 (ETM+ band 5, MWIR 1.65um), S1 + S3 —
D5, is written to S1 (its final value),

5. Data plane D4 (ETM+ band 4, near infrared 0.83um)
has a constant, 0.34 times a DATASCALE variable
equal to the range of the input raw data values, added to
each pixel (node 2. ADDS) and is multiplied by D4
again to form the linear combination D4*D4 +
(0.34*DATASCALE)*D4, which is written to scratch
plane S2 (its final value).

The final values of S1, S2, and S3 are then combined in
the linear sum, where the coefficients and intercept have
been chosen by the Fisher discriminant, as described in
Section 2.3, above, to produce our real-valued answer plane
A (Fig. 4):

A =0.0147*%S1 - 0.0142*S2 + 0.0134*S3 + 1.554

The optimal threshold found by GENIE, given the training
data, was 0.3437. Converting A to a Boolean mask at that
threshold value produces Fig. 5. In relation to the BAER
map (Fig. 2), we see that the system has extracted the high,
medium, and low severity burn regions, but also presents a
number of false positives. On inspection, these turn out to
correspond to two physical categories of land cover: bare
ground/rock, and cloud shadows. The histogram of A shows
a bimodal distribution (Fig. 6), as expected if the burn/non-
burn classes are separable. Adjusting the threshold on A to
fall at the between-peak minimum of the histogram at

Figure 4. Real-valued Answer Plane: Regions
classified as “burn” are bright. This image has been
histogram-equalized to increase contrast.

Figure 5. Burn mask: pixels classified as “burn” are
shown black. GENIE determines an optimal threshold
for converting the real-valued answer plane to a
Boolean mask. Misidentified pixels are mostly cloud
shadows (e.g., compact regions on left), or bare
ground/rock (lower right and bottom).
0.7930 (a different optimization criterion for the threshold
than that used by default by GENIE) produces a new Boolean
mask (Fig. 7), in which almost all the false positives have
been removed, and the remaining pixels marked as “burn”
correspond very closely to the high severity burn regions in
the BAER map. For more details, see [23].
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Figure 6. Histogram of the Answer Plane: The bimodal
distribution indicates that “burn” and “non-burn” are
indeed separable classes.

Figure 7. Final burn mask: Thresholding the answer
plane at the between-peak minimum of the bimodal
distribution produces this burn mask, which has almost
eliminated false positives. There is substantial
agreement with the details of the BAER map (Fig.2).

2.3 Application to Non-Training Data

The evolved algorithm can now be applied to any scene. To
check the reasonableness of our algorithm’s performance,
we ran the image-processing algorithm over a larger fraction
of the Landsat scene, encompassing the entire Jemez
mountain range. The result is shown in Fig. 8. We claim

Figure 8 Testing the evolved image-processing
algorithm: Extended region (top: image size is 80km
by 60km) and burn mask (bottom). The evolved
image-processing algorithm continues to work well,
except at the edge of the Landsat swath (bottom image,
lower right). The small black region on the left of the
burn mask represents a true detection of a second
recent wildfire, the 1999 Stable wildfire.

that this overall result is quite reasonable, and only fails
where the Landsat swath ends (which can be easily masked
out). Of particular interest is the persistent detection of a
severe burn site on the Western side of the Jemez
mountains, Fig. 9, which cannot obviously be excluded due
to cloud shadows or data drop-out. In fact, this turns out to
be a true detection of a second wildfire, the Stable wildfire
(affecting Stable Stream and School House Mesa in the
Jemez Mountains of northern New Mexico), which
destroyed approximately 800 acres of forest in
September/October of 1999, including 200-400 acres of
high-severity crown fire. As GENIE had no knowledge of
this fire during its training, we find this detection, together
with the reasonable behavior of the evolved image-
processing algorithm over this large region, as quite
encouraging for the future usefulness of this machine
learning technique.



Figure 9. Detail of the second detected burn: Grayscale
image, ETM+ band 7. Location, surrounded by the
white circle, agrees with the known location of the
1999 Stable stream wildfire.

2.4 Classification of burn severity

The algorithm described above successfully maps high-
severity burn regions, but we are also interested in mapping
medium and low severity burn regions. There are several
possible approaches to this multiple-category classification
problem. The GENIE software is designed to extract one
feature at a time, so for this problem we chose to construct
three hierarchical training sets, based on the BAER team
burn severity map. These consisted of a high severity burn
vs. (medium or low severity or no burn) classification
problem, a (high or medium severity burn) vs. (low severity
or no burn) classification problem, and a (high or medium or
low severity burn) vs. no burn classification problem. In
this way, we expect the difference regions between
classifications to correspond to the individual high, medium
and low burn severity regions.

For this work, we used airborne Daedalus 3600 MSI,
which provides 6 bands of visible through thermal IR at
approximately 25 meter spatial resolution, and which is
quite similar to the 30 meter Landsat 7 ETM+ bands. Full
details of the algorithms will be presented elsewhere, as they
are quite similar to the algorithm described at length above.
Similar results have been obtained with Landsat 7 ETM+.

We chose to combine these individual results by
overlaying the “true” pixels of each classification , as shown
in Fig. 10 for a region neighboring the town of Los Alamos
(a color version of this figure is available at
http://www.daps.lanl.gov/genie/gallery.html). Compared to
the BAER map, we found good qualitative agreement for all

Figure 10.
grayscale image of the region neighboring Los Alamos
town (top center). A color version of this image is
available at http://www.daps.lanl.gov/genie/gallery.html.
High severity burn regions dominate the mountains north
and west of town (top left, shown in dark gray) and also

Burn severity classification, overlaid on a

occur in isolated pockets south of the town. Medium
severity (pale gray) and low severity (white) burn regions
border and link the high severity regions. The pattern of
burn severity agrees well with the BAER map and with
field survey data.

three burn severity categories. More high and medium
severity burn is indicated south of the town than was
indicated on the BAER map. We have compared this result
with field survey data collected post-fire, and again find
good qualitative agreement between the evolved map and
these field reports. We are currently working to
quantitatively validate this result.

3 Conclusions

We have investigated evolution of an image-processing
algorithm to extract wildfire burn scars in Landsat 7 ETM+
imagery, and have described the operation of the evolved
algorithm in some detail. The evolved algorithm shows a
good qualitative fit to the published BAER Team burn-
severity map of the May 2000 Cerro Grande/Los Alamos
wildfire, specifically in comparison to their high-severity
burn class (70-100% tree mortality regions). The algorithm
can be confused by dark cloud shadows, and by bare
ground/rock outcrops which are physically very similar to
the charred remains of the severely burned forest, but
adjustment of its final threshold can significantly improve
this behavior. Applying the algorithm outside the training
area showed that it continued to produce reasonable results
over a large spatial region, and in fact was able to detect a
second small wildfire on the west side of the Jemez
mountains  (September/October 1999  Stable stream
wildfire). We find these results quite encouraging for the
future application of this machine learning technique.



The GENIE system is the result of the combined efforts of
a team of people at LANL, including, in addition to the
authors of this paper: Jeffrey J. Bloch, Reid B. Porter, Mark
Galassi, Kevin Lacker, and Melanie Mitchell. This work
was supported by the U.S. Department of Energy and
Department of Defense.
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