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Abstract 
A simple sequential dynamical system (SDS) is a triple (G, F, n), where (i) G(V, E) is an undirected 

graph with TI nodes with each node having a 1-bit state, (ii) 7 = {ti, fa,. . . , f,,} is a set of local 
transition functions with fi denoting a Boolean function associated with node V i  and (iii) ?r is a fixed 
permutation of (i.e., a total order on) the nodes in V. A single SDS transition is obtained by updating 
the states of the nodes in V by evaluating the function associated with each of them in the order given 
by n. Such a (finite) SDS is a mathematical abstraction of simulation systems [BMR99, BR991. In this 
paper, we characterize the computational complexity of determining several phase space properties of 
SDSs. The properties considered are t-REACHABILITY (“Can a given SDS starting from configuration 
Z reach configuration tr in t or fewer transitions?”), REACHABILITY (“Can a given SDS starting from 
configuration Z ever reach configuration S?”) and FIXED POINT REACHABILITY (“Can a given SDS 
starting from configuration Z ever reach configuration in which it stays for ever?”). Our maitl result is a 
sharp dichotomy between classes of SD& whose behavior is “easy” to predict and those whose behavior 
is “hard” to predict. Specifically, we show the following. 

1. The ~-REACHABILITY, REACHABILITY and the FIXED POINT REACHABILITY problems for SDSs 
are PSPACE-complete, even when restricted to graphs of bounded bandwidth (and hence of bounded 
pathwidth and treewidth) and when the function associated with each node is symmetric. The result 
holds even for regular graphs of cuastant degree where all the nodes compute the same symmetric 
Boolean function. 

2. In contrast, the ~-REACHABILITY, REACHABILITY and FIXED POINT REACHABILITY problems 
are solvable in polynomial time for SDSs when the Boolean function associated with each node is 
symmetric and monotone. 

Two important consequences of our results are the following: (i) The close correspondence between SDSs 
and cellular automata (CA), in conjuncthn with with our lower bounds for SDSs, yields stronger lower 
bounds on the complexity of reachability problems for CA than known previously. (ii) REACHABIL- 
ITY problems for hierarchically-specied linearly inter-connected copies of a single finite automaton are 
EXPSPACE-hard. 

The results can be combined with om related results to show hardness of a number of equivalence 
relations for such automata. The resdts can also be used to demonstrate that determining the sensitivity 
to initial conditions of such automata (as proposed in [Mo90, BPT911) is computationally intractable. 

Classification: Computational Complexity, Dynamical Systems, Complexity Classes, Cellular Automata, 
PSPACE. 

‘Los Alamos National Laboratory, MS M9W, P.O. Box 1663, Los Alamos, NM 87545. Email: {barrett, 
marathe}@lanl . gov. The work is supported by the Department of Energy under Contract W-7405-ENG-36. 

2Department of Computer Science, University at Albany - SUNY, Albany, NY 12222. Email addresses of authors: {hunt, 
ravi  , d j  r, res}@cs . albany . edu, Supported by a grant from Los Alamos National Laboratory and by NSF Grant CCR- 

3Part of the work was done while the authors were visiting the Basic and Applied Simulation Sciences Group (TSA-2) af the Los 
9734936, 

Alamos National Laboratory. 

1 



1 Introduction and Motivation 
We study the computational complexity of combinatorial problems associated with a new class of finite dis- 
crete dynamical systems, called Sequential Dynamical Systems (henceforth referred to as SDS), proposed in 
[BR99, BMR99, BMROO]. A formal definition of such a system is given in Section 2. Sequential dynami- 
cal systems are closely related to classical Cellular Automata (CA), a widely studied class of finite discrete 
dynamical systems used to model problems in physics and complex systems. Computability aspects of dy- 
namical systems in general and cellular automata in particular have been widely studied in the literature 
[W086, Gu891. Dynamical systems are closely related finite networks of communicating automata, finite and 
infinite transition systems and sequential digital circuits [Ra92, HT94, SH+96, AY98, AKY99, RH93, SM73, 
Hu73, HRS76, HR78j. 

In simple terms, a sequential dynamical system (SDS) S is a triple (G, F, n). G(V E) is an undirected 
graph (called the underlying graph of the SDS) with n nodes, with each node having a state with finite 
number of state values. 3 = { f f  , f2, . . . , fn} is a set of local transftion functions, where fi is a function 
associated with node vi E V. The inputs to fi are the values of the state of node vi and those of vi’s neighbors 
in G. The range of fi is the set of allowed state values. T is a permutation of (Le., a total order on) the nodes 
in V. A single SDS transition is obtained by updating the states of nodes v E V by evaluating the function 
associated with each of the nodes, in the order specified by n. A configuration of SDS S is an n-tuple 
(bf , b, . . . , b,,), where bi is the value of the state of node vi. Thus, a transition of an SDS can be envisioned 
as a change from one configuration to another. The phase space of S is a directed graph where each node 
represents a configuration and each directed edge (C, C‘) indicates that the system moves fiom configuration 
C to configuration C’ i,n one transition. For an SDS whose underlying graph has n nodes, the phase space has 
k:* nodes, where k: is the number of allowed state values. A fixed point of an SDS S is a configuration C such 
that the only possible transition from the configuration C is to C itself. 

In this abstract, we will restrict ourselves to Simple-SDSs, that is, SDSs with the following additional 
restrictions: (i) the state of each node is Boolean and (ii) each local transition hnction fi is Boolean and 
symmetric. Our hardness results hold even for such simple-SDSs and thus imply analogous hardness results 
for more genera1 models. 

Here, we study the computational complexity of determining various phase space properties of SDSs. 
The properties studied include classical questions such as reachability (“Does a given SDS starting fiom 
configuration C ever reach configuration C’?,,) and fixed points (“Does a given SDS have a configuration C 
such that once C is reached, the SDS stays in C for ever?”) that are commonly studied by the dynamical 
systems community. Specifically, we investigate whether such properties can be decided efficiently using 
computational resources that are polynomial in the size of the SDS representation, rather than in the size of the 
phase space (which is exponentially larger). We also study the computational Complexity of such questions 
when the underlying systems are specified succinctly. The research is guided by the following overall goals: 
(i) identification of efficient inter-simulations that yield uniform lower bounds for various models, (ii) efficient 
reductions that can be naturally extended to succinctly presented and, in the limit, to infinite instances, and 
(iii) obtain meta-results that allow us to infer the easinesshardness of analysis problems as a function of 
underlying parameters (hnctions, graph topology, domain size, etc). 

The original motivation to develop a mathematical and computational theory of SDSs was to provide a 
formal basis for the design and analysis of large-scale computer simulations. Because of the widespread use 
of computer simulations, it is difficult to give a formal definition of a computer simulation that is applicable 
to all the various settings where it is used. An important characteristic of any computer simuIation is the 
generation of global dynamics by iterated composition of local mappings. Thus, we view simulations as 
comprised of the following: (i) a collection of entities with state values and local rules for state transitions, 
(ii) an interaction graph capturing the local dependency of an entity on its neighboring entities and (iii) an 
update sequence or schedule such that the causality in the system is represented by the composition of local 
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mappings. References [BW095, BB+99] show how simulations of large-scale transportation systems and 
biological systems can be modeled using appropriate SDSs. The local interaction rules for entities and a 
dependency graph structure are by now accepted as standard aspects of discrete dynamical systems for mod- 
eling large-scale systems. The ordering aspect is somewhat new in a formal setting but has recently received 
attention by other researchers [HG99, -97, Rk941. It is implicit in all discrete event simulations. Following 
[BPT91], we say that a system is predictable if basic phase space properties such as REACHABILITY and 
FIXED POINT EXISTENCE can be determined in time which is polynomial in the size of the system specifi- 
cation. Our PSPACE-completeness results for predicting the behavior of “very simple” systems essentially 
imply that the systems are not easily predictable; in fact, our results imply that no prediction method is likely 
to be more efficient than running the simulation itself. The results here can also be used to we show that even 
simple SDSs are “universal” in that any reasonable model of simulation can be “efficiently locally simulated” 
by appropriate SDSs that can be constructed in polynomial time. The models investigated include: cellular 
automata, communicating finite state machines, multi-variate difference equations, etc. 

Another motivation for studying SDSs is derived from the papers of Buss, Papadimitriou and Tsitsiklis 
[BPTBl], Moore [M090, Mo911, Sutner [Su95] and Wolfram [Wo86]. Specifically, we undertake the com- 
putational study of SDSs in an attempt to increase our understanding of SDSs in particular and the complex 
behavior of dynamical systems in general. SDSs are discrete finite analogs of classical dynarhical systems, 
and we aim to obtain a better understanding of “finite discrete computational analogs of chaos”. As pointed 
out in [BPT91, Mo90, Mo911, computational intractability or unpredictability is the closest form of chaotic 
behavior that such systems can exhibit. Extending the work of [BPT91], we prove a dichotomy result be- 
tween classes of SDSs whose global behavior is easy to predict and others for which the global behavior 
is hard to predict. In [Wo86], Wolfram posed the following three general questions in the chapter entitled 
‘“hventy Problems in the Theory of Cellular Automata”: (i) Problem 16: How common are computational 
universality and undecidability in CA? (ii) Problem 18: How common is computational imduc ib i l i~  in CA? 
(iii) Problem 19: How common are computationally intractable problems about CA? The results obtained 
here and in the companion papers [BH+OOa, BH+OOb] for SDSs (and for CA as direct corollaries) show that 
the answer to all of the above questions is “quite common”. In other words, it is quite common for syn- 
chronous as well as sequential dynamical systems to exhibit intractability. In fact, our results show that such 
intractability is exhibited by extremely simple SDSs and CA. 

2 Definitions and Problem Formulations 
We begin with a formal definition of sequential dynamical systems. As stated in the introduction, we will 
restrict our selves to Simple-SDSs. (Unless otherwise stated, we use “SDS” to mean a simple SDS.) Our 
definition closely follows the original definition of SDS in [BMR99, BMROO, MR99, ReOO]. We also recall 
basic definitions of phase space parameters studied in this paper. 

A Simple Sequential Dynamical System (SDS) S is a triple (G, 3, a), whose components are as fol- 
lows: 

1. G(V, E) is an undirected graph without multi-edges or self loops. G is referred to as the underlying 
graph of S. We use n to denote IVl and rn to denote 1,331. The nodes of G are numbered using the 
integers 1 , 2, . . . , n. 

2. Each node has one bit of memory, called its state. The state of node i, denoted by si, takes on a 
value from J F p  (0,l). We use Si to denote the degree of node i. Further, we denote by N ( i )  the 
neighbors of node i in G, plus node i itself. Each node i is associated with a symmetric Boolean 
function fi : + F2, (1 5 a 5 n). We refer to fi as a local transition function. The inputs to f i  
are the state of i and the states of the neighbors of i. By “symmetric” we mean that the function value 
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does not depend on the order in which the input bits are specified; that is, the function value depends 
only on how many of its inputs are 1. We use F to denote {fi, f2,  . . . , f n } .  

3. Finally, x is a permutation of { 1,2,. . . , n} specitjring the order in which nodes update their states 
using their local transition fbnctions. Alternatively, T can be envisioned as a total order on the set of 
nodes. 

Computationally, the transition of an SDS from one configuration to another involves the following steps: 

for i = 1 to n do 

the neighbors of ~ ( i ) . )  

end-for 

(i) Node n( i )  evaluates jT($). (This computation uses the current values of the state of ~ ( i )  and those of 

(ii) Node ~ ( i )  sets its state sA(i )  to the Boolean value computed in Step (i). 

Stated another way, the nodes are processed in the sequential order specified by permutation x. The 
“processing” associated with a node consists of computing the value of the node’s Boolean h c t i o n  and 
changing its state to the computed value. 

Note again that the assumption of symmetric Boolean fbnctions can be easily relaxed to yield more 
general SDSs. We give special attention to the symmetry condition for two reasons. First, our lower bounds 

* for such SDSs imply stronger lower bounds for computing phase space properties of CA and communicating 
finite state machines (CFSMs). Second, symmetry provides one possible way to model “mean field effects” 
used in statistical physics and studies of other large-scale systems. A similar assumption has been made in 
[BPT9 13. 

Recall that a configuration of an SDS is a bit vector ( b l ,  b2, .  . . , bn). A configuration C of an SDS 
S = (G, 7, T )  can also be thought of as a h c t i o n  C : V + IF2. The function computed by SDS S, 
denoted by Fs, specifies for each configuration C, the next configuration C‘ reached by S after carrying out 
the update of node states in the order given by R. Thus, Fs : + B?j is a global function on the set of 

. configurations. The function Fs can therefore be considered as defining the dynamic behavior of SDS S. We 
also say that SDS S moves from a configuration C at time t to a configuration F , ( C )  at time (t + 1). The 
initial configuration (i.e., the configuration at time t = 0) of an SDS S is denoted by Z. Given an SDS S with 
initial configuration Z, the configuration of S after t time steps is denoted by ( (S,  t).  We define [(S, 0) = Z. 
We also use ((S, t ) (W)  to denote the states of the nodes in W E V and ((S, t) (v) to denote the state of a 
particular node v E V at time t. 

’ 

2.1 Problems Considered 

Given an SDS S, let IS1 denote the size of the representation of S. In general, this includes the number of 
nodes, edges and the description of the local transition functions. When Boolean local transition functions 
are given as tables, IS1 = O(m 4- ITln), were 1’2’1 denotes the maximum size of the table, n is the number 
of nodes and rn is the number of edges in the underlying graph. For a node v with degree S,, the size of the 
table specifying an arbitrary Boolean function is 0(26v), while the size of the table specifying a symmetric 
Boolean function is O(S,,). We assume that evaluating any local transition function given values for its inputs 
can be done in polynomial time. 

The main problems studied in this paper deal with the analysis of a given SDS, that is, determining 
whether a given SDS has a certain property. The analysis problems considered in this paper are formulated 
below. 
Given an SDS S, two configurations Z, B, and a positive integer t, the &REACHABILITY problem is to decide 
whether S starting in configuration Z can reach configuration B in t or fewer time steps. If t is specified in 
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unary, it is easy to solve this problem in polynomial time since we can execute the SDS for t  steps and check 
whether configuration B is reached at some step. So, we assume that t is specified in binary. 

Given an SDS S and two configurations Z, B, the REACHABILITY problem is to decide whether S starting 
in configuration Z ever reaches the configuration 8. (Note that, for t 2 2", t-REACHABILITY is equivalent 
to REACHABILITY.) Given an SDS S and a configuration Z, the FIXED POINT REACHABILITY problem is 
to decide whether S starting in state Z reaches a fixed point. 

2.2 Extensions of the Basic SDS Model 
As defined, the state of each node of an SDS stores a Boolean value and the local transition functions are 
symmetric Boolean functions. When we allow the state of each node to assume values from a domain D of a 
fixed size and allow the node functions to have 2) as their range, we obtain a Finite Range SDS (FR-SDS). If 
the states may store unbounded values and the local transition finctions may also produce unbounded values, 
we obtain a Generalized SDS (Gen-SDS). 

Another usefbl variant is a Synchronous Dynamical System (SyDS), an SDS without the node permu- 
tation. In a SyDS, during each time step, all the nodes synchmnously compute and update their state values. 
Thus, SyDSs are similar to classical CA with the difference that the connectivity between cells i's specified 
by an arbitrary graph. A further generalization is to consider a partial order on the nodes instead of a total 
order. We refer to such an SDS as a DagDS since any partial order can be represented as a directed acyclic 
graph (dag). Clearly, DagDSs generalize both SDSs and SySDSs. The definition of a SyDS can be extended 
to obtain an FR-SyDS and a Gen-SyDS in a manner similar to that of SDS. FR-DagDS and Gen-DargDS 
can also be defined in an analogous faslhion. It can be seen that SDSs are the most restricted models and 
Gen-DagDS are the least restricted models. Whenever possible, we prove our PSPACE-completeness results 
for the most restricted SDS model, thereby obtaining stronger lower bound results. 

Note that the notion of symmetry can be suitably extended to bctions with non-Boolean domains as 
well. In defining the above models, we did not attempt to relax the symmetry property of local transition 
functions. Dynamical systems in which the local transition finctions are not necessarily symmetric are 
considered in the companion papers [BH+OOa, BH+OOb]. 

3 Summary and Significance of Results 
In this paper, we characterize the computational complexity of determining several phase space properties 
for SDSs and CA. The results obtained are first such results for SDSs and directly imply corresponding 
lower bounds on the complexity of similar problems for various classes of CA and communicating finite state 
machines, 

Our main result is a dichotomy between easy and hard to predict classes of SDSs. Specifically, we 
show that t-REACHABILITY, REACHABILITY and FIXED POINT REACHABILITY problems for FR-SDSs 
are PSPACE-complete. Moreover, these results hold even if the local transition functions are identical and 
the underlying graph is a simple path. We firther extend these results to show that the above three problems 
remain PSPACE-complete for SDSs, even when the underlying graph is simultaneously k-regular for some 
fixed k, bandwidth bounded (and hence pathwidth and treewidth bounded) and the local transition functions 
are symmetric. 

In contrast to the above intractability results, we show that these problems are efficiently solvable for 
SDSs in which each local transition h c t i o n  is symmetric and monotone. Specifically, we prove that when 
each local transition finction is a Ic-simple-threshold hct ion4 for some k 2 1, these problems can be solved 
in polynomial time. 

'The k-simple-threshold function has the value 1 iff at least R of its inputs are 1. Conventional definition of threshold hncttions 
associates a weight with each input [K070]. We use the simplified form where all inputs have the same weight. 
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As a part of our methodology, we also obtain a number of “simulation” results that show how to simulate 
one type of SDS (or CA) by another typically more restricted type of SDS (or CA). These simulation results 
may be of independent interest. For instance, we’ show 

1. how a given FR-SyDS with local transition functions that are not necessarily symmetric can be effi- 
ciently simulated by a SyDS, and 

2. how a SyDS can be simulated by an SDS. 

The results presented here extend a number of earlier results on the complexity of problems for CA and also 
have other applications. We briefly discuss these extensions and their significance below. 
(1) Recalling results in [RH931 showing the EXSPACE-hardness of local STATE-REACHABILITY prob- 
lems , for hierarchically-specified linearly inter-connected copies of a single finite automaton, the con- 
structions here also imply that various local STATE-REACHABILITY problems are also EXSPACE-hard, 
for hierarchically-specified constantly bandwidth-bounded networks of simple SDSs. Using ideas from 
[SH+96, HR+O I], this last result implies: i)determining any simulation equivalence relation or pre-order 
in the Linear-time/Branching-time hierarchies of [vG90, vG931 is EXSPACE-hard, for such hierarchically- 
specified networks of simple SDSs; and ii)in the Sense of [HPT91], such hierarchically-specified networks 
of simple SDSs exhibit EXSPACE-hard sensitivity to initial conditions.. Additionally following [BPT9 11, 
we emphasize concepts, techniques, etc., that can be used to characterize the computationally-tractable or 
computationally-intractable sensitivity to initial values of these models. Note that our models use “minimal” 
amount of concurrency to obtain the results. 
(2) All our reductions are carried out from the acceptance problem for deterministic linear space bounded 
automata (LBAs) and are extremely efficient in terms of time and space requirements. Specifically, these 
reductions require O(n) space and O(n1ogn) time. Thus these results imply tight lower bounds on the 
deterministic time and space required to solve these problems. 
(3) The results in [Su95, Gr871 prove the PSPACE-completeness of REACHABILITY and FIXED POINT 
REACHABILITY problems and the NP-completeness of the PREDECESSOR EXISTENCE problem (“Given 
a cellular automaton A and a configuration B, is there a configuration from which A can reach t3 in one 
transition?”) for CA. These authors did not consider the effect of restricting the class of local transition 
hct ions or restricting the structure of the underlying graph on the complexity of these problems. Our results 
extend their hardness results to much simpler instances and also provide the first step in proving results that 
delineate polynomial time solvable and computationally intractable instances. 
(4) The results presented here can be contrasted with the work of Buss, Papadimitriou and Tsitsiklis [BPT91] 
on the complexity of &REACHABILITY problem for coupled automata. In their model, there are n identical 
automata, a global control rule, an initial state vector Z and a positive integer T. The global control rule 
is given as a first order sentence and is independent of the identities of the automata. The automata do not 
interact with each other. At each stage, the automata independently evaluate their next state depending on the 
current state and the input received from the global controller. Following this, the global control rule reads , 

the state of the automata and evaluates the control rule. If the rule evaluates to true then all automata receive 
1 as their input, othenvise they receive a 0. The goal is to predict the state of the system after T time units. 
Note that their identity-independence assumption is similar to our symmetric function assumption, except 
that they consider first order formulas. Our results show that, in contrast to the polynomial time solvability 
of the reachability problem for globally controlled systems of independent automata, a small amount of local 
interaction suffices to make the reachability problem computationally intractable. Our reduction leads to 
an interaction graph that is of constant degree, bandwidth bounded and regular. (The interaction graph is 
obtained from a simple path by replacing individual nodes in the path by groups of nodes that interact only 
with nodes in neighboring groups.) 
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4 Related Work 
As mentioned earlier, CA have been studied widely in the literature, owing to their simplicity on one hand and 
their ability to produce complex behavior on the other. Computational aspects of CA have been studied by 
a number of researchers (see [Mo91, Mo90, CPY89, W086, Gu89, Gr87, Su95] and the references therein). 
However, most of the work addresses Computability issues for infinite CA. Other than the paper by Buss, 
Tsitsiklis and Papadimitriou [BPT91] discussed in the previous section, the papers that are most relevant to 
our work are the following: (i) The papers by Barrett, Mortveit and Reidys LBMR99, BMROO, MR99, ReOO, 
ReOOa] and Laubenbacher and Pareigis [LPOO] investigate mathematical properties of sequential dynamical 
systems, (ii) The papers of Sutner [Su89, Su90, Su951 characterize the complexity of reachability and pre- 
decessor existence problems for finite CA and (iii) The papers of Moore [M090, M0911 make an important 
connection between unpredictability of dynamical systems and undecidability of some of their properties. 
Moore formally shows that undecidability is a much stronger form of unpredictability. 

Alur et. al. [AKY99, AY98] consider the complexity of several problems for hierarchically specified 
communicating finite state machines. SDSs can be viewed as very simple kinds of concurrent state machine: 
moreover the hardness proof obtained here can be extended to obtain EXPSACE-hardness, when we have 
exponentially many simple automata (vertices in our case) joined in form of a bandwidth bounded graph. 
This result significantly extends a number of known results in the literature concerning concurrent finite state 
machines by showing that the hardness results hold even simple classes of individual machines. 

Quadratic dynamical systems are a variant of discrete dynamical systems that aim at modeling genetic 
algorithms, In [ARV94] it is shown that simulating quadratic dynamical systems is PSPACE-hard; specif- 
ically, it is shown that the t-reachability problem for such systems is PSPACE-complete even when t is 
specified in unary. The proof of this result uses a reduction from Quantified Boolean Formulas (QBF) and 
exploits the quadratic nature of the allowed rules. Other references on discrete dynamical systems include 
[AM94, AMP95, BC96, Br95, CY88, CPYS9, Du94, KCG94, Pi941. 

5 Hardness results 
In this section we prove our main hardness theorem concerning the ~REACHABILITY, REACHABILITY and 
FIXED POINT REACHABILITY problems for SDSS. 

Theorem 5.1 main  hardness theorem) The i-REACHABILITY, REACHAEILITY and FIXED POINT REACH- 
ABILITY pmblems for SDSs with symmetric Boolean functions are PSPACE-hard, even when (E) each node is 
ofconstant degree and the graph is regular (i.e. all nodes have the same degree), (ii) the pathwidth and hence 
the treewidth of the graph is bounded by a constant, and (iii) all the nodes have exactly the same symmetric 
Boolean function associated with them. 

Overall Proof Idea: The proof of the above theorem is obtained through a series of local replacement type 
reductions (steps). The reductions involve building general gadgets that may be of independent interest. 
Step 1: First, by a direct reduction from the acceptance problem for a LINEAR BOUNDED AUTOMATON 
(LBA) we can show that the ~-REACHABILITY, REACHABILITY and FIXED POINT REACHABILITY prob- 
lems for FR-SyDS (finite CA) and FR-SDS are PSPACE-hard even under the following restrictions applied 
simultaneously: (i) The graph G is a line (which has pathwidth and treewidth of l), (ii) The number of distinct 
node functions is at most 3, and (iii) The domain of each function is a small constant (depending only on the 
size of the LBA encoding). (Theorem stated below but proof omitted). 
Step 2: Next, we show how to transform these problems for PR-SyDS into the corresponding problems for 
SDS (where the node functions may be different). See Section 5.2. 
Step 3: Finally, we fhrther extend the hardness result so that all the node functions are identical (same 
fbnction and same degree) (proved in the appendix). 
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Theorem 5.2 (step 1: The t-REACHABILITY, REACHABILITY and FIXED POINT REACHABILITY prob- 
lems for FR-SyDS (Cellular Automata) and FR-SDS are PSPACE-hard, even when restricted to instances 
such that: (i) The graph G is a line graph (and thus has pathwidth and treewidth of l), and fig There are no 
more than 3 distinct functions fi present at the nodes of the graph, and (iii) The domain of each function is a 
small constant (that depends only on the LBA encoding), 

5.1 Representation of symmetric Boolean functions 
A symmetric Boolean function can be represented and computed in time proportional to the degree of a 
node (more accurately in time proportional to the fan-in). Consider a Boolean €unction fi at a node vl with 
degree n - 1. Recall that the function takes n inputs, including the value at the node itself. Function fi can 
be represented by the subset of ( 0 , l .  . . , n}  denoting when the function takes value 1 as a hnction of the 
number of input variables that are 1 (with remaining input variables being 0). For instance, let n = 5. A 
possible function fl is {1,3,5} which is the exclusive-or (EX-OR) of the five input variables. Another way 
to represent a symmetric Boolean function is to give an (n + 1)-dimensional 0-1 vector such that the i - th 
entry denotes the h c t i o n  value when i inputs are set to 1. Thus, another representation of EX-OR above is 
(0,1,0,1,0,1>. 

5.2 SyDS with symmetric Boolean functions: Step 2 
Definition 5.1 Given k 2 1, a distance-lc coloring of a graph G(V, E )  is an assignment of colors h : V + 
N, to the vertices of G such that Vu, v E V where the distance between u and v is at most k, we have that 
h ( 4  # w. 
Proposition 5.1 A graph G(V, E )  with mmimum degree A can be distance-2 colored using at most A2 + 1 
colors, and such a coloring can be obtained in polynomial time. Thus for a graph whose vertex degneses are 
bounded by a constant, and, in particulal; for regular graphs of constant degree, the number of colars used 
for distance-2 coloring is a constant. 

Theorem 5.3 For a given m and A, consider the class of Gen-SyDSs where the size of the state domain of 
each node is at most rn and the degree of each node is at most A. There is a polynomial time reductionfrom 
a generalized SyDS S = (G, 3) in this class and conjiigurations Z and Bfor S to a usual Faving symmetric 
Boolean functions) SyDS SI = (GI F1) and conjigurations XI and I31 for S1 such that 

1. S starting in configuration Z reaches B starting in conjigtiration 11 reaches B1. Mowovec for 
each t, S reaches B in t steps i~$Sl reaches Bl in t steps. 

2. S starting in conjiguration Z reaches a&ed point #SI starting in & reaches abed point. 

Proof sketch: Given S, the reduction first constructs a distance-2 coloring h of G, using at most A2+1 colors, 
where the colors are consecutive integers, beginning with zero. Next, given graph G(V, E) and coloring h, 
we construct graph G1 (Vi El) .  For each node zh E V there are (m - l)mh("k) nodes in &. We refer to 
these nodes as xb, 1 5 i < m and 1 5 j 5 mh(5k). Informally, corresponding to a node zk of 5, 
contains m - 1 sets of nodes (called clumps), each of size mh(z'c). For a given node xk E V, clump A'' rrefers 
to the nodes 1 5 r 5 mh(Q). Additionally, we will use Xk = Xf U A$!., . Xk-l to denote the set of 
all nodes in VI corresponding to Zk. E1 consists of the followhg two kinds of edges: 

1. For each node zk E V, there is an edge between each pair of distinct nodes in A?. Thus, the nodes in 
X h  form a complete graph. 
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2. For each (xk, z,) E E, there is an edge between each node in Xk and each node in X'. Thus, each 
edge (zk, x,.) is replaced by a complete bipartite graph between the sets of nodes used to replace the 
nodes xk and 2,. 

Define a configuration A of SI to beproper if V k ,  i, j , p ,  q 

(A(& = 1 and i 2 p )  3 A(%&) = 1. 

In other words, a configuration A of S1 is proper if the value at any node in Xj equal to 1 implies that 
all nodes in A'!, A'!, . . . , X t  are also 1. Note that if A is a configuration of S, then A maps each element 
of V into a value from (0,. . . , (rn - 1)). The simulation of S by 8 1  is based on the following bijection 
(that will be true by construction) g between the configurations of S and the proper configurations of SI 
g : mv + 2v1, For configuation A of S, the corresponding configuration g(A) of 81 is specified as for all 
1 5 i < m, 1 5 j 5 mh(%k), g(d)(z&) = 1 iff A(x:k) 2 i. 

Intuitively, we maintain the invariant that the value c at node zk corresponds to having the nodes in 
clumps A'? U Xt, . . . , X,k equal to 1 and the nodes in clumps U X:+s,. . . , Xz-l equal to 0. The initial 
configuration 

The functions in the set F1 are defined as follows. Suppose that node Xk E V has neighbors yl, . . . 3 d  
in G and fa, is the finction at node xk. Consider a node 3%~ in A?. Consider a proper configuration A1 
of $1, corresponding to the configuration Ji of S. Suppose that in configuration AI, exactly w of the input 
parameters to jstj are equal to 1. Since configuration A1 is proper and h is a distance-2 coloring of G, there 
exist unique integers Q, . . . , cd, each in the range 0 .  . . m - 1, such that 

of SI is set to be g(Z). 

'1u = Qmh(xk) + C,,h(Vl) + c2mh(ya) + , . , + Cdrnh(Q) .  

Since A1 = g(A), it follows that CO, . . . , cd are the values of 5 k  and its neighbors in configuration A of S. 
The fbnction fSk  is defined as follows: 

ij 

f,g(") = 1 iff f Z J C O , C l ,  ' * ' , Cd) I i. 

Intuitively, the reduction is done in such a way that different vectors C = (cg, . . . , Cd)  and Q = 
(go,. . . , qd) corresponding to the values at 5 k  and its neighbors produce different counts for how many 
inputs of symmetric finction f.; are equal to 1, and so can be appropriately differentiated. For a proper 
configuration of SI, consider the count 20 of how many input variables to hc t ion  fa.. equal 1. Integer TU 

can be uniquely decomposed into a s u m  of powers of m. Because node Zk and each o?its neighbors in G is 
assigned a distinct color by h, the coefficient of each power of m encodes the value of one of the inputs to 
hnction fsk , thereby enabling f., to play its role in simulating fZ,. The next lemma summarizes the needed 
properties of the construction. The proof of the lemma is omitted due to lack of space. 

Lemma 5.1 Let S and SI be as dejned above. Consider S starting in conjiguration Z and SI starting in 
configuration g(Z). Then (1) W 2 0, c(&, t) is propel: (2) Vt 1 0, xk E V, 1 ,< i < m, 1 5 j 5 
m h ( q  cl(Sl,t))(x&) = 1 i$ [(S,t)(Xk) 2 i. 

Next note that the graph we obtained in proof of Theorem 5.2 was of constant degree and thus using 
Proposition 5.1 can be distance-2 colored using a constant number of colors. Additionally note that in the 
proof of Theorem 5.2 the domain size was a small fixed constant. Putting these facts together we get that 
the graph produced in the above construction is of bounded degree. The proof of the theorem is now a direct 
consequence of the above results. 
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6 Polynomial Time Solvable Cases 
In this section we consider polynomial time solvable cases of the analysis problems, Let 1st denote the size 
of an SDS S. In the phase space Ps of S, a transient is a simple directed path such that no edge of the path 
appears in any cycle in P,. Our polynomial time algorithms for answering the reachability questions are 
based on a simple sufficient condition: If an SDS S is such that (i) the number of nodes in every limit cycle 
in Ps is bounded by a polynomial in IS1 and (ii) the number of nodes in every transient in Ps is bounded by 
a polynomial in IS!, then t-REACHABILITY, REACHABILITY and FIXED POINT REACHABILITY problems 
can be solved in time polynomial in IS[. While developing polynomial time algorithms using these sufficient 
conditions, we also obtain useful results concerning structural aspects of these SDSs, 

6.1 Ec-Simple-Threshold Functions 
In this section we prove that ~-REACHABILITY, REACHABILITY and FIXED POINT REACHABILITY prob- 
lems are polynomial time solvable for k-simple-threshold-SDSs, that is, SDSs in which each local transition 
function is a k-simple-keshold function for some le 2 1. Since each<symmetric monotone function is a 
k-simple-threshold function for some k, these polynomial time results provide the dichotomy between two 
classes of SDSs: one with symmetric local transition hct ions and the other with symmetric monotone local 
transition functions. Some remarks regarding the generality of these polynomial algorithms are provided at 
the end of this subsection, 

Definition 6.1 A le-simple-threshold-SDS is an SDS in which the local transition function at each node vi is 
a ki-simple-thresholdfction, where 1 5 ki 5 min{k, 6, + 1). Here, 62 is the degree of node vi. 

Theorem 6.1 Theproblems ~-REACHABILITY, REACHABILITY and FIXED POINT REACHABILITY~O~ any 
k-simple-threshold-SDS, 1 5 k 5 n, can be solved by executing at most 9 steps of the given SDS, where m 
is the number of edges in the underlying graph. 

Proof: The proof of the theorem is based on a potentidfirnction argument. Given an SDS with underlying 
graph G(V, E), we assign a potential to each node and each edge in G. For the remainder of the proof, we 
use k, to denote the threshold value required for a node v to become 1. For each node 21 define 2'1 (v) = 
hJ T ( v )  = 6, + 1. Recall that sv denotes the state of node v. Thus a,, = 1 iff at least TI (v) 
of its inputs are 1; s, is 0 otherwise. Another interpretation of 2'1 (v) is that it is the smallest integer such that 
sv must be assigned 1 if 2'1 (v) qf 1)'s inputs have value 1. Using this analogy, define TO (v )  to be the smallest 
integer such that 8 ,  must be assigned 0 if TO(") of the inputs to v have value 0. The following observation 
is an easy consequence of the definitions of k,-simple-threshold, To(v) and Tl(v). Note that for any node 
v E V, Tl(v) + To(v) = T(v )  + 1. Define the potential P(v)  at anode v as follows: 

P(u) = Tl(v) ifs, = 1 
= To(v) ifs, = 0 

The following is an easy consequence of the definitions of To(v), 2'1 (v) and the fact that k, 2 1 is that For 
any node v E V, 1 5 P(v)  5 6, + 1. 

and 

Define the potential P ( e )  of an edge e = {u, v} as follows: 
P(e) = 1 if e = { u , ~ }  ands, # sv 

The potential of the entire SDS is given by P(G) = CvEV P(v)  + xeEE P(e). The initial potential P(G)  
(regardless of the initial configuration) can be upper bounded using above observations as follows: 

= 0 otherwise. 

VEV eEE V€V eEE 
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Further, since for each node v E V, P(v)  2 1 the potential of the SDS at any time is at least n. Row, fix a 
global step in the dynamic evolution of the SDS and consider a particular substep in which the state of node 
v changes from a to b. Note that if the system has not reached a fixed point, then at least one node undergoes 
such a state change. This state change may modify the potential of v and the potentials of the edges incident 
on v. Let D, denote the set of edges incident on v whose potential changed from 1 to 0 as a result of the state 
change at v. Similarly, let A, denote the set of edges incident on v such that their potential changed from 0 
to 1. Finally, let A, = Ta(v) - Tb(v) denote the decrease in the potential of v. (Note that the value of A, 
may be negative.) We claim that 

To see the the first inequality, consider each node 2 such that {v, z} is an edge in G and .9a = b at the time 
when 21 is updated. The number of such nodes is at least Tb(V) since the value of v changed from a to b, 
For each such edge {v, z}, the potential decreases from 1 to 0 since after the update to v, s, = tiz. Thus, 
ID, I 2 Tb(u). The second inequality follows since at most T(v)  - 1 -Tb(U)  of v's neighbors could have been 
assigned value a prior to updating v. By the observations above, we get that T(u) - 1 - Tb(u) = Ta(v) - 2. 
We claim that the state change at node v decreases the potential of the system. To see this, note that the total 
decrease in potential due to the state change at node is given by 

Thus, each time there is a change in the state of a node, P(G) decreases by at least 2. As argued above, 
the initial value of P(G) is at most 3m + n, and the value of P(G) can never be less than n. During the 
transition from one configuration to a different configuration, at least one node changes its state value. Each 
such transition causes a decrease of at least 2 in the potential of the system. Thus, the total number of 
configuration changes is bounded by [(3m i- n) - n]/2 = 3m/2. 

In other words, any IC-simple-threshold-SDS reaches a fixed point after at most 3m/2 steps. This immedi- 
ately implies the polynomial solvability of &REACHABILITY , REACHABILITY and FIXED POINT REACH- 
ABILITY problems for such SDSs. 
Remarks: 

(1) Theorem 6.1 points out an interesting contrast between CA and SDSs. It is easy to construct instances 
of k-simple-threshold-CA with limit cycles. An example of such sc system is a simple IC-regular bipartite graph 
G(VU U, E), Let I VI = IV( = n. Each node in V is adjacent to IC neighbors in U and vice versa. Initially, we 
assign nodes in V the value 1 and nodes in U value 0. It is now easy to see that the system oscillates between 
the two configurations (Onln)  and (Inon); thus, it does not reach a fixed point. In contrast, by Theorem 6.1, 
k-simple-threshold-SDSs have fixed points but not limit cycles of length 2 2. 

(2) It can be shown that starting at any initial configuration, a k-simple-threshold-SDS will reach a fixed 
point regardless of the order in which the states of the nodes are updated. As a matter of fact, a fixed point will 
be reached even if the order of updates is changed in every iteration. Moreover, the order of updates need not 
even be given by a permutation. As long as each node updates its state at least once in a polynomially long 
sequence of state updates, a k-simple-threshold-SDS will reach a fixed point within a polynomial number of 
steps. We refer the reader to [IMROO] for more details on this topic. 

(3) Theorem 6.1 holds even when each node has a different value of the threshold b. As observed earlier, 
every symmetric and monotone Boolean function is a k-simple-threshold function for some I C .  Thus, Theo- 
rem 6.1 implies the polynomial time solvability of reachability problems for SDSs with symmetric monotone 
local transition functions. Theorem 6.1 also shows that for k-simple-threshold-SDSs, the length of any tran- 
sient is at most v. 
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7 Appendix 
7.1 Simulating SyDS by SDS 
Theorem 7,l The FIXED POINT EXISTENCE problem for &DS with symmetric Boolean functions (not nec- 
essarily identical) is polynomial time reducible to the FIXED POINT problem for SDS with symmetric Boolean 
functions. 

Proof: Given an SyDS S (G(V, E), F, Z), with F being the set of symmetric Boolean functions, we create 
an instance S1 (GI (K, El) ,  F1, A, &) of SDS as follows: 
For each x E V we create a set of 9 nodes in VI. Denote them by xi, 1 5 i 5 9. SI will simulate S 
as follows. Letting c(S, t)(x) to denote the state (value) of a vertex x in SDS S after t time steps, we will 
maintain the following invariant: 

Figure 1 : Figure explaining the construction of the Gadget. The dotted boxes show the replacements for 
vertices x and y. The dotted lines going between vertices across the dotted boxes tells how an edge (2, y) is 
replaced by a set of edges. 

Informally speaking, we maintain the following semantics: 

1. For 1 5 i 4, <(SI, t )  (zi), will hold the value (state) of the vertex 2 at the current time t and 
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2. For 5 5 i 5 9, [(SI, t)(zi) ,  will hold the value of the state (or its complement) at 5 at time t - 1. 

The idea behind the simulation is that at each time step SI will first compute ~ i ,  5 5 i 5 8, by using values 
from xi, 1 5 i 5 4; thereby storing the value of I at time t - 1. Then S’ will compute the values of zi based 
on the values of z7 and x8. Finally, S‘ will compute the values of zi, I 5 i 5 4 using the newly computed 
value of yi for all y such that y is a neighbor of 2. We now describe the components of SI. 

1. Graph GI: As shown in the figure the graph on xi, 1 5 i 8 is a complete bipartite graph with one 
side of the bipartition being zi, 1 5 i 5 4 and the other side of the bipartition is xi, 5 5 i 5 8. 
Finally the vertex z g  is connected to z 5  and $6. In addition, for each edge (5, y) E E, S’ contains the 
following eight edges 

(39,!/1), (29, !/2/2>, ( 3 9 , 3 3 ) ,  ($9, g4) 

(y9, $1)~  (?/Si Z2), (99, $31, (?/9,54) 

2. Permutation TI: The permutation R has three components T;  - 7ri R:, where each ?ri is given as 
follows: 

= (25,26,z7,28)r vz E v 
1 ? r z = x g  V X E V  

1 
r 3  = ( z l , Z 2 1 ~ 3 , ~ 4 ) ,  VZ E v 

3 .  Initial state Z1: The initial state Z1 is given as follows: 

Zl(z1) =zl(r2) =Zl(ICg) =2&($4)  = I ( % ) ,  VZ E v 
Zl(25) = Z&g) = 43, vx E v 
Z i ( ~ 7 )  = ZI(Z~) = 1, VX E V 

Z1(Ig) = Z(Z),VZ E v 
4. Function Set F1: The function set consists of four different functions: f l  at nodes 2 5 , 5 6 ,  f2 at nodes 

17, zg, f3 at $9 and finally f4 at $1, . ,x4. Below we describe each of the functions in detail: 

Function f1 at 15 and 36.’ The nodes x5 and $6 have five neighbors and hence f1 has 6 
arguments. f1 is 1 iff at least 4 out of its 6 arguments is 1 and is 0 otherwise. Formally, given a 
set of variables X, let N ( X )  denote the number of variables set to 1. Then 

fl(x)=l iff N ( X ) > 4  

Function f2 at z7 and 58: fi is the complement of f1 ;  it is 1 iff less than 4 of its input values 
are 1. Formally, 

f i ( X ) = l  iff N ( X ) < 4  

Function f3  at $9: Node xg is connected to 16 and 33 among the copies of z and for each 
neighbor of z, 19 is also connected to a group of 46, nodes (where 6, is the degree of node I )  
as outlined earlier. f3 is 1 iff the number of its arguments equaling 1 is congruent to 2 mod 4 or 
3 mod 4. Formally, 

f 3 ( X )  = 1 iff N(X) = 2 mod 4 or N ( X )  = 3 mod 4 
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(d) Function f4 at $1, 22, x3 and 24: Let IC be the arity of f4. Specifically, Vyi E V such that 
(z,yi) E E, we have 9: connected to q, 1 5 j 5 4. Then for IC 2 2, f4 is equal to fz5 when 
(IC - 2) of its parameters are 1. For IC < 2, f4 is equal to 0. Formally 

f4(X) = fz if IC 2 2 
= 0 otherwise 

We now prove the correctness of our reduction. For this we need a number of basic properties of the 
functions. Define [(SI, -l)(zl) = 0. 

Claim 7.1 

In other words, after one round of execution, the state of $1 in SI is the same as the state of z in S and 
$9 remembers the state of z in the previous time unit. 
Proof: The proof is by induction on t. The basis for t = 1 can be verified using the definitions of Z, and 
[(SI, -l)(zL).  Assume that the claim holds for all times t' < t and consider time t. 

(1): It is clear that for 1 5 i 5 4, [(SI, t)fzi) are the same. Note that at time t - 1, exactly two of xi, 
5 5 i _< 8 are 1 and the other two are 0. Thus if in the operation of S, at time t, exactly j of the inputs to T 
are equal to 1, then in the operation of SI, j + 2 of its inputs are 1. This along with the definition of f4 proves 
the required claim. 

(2): First note that < ( & , t ) ( z ~ )  = ,$(SI,~)(S~). By induction hypothesis, 1 L. i 5 4, <(Sl,t)(zj) all 
have the same value. In particular they are all simultaneously 1 or 0. Thus by definition of f1(), it is clear 
that (SI, t) (z5) and [(SI, t) ( z g  ) solely depend on the value of z 1, z2,q and z4 and are independent of the 
value at z g  and their own value at the previous time. 

(3): The proof of the fact that V t  > 0, <(Sl,t)(x7) = c(&, t ) (z8) follows along the lines of proof for 
part (2). To show that they in turn are equivalent ((SI, t)(ms) follows by the definition 0ff2(). 

(4): First note that the neighbors 2 5  and $6 of 2 9  have the same values at time t and they come before i g  

in our permutation, Each set of 4 values from 59's neighbors is identical and thus all these values sum uag to 
0 mod 4. Also note that ((SI, t)(z5) E <(SI, t)l(zs). We thus have two cases to consider. 

Case 1: [(SI, t)(s5) sz <(SI, t)(Z6) zs 1 and ((SI, t - l)(zg) = 1. Then N ( X )  = 3 mod 4 and hence 
I(&, t ) ( z 5 )  [(sl, t)(z9) E 1. 

'Recall that fz denotes the function at node 2 in S. 
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Case 4: <(Sl,t)(~s) = c ( & , t ) ( X 6 )  E 0 and ((S1,t - l)(xg) E 1. Then N(X) 1 mod 4 

By the above claim, it is clear that there is a bijection between c(S1, t) and {(S, t); thus the reachability 
problem and the fixed point problem for S are polynomial time reducible to the reachability and the fixed 
point problem respectively for $1. This completes the proof of our theorem. 

{(&, t ) ( 3 5 )  <(Sl,t)(Zg) 0. 

Using earlier discussion, we can thus prove the following 

Theorem 7.2 The REACHABILITY and FIXED POINT problems for SDS with symmetrk (non-identical) 
Boolean finctions are PSPACE-hard, even when restricted to SDSs such that: 

e Each node is the SDS graph is of constant degree, and 

e the pathwidth and hence the treewidth of the graph is bounded by a constant that depends on m and h, 
and 

e The number of distinct functions used t a constant (that depends only on the number of distinctfinc- 
tions used in the proof of Theorem 5.2). 

Proof: The proof follows by noting that the construction outlined in proof of Theorem 7.1 replaces each node 
of the SyDS S by a set of 9 nodes. Moreover, there can be no edges between two nodes in different sets if the 
original nodes they replaced did not have an edge. rn 

7.2 Extension to identical functions 

Theorem 7.3 Given an SDS (or an SyDS) S (G(V, E) ,  T,Z) ,  with 7 = { f I ,  f ’, . , . f Q) being the set of 
distinct symmetric Boolean functions, we can create an instance SZ (G2 (Vi, E2) , F2, T ,  &) of SDS (@DS) 
in polynomial time such that 

I .  F2 = { f }; i.e. F2 has the samefinction at each node. 

2. If the original graph has constant degree then GZ also has constant degree. 

Proof: We do the proof in two steps: In the first step, we construct an instance SI (GI (Vi, El),  F1, n) in 
which we have the same functions but of varying degrees at each node. In step 2, we show how to extend this 
idea to construct a new SDS S2 such that each node has identical function. 
Step 1: Consider a SDS or SyDS S. It can be modified so that a18 the Boolean hc t ions  are the same, as 
follows. (This first reduction gives the nodes varying degree, but they all have the “same” symmetric Boolean 
function.) 

Let A be the maximum degree of the nodes in the graph G of S. Let q be the number of distinct Boolean 
functions occurring in S. Thus, for each node i, function f i  is function f j  for some j (1 5 j 5 a). The 
constructed system SI will involve a single Boolean function f ;  although they will have varying number of 
inputs. Since f is symmetric, we can describe f by specifying what its value is, as a b c t i o n  of how many of 
its input parameters are 1. Thus, we use the shorthand of specifLing f using an integer as its parameter (this 
integer represents how many of its Boolean inputs are 1). The specification off  is: 
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Figure 2: Figure explaining the construction of the single hnction in Theorem 7.3. 

f ( j ( A + 2 )  + I C )  = fj(k); 1 S j  5 q, 0 5 IC 5 A + l  
Note: If hnction fj has fewer than IC input arguments, then f (j(A + 2) + IC) = 0. 
G1 (VI, El) is given as follows: VI = W U U, where W is one to one correspondence with the nodes in 

V and El = Ew U Ewu. The edges in EW go between the nodes in W, the graph (W, Ew) is isomorphic to 
(V, E). The nodes in U are called auxiliary nodes. There are no edges between nodes in U. Each node in W 
is connected to a specified number of distinct auxiliary nodes in U. The auxiliary nodes have degree 1. The 
state of each auxiliary node is initialized to 1, and so (since f (1) = f(2) = 1) will be in state 1 throughout the 
operation of SI. Suppose that in S, the function for node i is fj. (Recall that 1 5 j 5 q.) Then, in G1 node 
i E W is connected to j(A+2) auxiliary nodes. This ensures that in each step of the operation of SI, function 
f effectively selects the value that finction fJ would select for the number of original input values that equal 
1. The reduction as outlined works for SyDS since there is no permutation. To complete the reduction for 
SyDS, we need to specifL the ordering of the vertices in GI. ~1 = ni . ni, where ni is applied to vertices in 
W and is identical to 7r. si is a permutation of U and does not really affect our construction. We let R; be the 
permutation in which the vertices in U appear in ascending order of their indices in GI. Intuitively speaking, 
the function f represents a master function that can act like any function fj. The auxiliary inputs drive the 
hnction into distinct range of 1 -inputs (with different number of 1 's). 

Claim 7.2 There is u bijection between [(SI, t )  and ((S, t ) .  Specifically, ut each time tJ E(&, t ) (W)  G 
w, W )  and I(&, t ) (W = 1. 

The claim completes the proof of step 1. 

Step 2: A similar but a slightly more complicated construction can give all the nodes the same degree (as well 
as the same function). This more complicated construction is summarized as follows. Let D = A +q(A +2). 
Recall that q denotes the number of distinct functions. Each node in S2 will have degree D. Function f is the 
same as described above, except that now f(1) = 0, and f(3) = 1. (For all other counts, the value off is the 
same as given above.) There are now two classes of auxiliary nodes: auxiliary 1-nodes, that are initialized to 
1, and auxiliary 0-nodes, that are initialized to 0. The auxiliary nodes described above all become auxiliary 
l-nodes. In addition, each original node is padded with connections to enough auxiliary 0-nodes so that its 
degree is D. 

The auxiliary nodes need to have their degree made D. Each auxiliary l-node is connected to one other 
auxiliary 1-node, and possibly one original node. Its remaining D neighbors are auxiliary 0-nodes. This 
ensures, that at any time during the operation of S2, for a l-node, the number of inputs to f that equal 1 is 
either 2 or 3, and so the state remains at 1 throughout the operation of 5'2. 
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The auxiliary O-nodes are grouped into cliques of cardinality D - 1. (Additional auxiliary O-nodes can 
be added to round out the final clique.) Each auxiliary 0-node is connected to at most one original node or 
auxiliary l-node, and its remaining neighbors are other auxiliary O-nodes. This ensures that its state remains 
0 throughout the operation of S2. rn 

7.3 Extension to the weighted k-simple-Threshold functions 
We extend the result to k-Threshold-SDSs to a weighted version of the problem. Informally, we have weights 
on edge of the graph. Now we treat 0's and 1's symmetrically as before but the threshold is formed by the 
weighted sum of inputs whose other end point is 0 (or dually 1). Formally, each edge e = (u,v) has a 
numerical weight (could be negative) denoted by w(e) .  For each node v, let 

w ~ N ( v )  

i.e. it is the sum of the weights of the edges incident on 'u. For any assignment to the node variables, let 

Note that since there 'are no self-loops WO(V) and W1 (v) are independent'of the value of node v. 

Tl(v) - T(u) be called the "gap" for v. The h c t i o n  at no& v is defined as follows: 
Each node v has two values To(v) and Tl(v) such that To(w) + Tl(v) > T(v).  Let g(u) = TO(v) + 

V[V] = 0 if Wo(v) 2 To(v) 
= 1 ifWl(v) 2 Tl(u) 
I - unchamged 

In other words, if the weighted number of O-neighbors is greater than the 0-threshold To(v) then node 
value becomes 0. Similarly, if the weighted number of l-neighbors is greater than the l-threshold TI (w) then 
node value becomes 1. Else the node does not change the value that it had before the update. We denote an 
SDS with weighted fbnctions at nodes as above by Wt-k-Mshold-SDS. 

. 

Theorem 7.4 The  REACHA ABILITY problem and the FIXED POINT REACHABILITY problem for Wt-k- 
Threshold-SDSs, 1 5 k 5 n, are computable in polynomial time if if the edge weights are all polynomial in 
the size of the problem. 

Wt-k-Threshold-SDSs do not have limit cycles of length greater than I (i.e, they only have transients and 
jked points). 

Proof: The proof follows the earlier proof for unweighted case and is thus brief. For any assignment, we 
associate a cost to each edge and node as follows: 

The edge potential P(e)  of an edge e = (u, u )  is define as follows: 

P(e) = 20 if e = (u, w), w(e) = w and v[u] # v[v] 
- - 0 otherwise 
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As in the proof of unweighted case we show that whenever the value at a node v changes, the total 

Consider a particular node v whose value changes from 0 to 1. 
potential drops by at least the “gap” g(v). 

1. Edges incident on v where the other end point is 1 have their costs reduced to 0. For these edges we 
get a total reduction in potential is W1 (v) 2 TI (v). 

2. Edges incident on v where the other end point is 0 have their costs increased to the edge weight for a 
total increase of Wo(v) which is equal to T(v )  - Wl(v) 5 T(v)  - Tl(v) = To(v) - g(v). 

3. The node cost is increased by TI (v) and decreased to To(v). 

Combining the gains and losses gives a net decrease of 

By symmetry, when a node v changes from 1 to 0, we also get a reduction in the potential of at least g(v). rn 
If we extend the model to allow edges to have unequal effects on its endpoints i(or equivalently use a 

directed graph) then convergence is lost because bits can circulate from node to node. An open question is 
settle the complexity of the reachability problem under this model. 

20 


