il

3 9338 00819 3921

_

|

Il

>
E
e
I
o
Q
3
=)
2
F
Q
Z
3
@
<]
3
Ed
0
g
e

I

\/\“

1A-UR- 01-1940
LA-UR- Qieteds” e.

Approved for public release;
distribution is uplimited.
Title: ANALYSIS PROBLEMS FOR SEQUENTIAL DYNAMICAL SYSTEMS

AND COMMUNICATING STATE MACHINES

Author(s):

Christopher L. Barrett, D-2

Harry B. Hunt I, D-2

Madhav V. Marathe, D-2

S. 8. Ravi, SUNY, Albany

Daniel I. Rosenkrantz, SUNY, Albany
Richard E. Stearns, SUNY, Albany

Submitted to: | 26th International Symposium on Mathematical Foundations of Computer
Science (MFCS 01)

Marianske Lazne Czech Republic

August 27-31, 2001

Los Alamos

NATIONALLABORATORY
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is @ted by the University of Califomia for the

U.S. Department of Energy under contract W-74058-ENG-36. By acceptance of this . the publisher recognizes that the U.S.

Government retains a nonexclusive, royalty-free license to publish or repraduce the p hied form of this contribution, or to allow

others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article

as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports

academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint

of a publication or guarantee its technical correctness. Form 836 (10/96)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Analysis Problems for Sequential Dynamical Systems and
Communicating State Machines

CHRIS BARRETT ! HARRY B. HUNT III 23 MADHAV V. MARATHE !
S. S. Ravy 28 DANIEL J. ROSENKRANTZ 2 RICHARD E. STEARNS 2

April 3, 2001

Abstract

A simple sequential dynamical system (SDS) is a triple (G, F, 7), where (i) G(V, E) is an undirected
graph with n nodes with each node having a 1-bit state, (ii) 7 = {f1, fa,..-, fn} is'a set of local
transition functions with f; denoting a Boolean function associated with node v; and (iii) 7 is a fixed
permutation of (i.c., a total order on) the nodes in V. A single SDS transition is obtained by updating
the states of the nodes in V by evaluating the function associated with each of them in the order given
by m. Such a (finite) SDS is a mathematical abstraction of simulation systems [BMR99, BR99]. In this
paper, we characterize the computational complexity of determining several phase space properties of
SDSs. The properties considered are t-REACHABILITY (“Can a given SDS starting from configuration
Z reach configuration B in ¢ or fewer transitions?”), REACHABILITY (“Can a given SDS starting from
configuration Z ever reach configuration B?7”) and FIXED POINT REACHABILITY (*Can a given SDS
starting from configuration Z ever reach configuration in which it stays for ever?”). Our main result is a
sharp dichotomy between classes of SDSs whose behavior is “easy” to predict and those whose behavior
is “hard” to predict. Specifically, we show the following.

1. The t-REACHABILITY, REACHABILITY and the FIXED POINT REACHABILITY problems for SDSs
are PSPACE-complete, even when restricted to graphs of bounded bandwidth (and hence of bounded
pathwidth and treewidth) and when the function associated with each node is symmetric. The result
holds even for regular graphs of constant degree where all the nodes compute the same symmetric
Boolean function.

2. In contrast, the {-REACHABILITY, REACHABILITY and FIXED POINT REACHABILITY problems
are solvable in polynomial time for SDSs when the Boolean function associated with each node is
symmetric and monotone. ‘

Two important consequences of our results are the following: (i) The close correspondence between SDSs
and cellular automata (CA), in conjunction with with our lower bounds for SDSs, yields stronger lower
bounds on the complexity of reachability problems for CA than known previously. (ii) REACHABIL-
ITY problems for hierarchically-specified linearly inter-connected copies of a single finite automaton are
EXPSPACE-hard. ,

The results can be combined with our related results to show hardness of a number of equivalence
relations for such automata. The results can also be used to demonstrate that determining the sensitivity
to initial conditions of such automata (as proposed in [M090, BPT91)) is computationally intractable.

Classification: Computational Complexity, Dynamical Systems, Complexity Classes, Cellular Automata,
PSPACE. '

"Los Alamos National Laboratory, MS M997, P.O. Box 1663, Los Alamos, NM 87545. Email: {barrett,
marathe}@lanl.gov. The work is supported by the Department of Energy under Contract W-7405-ENG-36.

“2Department of Computer Science, University at Albany - SUNY, Albany, NY 12222. Email addresses of authors: {hunt,
ravi, djr, res}@cs.albany.edu. Supported by a grant from Los Alamos National Laboratory and by NSF Grant CCR-
97-34936.

3Part of the work was done while the authors were visiting the Basic and Applied Simulation Sciences Group (TSA-2) of the Los
Alamos National Laboratory.

1 Introduction and Motivation

We study the computational complexity of combinatorial problems associated with a new class of finite dis-
crete dynamical systems, called Sequential Dynamical Systems (henceforth referred to as SDS), proposed in
[BR99, BMR99, BMR00]. A formal definition of such a system is given in Section 2. Sequential dynami-
cal systems are closely related to classical Cellular Automata (CA), a widely studied class of finite discrete
dynamical systems used to model problems in physics and complex systems. Computability aspects of dy-
namical systems in general and cellular automata in particular have been widely studied in the literature
[Wo86, Gu89]. Dynamical systems are closely related finite networks of communicating automata, finite and
infinite transition systems and sequential digital circuits [Ra92, HT94, SH+96, AY98, AKY99, RH93, SM73,
Hu73, HRS76, HR78].

In simple terms, a sequential dynamical system (SDS) S is a triple (G, F,). G(V, E) is an undirected
graph (called the underlying graph of the SDS) with n nodes, with each node having a state with finite
number of state values. F = {f1, f2,...,fn} is a set of local transition functions, where f; is a function
associated with node v; € V. The inputs to f; are the values of the state of node v; and those of v;’s neighbors
in G. The range of f; is the set of allowed state values. 7 is a permutation of (i.e., a total order on) the nodes
in V. A single SDS transition is obtained by updating the states of nodes v € V' by evaluating the function
associated with each of the nodes, in the order specified by w. “A configuration of SDS S is an n-tuple
(b1,bs, . ..,bs), where b; is the value of the state of node v;. Thus, a transition of an SDS can be envisioned
as a change from one configuration to another. The phase space of S is a directed graph where each node
represents a configuration and each directed edge (C, C’) indicates that the system moves from configuration
C to configuration C’ in one transition. For an SDS whose underlying graph has n nodes, the phase space has
k™ nodes, where k is the number of allowed state values. A fixed point of an SDS & is a configuration C such
that the only possible transition from the configuration C is to C itself.

In this abstract, we will restrict ourselves to Simple-SDSs, that is, SDSs with the following additional
restrictions: (i) the state of each node is Boolean and (ii) each local transition function f; is Boolean and
symmetric. Our hardrness results hold even for such simple-SDSs and thus imply analogous hardness results
for more general models.

Here, we study the computational complexity of determining various phase space properties of SDSs.
The properties studied include classical questions such as reachability (“Does a'given SDS starting from
configuration C ever reach configuration C’'?”") and fixed points (“Does a given SDS have a configuration C
such that once C is reached, the SDS stays in C for ever?”) that are commonly studied by the dynamical
systems community. Specifically, we investigate whether such properties can be decided efficiently using’
computational resources that are polynomial in the size of the SDS representation, rather than in the size of the
phase space (which is exponentially larger). We also study the computational complexity of such questions
when the underlying systems are specified succinctly. The research is guided by the following overall goals:
(i) identification of efficient inter-simulations that yield uniform lower bounds for various models, (ii) efficient
reductions that can be naturally extended to succinctly presented and, in the limit, to infinite instances, and
(iii) obtain meta-results that allow us to infer the easiness/hardness of analysis problems as a function of
underlying parameters (functions, graph topology, domain size, etc).

The original motivation to develop a mathematical and computational theory of SDSs was to provide a
formal basis for the design and analysis of large-scale computer simulations. Because of the widespread use
of computer simulations, it is difficult to give a formal definition of a computer simulation that is applicable
to all the various settings where it is used. An important characteristic of any computer simulation is the
generation of global dynamics by iterated composition of local mappings. Thus, we view simulations as
comprised of the following: (i) a collection of entities with state values and local rules for state transitions,
(ii) an interaction graph capturing the local dependency of an entity on its neighboring entities and (iii) an
update sequence or schedule such that the causality in the system is represented by the composition of local

mappings. References [BW095, BB+99] show how simulations of large-scale transportation systems and
biological systems can be modeled using appropriate SDSs. The local interaction rules for entities and a
dependency graph structure are by now accepted as standard aspects of discrete dynamical systems for mod-
eling large-scale systems. The ordering aspect is somewhat new in a formal setting but has recently received
attention by other researchers [HG99, Ga97, Rk94]. It is implicit in all discrete event simulations. Following
[BPT91], we say that a system is predictable if basic phase space properties such as REACHABILITY and
FIXED POINT EXISTENCE can be determined in time which is polynomial in the size of the system specifi-
cation. Our PSPACE-completeness results for predicting the behavior of “very simple” systems essentially
imply that the systems are not easily predictable; in fact, our results imply that no prediction method is likely
to be more efficient than running the simulation itself. The results here can also be used to we show that even
simple SDSs are “universal” in that any reasonable model of simulation can be “efficiently locally simulated”
by appropriate SDSs that can be constructed in polynomial time. The models investigated include: cellular
automata, communicating finite state machines, multi-variate difference equations, etc.

Another motivation for studying SDSs is derived from the papers of Buss, Papadimitriou and Tsitsiklis
[BPT91), Moore [M090, Mo91], Sutner [Su95] and Wolfram [Wo86]. Specifically, we undertake the com-
putational study of SDSs in an attempt to increase our understanding of SDSs in particular and the complex
behavior of dynamical systems in general. SDSs are discrete finite analogs of classical dynamical systems,
and we aim to obtain a better understanding of “finite discrete computational analogs of chaos”. As pointed
out in [BPT91, M090, M091], computational intractability or unpredictability is the closest form of chaotic
" ‘behavior that such systems can exhibit. Extending the work of [BPT91], we prove a dichotomy result be-

tween classes of SDSs whose global behavior is easy to predict and others for'which the global behavior

-is hard to. predict. In [Wo86], Wolfram posed the following three general questions in the chapter entitled
“Twenty Problems in the Theory of Cellular Automata™: (i) Problem 16: How common are computational
universality and undecidability in CA? (ii) Problem 18: How common is computational irreducibility in CA?
(iii) Problem 19: How common are computationally intractable problems about CA? The results obtained
here and in the companion papers [BH+00a, BH+00b] for SDSs (and for CA as direct corollaries) show that
the answer to all of the above questions is “quite common™. In other words, it is quite common for syn-
chronous as well as sequential dynamical systems to exhibit intractability. In fact, our results show that such
intractability is exhibited by extremely simple SDSs and CA. -

2 Definitions and Problem Formulations

We begin with a formal definition of sequential dynamical systems. As stated in the introduction, we will
restrict our selves to Simple-SDSs. (Unless otherwise stated, we use “SDS” to mean a simple SDS.) Our
definition closely follows the original definition of SDS in [BMR99, BMR00, MR99, Re00]. We also recall
basic definitions of phase space parameters studied in this paper.

A Simple Sequential Dynamical System (SDS) S is a triple (G, F, 7), whose components are as fol-
lows: '

1. G(V, E) is an undirected graph without multi-edges or self loops. G is referred to as the underlying
graph of S. We use n to denote | V| and m to denote |E|. The nodes of G' are numbered using the
integers 1,2, ..., n.

2. Each node has one bit of memory, called its state. The state of node ¢, denoted by s;, takes on a
value from ;= {0,1}. We use d; to denote the degree of node i. Further, we denote by N (i) the
neighbors of node i in G, plus node i itself. Each node i is associated with a symmetric Boolean
Junction f; : ng""'l = I, (1 £ i < n). We refer to f; as alocal transition function. The inputs to f;
are the state of ¢ and the states of the neighbors of i. By “symmetric” we mean that the function value

does not depend on the order in which the input bits are specified; that is, the function value depends
only on how many of its inputs are 1. We use F to denote {f1, f2,..., fn}.

3. Finally, is a permutation of {1,2,...,n} specifying the order in which nodes update their states
using their local transition functions. Alternatively, 7 can be envisioned as a total order on the set of
nodes,

Computationally, the transition of an SDS from one configuration to another involves the following steps:

fori=1t n do
() Node =(z) evaluates fr(s)- (This computation uses the current values of the state of w(¢) and those of

the neighbors of m(%).)
(ii) Node () sets its state s, to the Boolean value computed in Step (i).

end-for

Stated another way, the nodes are processed in the sequential order specified by permutation 7. The
“processing” associated with a node consists of computmg the value of the node’s Boolean function and
changing its state:to the computed value.
Note again that the assumption of symmetric Boolean functions can be easily relaxed to yield more
- general SDSs. We give special attention to the symmetry condition for two reasons. First, our lower bounds
+ for such SDSs imply stronger lower bounds for computing phase space properties of CA and communicating
" finite state machines (CFSMs). Second, symmetry provides one possible way to model “mean field effects”
- used in statistical physics and studies of other large-scale systems. A similar assumptlon has been made in
- [BPTI1].-

Recall that a configuration of an SDS is a bit vector (by,bs,...,b,). A configuration C of an SDS
8 = (G,F,n) can also be thought of as a function C : V' — Fy. The function computed by SDS S,
~denoted by Fig, specifies for each configuration C, the next configuration C’' reached by S after carrying out
“the update of node states in the order given by 7. Thus, Fg : [} — [} is a global function on the set of
- configurations. The function Fg can therefore be considered as defining the dynamic behavior of SDS S. We
also say that SDS & moves from a configuration C at time ¢ to a configuration Fig(C) at time (¢ + 1). The
initial configuration (i.e., the configuration at time ¢ = 0) of an SDS § is denoted by Z, Given an SDS S with
initial configuration Z, the configuration of S after ¢ time steps is denoted by £(S, ¢). We define £(S,0) =Z
We also use £(S,t)(W) to denote the states of the nodes in W C V and £(S, t)(v) to denote the state of a
particular node v € V' at time £.

2.1 Problems Considered

Given an SDS &, let |S| denote the size of the representation of S. In general, this includes the number of
nodes, edges and the description of the local transition functions. When Boolean local transition functions
are given as tables, |S| = O(m + |T|n), were |T'| denotes the maximum size of the table, n is the number
of nodes and m is the number of edges in the underlying graph. For a node » with degree 4, the size of the
table specifying an arbitrary Boolean function is O(2%+), while the size of the table specifying a symmetric
Boolean function is O(d,). We assume that evaluating any local transition function given values for its inputs
can be done in polynomial time.

The main problems studied in this paper deal with the analysis of a given SDS, that is, determining
whether a given SDS has a certain property. The analysis problems considered in this paper are formulated
below.

Givenan SDS S, two‘conﬁgurations Z, B, and a positive integer ¢, the --REACHABILITY problem is to decide
whether S starting in configuration Z can reach configuration B3 in t or fewer time steps. If ¢ is specified in

unary, it is easy to solve this problem in polynomial time since we can execute the SDS for ¢ steps and check
whether configuration B is reached at some step. So, we assume that £ is specified in binary.

Given an SDS S and two configurations Z, B, the REACHABILITY problem is to decide whether S starting
in configuration Z ever reaches the configuration B. (Note that, for £ > 2", {-REACHABILITY is equivalent
to REACHABILITY.) Given an SDS S and a configuration Z, the FIXED POINT REACHABILITY problem is
to decide whether S starting in state Z reaches a fixed point.

2.2 Extensions of the Basic SDS Model

As defined, the state of each node of an SDS stores a Boolean value and the local transition functions are
symmetric Boolean functions. When we allow the state of each node to assume values from a domain D of a
fixed size and allow the node functions to have D as their range, we obtain a Finite Range SDS (FR-SDS). If
the states may store unbounded values and the local transition functions may also produce unbounded values,
we obtain a Generalized SDS (Gen-SDS).

Another useful variant is a Synchronous Dynamical System (SyDS), an SDS without the node permu-
tation. In a SyDS, during each time step, all the nodes synchronously compute and update their state values.
Thus, SyDSs are similar to classical CA with the difference that the connectivity between cells is specified
by an arbitrary graph. A further generalization is to consider a partial order on the nodes instead of a total
order. We refer to such an SDS as a DagDs$ since any partial order can be represented as a directed acyclic
graph (dag). Clearly, DagDSs generalize both SDSs and SySDSs. The definition of a SyDS can be extended
to obtain an FR-SyDS and a Gen-SyDS in a manner similar to that of SDS. FR-DagDS and Gen-DagDS
can also be defined in an analogous fashion. It can be seen that SDSs are the most restricted models and
Gen-DagDS are the least restricted models. Whenever possible, we prove our PSPACE-completeness results
for the most restricted SDS model, thereby obtaining stronger lower bound results.

Note that the notion of symmetry can be suitably extended to functions with non-Boolean domams as
well. In defining the above models, we did not attempt to relax the symmetry property of local transition
functions. Dynamical systems in which the local transition functions are not necessarily symmetric are
considered in the companion papers [BH+00a, BH+00b]. '

3 Summary and Significance of Results

In this paper, we characterize the computational complexity of determining several phase space properties
for SDSs and CA. The results obtained are first such results for SDSs and directly imply corresponding
lower bounds on the complexity of similar problems for various classes of CA and communicating finite state
machines.

Our main result is a dichotomy between easy and hard to predict classes of SDSs. Specifically, we
show that t-REACHABILITY, REACHABILITY and FIXED POINT REACHABILITY problems for FR-SDSs
are PSPACE-complete. Moreover, these results hold even if the local transition functions are identical and
the underlying graph is a simple path. We further extend these results to show that the above three problems
remain PSPACE-complete for SDSs, even when the underlying graph is simultaneously k-regular for some
fixed k, bandwidth bounded (and hence pathwidth and treewidth bounded) and the local transition functions
are symmetric.

In contrast to the above intractability results, we show that these problems are efficiently solvable for
SDSs in which each local transition function is symmetric and monotone. Specifically, we prove that when
each local transition function is a k-simple-threshold function* for some k > 1, these problems can be solved
in polynomial time.

*The k-simple-threshold function has the value 1 iff at least k of its inputs are 1. Conventional definition of threshold functions
associates a weight with each input [Ko70}. We use the simplified form where all inputs have the same weight.

As a part of our methodology, we also obtain a number of “simulation” results that show how to simulate
one type of SDS (or CA) by another typically more restricted type of SDS (or CA). These simulation results
may be of independent interest. For instance, we show

1. how a given FR-SyDS with local transition functions that are not necessarily symmetric can be effi-
ciently simulated by a SyDS, and

2. how a SyDS can be simulated by an SDS.

The results presented here extend a number of earlier results on the complexity of problems for CA and also
have other applications. We briefly discuss these extensions and their significance below.

(1) Recalling results in [RH93] showing the EXSPACE-hardness of local STATE-REACHABILITY prob-
lems , for hierarchically-specified linearly inter-connected copies of a single finite automaton, the con-
structions here also imply that various local STATE-REACHABILITY problems are also EXSPACE-hard,
for hierarchically-specified constantly bandwidth-bounded networks of simple SDSs. Using ideas from
[SH+96, HR+01], this last result implies: i)determining any simulation equivalence relation or pre-order
in the Linear-time/Branching-time hierarchies of [vG90, vG93] is EXSPACE-hard, for such hierarchically-
specified networks of simple SDSs; and ii)in the sense of [BPT91], such hierarchically-specified networks
of simple SDSs exhibit EXSPACE-hard sensitivity to initial conditions.. Additionally following [BPT91],
we emphasize concepts, techniques, etc., that can be used to characterize the computationally-tractable or
computationally-intractable sensitivity to initial values of these models. Note that our models use “minimal”
amount of concurrency to obtain the results.

© (2) All our reductions are carried out from the acceptance problem for deterministic linear space bounded
automata (LBAs) and are extremely efficient in terms of time and space requirements. Specifically, these

reductions require O(n) space and O(nlogn) time. Thus these results 1mply tight lower bounds on the

deterministic time and space required to solve these problems. :

(3) The results in [Su95 Gr87] prove the PSPACE-completeness of REACHABILITY and FIXED POINT
REACHABILITY problems and the NP-compléteness of the PREDECESSOR EXISTENCE problem (“Given
a cellular automaton A and a configuration 13, is there a configuration from which A can reach B in one
transition?”) for CA. These authors did not consider the effect of restricting the class of local transition
functions or restricting the structure of the underlying graph on the complexity of these problems. Our results
extend their hardness results to much simpler instances and also provide the first step in proving results that
delineate polynomial time solvable and computationally intractable instances.

(4) The results presented here can be contrasted with the work of Buss, Papadimitriou and Tsitsiklis [BPT91}
on the complexity of t-REACHABILITY problem for coupled automata. In their model, there are n identical
automata, a global control rule, an initial state vector Z and a positive integer T'. The global control rule
is given as a first order sentence and is independent of the identities of the automata, The automata do not
interact with each other. At each stage, the automata independently evaluate their next state depending on the
current state and the input received from the global controller. Following this, the global control rule reads
the state of the automata and evaluates the control rule. If the rule evaluates to true then all automata receive
1 as their input, otherwise they receive a 0. The goal is to predict the state of the system after T' time units.
Note that their identity-independence assumption is similar to our symmetric function assumption, except
that they consider first order formulas. Our results show that, in contrast to the polynomial time solvability
of the reachability problem for globally controlled systems of independent automata, a small amount of local
interaction suffices to make the reachability problem computationally intractable. Our reduction leads to
an interaction graph that is of constant degree, bandwidth bounded and regular. (The interaction graph is
obtained from a simple path by replacing individual nodes in the path by groups of nodes that interact only
with nodes in neighboring groups.)

4 Related Work

As mentioned earlier, CA have been studied widely in the literature, owing to their simplicity on one hand and
their ability to produce complex behavior on the other. Computational aspects of CA have been studied by
a number of researchers (see [M091, M090, CPY89, Wo86, Gu89, Gr87, Su95] and the references therein).
However, most of the work addresses computability issues for infinite CA. Other than the paper by Buss,
Tsitsiklis and Papadimitriou [BPT91] discussed in the previous section, the papers that are most relevant to
our work are the following: (i) The papers by Barrett, Mortveit and Reidys [BMR99, BMR00, MR99, Re00,
Re00a] and Laubenbacher and Pareigis [LP00] investigate mathematical properties of sequential dynamical
systems, (ii) The papers of Sutner [Su89, Su90, Su95] characterize the complexity of reachability and pre-
decessor existence problems for finite CA and (iii) The papers of Moore [M090, M0o91] make an important
connection between unpredictability of dynamical systems and undecidability of some of their properties.
Moore formally shows that undecidability is a much stronger form of unpredictability.

Alur et. al. [AKY99, AY98] consider the complexity of several problems for hierarchically specified
communicating finite state machines. SDSs can be viewed as very simple kinds of concurrent state machine:
moreover the hardness proof obtained here can be extended to obtain EXPSACE-hardness, when we have
exponentially many simple automata (vertices in our case) joined in form of a bandwidth bounded graph,
This result significantly extends a number of known results in the literature concerning concurrent finite state
machines by showing that the hardness results hold even simple.classes of individual machines.

Quadratic dynamical systems are a variant of discréte dynamical systems that aim at modeling genetic
algorithms. In [ARV94] it is shown that simulating quadratic dynamical systems is PSPACE-hard; specif-
ically, it is shown that the ¢-reachability problem for such systems is PSPACE-complete even when ¢ is
specified in unary. The proof of this result uses a reduction from Quantified Boolean Formulas (QBF) and
exploits the quadratic nature of the allowed rules. Other references on discrete dynamical systems include
[AM94, AMP95, BC96, Br95, CY88, CPY89, Du94, KCG94, Pi94].

5 Hardness results

In this section we prove our main hardness theorem concerning the -REACHABILITY, REACHABILITY and
FIXED POINT REACHABILITY problems for SDSs.

Theorem 5.1 (Main hardness theorem) 7he {-REACHABILITY, REACHABILITY and FIXED POINT REACH-
ABILITY problems for SDSs with symmetric Boolean functions are PSPACE-hard, even when (i) each node is
of constant degree and the graph is regular (i.e. all nodes have the same degree), (ii) the pathwidth and hence
the treewidth of the graph is bounded by a constant, and (iii) all the nodes have exactly the same symmetric
Boolean function associated with them.

Overall Proof Idea: The proof of the above theorem is obtained through a series of local replacement type
reductions (steps). The reductions involve building general gadgets that may be of independent interest.
Step 1: First, by a direct reduction from the acceptance problem for a LINEAR BOUNDED AUTOMATON
(LBA) we can show that the :~-REACHABILITY, REACHABILITY and FIXED POINT REACHABILITY prob-
lems for FR-SyDS (finite CA) and FR-SDS are PSPACE-hard even under the following restrictions applied
simultaneously: (i) The graph G is a line (which has pathwidth and treewidth of 1), (ii) The number of distinct
node functions is at most 3, and (iii) The domain of each function is a small constant (depending only on the
size of the LBA encoding). (Theorem stated below but proof omitted).

Step 2: Next, we show how to transform these problems for FR-SyDS into the corresponding problems for
SDS (where the node functions may be different). See Section 5.2.

Step 3: Finally, we further extend the hardness result so that all the node functions are identical (same
function and same degree) (proved in the appendix).

Theorem 5.2 (Step 1:) The t-REACHABILITY, REACHABILITY and FIXED POINT REACHABILITY prob-
lems for FR-SyDS (Cellular Automata) and FR-SDS are PSPACE-hard, even when restricted to instances
such that: (i) The graph G is a line graph (and thus has pathwidth and treewidth of 1), and (ii) There are no
more than 3 distinct functions [; present at the nodes of the graph, and (iii) The domain of each function is a
small constant (that depends only on the LBA encoding),

5.1 Representation of symmetric Boolean functions

A symmetric Boolean function can be represented and computed in time proportional to the degree of a
node (more accurately in time proportional to the fan-in). Consider a Boolean function f; at a node wv; with
degree n. — 1. Recall that the function takes n inputs, including the value at the node itself. Function f; can
be represented by the subset of {0,1...,n} denoting when the function takes value 1 as a function of the
number of input variables that are 1 (with remaining input variables being 0). For instance, let n = 5. A
possible function f; is {1, 3,5} which is the exclusive-or (EX-OR) of the five input variables. Another way
to represent a symmetric Boolean function is to give an (n + 1)-dimensional 0-1 vector such that the 3 — th
entry denotes the function value when ¢ inputs are set to 1. Thus, another representation of EX-OR above i is
(0,1,0,1,0,1).

52 SyDS with symmetric Boolean fanctions: Step 2 |

" Definition 5,1 Given k > 1, a distance-k coloring of a graph G(V, E) is an assignment of colors h : Vo
N, to the vertices of G such that Vu,v € V where the distance between u and v is at most k, we have that

h(u) # h(v).

Proposition 5.1 A graph G(V, E) with maximum degree A can be distance-2 colored using at most /* + 1
colors, and such a coloring can be obtained in polynomial time. Thus for a graph whose vertex degrees are
bounded by a constant, and, in particular, for regular graphs of constant degree, the number of colors used
Jor distance-2 coloring is a constant.

Theorem 5.3 For a given m and A, consider the class of Gen-SyDSs where the size of the state domain of
each node is at most m. and the degree of each node is at most A. There is a polynomial time reduction from
a generalized SyDS S = (G, F) in this class and configurations T and B for S to a usual (having symmetric
Boolean functions) SyDS Sy = (G1, F1) and configurations Ty and By for Sy such that

1. 8 starting in configuration I reaches B iff Sy starting in configuration I, reaches B,. Moreover, for
each t, S reaches B in t steps iff S1 reaches By in t steps. :

2. & starting in configuration T reaches a fixed point iff Sy starting in I reaches a fixed point.

Proof sketch: Given S, the reduction first constructs a distance-2 coloring h of G, using at most A2+1 colors,
where the colors are consecutive integers, beginning with zero. Next, given graph G(V; E) and coloring 5,
we construct graph G1(Vi, E1). For each node), € V there are (m — 1)m”t) nodes in V;. We refer to
these nodes as a:fj, l1<i<mandl <j < mh(e), Informally, corresponding to a node zj, of S, V)
contains m — 1 sets of nodes (called clumps), each of size @), For a given node z, € V, clump X¥ wefers
to the nodes =¥, 1 < r < mh®), Additionally, we will use X* = XF UXF... XE_| to denote the set of

all nodes in V; corresponding to . E; consists of the following two kmds of edges:

1. For each node z, € V, there is an edge between each pair of distinct nodes in X*. Thus, the nodles in
X* form a complete graph.

2. For each (zy, z,) € E, there is an edge between each node in X'* and each node in A", Thus, each
edge (zx, z,) is replaced by a complete bipartite graph between the sets of nodes used to replace the
nodes xy, and z,.

Define a configuration A of S to be proper ifV k, 1, j,p,q
(Aef)=1landi>p) = Alzh)=1

In other words, a configuration A of S; is proper if the value at any node in Xf equal to 1 implies that
all nodes in XF, X§, ..., XF are also 1. Note that if A is a configuration of S, then .4 maps each element
of V into a value from {0,...,(m — 1)}. The simulation of S by &; is based on the following bijection
(that will be true by construction) g between the configurations of S and the proper configurations of Sy
g : mY — 2%1, For configuation ./A of S, the corresponding configuration g(.4) of 8 is specified as for all
1<i<m, 1<35-<mhia) g(A)(a:w) = 1iff A(zg) > 1.

Intuxtxvely, we maintain the invariant that the value ¢ at node corresponds to having the nodes in
clumps XF UXF, ..., X¥ equal to 1 and the nodes in clumps XE UXE,, ..., XE_, equal to0. The initial
conﬁguratlon 7 of .5'1 is set to be g(Z).

" The functions in the set F; are defined as follows. Suppose that node zy € V has neighbors yy,... ¥4
in G and f;, is the function at node zx.. Consider a node w" in X*. Consider a proper conﬁguratxon Ay
of 81, corresponding to the configuration Aof 8. Suppose that in configuration A, exactly w of the input

parameters to fw'.; are equal to 1. Since configuration A; is proper and A is a distance-2 coloring of G, there
3,

exist unique integers cg, . . . , g, €ach in the range 0...m — 1, such that
w = comP®) 4 eymPW) 4 omb2) 4 4 o (@),

Since A; = g(A), it follows that ¢y, .. ., cq are the values of zj, and its neighbors in configuration A4 of S..
The function fmfj is defined as follows: :

fg:{‘}(w) =1 iff ffnk(cﬂscls o acd) .>_ i

Intuitively, the reduction is done in such a way that different vectors C = {cp,...,cq) and Q =
{90, ... ,qq) corresponding to the values at z; and its neighbors produce different counts for how many
inputs of symmetric function fmkj are equal to 1, and so can be appropriately differentiated. For a proper
configuration of Sy, consider the count w of how many input variables to function f, k equal 1. Integer w
can be uniquely decomposed into a sum of powers of m. Because node z;, and each of its neighbors in G is
assigned a distinct color by h, the coefficient of each power of m encodes the value of one of the inputs to
function fz,, thereby enabling f,. to play its role in simulating [z, - The next lemma summarizes the needed
properties of the construction, The proof of the lemma is omitted due to lack of space.

Lemma 5.1 Let S and S be as defined above. Consider S starting in configuration T and S; starting in
configuration g(Z). Then () Vt > 0, £(Sy,t) isproper.)Vt 20, 2, €V, 1 <i<m, 1<j<
mhER), £(S1,) (k) =1 if &(5,t)(ze) 2 1.

Next note that the graph we obtained in proof of Theorem 5.2 was of constant degree and thus using
Proposition 5.1 can be distance-2 colored using a constant number of colors. Additionally note that in the
proof of Theorem 5.2 the domain size was a small fixed constant. Putting these facts together we get that
the graph produced in the above construction is of bounded degree. The proof of the theorem is now a direct
consequence of the above results. W

6 Polynomial Time Solvable Cases

In this section we consider polynomial time solvable cases of the analysis problems. Let |S| denote the size
of an SDS S. In the phase space P g of S, a transient is a simple directed path such that no edge of the path
appears in any cycle in Pg. Our polynomial time algorithms for answering the reachability questions are
based on a simple sufficient condition: If an SDS & is such that (i) the number of nodes in every limit cycle
in Pg is bounded by a polynomial in {S| and (ji) the number of nodes in every transient in P g is bounded by
a polynomial in |S|, then {-REACHABILITY, REACHABILITY and FIXED POINT REACHABILITY problems
can be solved in time polynomial in |S|. While developing polynomial time algorithms using these sufficient
conditions, we also obtain useful results concerning structural aspects of these SDSs.

6.1 k-Simple-Threshold Functions

In this section we prove that {-REACHABILITY, REACHABILITY and FIXED POINT REACHABILITY prob-
lems are polynomial time solvable for k-simple-threshold-SDSs, that is, SDSs in which each local transition
function is a k-simple—thigshold function for some k > 1. Since each:symmetric monotone function is a
k-simple-threshold function for some k, these polynomial time results provide the dichotomy between two
classes of SDSs: one with symmetric local transition functions and the other with symmetric monotone local
transition functions. Some remarks regarding the generality of these polynom1al algorithms are provided at
the end of this subsection, '

Definition 6.1 A4 k-sim'ple-threshold-SDS is an SDS in which the local transition function at each node v; is
a k;-simple-threshold function, where 1 < k; < min{k, §; + 1}. Here, §; is the degree of node v;.

Theorem 6.1 The problems t-REACHABILITY, REACHABILITY and FIXED POINT REACHABILITY for any
k—s:mple-threshold-SDS 1 < k < n, can be solved by executing at most <3* 3’" 28 steps of the gtven 8DS, where m
is the number of edges in the underlying graph.

Proof: The proof of the theorem is based on a potential function argument. Given an SDS with underlying
graph G(V, E), we assign a potential to each node and each edge in G. For the remainder of the proof, we
use k, to denote the threshold value required for a node v to become 1. For each node v define T (v) =
ky and T'(v) = &, + 1. Recall that s, denotes the state of node v. Thus s, =1 iff at least T (v)
- of its inputs are 1; s, is 0 otherwise. Another interpretation of T’ (v) is that it is the smallest integer such that
s, must be assigned 1 if T} (v) of v’s inputs have value 1. Using this analogy, define Tp(v) to be the smallest
integer such that s, must be assigned 0 if Ty (v) of the inputs to v have value 0. The following observation
is an easy consequence of the definitions of k,-simple-threshold, Tp(v) and T} (v). Note that for any node
v € V, T1(v) + Ty(v) = T(v) + 1. Define the potential P(v) at a node v as follows:

- P(v) Ti(v) ifsy,=1
To(v) ifsy,=0

The following is-an easy consequence of the definitions. of Ty(v), T} (v) and the fact that k, > 1 is that For
anynodev € V,1 < P(v) <4, + 1.
Define the potential P(e) of an edge e = {u, v} as follows:
Ple) = 1 if e={uv}ands, #s,
= 0 otherwise.

The potential of the entire SDS is given by P(G) = Y oy P(v) + 3_.cz P(e). The initial potential P(G)
(regardless of the initial configuration) can be upper bounded using above observations as follows:

P(@) =) Pw)+Y Pl) < Y (G+1)+D 1 £ 2m+n+m<3m+n.
veV eel veEV e€l

1|

Further, since for each node v € V, P(v) > 1 the potential of the SDS at any time is at least n. Now, fix a
global step in the dynamic evolution of the SDS and consider a particular substep in which the state of node
v changes from a to b, Note that if the system has not reached a fixed point, then at least one node undergoes
such a state change. This state change may modify the potential of v and the potentials of the edges incident
onv. Let D, denote the set of edges incident on v whose potential changed from 1 to 0 as a result of the state
change at v. Similarly, let A, denote the set of edges incident on v such that their potential changed from 0
to 1. Finally, let A, = T,(v) — Tj(v) denote the decrease in the potential of v. (Note that the value of A,
may be negative.) We claim that :

IDy| > To(v) and |Ao| < Ti(v) —2.

To see the the first inequality, consider each node x such that {v,z} is an edge in G and s, = b at the time
when v is updated. The number of such nodes is at least T}(v) since the value of v changed from a to b.
For each such edge {v, z}, the potential decreases from 1 to O since after the update to v, 8, = s;. Thus,

| Dy} 2> Tp(v). The second inequality follows since at most T'(v) —1—Tj(v) of v’s neighbors could have been

assigned value a prior to updating v. By the observations above, we get that T'(v) — 1 — Tj,(v) = T,(v) — 2: -

We claim that the state change at:node v decreases the potential of the system. To see this, note that the total
decrease in potential due to the state change at node v is given by ‘ :

Ay + Dy — Ay > Ta(v) - Ty(v) + Th(v) — Ta(v) +2 = 2.

Thus, each time there is a change in the state of a node, P(G) decreases by at least 2. As argued above, -

the initial value of P(G) is at most 3m + n, and the value of P(G) can never be less than n. During the
transition from one configuration to a different configuration, at least one node changes its state value. Each

such transition causes a decrease of at least 2 in the potential of the system. Thus, the total number of °

configuration changes is bounded by [(3m + n) — n]/2 = 3m/2.

In other words, any k-simple-threshold-SDS reaches a fixed point after at most 3m /2 steps. This immedi-
ately implies the polynomial solvability of t-REACHABILITY, REACHABILITY and FIXED POINT REACH-
ABILITY problems for such SDSs. m

- Remarks:

(1) Theorem 6.1 points out an interesting contrast between CA and SDSs. It is easy to construct instances
of k-simple-threshold-CA with limit cycles. An example of such a system is a simple k-regular bipartite graph
G(VUU, B). Let |U| = |V| = n. Each node in V is adjacent to k neighbors in U and vice versa. Initially, we
assign nodes in V' the value 1 and nodes in U value 0. It is now easy to see that the system oscillates between

the two configurations (0"1%) and (1"0"); thus, it does not reach a fixed point. In contrast, by Theorem 6.1,

k-simple-threshold-SDSs have fixed points but not limit cycles of length > 2.
(2) It can be shown that starting at any initial configuration, a k-simple-threshold-SDS will reach a fixed

point regardless of the order in which the states of the nodes are updated. As a matter of fact, a fixed point will

be reached even if the order of updates is changed in every iteration. Moreover, the order of updates need not
even be given by a permutation. As long as each node updates its state at least once in a polynomially long
sequence of state updates, a k-simple-threshold-SDS will reach a fixed point within a polynomial number of
steps. We refer the reader to [[IMRO00] for more details on this topic.

(3) Theorem 6.1 holds even when each node has a different value of the threshold k. As observed earlier,
every symmetric and monotone Boolean function is a k-simple-threshold function for some k. Thus, Theo-
rem 6.1 implies the polynomial time solvability of reachability problems for SDSs with symmetric monotone
local transition functions. Theorem 6.1 also shows that for k-simple-threshold-SDSs, the length of any tran-
sient is at most 3.

10

Acknowledgements: Work done has been funded in part of the LDRD-DR project Foundations of Simulation
Science and LDRD-ER project Extremal Optimization. We sincerely thank Paul Wollan and Predrag Tosic for
a very careful and in-depth reading of the manuscript and suggesting a number of changes that substantially
improved the readability of the paper. We also thank Gabriel Istrate, Stephen Kopp, Henning Mortveit, Allon
Percus, Christian Reidys, Paul Wollan and Predrag Tosic for fruitful discussions.

References
[AKY99] R. Alur, S. Kannan, and M. Yannakakis. Communicating hierarchical state machines. Proc.
26th International Colloquium on Automata, Languages, and Programming (ICALP), Springer
Verlag, 1999.
[AY98] R. Alurand M. Yannakakis. Model checking of hierarchical state machines. 6th ACM Symposium
on the Foundations of Software Engineering, pp. 175-188, 1998.
[Al00] R. Alur. Exploiting Hierarchical Structure for Efficient Formal Verification. CONCUR 2000, pp.
66-68. : : ,
[ARV94] S. Arora, Y. Rabani and U. Vazirani. Simulating quadratic dynamical systems is PSPACE-
complete,” Proc 26th. Annual ACM Symposium on the Theory of Computing (STOC), pp. 459-
467, Montreal, Canada, May 1994, ‘. '
[AMP95] E. Asarin, O. Maler and A. Pnueli. Reachability analysis of dynamical systems having piecewise-
~ constant derivatives. Theoretical Computer Science (TCS), 138(1), pp. 35-65, February 1995.
[AM94] E. Asarin and O. Maler. On some relations between dynamical systems and transition systems.
Proc. 21st International Colloguium, on Automata, Languages and Programming (ICALP), 820,
- LNCS, Springer-Verlag, pp. 59-72, Jerusalem, Israel, July 1994. ‘ S
[BWO95] C. Barrett, M. Wolinsky and M. Olesen. Emergent local control properties in particle hopping
_ ~ traffic simulations. Proc. Traffic and Granular Flow, Julich, Germany, 1995.
[BB+99] C. Barrett, B. Bush, S. Kopp, H. Mortveit and C. Reidys. Sequential Dynamical Systems and
‘ Applications to Simulations. Technical Report, Los Alamos National Laboratory, Sept. 1999.
[BR99] C. Barrett and C. Reidys. Elements of a theory of computer Simulation I: sequential CA over
random graphs. Applied Mathematics and Computation, 98, pp. 241-259, 1999.
[BMR99] ' C. Barrett, H. Mortveit, and C. Reidys. Elements of a theory of simulation H: sequential dynam-
ical systems. Applied Mathematics and Computation, 1999, vol 107/2-3, pp. 121-136.
[BMRO0O] C. Barrett, H. Mortveit and C. Reidys. Elements of a theory of computer simulation III: equiva- -
lence of SDS. to appear in Applied Mathematics and Computation, 2000. - :
[BH+00a] C. Barrett, H. Hunt III, M, Marathe, S. Ravi,; D. Rosenkrantz. Elements of a theory of computer -
, ~ simulation V: computational complexity and universality. to be submitted, January 2001.
[BH+00b] C. Barrett, H. Hunt III, M, Marathe, S. Ravi, D. Rosenkrantz. Computational aspects of sequen-
_ tial dynamical systems II: design problems. in preparation, 2000.
[BC96] O. Bournez and M. Cosnard. On the computational power of dynamical systems and hybrid
: systems. Theoretical Computer Science, 168(2), pp. 417-459, 20 November 1996.
[Br95] M. Branicky. Universal computation and other capabilities of hybrid and continuous dynamical
systems. Theoretical Computer Science, 138(1), pp. 67-100, February 1995.
[BPT91] S. Buss, C. Papadimitriou and J. Tsitsiklis. On the predictability of coupled automata: An alle-
gory about Chaos. Complex Systems, 1(5), pp. 525-539, 1991. Preliminary version appeared in
Proc. 31st Annual IEEE Symposium on Foundations of Computer Science (FOCS), Oct 1990.
[BS90] R. B. Bopanna and M. Sipser. The complexity of finite functions, Chapter 14 in Handbook of The-
oretical Computer Science, Vol. A, Edited by J. van Leeuwen, MIT Press/Elsevier, Cambridge-
Amsterdam, 1990.
[CPY89] K. Cullik, J. Pachl and S. Yu. On the limit sets of cellular automata. SIAM J. Computing, 18(4),
pp. 831-842, 1989.
[CY88] K. Cullik lagld S. Yu. Undecidability of CA classification schemes. Complex Systems, 2(2), pp.
177-190, 1988.
[Du94] B. Durand. Inversion of 2D cellular automata: some complexity results. Theoretical Computer

Science, 134(2), pp. 387-401, November 1994.

11

[GIT9]
[Gag7]

[HG99]
[GC86]

[Gr87)

[Gu89]
[GSW94]

[Ha)
[HLW92]
[Ho84] -

[Ho91]
[Hu73]

[HR78]

[HRS76]

[Hu82j

[HR+01]

[HT94]

[Hu87]
[IMR00]

[KMP95]
[KCG94]

[Ko70]
[LP0O]

[Ma98]
[Mi99]
[MH+98]

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
completeness, W. H. Freeman and Co., San Francisco, CA, 1979.

P. Gacs. Deterministic computations whose history is independent of the order of asynchronous
updating. Tech. Report, Computer Science Dept, Boston University, 1997.

B. Huberman and N. Glance. Evolutionary games and computer simulations. Proc. National
Academy of Sciences, 1999.

M. Gouda and C. Chang. Proving Liveness for Networks of Communicating Finite State Ma-
chmfgs élCM Transactions on Programming Languages and Systems (TOPLAS) 8(1): 154-182,
pp

1179 §i7reen NP-complete problems in cellular automata. Complex Systems, 1(3), pp. 453-474,
H. Gutowitz, Ed. Cellular Automata: Theory and Experiment North Holland, 1989,

R. Gunther, B. Schapiro and P. Wagner. Complex Systems, Complexity Measures, grammars
and model-Inferring. Chaos Solitons and Fractals 4(5), pp. 635-651, 1994 .
J.P. Hayes. Digital Simulation with Multiple Logic values. IEEE Transactions on Computer
Aided Design, CAD-5, pp. 274-283, 1986.

F. Hofting, T. Lengauer and E. Wanke. Processing of hierarchically defined graphs and graph

families. Data Structures and Efficient Algorithms (Final Report on the DFG Special Joint Ini-
tiative), Springer-Verlag, LNCS 594, pp. 44-69, 1992, :

C. Hoare. Communicating Sequential Processes. Prentice Hall International, 1984.
G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

H.B. Hunt I1I. On the Time and Tape Complexity of Languages. Ph.D. Thesis, Cornell University,
Ithaca, NY, 1973. Some of the results of this thesis appear in On the Time and Tape Complexity
of Languages I. were presented at the Fifth Annual ACM Symposzum on Theory of Computing
(STOC) 1973, pp. 10-19.

H.B. Hunt III and D.J. Rosenkrantz. Computational Parallels Between the Regular and Context-
Free Languages. SIAM Journal on Computing (SICOMP) 7(1), pp. 99-114, 1978.

H.B. Hunt I1I, D.J. Rosenkrantz, and T.G. Szymanski. On the Equivalence, Containment, and
Covering Problems for the Regular and Context-Free Languages. Journal of Computer and
System Sciences (JCSS) 12(2), pp. 222-268, 1976.

H.B. Hunt III. On the Complexity of Flowchart and Loop Program Schemes and Programming
Languages. Journal of the ACM (J ACM) 29(1), pp. 228-249, 1982,

H. Hunt III, D. Rosenkrantz, C. Barrett, M. Marathe and S. Ravi, Complexity of Analysis and
Vegﬁcatlon Problems for Communicating Automata and Discrete Dynam1cal Systems submitted
2001

D.T. Huynh and L. Tian. On deciding some equivalences for concurrent processes, Theoretical
Informatics and Applications 28(1), pp. 51-71, 1994.

L.P. Hurd, On Invertible cellular automata. Complex Systems, 1(1), pp. 69-80, 1987.

G. Istrate, M. Marathe and S, Ravi, Adversarial models in evolutionary game dynamics. to
appear in Proc. of ACM Symposium on Discrete Algorithms January 2001.

Y. Kesten, Z. Manna and A. Pnueli. Verifying Clocked Transition Systems. Hybrid Systems

1995, pp. 13-40. Complete version in Acta Informatica 36(11), pp. 837-912, 2000.

P. Koiran, M. Cosnard and M. Garzon. Computability with low-dimensional dynamical systems.

Theoretical Computer Science, 132(1-2), pp. 113-128, 26 September 1994. _

Z. Kohavi, Switching and Finite Automata Theory, McGraw-Hill Book Company, New York,
1970.

R. Laubenbacher and B. Pareigis. Finite Dynamical Systems. Technical report, Department of

Mathematical Sciences, New Mexico State University, Las Cruces.

B. Martin. A Geometrical Hierarchy of Graphs via Cellular Automata. Proc. MFCS’98 Satellite

Workshop on Cellular Automata, Brno, Czech Republic, Aug. 1998.

Rg.gl\élilner. Communicating and Mobile systems: the w-calculus. Cambridge University Press,

1999.

M. V. Marathe, H. B. Hunt III, D. J. Rosenkrantz and R. E. Stearns. Theory of periodically speci-
fied problems: Complexity and Approximability. Proc. 13th IEEE Conference on Computational
Complexity, Buffalo, NY, June, 1998.

12

[Mo91]
[Mo090)
~ [MR99]
[NR9S]

[Pa94]
[Pi94]

[RH93]
[RKk94]

[Ra92]
[RSW92)

[Re00]
[Re00a]
[Ro99]
[SH+96]
[Sm71]
[SM73]
(Su95]
[Su90]

[Su89}
[SDB97]

[vG90]

[vG93]
[VW86]

[Wo86]

C. Moore. Generalized shifts: unpredictability and undecidability in Dynamical Systems. Non-
linearity, 4, pp. 199-230, 1991.

C. Moore. Unpredictability and undecidability in dynamical Systems. Physzcal Review Letters,
64(20), pp 2354-2357, 1990.

H. Mortveit, and C. Reidys. Discrete sequential dynamical systems. Discrete Mathematics, 2000
accepted.

C. Nichitiu and E. Remila. Simulations of Graph Automata. Proc. MFCS’ 98 Satelhte Workshop
on Cellular Automata, Bmo, Czech Republic, Aug. 1998.

C. Papadimitrion. Computational Complexity, Addison-Wesley, Reading, Massachusetts, 1994,

G. Pighizzini. Asynchronous automata versus asynchronous cellular automata. Theoretical Com-
puter Science, 132(1-2), pp. 179-207, 26 September 1994,

D.J. Rosenkrantz and H.B. Hunt III. The complexity of processing hierarchical specifications.
SIAM Journal on Computing, 22(3), pp. 627-649, 1993,

Z. Roka. One-way cellular automata on Cayley graphs. Theoretical Computer Science, 132(1-2),
pp. 259-290, September 1994.

A. Rabinovich. Checking equivalences between concurrent systems of finite state processes.
International Colloguium on Automata Programming and languages (ICALP), LNCS 623,
Springer, pp. 696-707, 1992.

Y. Rabinovich, A. Sinclair and A. Wigderson. Quadratic dynamical systems. Proc. 33rd An-
nual Symposmm on Foundations of Computer Science (FOCS), PP 304-313, Pittsburgh, October
1992. .

- C, Reidys. On acychc orientations and SDS Advances in Applied Mathematxcs, to appear in

2000.

C. Reidys. Sequentlal dynamical systems: phase space properties. Advances in Applied Mathe-
matics, to appear.

C. Robinson. Dynamical systems: stability, symbolic dynamics and chaos. CRC Press, New
York, 1999.

S.K. Shukla, H.B. Hunt I1I, D.J. Rosenkrantz and R.E. Stearns. On the Complexity of Relational
Problems for Finite State Processes International Colloguium on Automata Programming and
Languages (ICALP), pp. 466-477, 1996.

A. Smith. Simple computation-universal cellular spaces. J. ACM, 18(3), pp. 339-353, 1971.

L.J. Stockmeyer and A.R. Meyer. Word problems requiring exponential time. Proceedings 5th
Annual ACM Symposium on Theory of Computing (STOC), pp. 1-9, 1973.

K. Sutner. On the computational complexity of finite cellular automata. Journal of Computer
and System Sciences, 50(1), pp. 87-97, February 1995. _

K9 %utner De Bruijn graphs and linear cellular automata. Complex Systems, 5(1), pp. 19-30,
1990.

K. Sutner. Classifying circular cellular automata. Physica D, 45(1-3), pp. 386-395, 1989,

C. Schittenkopf, G. Deco and W. Brauer. Finite automata-models for the investigation of dynam-
ical systems. Information Processing Letters, 63(3), pp. 137-141, August 1997,

R.J. van Glabbeek. The linear time-branching time spectrum. Technical Report CS-R9029, Com-
plgxtge(;' Science Department, CWI, Centre for Mathematics and Computer Science, Netherlands
1

R.J. van Glabbeek. The linear time-branching time spectrum II (the semantics of sequential
systems with silent moves). LNCS 715, 1993.

M. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification,
Proc. Ist IEEE Symposium on Logic in Computer Science, pp.332-344, 1986.

S. Wolfram, Ed. Theory and applications of cellular automata. World Scientific, 1987.

13

7 Appendix
7.1 Simulating SyDS by SDS

Theorem 7.1 The FIXED POINT EXISTENCE problem for SyDS with symmetric Boolean functions (not nec-
essarily identical) is polynomial time reducible to the FIXED POINT problem for SDS with symmetric Boolean
Junctions.

Proof: Given an SyDS S (G(V, E), F, I), with F being the set of symmetric Boolean functions, we create
an instance Sy (G1 (W1, E1), Fi,w,21) of SDS as follows:

For each £ € V we create a set of 9 nodes in Vi. Denote them by z;, 1 < ¢ < 9. &; will simulate §
as follows. Letting £(S,t)(x) to denote the state (value) of a vertex z in SDS § after ¢ time steps, we will
maintain the following invariant:

£(81,t)(z1) = £(S1, t)(@2) = E(S1,t)(@3) =&(S1,2)(za) = €(S, 1) (2)

and

£(51,8)(ws) = £(51,8)(ms) = (87, D)(&r) = EBr, D(am) = £(1,1) (@) = (5,1~ 1)()

Yy

Figure 1: Figure explaining the construction of the Gadget. The dotted boxes show the replacements for
vertices x and y. The dotted lines going between vertices across the dotted boxes tells how an edge (z, y) is
replaced by a set of edges.

Informally speaking, we maintain the following semantics:

1. For1 <i<4, £&(51,t)(x;), will hold the value (state) of the vertex z at the current time ¢ and

14

2. For5 <i<9, &S1,t)(=:), will hold the value of the state (or its complement) at z at time ¢ — 1.

The idea behind the simulation is that at each time step S; will first compute z;, 5 < i < 8, by using values
from z;, | < i < 4; thereby storing the value of z at time ¢ — 1. Then S’ will compute the values of z* based
on the values of z” and z®. Finally, S’ will compute the values of z;, 1 < 4 < 4 using the newly computed
value of y; for all y such that y is a neighbor of z. We now describe the components of 5.

1. Graph G1: As shown in the figure the graph on z;, 1 < i < 8 is a complete bipartite graph with one
side of the bipartition being z;, 1 < ¢ < 4 and the other side of the bipartition is z;, 5 < ¢ < 8.
Finally the vertex g is connected to x5 and z¢. In addition, for each edge (z,y) € E, 8’ contains the
following eight edges

(SDg, y1)1 ((Bg, y2)1 (w91 y3)v ($9a y4.)
(y97 $1), (y91 1132), (y97 9:3)1 (yga .'54)
2. Permutation w: The permutation 7 has three components i - #} - 71, where each m; is given as

follows:

1r} = (x5, T¢, L7, Z8), Vz eV

m=x9 VEEV
7= (m1;m2,m3,$4), VzeV
3. Initial state T,: The initial state Z; is given as follows:
Ti(z1) = Zi(x2) = Ti(z3) = Ta(zg) = I(z), VZEV
Ti(zs) = Ti(z6) =0, VZ € V-
Ti(z7) =Th(zs) =1, Yz €V
Ti(z9) =Z(z),Vz € V

4. Function Set F1: The function set consists of four different functions: f; at nodes x5, x5, f2 at nodes
X7, s, f3 at g and finally fy at z1,...z4. Below we describe each of the functions in detail:

(a) Function f, at x5 and tg: The nodes x5 and zg have five neighbors and hence f; has 6
arguments. f; is 1 iff ar least 4 out of its 6 arguments is 1 and is 0 otherwise. Formally, given a
" set of variables X, let N(X) denote the number of variables set to 1. Then

AX)=1 iff N(X)24

(b) Function fy at z7 and xs: f, is the complement of fi; it is 1 iff less than 4 of its input values

are 1. Formally,
fo(X)=1 iff N(X)<4

(c) Function f3 at zg: Node zg is connected to x5 and zg among the copies of = and for each
neighbor of z, g is also connected to a group of 44, nodes (where J; is the degree of node z)
as outlined earlier. fs is 1 iff the number of its arguments equaling 1 is congruent to 2 mod 4 or
3 mod 4. Formally,

f5(X)=1 iff NX)=2mod4 or N(X)=3mod4

15

(d) Function f4 at 1, 22, m3 and z;: Let k be the arity of f4. Specifically, Vy; € V such that
(z,y;) € E, we have yf connected to z;, 1 < j < 4. Then for k > 2, f4 is equal to f,° when
(k — 2) of its parameters are 1. For k < 2, fy is equal to 0. Formally

flX) = fo f k22 (1
= 0 otherwise | 2)

We now prove the correctness of our reduction. For this we need a number of basic properties of the
functions. Define £(S;, —1)(z!) = 0.

Claim 7.1 .
VE20, &(S1,t)(z1) = &(S1,t)(z2) = &(S1, t)(a3) = €(Sh, t)(z4) = &(S, t) ()

vVt > 0, E(Sla t)($5) = 5(811)('36) (Sla t— 1)(331)
Vi>0, &S, t)(xr) = E(S1,t)(xs) = (51, t)(x5)
VE>0, £(S1,t)(x) = €(S1,t)(xs) = £(S,t - 1)(x)

In other words, after one round of execution, the state of z; in Sy is the same as the state of z in S and
z9 remembers the state of in the previous time unit.. .
Proof: The proof is by induction on t. The basis for £ = 1 can be verified using the deﬁnltlons of Z; and
£(S1, ~1)(x!). Assume that the claim holds for all times ¢ < ¢ and consider time ¢.

(1): It is clear that for 1 < i < 4, £(81,t){x;) are the same. Note that at time ¢ — 1, exactly two of z;,
5 <i < 8 are 1 and the other two are 0. Thus if in the operation of S, at time £, exactly j of the inputs to x
are equal to 1, then in the operation of 8y, j + 2 of its inputs are 1. This along with the definition of f4 proves
the required claim.

(2): First note that £(S1,t)(z5) = £(S1,t)(26). By induction hypothesis, 1 < i < 4, &(S1,t)(z;) all
have the same value. In particular they are all simultaneously 1 or 0. Thus by definition of f;(), it is clear
that £(S1,t)(zs) and £(S, t)(zg) solely depend on the value of 1, T3, T3 and x4 and are independent of the
value at zg and their own value at the previous time, -

(3): The proof of the fact that V¢ > 0, £(S1,t)(x7) = &(S1,1)(xs) follows along the lines of proof for
part (2). To show that they in turn are equivalent £(S1,t)(z5) follows by the definition of f3().

(4): First note that the neighbors x5 and z¢ of zg have the same values at time ¢ and they come before zq
in our permutation. Each set of 4 values from zg’s neighbors is identical and thus all these values sum ugp to
0 mod 4. Also note that £(S;,t)(z5) = £(S1,t)(zs). We thus have two cases to consider.

Case 1: £(S51,t)(xs5) = £(S1,t)(we) = 1 and £(S1,¢ — 1)(x9) = 1. Then N(X) = 3 mod 4 and hence
£(81,t)(zs5) = £(S1, t)(ze) = 1.

Case 2: £(S51,t)(zs5) = €(S1,t)(z6) = 1 and £(S1,t — 1)(z9) = 0. Then N(X) = 2 mod 4 and hence
f(’sla t)($5) = 6(31, t)($9) =0

Case 3: £(S,t)(m5) = £(S1,t)(xs) = 0 and £(S1,t — 1)(zg) = 0. Then N(X) = 0 mod4
£(S1,t)(z5) = £(S1,t)(z9) = 0.

SRecall that f, denotes the function at node z in S.

16

Case 4: £(S1,t)(zs) = £(S1,t)(z6) = 0 and &(S1,t — 1)(z9) = 1. Then N(X) = 1lmod4
6(811 t)($5) = f(Sl,t)(.'L‘g) =0. =

By the above claim, it is clear that there is a bijection between £(S;,t) and £(S, t); thus the reachability
problem and the fixed point problem for & are polynomial time reducible to the reachability and the fixed
point problem respectively for Sy. This completes the proof of our theorem. W

Using earlier discussion, we can thus prove the following

~ Theorem 7.2 The REACHABILITY and FIXED POINT problems for SDS with symmetric (non-identical)
Boolean functions are PSPACE-hard, even when restricted to SDSs such that:

o Each node is the SDS graph is of constant degree, and

¢ the pathwidth and hence the treewidth of the graph is bounded by a constant that depends on m and h,
and

o The number of distinct functions used is a constant (that depends only on the number of distinct func-
tions used in the proof of Theorem 5.2).

Proof: The proof follows by noting that the construction outlined in proof of Theorem 7.1 replaces each-node
of the SyDS S by a set of 9 nodes. Moreover, there can be no edges between two nodes in different sets if the
orlgmal nodes they replaced did not have an edge. =

7.2 Extension to identical functions

. Theorem 7.3 Given an SDS (or an SyDS) S (G(V, E), F, 1’) with F = {f1, f2,... f9} being the set of
distinct symmetric Boolean functions, we can create an instance Sy (GQ(Vz, Ey), Fo, 7, 13) of SDS (SyDS) -
in polynomial time such that

1. Fo ={f} i.e. Fy has the same function at each node.

2. If'the original graph has constant degree then G also has constant degree.

Proof: We do the proof in two steps: In the first step, we construct an instance S (G1(V1, £1), F1,7) in
which we have the same functions but of varying degrees at each node. In step 2, we show how to extend this
idea to construct a new SDS &3 such that each node has identical function.

Step 1: Consider a SDS or SyDS S. It can be modified so that all the Boolean functions are the same, as
follows. (This first reduction gives the nodes varying degree, but they all have the “same” symmetric Boolean
function.)

Let A be the maximum degree of the nodes in the graph G of S. Let g be the number of distinct Boolean
functions occurring in S. Thus, for each node i, function f; is function f7 for some 5 (1 < j < q). The
constructed system S; will involve a single Boolean function f; although they will have varying number of
inputs. Since f is symmetric, we can describe f by specifying what its value is, as a function of how many of
its input parameters are 1, Thus, we use the shorthand of specifying f using an integer as its parameter (this
integer represents how many of its Boolean inputs are 1). The specification of f is:

f0) =0
f=1
1@)=1

f(k)=0; 2<k<A+2

17

())

Figure 2: Figure explaining the construction of the single function in Theorem 7.3.

FUA+2) +k)=fIk); 1<j<g 0<k<A+1

Note: If function f7 has fewer than k input arguments, then f(j{A +2) + k) = 0.

G1(V1, E)) is given as follows: V; = W UU, where W is one to one correspondence with the nodes in
V and E, = Ew U Ewy. The edges in Ey go between the nodes in W, the graph (W, Evy) is isomorphic to
(V, E). The nodes in U are called auxiliary nodes. There are no edges between nodes in U. Each node in W
is connected to a specified number of distinct auxiliary nodes in U. The auxiliary nodes have degree 1. The
state of each auxiliary node is initialized to 1, and so (since f(1) = f(2) = 1) will be in state 1 throughout the
operation of S;. Suppose that in S, the function for node 4 is f7. (Recall that 1 < j < q.) Then, in G; node
i € W is connected to 5(A+2) auxiliary nodes. This ensures that in each step of the operation of S, function
[effectively selects the value that function f7 would select for the number of original input values that equal
1. The reduction as outlined works for SyDS since there is no permutation. To complete the reduction for
SyDS, we need to specify the ordering of the vertices in Gy. m; = nl - 7}, where 7} is applied to vertices in
W and is identical to 7. 7} is a permutation of U/ and does not really affect our construction. We let 1r be the
permutation in which the vertices in U appear in ascending order of their indices in G;. Intuitively speaking,
the function f represents a master function that can act like any function fJ. The auxiliary mputs drive the
function into distinct range of 1-inputs (with different number of 1’s). :

Claim 7.2 There is a bijection between £(Sy,t) and £(S,t). Specifically, at each time t, £(S1,t)(W
£(S,t)(V) and (51, t)(U) = 1. :

The claim completes the proof of step 1.

Step 2: A similar but a slightly more complicated construction can give all the nodes the same degree (as well
as the same function). This more complicated construction is summarized as follows. Let D = A+¢(A+2).
Recall that g denotes the number of distinct functions. Each node in Sz will have degree D. Function f is the
same as described above, except that now f(1) = 0, and f(3) = 1. (For all other counts, the value of f is the
same as given above.) There are now two classes of auxiliary nodes: auxiliary 1-nodes, that are initialized to
1, and auxiliary 0-nodes, that are initialized to 0. The auxiliary nodes described above all become auxiliary
1-nodes. In addition, each original node is padded with connections to enough auxiliary 0-nodes so that its
degree is D.

The auxiliary nodes need to have their degree made D. Each auxiliary 1-node is connected to one other
auxiliary 1-node, and possibly one original node. Its remaining D neighbors are auxiliary 0-nodes. This
ensures, that at any time during the operation of Sy, for a 1-node, the number of inputs to f that equal 1 is
either 2 or 3, and so the state remains at 1 throughout the operation of .S5.

18

The auxiliary 0-nodes are grouped into cliques of cardinality D — 1. (Additional auxiliary 0-nodes can
be added to round out the final clique.) Each auxiliary 0-node is connected to at most one original node or
auxiliary 1-node, and its remaining neighbors are other auxiliary 0-nodes. This ensures that its state remains
0 throughout the operation of So. ®

7.3 Extension to the weighted k-simple-Threshold functions

We extend the result to k-Threshold-SDSs to a weighted version of the problem. Informally, we have weights
on edge of the graph. Now we treat 0’s and 1’s symmetrically as before but the threshold is formed by the
weighted sum of inputs whose other end point is 0 (or dually 1). Formally, each edge e = (u,v) has a
numerical weight (could be negative) denoted by w(e). For each node v, let

T)= Y w((uw)
wEN(v)
i.e. it is the sum of the weights of the edges incident on v. For any assignment to the node variables, let

Wo(v) = Z w(u, w) and Wi(v) = Z w(u, w)

(v/w), viw}=0 , : (v,w), v[w]=1

Note that since there are no self-loops Wy (v) and Wj (v) are independent[of the value of node v.
Each node v has two values Ty(v) and T3 (v) such that To(v) + Ty (v) > T(v). Let g(v) = TO(v) +
T1(v) = T'(v) be called the “gap” for v. The function at node v is defined as follows:

0 if Wo(v) > To(v)
Lif Wy (v) > Ty (v)
unchanged

viv]

i

In other words, if the weighted number of 0-neighbors is greater than the O-threshold T{v) then node
value becomes 0. Similarly, if the weighted number of 1-neighbors is greater than the 1-threshold 7} (v) then
node value becomes 1. Else the node does not change the value that it had before the update. We denote an
SDS with weighted functions at nodes as above by Wt-k-Threshold-SDS.

Theorem 7.4 The t-REACHABILITY problem and the FIXED POINT REACHABILITY problem for Wit-k-
Threshold-SDSs, 1 < k < n, are computable in polynomial time if if the edge weights are all polynomial in
the size of the problem.

Wt-k-Threshold-SDSs do not have limit cycles of length greater than 1 (i.e. they only have transients and

fixed points).

Proof: The proof follows the earlier proof for unweighted case and is thus brief. For any assignment, we
associate a cost to each edge and node as follows:

P(v)

Ty(v) ifv[y]=1
= To(v) ifvp]=0

The edge potential P(e) of an edge e = (u, v) is define as follows:

P(e) = wife = (u,v), w(e) = w and vlu] # v[v]
= 0 otherwise

19

As in the proof of unweighted case we show that whenever the value at a node v changes, the total
potential drops by at least the “gap” g(v).
Consider a particular node v whose value changes from 0 to 1.

1. Edges incident on v where the other end point is 1 have their costs reduced to 0. For these edges we
get a total reduction in potential is W1 (v) > Ti(v).

2. Edges incident on » where the other end point is 0 have their costs increased to the edge weight for a
total increase of Wy(v) which is equal to T'(v) — Wi(v) < T'(v) - Ty (v) = To(v) — g(v).

3. The node cost is increased by T} (v) and decreased to Tp(v).
Combining the gains and losses gives a net decrease of
Ti(v) + To(v) — (To(v) - g(v)) = g(v).

~ By symmetry, when a node v changes from 1 to 0, we also get a reduction in the potential of at least g(v). m

~ If we extend the model to allow edges to have unequal effects on its endpoints ‘(or equivalently use a
directed graph) then convergence is lost because bits can circulate from node to node An open question is
‘settle the complexity of the reachablhty problem under this model.

20

