
LA-UR- Q+HH
Approved for public release;
distribution is uniimifed

Title:

Author(s):

Submitted to

Los Alamos

C.1
ANALYSIS PROBLEMS FOR SEQUENTIAL DYNAMICAL SYSTEMS
AND COMMUNICATING STATE MACHINES

Christopher L. Barrett, D-2
Harry B. Hunt 111, D-2
Madhav V. Marathe, D-2
S. S. Ravi, SUNY, Albany
Daniel J. Rosenkrantz, SUNY, Albany
Richard E. Stearns, SUNY, Albany

26th International Symposium on Mathematical Foundations of Computer
Science (MFCS 01)
Marianske Lame Czech Republic
August 27-31,2001

N A T I O N A L L A B O R A T O R Y

others to do so, for US. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article
as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports
academic freedom and a researcher's right to publish; as an institution, however, tho Laboratory does not endorse the viewpoint
of a publication or guarantee its technical correctness. Form 836 (10196)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

Analysis Problems for Sequential Dynamical Systems and
Communicating State Machines

CHRIS BARRETT HARRY B. HUNT 111 2J MADHAV V. M.ARATHE.
S. S. RAVI 2,3 DANIEL J. ROSENKRANTZ RICHARD E. STEARNS

April 3,2001

Abstract
A simple sequential dynamical system (SDS) is a triple (G, F, n), where (i) G(V, E) is an undirected

graph with TI nodes with each node having a 1-bit state, (ii) 7 = {ti, fa,. . . , f,,} is a set of local
transition functions with fi denoting a Boolean function associated with node V i and (iii) ?r is a fixed
permutation of (i.e., a total order on) the nodes in V. A single SDS transition is obtained by updating
the states of the nodes in V by evaluating the function associated with each of them in the order given
by n. Such a (finite) SDS is a mathematical abstraction of simulation systems [BMR99, BR991. In this
paper, we characterize the computational complexity of determining several phase space properties of
SDSs. The properties considered are t-REACHABILITY (“Can a given SDS starting from configuration
Z reach configuration tr in t or fewer transitions?”), REACHABILITY (“Can a given SDS starting from
configuration Z ever reach configuration S?”) and FIXED POINT REACHABILITY (“Can a given SDS
starting from configuration Z ever reach configuration in which it stays for ever?”). Our maitl result is a
sharp dichotomy between classes of SD& whose behavior is “easy” to predict and those whose behavior
is “hard” to predict. Specifically, we show the following.

1. The ~-REACHABILITY, REACHABILITY and the FIXED POINT REACHABILITY problems for SDSs
are PSPACE-complete, even when restricted to graphs of bounded bandwidth (and hence of bounded
pathwidth and treewidth) and when the function associated with each node is symmetric. The result
holds even for regular graphs of cuastant degree where all the nodes compute the same symmetric
Boolean function.

2. In contrast, the ~-REACHABILITY, REACHABILITY and FIXED POINT REACHABILITY problems
are solvable in polynomial time for SDSs when the Boolean function associated with each node is
symmetric and monotone.

Two important consequences of our results are the following: (i) The close correspondence between SDSs
and cellular automata (CA), in conjuncthn with with our lower bounds for SDSs, yields stronger lower
bounds on the complexity of reachability problems for CA than known previously. (ii) REACHABIL-
ITY problems for hierarchically-specied linearly inter-connected copies of a single finite automaton are
EXPSPACE-hard.

The results can be combined with om related results to show hardness of a number of equivalence
relations for such automata. The resdts can also be used to demonstrate that determining the sensitivity
to initial conditions of such automata (as proposed in [Mo90, BPT911) is computationally intractable.

Classification: Computational Complexity, Dynamical Systems, Complexity Classes, Cellular Automata,
PSPACE.

‘Los Alamos National Laboratory, MS M9W, P.O. Box 1663, Los Alamos, NM 87545. Email: {barrett,
marathe}@lanl . gov. The work is supported by the Department of Energy under Contract W-7405-ENG-36.

2Department of Computer Science, University at Albany - SUNY, Albany, NY 12222. Email addresses of authors: {hunt,
ravi , d j r, res}@cs . albany . edu, Supported by a grant from Los Alamos National Laboratory and by NSF Grant CCR-

3Part of the work was done while the authors were visiting the Basic and Applied Simulation Sciences Group (TSA-2) af the Los
9734936,

Alamos National Laboratory.

1

1 Introduction and Motivation
We study the computational complexity of combinatorial problems associated with a new class of finite dis-
crete dynamical systems, called Sequential Dynamical Systems (henceforth referred to as SDS), proposed in
[BR99, BMR99, BMROO]. A formal definition of such a system is given in Section 2. Sequential dynami-
cal systems are closely related to classical Cellular Automata (CA), a widely studied class of finite discrete
dynamical systems used to model problems in physics and complex systems. Computability aspects of dy-
namical systems in general and cellular automata in particular have been widely studied in the literature
[W086, Gu891. Dynamical systems are closely related finite networks of communicating automata, finite and
infinite transition systems and sequential digital circuits [Ra92, HT94, SH+96, AY98, AKY99, RH93, SM73,
Hu73, HRS76, HR78j.

In simple terms, a sequential dynamical system (SDS) S is a triple (G, F, n). G(V E) is an undirected
graph (called the underlying graph of the SDS) with n nodes, with each node having a state with finite
number of state values. 3 = { f f , f2, . . . , fn} is a set of local transftion functions, where fi is a function
associated with node vi E V. The inputs to fi are the values of the state of node vi and those of vi’s neighbors
in G. The range of fi is the set of allowed state values. T is a permutation of (Le., a total order on) the nodes
in V. A single SDS transition is obtained by updating the states of nodes v E V by evaluating the function
associated with each of the nodes, in the order specified by n. A configuration of SDS S is an n-tuple
(bf , b, . . . , b,,), where bi is the value of the state of node vi. Thus, a transition of an SDS can be envisioned
as a change from one configuration to another. The phase space of S is a directed graph where each node
represents a configuration and each directed edge (C, C‘) indicates that the system moves fiom configuration
C to configuration C’ i,n one transition. For an SDS whose underlying graph has n nodes, the phase space has
k:* nodes, where k: is the number of allowed state values. A fixed point of an SDS S is a configuration C such
that the only possible transition from the configuration C is to C itself.

In this abstract, we will restrict ourselves to Simple-SDSs, that is, SDSs with the following additional
restrictions: (i) the state of each node is Boolean and (ii) each local transition hnction fi is Boolean and
symmetric. Our hardness results hold even for such simple-SDSs and thus imply analogous hardness results
for more genera1 models.

Here, we study the computational complexity of determining various phase space properties of SDSs.
The properties studied include classical questions such as reachability (“Does a given SDS starting fiom
configuration C ever reach configuration C’?,,) and fixed points (“Does a given SDS have a configuration C
such that once C is reached, the SDS stays in C for ever?”) that are commonly studied by the dynamical
systems community. Specifically, we investigate whether such properties can be decided efficiently using
computational resources that are polynomial in the size of the SDS representation, rather than in the size of the
phase space (which is exponentially larger). We also study the computational Complexity of such questions
when the underlying systems are specified succinctly. The research is guided by the following overall goals:
(i) identification of efficient inter-simulations that yield uniform lower bounds for various models, (ii) efficient
reductions that can be naturally extended to succinctly presented and, in the limit, to infinite instances, and
(iii) obtain meta-results that allow us to infer the easinesshardness of analysis problems as a function of
underlying parameters (hnctions, graph topology, domain size, etc).

The original motivation to develop a mathematical and computational theory of SDSs was to provide a
formal basis for the design and analysis of large-scale computer simulations. Because of the widespread use
of computer simulations, it is difficult to give a formal definition of a computer simulation that is applicable
to all the various settings where it is used. An important characteristic of any computer simuIation is the
generation of global dynamics by iterated composition of local mappings. Thus, we view simulations as
comprised of the following: (i) a collection of entities with state values and local rules for state transitions,
(ii) an interaction graph capturing the local dependency of an entity on its neighboring entities and (iii) an
update sequence or schedule such that the causality in the system is represented by the composition of local

1

mappings. References [BW095, BB+99] show how simulations of large-scale transportation systems and
biological systems can be modeled using appropriate SDSs. The local interaction rules for entities and a
dependency graph structure are by now accepted as standard aspects of discrete dynamical systems for mod-
eling large-scale systems. The ordering aspect is somewhat new in a formal setting but has recently received
attention by other researchers [HG99, -97, Rk941. It is implicit in all discrete event simulations. Following
[BPT91], we say that a system is predictable if basic phase space properties such as REACHABILITY and
FIXED POINT EXISTENCE can be determined in time which is polynomial in the size of the system specifi-
cation. Our PSPACE-completeness results for predicting the behavior of “very simple” systems essentially
imply that the systems are not easily predictable; in fact, our results imply that no prediction method is likely
to be more efficient than running the simulation itself. The results here can also be used to we show that even
simple SDSs are “universal” in that any reasonable model of simulation can be “efficiently locally simulated”
by appropriate SDSs that can be constructed in polynomial time. The models investigated include: cellular
automata, communicating finite state machines, multi-variate difference equations, etc.

Another motivation for studying SDSs is derived from the papers of Buss, Papadimitriou and Tsitsiklis
[BPTBl], Moore [M090, Mo911, Sutner [Su95] and Wolfram [Wo86]. Specifically, we undertake the com-
putational study of SDSs in an attempt to increase our understanding of SDSs in particular and the complex
behavior of dynamical systems in general. SDSs are discrete finite analogs of classical dynarhical systems,
and we aim to obtain a better understanding of “finite discrete computational analogs of chaos”. As pointed
out in [BPT91, Mo90, Mo911, computational intractability or unpredictability is the closest form of chaotic
behavior that such systems can exhibit. Extending the work of [BPT91], we prove a dichotomy result be-
tween classes of SDSs whose global behavior is easy to predict and others for which the global behavior
is hard to predict. In [Wo86], Wolfram posed the following three general questions in the chapter entitled
‘“hventy Problems in the Theory of Cellular Automata”: (i) Problem 16: How common are computational
universality and undecidability in CA? (ii) Problem 18: How common is computational imduc ib i l i~ in CA?
(iii) Problem 19: How common are computationally intractable problems about CA? The results obtained
here and in the companion papers [BH+OOa, BH+OOb] for SDSs (and for CA as direct corollaries) show that
the answer to all of the above questions is “quite common”. In other words, it is quite common for syn-
chronous as well as sequential dynamical systems to exhibit intractability. In fact, our results show that such
intractability is exhibited by extremely simple SDSs and CA.

2 Definitions and Problem Formulations
We begin with a formal definition of sequential dynamical systems. As stated in the introduction, we will
restrict our selves to Simple-SDSs. (Unless otherwise stated, we use “SDS” to mean a simple SDS.) Our
definition closely follows the original definition of SDS in [BMR99, BMROO, MR99, ReOO]. We also recall
basic definitions of phase space parameters studied in this paper.

A Simple Sequential Dynamical System (SDS) S is a triple (G, 3, a), whose components are as fol-
lows:

1. G(V, E) is an undirected graph without multi-edges or self loops. G is referred to as the underlying
graph of S. We use n to denote IVl and rn to denote 1,331. The nodes of G are numbered using the
integers 1 , 2, . . . , n.

2. Each node has one bit of memory, called its state. The state of node i, denoted by si, takes on a
value from J F p (0,l). We use Si to denote the degree of node i. Further, we denote by N (i) the
neighbors of node i in G, plus node i itself. Each node i is associated with a symmetric Boolean
function fi : + F2, (1 5 a 5 n). We refer to fi as a local transition function. The inputs to f i
are the state of i and the states of the neighbors of i. By “symmetric” we mean that the function value

2

does not depend on the order in which the input bits are specified; that is, the function value depends
only on how many of its inputs are 1. We use F to denote {fi, f2, . . . , f n } .

3. Finally, x is a permutation of { 1,2,. . . , n} specitjring the order in which nodes update their states
using their local transition fbnctions. Alternatively, T can be envisioned as a total order on the set of
nodes.

Computationally, the transition of an SDS from one configuration to another involves the following steps:

for i = 1 to n do

the neighbors of ~ (i) .)

end-for

(i) Node n(i) evaluates jT($). (This computation uses the current values of the state of ~ (i) and those of

(ii) Node ~ (i) sets its state sA(i) to the Boolean value computed in Step (i).

Stated another way, the nodes are processed in the sequential order specified by permutation x. The
“processing” associated with a node consists of computing the value of the node’s Boolean h c t i o n and
changing its state to the computed value.

Note again that the assumption of symmetric Boolean fbnctions can be easily relaxed to yield more
general SDSs. We give special attention to the symmetry condition for two reasons. First, our lower bounds

* for such SDSs imply stronger lower bounds for computing phase space properties of CA and communicating
finite state machines (CFSMs). Second, symmetry provides one possible way to model “mean field effects”
used in statistical physics and studies of other large-scale systems. A similar assumption has been made in
[BPT9 13.

Recall that a configuration of an SDS is a bit vector (b l , b2, . . . , bn). A configuration C of an SDS
S = (G, 7, T) can also be thought of as a h c t i o n C : V + IF2. The function computed by SDS S,
denoted by Fs, specifies for each configuration C, the next configuration C‘ reached by S after carrying out
the update of node states in the order given by R. Thus, Fs : + B?j is a global function on the set of

. configurations. The function Fs can therefore be considered as defining the dynamic behavior of SDS S. We
also say that SDS S moves from a configuration C at time t to a configuration F , (C) at time (t + 1). The
initial configuration (i.e., the configuration at time t = 0) of an SDS S is denoted by Z. Given an SDS S with
initial configuration Z, the configuration of S after t time steps is denoted by ((S, t). We define [(S, 0) = Z.
We also use ((S, t) (W) to denote the states of the nodes in W E V and ((S, t) (v) to denote the state of a
particular node v E V at time t.

’

2.1 Problems Considered

Given an SDS S, let IS1 denote the size of the representation of S. In general, this includes the number of
nodes, edges and the description of the local transition functions. When Boolean local transition functions
are given as tables, IS1 = O(m 4- ITln), were 1’2’1 denotes the maximum size of the table, n is the number
of nodes and rn is the number of edges in the underlying graph. For a node v with degree S,, the size of the
table specifying an arbitrary Boolean function is 0(26v), while the size of the table specifying a symmetric
Boolean function is O(S,,). We assume that evaluating any local transition function given values for its inputs
can be done in polynomial time.

The main problems studied in this paper deal with the analysis of a given SDS, that is, determining
whether a given SDS has a certain property. The analysis problems considered in this paper are formulated
below.
Given an SDS S, two configurations Z, B, and a positive integer t, the &REACHABILITY problem is to decide
whether S starting in configuration Z can reach configuration B in t or fewer time steps. If t is specified in

3

unary, it is easy to solve this problem in polynomial time since we can execute the SDS for t steps and check
whether configuration B is reached at some step. So, we assume that t is specified in binary.

Given an SDS S and two configurations Z, B, the REACHABILITY problem is to decide whether S starting
in configuration Z ever reaches the configuration 8. (Note that, for t 2 2", t-REACHABILITY is equivalent
to REACHABILITY.) Given an SDS S and a configuration Z, the FIXED POINT REACHABILITY problem is
to decide whether S starting in state Z reaches a fixed point.

2.2 Extensions of the Basic SDS Model
As defined, the state of each node of an SDS stores a Boolean value and the local transition functions are
symmetric Boolean functions. When we allow the state of each node to assume values from a domain D of a
fixed size and allow the node functions to have 2) as their range, we obtain a Finite Range SDS (FR-SDS). If
the states may store unbounded values and the local transition finctions may also produce unbounded values,
we obtain a Generalized SDS (Gen-SDS).

Another usefbl variant is a Synchronous Dynamical System (SyDS), an SDS without the node permu-
tation. In a SyDS, during each time step, all the nodes synchmnously compute and update their state values.
Thus, SyDSs are similar to classical CA with the difference that the connectivity between cells i's specified
by an arbitrary graph. A further generalization is to consider a partial order on the nodes instead of a total
order. We refer to such an SDS as a DagDS since any partial order can be represented as a directed acyclic
graph (dag). Clearly, DagDSs generalize both SDSs and SySDSs. The definition of a SyDS can be extended
to obtain an FR-SyDS and a Gen-SyDS in a manner similar to that of SDS. FR-DagDS and Gen-DargDS
can also be defined in an analogous faslhion. It can be seen that SDSs are the most restricted models and
Gen-DagDS are the least restricted models. Whenever possible, we prove our PSPACE-completeness results
for the most restricted SDS model, thereby obtaining stronger lower bound results.

Note that the notion of symmetry can be suitably extended to bctions with non-Boolean domains as
well. In defining the above models, we did not attempt to relax the symmetry property of local transition
functions. Dynamical systems in which the local transition finctions are not necessarily symmetric are
considered in the companion papers [BH+OOa, BH+OOb].

3 Summary and Significance of Results
In this paper, we characterize the computational complexity of determining several phase space properties
for SDSs and CA. The results obtained are first such results for SDSs and directly imply corresponding
lower bounds on the complexity of similar problems for various classes of CA and communicating finite state
machines,

Our main result is a dichotomy between easy and hard to predict classes of SDSs. Specifically, we
show that t-REACHABILITY, REACHABILITY and FIXED POINT REACHABILITY problems for FR-SDSs
are PSPACE-complete. Moreover, these results hold even if the local transition functions are identical and
the underlying graph is a simple path. We firther extend these results to show that the above three problems
remain PSPACE-complete for SDSs, even when the underlying graph is simultaneously k-regular for some
fixed k, bandwidth bounded (and hence pathwidth and treewidth bounded) and the local transition functions
are symmetric.

In contrast to the above intractability results, we show that these problems are efficiently solvable for
SDSs in which each local transition h c t i o n is symmetric and monotone. Specifically, we prove that when
each local transition finction is a Ic-simple-threshold hct ion4 for some k 2 1, these problems can be solved
in polynomial time.

'The k-simple-threshold function has the value 1 iff at least R of its inputs are 1. Conventional definition of threshold hncttions
associates a weight with each input [K070]. We use the simplified form where all inputs have the same weight.

4

As a part of our methodology, we also obtain a number of “simulation” results that show how to simulate
one type of SDS (or CA) by another typically more restricted type of SDS (or CA). These simulation results
may be of independent interest. For instance, we’ show

1. how a given FR-SyDS with local transition functions that are not necessarily symmetric can be effi-
ciently simulated by a SyDS, and

2. how a SyDS can be simulated by an SDS.

The results presented here extend a number of earlier results on the complexity of problems for CA and also
have other applications. We briefly discuss these extensions and their significance below.
(1) Recalling results in [RH931 showing the EXSPACE-hardness of local STATE-REACHABILITY prob-
lems , for hierarchically-specified linearly inter-connected copies of a single finite automaton, the con-
structions here also imply that various local STATE-REACHABILITY problems are also EXSPACE-hard,
for hierarchically-specified constantly bandwidth-bounded networks of simple SDSs. Using ideas from
[SH+96, HR+O I], this last result implies: i)determining any simulation equivalence relation or pre-order
in the Linear-time/Branching-time hierarchies of [vG90, vG931 is EXSPACE-hard, for such hierarchically-
specified networks of simple SDSs; and ii)in the Sense of [HPT91], such hierarchically-specified networks
of simple SDSs exhibit EXSPACE-hard sensitivity to initial conditions.. Additionally following [BPT9 11,
we emphasize concepts, techniques, etc., that can be used to characterize the computationally-tractable or
computationally-intractable sensitivity to initial values of these models. Note that our models use “minimal”
amount of concurrency to obtain the results.
(2) All our reductions are carried out from the acceptance problem for deterministic linear space bounded
automata (LBAs) and are extremely efficient in terms of time and space requirements. Specifically, these
reductions require O(n) space and O(n1ogn) time. Thus these results imply tight lower bounds on the
deterministic time and space required to solve these problems.
(3) The results in [Su95, Gr871 prove the PSPACE-completeness of REACHABILITY and FIXED POINT
REACHABILITY problems and the NP-completeness of the PREDECESSOR EXISTENCE problem (“Given
a cellular automaton A and a configuration B, is there a configuration from which A can reach t3 in one
transition?”) for CA. These authors did not consider the effect of restricting the class of local transition
hct ions or restricting the structure of the underlying graph on the complexity of these problems. Our results
extend their hardness results to much simpler instances and also provide the first step in proving results that
delineate polynomial time solvable and computationally intractable instances.
(4) The results presented here can be contrasted with the work of Buss, Papadimitriou and Tsitsiklis [BPT91]
on the complexity of &REACHABILITY problem for coupled automata. In their model, there are n identical
automata, a global control rule, an initial state vector Z and a positive integer T. The global control rule
is given as a first order sentence and is independent of the identities of the automata. The automata do not
interact with each other. At each stage, the automata independently evaluate their next state depending on the
current state and the input received from the global controller. Following this, the global control rule reads ,

the state of the automata and evaluates the control rule. If the rule evaluates to true then all automata receive
1 as their input, othenvise they receive a 0. The goal is to predict the state of the system after T time units.
Note that their identity-independence assumption is similar to our symmetric function assumption, except
that they consider first order formulas. Our results show that, in contrast to the polynomial time solvability
of the reachability problem for globally controlled systems of independent automata, a small amount of local
interaction suffices to make the reachability problem computationally intractable. Our reduction leads to
an interaction graph that is of constant degree, bandwidth bounded and regular. (The interaction graph is
obtained from a simple path by replacing individual nodes in the path by groups of nodes that interact only
with nodes in neighboring groups.)

5

4 Related Work
As mentioned earlier, CA have been studied widely in the literature, owing to their simplicity on one hand and
their ability to produce complex behavior on the other. Computational aspects of CA have been studied by
a number of researchers (see [Mo91, Mo90, CPY89, W086, Gu89, Gr87, Su95] and the references therein).
However, most of the work addresses Computability issues for infinite CA. Other than the paper by Buss,
Tsitsiklis and Papadimitriou [BPT91] discussed in the previous section, the papers that are most relevant to
our work are the following: (i) The papers by Barrett, Mortveit and Reidys LBMR99, BMROO, MR99, ReOO,
ReOOa] and Laubenbacher and Pareigis [LPOO] investigate mathematical properties of sequential dynamical
systems, (ii) The papers of Sutner [Su89, Su90, Su951 characterize the complexity of reachability and pre-
decessor existence problems for finite CA and (iii) The papers of Moore [M090, M0911 make an important
connection between unpredictability of dynamical systems and undecidability of some of their properties.
Moore formally shows that undecidability is a much stronger form of unpredictability.

Alur et. al. [AKY99, AY98] consider the complexity of several problems for hierarchically specified
communicating finite state machines. SDSs can be viewed as very simple kinds of concurrent state machine:
moreover the hardness proof obtained here can be extended to obtain EXPSACE-hardness, when we have
exponentially many simple automata (vertices in our case) joined in form of a bandwidth bounded graph.
This result significantly extends a number of known results in the literature concerning concurrent finite state
machines by showing that the hardness results hold even simple classes of individual machines.

Quadratic dynamical systems are a variant of discrete dynamical systems that aim at modeling genetic
algorithms, In [ARV94] it is shown that simulating quadratic dynamical systems is PSPACE-hard; specif-
ically, it is shown that the t-reachability problem for such systems is PSPACE-complete even when t is
specified in unary. The proof of this result uses a reduction from Quantified Boolean Formulas (QBF) and
exploits the quadratic nature of the allowed rules. Other references on discrete dynamical systems include
[AM94, AMP95, BC96, Br95, CY88, CPYS9, Du94, KCG94, Pi941.

5 Hardness results
In this section we prove our main hardness theorem concerning the ~REACHABILITY, REACHABILITY and
FIXED POINT REACHABILITY problems for SDSS.

Theorem 5.1 main hardness theorem) The i-REACHABILITY, REACHAEILITY and FIXED POINT REACH-
ABILITY pmblems for SDSs with symmetric Boolean functions are PSPACE-hard, even when (E) each node is
ofconstant degree and the graph is regular (i.e. all nodes have the same degree), (ii) the pathwidth and hence
the treewidth of the graph is bounded by a constant, and (iii) all the nodes have exactly the same symmetric
Boolean function associated with them.

Overall Proof Idea: The proof of the above theorem is obtained through a series of local replacement type
reductions (steps). The reductions involve building general gadgets that may be of independent interest.
Step 1: First, by a direct reduction from the acceptance problem for a LINEAR BOUNDED AUTOMATON
(LBA) we can show that the ~-REACHABILITY, REACHABILITY and FIXED POINT REACHABILITY prob-
lems for FR-SyDS (finite CA) and FR-SDS are PSPACE-hard even under the following restrictions applied
simultaneously: (i) The graph G is a line (which has pathwidth and treewidth of l), (ii) The number of distinct
node functions is at most 3, and (iii) The domain of each function is a small constant (depending only on the
size of the LBA encoding). (Theorem stated below but proof omitted).
Step 2: Next, we show how to transform these problems for PR-SyDS into the corresponding problems for
SDS (where the node functions may be different). See Section 5.2.
Step 3: Finally, we fhrther extend the hardness result so that all the node functions are identical (same
fbnction and same degree) (proved in the appendix).

6

Theorem 5.2 (step 1: The t-REACHABILITY, REACHABILITY and FIXED POINT REACHABILITY prob-
lems for FR-SyDS (Cellular Automata) and FR-SDS are PSPACE-hard, even when restricted to instances
such that: (i) The graph G is a line graph (and thus has pathwidth and treewidth of l), and fig There are no
more than 3 distinct functions fi present at the nodes of the graph, and (iii) The domain of each function is a
small constant (that depends only on the LBA encoding),

5.1 Representation of symmetric Boolean functions
A symmetric Boolean function can be represented and computed in time proportional to the degree of a
node (more accurately in time proportional to the fan-in). Consider a Boolean €unction fi at a node vl with
degree n - 1. Recall that the function takes n inputs, including the value at the node itself. Function fi can
be represented by the subset of (0 , l . . . , n} denoting when the function takes value 1 as a hnction of the
number of input variables that are 1 (with remaining input variables being 0). For instance, let n = 5. A
possible function fl is {1,3,5} which is the exclusive-or (EX-OR) of the five input variables. Another way
to represent a symmetric Boolean function is to give an (n + 1)-dimensional 0-1 vector such that the i - th
entry denotes the h c t i o n value when i inputs are set to 1. Thus, another representation of EX-OR above is
(0,1,0,1,0,1>.

5.2 SyDS with symmetric Boolean functions: Step 2
Definition 5.1 Given k 2 1, a distance-lc coloring of a graph G(V, E) is an assignment of colors h : V +
N, to the vertices of G such that Vu, v E V where the distance between u and v is at most k, we have that
h (4 # w.
Proposition 5.1 A graph G(V, E) with mmimum degree A can be distance-2 colored using at most A2 + 1
colors, and such a coloring can be obtained in polynomial time. Thus for a graph whose vertex degneses are
bounded by a constant, and, in particulal; for regular graphs of constant degree, the number of colars used
for distance-2 coloring is a constant.

Theorem 5.3 For a given m and A, consider the class of Gen-SyDSs where the size of the state domain of
each node is at most rn and the degree of each node is at most A. There is a polynomial time reductionfrom
a generalized SyDS S = (G, 3) in this class and conjiigurations Z and Bfor S to a usual Faving symmetric
Boolean functions) SyDS SI = (GI F1) and conjigurations XI and I31 for S1 such that

1. S starting in configuration Z reaches B starting in conjigtiration 11 reaches B1. Mowovec for
each t, S reaches B in t steps i~$Sl reaches Bl in t steps.

2. S starting in conjiguration Z reaches a&ed point #SI starting in & reaches abed point.

Proof sketch: Given S, the reduction first constructs a distance-2 coloring h of G, using at most A2+1 colors,
where the colors are consecutive integers, beginning with zero. Next, given graph G(V, E) and coloring h,
we construct graph G1 (Vi El) . For each node zh E V there are (m - l)mh("k) nodes in &. We refer to
these nodes as xb, 1 5 i < m and 1 5 j 5 mh(5k). Informally, corresponding to a node zk of 5,
contains m - 1 sets of nodes (called clumps), each of size mh(z'c). For a given node xk E V, clump A'' rrefers
to the nodes 1 5 r 5 mh(Q). Additionally, we will use Xk = Xf U A$!., . Xk-l to denote the set of
all nodes in VI corresponding to Zk. E1 consists of the followhg two kinds of edges:

1. For each node zk E V, there is an edge between each pair of distinct nodes in A?. Thus, the nodes in
X h form a complete graph.

7

2. For each (xk, z,) E E, there is an edge between each node in Xk and each node in X'. Thus, each
edge (zk, x,.) is replaced by a complete bipartite graph between the sets of nodes used to replace the
nodes xk and 2,.

Define a configuration A of SI to beproper if V k , i, j , p , q

(A(& = 1 and i 2 p) 3 A(%&) = 1.

In other words, a configuration A of S1 is proper if the value at any node in Xj equal to 1 implies that
all nodes in A'!, A'!, . . . , X t are also 1. Note that if A is a configuration of S, then A maps each element
of V into a value from (0,. . . , (rn - 1)). The simulation of S by 8 1 is based on the following bijection
(that will be true by construction) g between the configurations of S and the proper configurations of SI
g : mv + 2v1, For configuation A of S, the corresponding configuration g(A) of 81 is specified as for all
1 5 i < m, 1 5 j 5 mh(%k), g(d)(z&) = 1 iff A(x:k) 2 i.

Intuitively, we maintain the invariant that the value c at node zk corresponds to having the nodes in
clumps A'? U Xt, . . . , X,k equal to 1 and the nodes in clumps U X:+s,. . . , Xz-l equal to 0. The initial
configuration

The functions in the set F1 are defined as follows. Suppose that node Xk E V has neighbors yl, . . . 3 d
in G and fa, is the finction at node xk. Consider a node 3%~ in A?. Consider a proper configuration A1
of $1, corresponding to the configuration Ji of S. Suppose that in configuration AI, exactly w of the input
parameters to jstj are equal to 1. Since configuration A1 is proper and h is a distance-2 coloring of G, there
exist unique integers Q, . . . , cd, each in the range 0 . . . m - 1, such that

of SI is set to be g(Z).

'1u = Qmh(xk) + C,,h(Vl) + c2mh(ya) + , . , + Cdrnh(Q) .

Since A1 = g(A), it follows that CO, . . . , cd are the values of 5 k and its neighbors in configuration A of S.
The fbnction fSk is defined as follows:

ij

f,g(") = 1 iff f Z J C O , C l , ' * ' , Cd) I i.

Intuitively, the reduction is done in such a way that different vectors C = (cg, . . . , Cd) and Q =
(go,. . . , qd) corresponding to the values at 5 k and its neighbors produce different counts for how many
inputs of symmetric finction f.; are equal to 1, and so can be appropriately differentiated. For a proper
configuration of SI, consider the count 20 of how many input variables to hc t ion fa.. equal 1. Integer TU

can be uniquely decomposed into a s u m of powers of m. Because node Zk and each o?its neighbors in G is
assigned a distinct color by h, the coefficient of each power of m encodes the value of one of the inputs to
hnction fsk , thereby enabling f., to play its role in simulating fZ,. The next lemma summarizes the needed
properties of the construction. The proof of the lemma is omitted due to lack of space.

Lemma 5.1 Let S and SI be as dejned above. Consider S starting in conjiguration Z and SI starting in
configuration g(Z). Then (1) W 2 0, c(&, t) is propel: (2) Vt 1 0, xk E V, 1 ,< i < m, 1 5 j 5
m h (q cl(Sl,t))(x&) = 1 i$ [(S,t)(Xk) 2 i.

Next note that the graph we obtained in proof of Theorem 5.2 was of constant degree and thus using
Proposition 5.1 can be distance-2 colored using a constant number of colors. Additionally note that in the
proof of Theorem 5.2 the domain size was a small fixed constant. Putting these facts together we get that
the graph produced in the above construction is of bounded degree. The proof of the theorem is now a direct
consequence of the above results.

8

6 Polynomial Time Solvable Cases
In this section we consider polynomial time solvable cases of the analysis problems, Let 1st denote the size
of an SDS S. In the phase space Ps of S, a transient is a simple directed path such that no edge of the path
appears in any cycle in P,. Our polynomial time algorithms for answering the reachability questions are
based on a simple sufficient condition: If an SDS S is such that (i) the number of nodes in every limit cycle
in Ps is bounded by a polynomial in IS1 and (ii) the number of nodes in every transient in Ps is bounded by
a polynomial in IS!, then t-REACHABILITY, REACHABILITY and FIXED POINT REACHABILITY problems
can be solved in time polynomial in IS[. While developing polynomial time algorithms using these sufficient
conditions, we also obtain useful results concerning structural aspects of these SDSs,

6.1 Ec-Simple-Threshold Functions
In this section we prove that ~-REACHABILITY, REACHABILITY and FIXED POINT REACHABILITY prob-
lems are polynomial time solvable for k-simple-threshold-SDSs, that is, SDSs in which each local transition
function is a k-simple-keshold function for some le 2 1. Since each<symmetric monotone function is a
k-simple-threshold function for some k, these polynomial time results provide the dichotomy between two
classes of SDSs: one with symmetric local transition hct ions and the other with symmetric monotone local
transition functions. Some remarks regarding the generality of these polynomial algorithms are provided at
the end of this subsection,

Definition 6.1 A le-simple-threshold-SDS is an SDS in which the local transition function at each node vi is
a ki-simple-thresholdfction, where 1 5 ki 5 min{k, 6, + 1). Here, 62 is the degree of node vi.

Theorem 6.1 Theproblems ~-REACHABILITY, REACHABILITY and FIXED POINT REACHABILITY~O~ any
k-simple-threshold-SDS, 1 5 k 5 n, can be solved by executing at most 9 steps of the given SDS, where m
is the number of edges in the underlying graph.

Proof: The proof of the theorem is based on a potentidfirnction argument. Given an SDS with underlying
graph G(V, E), we assign a potential to each node and each edge in G. For the remainder of the proof, we
use k, to denote the threshold value required for a node v to become 1. For each node 21 define 2'1 (v) =
hJ T (v) = 6, + 1. Recall that sv denotes the state of node v. Thus a,, = 1 iff at least TI (v)
of its inputs are 1; s, is 0 otherwise. Another interpretation of 2'1 (v) is that it is the smallest integer such that
sv must be assigned 1 if 2'1 (v) qf 1)'s inputs have value 1. Using this analogy, define TO (v) to be the smallest
integer such that 8 , must be assigned 0 if TO(") of the inputs to v have value 0. The following observation
is an easy consequence of the definitions of k,-simple-threshold, To(v) and Tl(v). Note that for any node
v E V, Tl(v) + To(v) = T(v) + 1. Define the potential P(v) at anode v as follows:

P(u) = Tl(v) ifs, = 1
= To(v) ifs, = 0

The following is an easy consequence of the definitions of To(v), 2'1 (v) and the fact that k, 2 1 is that For
any node v E V, 1 5 P(v) 5 6, + 1.

and

Define the potential P (e) of an edge e = {u, v} as follows:
P(e) = 1 if e = { u , ~ } ands, # sv

The potential of the entire SDS is given by P(G) = CvEV P(v) + xeEE P(e). The initial potential P(G)
(regardless of the initial configuration) can be upper bounded using above observations as follows:

= 0 otherwise.

VEV eEE V€V eEE

9

Further, since for each node v E V, P(v) 2 1 the potential of the SDS at any time is at least n. Row, fix a
global step in the dynamic evolution of the SDS and consider a particular substep in which the state of node
v changes from a to b. Note that if the system has not reached a fixed point, then at least one node undergoes
such a state change. This state change may modify the potential of v and the potentials of the edges incident
on v. Let D, denote the set of edges incident on v whose potential changed from 1 to 0 as a result of the state
change at v. Similarly, let A, denote the set of edges incident on v such that their potential changed from 0
to 1. Finally, let A, = Ta(v) - Tb(v) denote the decrease in the potential of v. (Note that the value of A,
may be negative.) We claim that

To see the the first inequality, consider each node 2 such that {v, z} is an edge in G and .9a = b at the time
when 21 is updated. The number of such nodes is at least Tb(V) since the value of v changed from a to b,
For each such edge {v, z}, the potential decreases from 1 to 0 since after the update to v, s, = tiz. Thus,
ID, I 2 Tb(u). The second inequality follows since at most T(v) - 1 -Tb(U) of v's neighbors could have been
assigned value a prior to updating v. By the observations above, we get that T(u) - 1 - Tb(u) = Ta(v) - 2.
We claim that the state change at node v decreases the potential of the system. To see this, note that the total
decrease in potential due to the state change at node is given by

Thus, each time there is a change in the state of a node, P(G) decreases by at least 2. As argued above,
the initial value of P(G) is at most 3m + n, and the value of P(G) can never be less than n. During the
transition from one configuration to a different configuration, at least one node changes its state value. Each
such transition causes a decrease of at least 2 in the potential of the system. Thus, the total number of
configuration changes is bounded by [(3m i- n) - n]/2 = 3m/2.

In other words, any IC-simple-threshold-SDS reaches a fixed point after at most 3m/2 steps. This immedi-
ately implies the polynomial solvability of &REACHABILITY , REACHABILITY and FIXED POINT REACH-
ABILITY problems for such SDSs.
Remarks:

(1) Theorem 6.1 points out an interesting contrast between CA and SDSs. It is easy to construct instances
of k-simple-threshold-CA with limit cycles. An example of such sc system is a simple IC-regular bipartite graph
G(VU U, E), Let I VI = IV(= n. Each node in V is adjacent to IC neighbors in U and vice versa. Initially, we
assign nodes in V the value 1 and nodes in U value 0. It is now easy to see that the system oscillates between
the two configurations (Onln) and (Inon); thus, it does not reach a fixed point. In contrast, by Theorem 6.1,
k-simple-threshold-SDSs have fixed points but not limit cycles of length 2 2.

(2) It can be shown that starting at any initial configuration, a k-simple-threshold-SDS will reach a fixed
point regardless of the order in which the states of the nodes are updated. As a matter of fact, a fixed point will
be reached even if the order of updates is changed in every iteration. Moreover, the order of updates need not
even be given by a permutation. As long as each node updates its state at least once in a polynomially long
sequence of state updates, a k-simple-threshold-SDS will reach a fixed point within a polynomial number of
steps. We refer the reader to [IMROO] for more details on this topic.

(3) Theorem 6.1 holds even when each node has a different value of the threshold b. As observed earlier,
every symmetric and monotone Boolean function is a k-simple-threshold function for some I C . Thus, Theo-
rem 6.1 implies the polynomial time solvability of reachability problems for SDSs with symmetric monotone
local transition functions. Theorem 6.1 also shows that for k-simple-threshold-SDSs, the length of any tran-
sient is at most v.

10

Acknowledgements: Work done has been funded in part of the LDRD-DR project Foundations of Simulation
Science and LDRD-ER project Extrema1 Optimization. We sincerely thank Paul Wollan and Predrag Tosic for
a very careful and in-depth reading of the manuscript and suggesting a number of changes that substantially
improved the readability of the paper. We also thank Gabriel Istrate, Stephen Kopp, Henning Mortveit, Allon
Percus, Christian Reidys, Paul Wollan and Predrag Tosic for fmitfhl discussions.

References
[AKY99]

[AY98]

[A1001

[ARV94]

[AMP951

[AM941

[BW095]

[BB+99]

[BR99]

[BMR99]

[BMROO]

[BH+OOa]

[BH+OOb]

[BC96]

[Br95]

[BPT91]

[BS90]

[CPY 891

[CY881

[Dug41

R. Alur, S. Kannan, and M. Yannakakis. Communicating hierarchical state machines. Proc.
26th International Colloquium on Automata, Languages, and Programming (ICALP), Springer
Verlag, 1999.
R. Alur and M. Yannakakis. Model checking of hierarchical state machines. 6th ACMSymposium
on the Foundations of Sofiare Engineering, pp. 175-188, 1998.
R. Alur. Exploiting Hierarchical Structure for Efficient Formal Verification. CONCUR 2000, pp.

S. Arora, Y. Rabani and U. Vazirani. Simulating quadratic dynamical systems is PSPACE-
complete,” Proc 26th. Annual ACM Symposium on the Theory of Computing (STOC), pp. 459-
467, Montreal, Canada, May 1994.
E. Asarin, 0. Maler and A. Pnueli. Reachability analysis of dynamical systems having piecewise-
constant derivatives. Theoretical Computer Science (TCq, 138(l), pp. 35-65, February 1995.
E. Asarin and 0. Maler. On some relations between dynamical systems and transition systems.
Proc. 21st International Colloquium, on Automata, Languages and Pmgramming (ICALP), 820,
LNCS, Springer-Verlag, pp, 59-72, Jerusalem, Israel, July 1994.
C. Barrett, M. Wolinsky and M. Olesen. Emergent local control properties in particle hopping
traffic simulations. Proc. Trafic and Granular Flow, Julich, Germany, 1995.
C. Barrett, B. Bush, S. Kopp, H. Mortveit and C. Reidys. Sequential Dynamical Systems and
Applications to Simulations. Technical Report, Los Alamos National Laboratory, Sept. 1999.
C. Barrett and C. Reidys. Elements of a theory of computer Simulation I: sequential CA over
random graphs. Applied Mathematics and Computation, 98, pp. 241-259, 1999.
C. Barrett, H. Mortveit, and C. Reidys. Elements of a theory of simulation II: sequential dynam-
ical systems. Applied Mathematics and Computation, 1999, vol 10712-3, pp- 121-136.
C. Barrett, H. Mortveit and C. Reidys. Elements of a theory of computer simulation 111: equiva-
lence of SDS. to appear in Applied Mathematics and Computation, 2000.
C. Barrett, H. Hunt 111, M. Marathe, S. Ravi; D. Rosenkrantz. Elements of a theory of computer
simulation V: computational complexity and universality. to be submitted, January 200 1.
C. Barrett, H. Hunt 111, M. Marathe, S. Ravi, D. Rosenkrantz. Computational aspects of sequen-
tial dynamical systems 11: design problems. in preparation, 2000.
0. Boumez and M. Cosnard. On the computational power of dynamical systems and hybrid
systems. Theoretical Computer Science, 168(2), pp. 417-459, 20 November 1996.
M. Branicky. Universal computation and other capabilities of hybrid and continuous dynamical
systems. Theoretical Computer Science, 138(I), pp. 67-100, February 1995.
S. Buss, C. Papadimitriou and J. Tsitsiklis. On the predictability of coupled automata: An alle-
gory about Chaos. Complex Systems, 1(5), pp. 525-539, 1991. Preliminary version appeared in
Froc. 31st Annual IEEE Symposium on Foundations of Computer Science (FOCS), Oct 1990.
R. B. Bopanna and M. Sipser. The complexity of finite functions, Chapter 14 in Handbook of The-
oretical Computer Science, Vol. A, Edited by J. van Leeuwen, MIT PressBlsevier, Cambridge-
Amsterdam, 1990.
K. Cullik, J. Pachl and S. Yu. On the limit sets of cellular automata. SIAMJ. Computing, 18(4),

66-68.

PP. 831-842, 1989.
K. Cullik and S. Yu. Undecidability of CA classification schemes. Complex Systems, 2(2), pp.
177-190, 1988.
B. Durand. Inversion of 2D cellular automata: some complexity results. Theoretical Computer
Science, 134(2), pp. 387-401, November 1’994.

[GJ79]

[Gag71

[HG99]

[GC86]

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
completeness, W. H. Freeman and Co., San Francisco, CA, 1979.
P. Gacs. Deterministic computations whose history is independent of the order of asynchronous
updating. Tech. Report, Computer Science Dept, Boston University, 1997.
B. Huberman and N. Glance. Evolutionary games and computer simulations. Pmc. National
Academy of Sciences, 1999.
M. Gouda and C. Chang. Proving Livenem for Networks of Communicating Finite State Ma-
chines. ACM Transactions on Programming Languages and Systems (TOPLAS) 8(l): 154-1 82,
pp. 1986.
F. Green. NP-complete problems in cellular automata. Complex Systems, 1 (3), pp. 453-474,
1987.

I

[Gr87]

[Gu89]
[GSW94]

[HLW92]

[H084] ’

[Hog11
[Hu73]

[HR78]

[HRS76]

[Hu82]

[HR+Ol]

[HT94]

[Hu87]
[IMROO]

[KMP95]

[KCG94]

[IC0701

H. Gutowitz, Ed. Cellular Automata: Theory and Experiment North Holland, 1989.
R. Gunther, B. Schapiro and I? Wagner. Complex Systems, Complexity Measures, grammars
and model-Inferring. Chaos Solitons and Fractals 4(5), pp. 635-65 1, 1994
J.P. Hayes. Digital Simulation with Multiple Logic values. IEEE Transactions on Computer
Aided Design, CAD-5, pp. 274-283, 1986.
E Hafting, T. Lengauer and E. Wanke. Processing of hierarchically defined graphs and graph
families. Data Structures and Eflcient Algorithms (Final Report on the DFG Special Joint Ini-
tiative), Springer-Verlag, LNCS 594, pp. 44-69, 1992.
C. Hoare. Communicating Sequential Processes. Prentice Hall International, 1 984.
G. Holzmann. Design and Validation ofComputer Protocols. Prentice Hall, 1991.
H.B. Hunt 111. On the Time and Tape Complexity of Languages. Ph.D. Thesis, Cornel1 University,
Ithaca, NY, 1973. Some of the results of this thesis appear in On the Time and Tape Complexity
of Languages 1. were presented at the Fijlh Annual ACM Symposium on Theory of Computing

H.B. Hunt I11 and D.J. Rosenkrantz. Computational Parallels Between the Regular and Context-
Free Languages. SIAM Journal on Computing (SICOMP) 7(1), pp. 99-1 14, 1978.
H.B. Hunt 111, D.J. Rosenkrantz, and T.G. Szymanski. On the Equivalence, Containment, and
Covering Problems for the Regular and Context-Free Languages. Journal of Computer and
System Sciences (JCSS) 12(2), pp. 222-268, 1976.
H.B. Hunt 111. On the Complexity of FIowchart and Loop Program Schemes and Programming
Languages. Journal of the ACM (JACM) 29(1), pp. 228-249, 1982,
H. Hunt 111, D. Rosenkrantz, C. Barrett, M. Marathe and S . Ravi, Complexity of Analysis and
Verification Problems for Communicating Automata and Discrete Dynamical Systems submitted
2001.
D.T. Huynh and L. Tian. On deciding some equivalences for concurrent processes, Theoretical
Informatics and Applications %8(l), pp. 5 1-7 1, 1994.
L.P. Hurd, On Invertible cellular automata. Complex Systems, 1(l), pp. 69-80, 1987.
G. Istrate, M. Marathe and S. Ravi, Advmarial models in evolutionary game dynamics. to
appear in Pmc. of ACM Symposium on Discrete Algorithms January 200 1.
Y. Kesten, Z. Manna and A. Pnueli. Veriwng Clocked Transition Systems. Hybrid Systems
1995, pp. 13-40. Complete version in Acta Fnformatica 36(1 l), pp. 837-912,2000.
P. Koiran, M. Cosnard and M. Garzon. Computability with low-dimensional dynamical systems.
Theoretical Computer Science, 132(1-2), pp- 113-128,26 September 1994.
Z . Kohavi, Switching and Finite Automata Theory, McGraw-Hill Book Company, New Yo&,
1970.

(STOC) 1973, pp. 10-19.

[LPOO]

[Ma981

[Mi991

[MH+98]

R. Laubenbacher and B. Pareigis. Finite Dynamical Systems. Technical report, Department of
Mathematical Sciences, New Mexico State University, Las Cruces.
B. Martin. A Geometrical Hierarchy of Graphs via Cellular Automata. Proc. MFCS’98 Satellite
Workshop on Cellular Automata, Brno, CzeGh Republic, Aug. 1998.
R. Milner. Communicating and Mobile systems: the n-calculus. Cambridge University Press,
1999.
M. V. Marathe, H. B. Hunt 111, D. J. Rosenkmntz and R. E. Stems. Theory of periodically speci-
fied problems: Complexity and Approxirnability. Proc. 13th IEEE Conference on Computational
Complexity, Buffalo, NY, June, 1998.

12

[M o ~ 11

[M090]

[MR99]

[NR98]

[Pa941
[Pi941

[RH931

[Rk941

[Rag21

[RS W 921

C. Moore. Generalized shifts: unpredictability and undecidability in Dynamical Systems. Non-
linear@, 4, pp. 199-230, 199 1 e

C. Moore, Unpredictability and undecidability in dynamical Systems. Physical Review Letters,

H. Mortveit, and C. Reidys. Discrete sequential dynamical systems. Discrete Mathematics, 2000
accepted.
C. Nichitiu and E. Remila. Simulations of Graph Automata. Proc. MFCS’98 Satellite Workshop
on Cellular Automata, Bma, Czech Republic, Aug. 1998.
C. Papadimitriou. Compufational Complexity, Addison-Wesley, Reading, Massachusetts, 1994.
G. Pighizzini. Asynchronous automata versus asynchronous cellular automata. Theoretical Com-
puter Science, 132(1-2)) pp. 179-207, 26 September 1994.
D.J. Rosenkrantz and H.B. Hunt 111. The complexity of processing hierarchical specifications,
SIAM Journal on Computing, 22(3), pp. 627-649, 1993,
Z. Roka. One-way cellular automata on Cayley graphs. Theoretical Computer Science, 132(1-2))
pp. 259-290, September 1994.
A. Rabinovich. Checking equivalences between concurrent systems of finite state processes.
International Colloquium on Automata Programming and languages (ICALP), LNCS 623,
Springer, pp. 696-707, 1992.
Y. Rabinovich, A. Sinclair and A. Wigderson. Quadratic dynamical systems. P m . 33rd An-
nual Symposium on Foundations of Computer Science (FOCS), pp. 304-3 13, Pittsburgh, October
1992.

64(20), pp 2354-2357, 1990.

[ReOO]

[ReOOa]

C. Reidys. On acyclic orientations and SDS. Advances in Applied Mathematics, to appear in
2000.
C. Reidys. Sequential dynamical systems: phase space properties. Advances in Applied Mathe-
matics, to appear.

[Ro99] C. Robinson. Dynamical systems: stability, symbolic dynamics and chaos. CRC Press, New
York, 1999.

[SH+96] S.K. Shukla, H.B. Hunt 111, D.J. Rosenkrantz and R.E. Steams. On the Complexity of Relational
Problems for Finite State Processes. International Colloquium on Automata Programming and
Languages (ICALP), pp. 466-477, 1996.
A. Smith. Simple computation-universal cellular spaces. J. ACM, 18(3), pp. 339-353, 1971.
L.J. Stockmeyer and A.R. Meyer. Word problems requiring exponential time. Proceedings 5th
Annual ACM Symposium on Theory of Computing (STOC), pp. 1-9, 1973.
K. Sutner. On the computatiolual complexity of finite cellular automata. Journal of Computer
and System Sciences, 50(1), pp. 87-97, February 1995.
K. Sutner. De Bruijn graphs and linear cellular automata. Complex Systems, 5(1), pp. 19-30,
1990.
K. Sutner. Classifying circular cellular automata. Physica 0, 45(1-3), pp, 386-395, 1989.
C. Schittenkopf, G. Deco and W. Brauer. Finite automata-models far the investigation of dynam-
ical systems. Information Pmcessing Letters, 63(3), pp. 137-141 , August 1997.
R.J. van Glabbeek. The linear time-branching time spectrum. Technical Report CS-R9029, Com-
puter Science Department, CWI, Centre for Mathematics and Computer Science, Netherlands,
1990.
R.J. van Glabbeek. The limar time-branching time spectrum II (the semantics of sequential
systems with silent moves). LNCS 71 5, 1993.
M. Vardi and P, Wolper. An automata-theoretic approach to automatic program verification.
Proc. 1st IEEE Symposium on Logic in Computer Science, pp.332-344, 1986.
S . Wolfram, Ed. Theory and applications of cellular automata. World Scientific, 1987.

[Sm71]
[SM73]

[Su95]

[Su90]

[Su89]
[SDB97]

[vG90]

[vG93]

[VW86]

[Wo86]

13

7 Appendix
7.1 Simulating SyDS by SDS
Theorem 7,l The FIXED POINT EXISTENCE problem for &DS with symmetric Boolean functions (not nec-
essarily identical) is polynomial time reducible to the FIXED POINT problem for SDS with symmetric Boolean
functions.

Proof: Given an SyDS S (G(V, E), F, Z), with F being the set of symmetric Boolean functions, we create
an instance S1 (GI (K, El) , F1, A, &) of SDS as follows:
For each x E V we create a set of 9 nodes in VI. Denote them by xi, 1 5 i 5 9. SI will simulate S
as follows. Letting c(S, t)(x) to denote the state (value) of a vertex x in SDS S after t time steps, we will
maintain the following invariant:

Figure 1 : Figure explaining the construction of the Gadget. The dotted boxes show the replacements for
vertices x and y. The dotted lines going between vertices across the dotted boxes tells how an edge (2, y) is
replaced by a set of edges.

Informally speaking, we maintain the following semantics:

1. For 1 5 i 4, <(SI, t) (zi), will hold the value (state) of the vertex 2 at the current time t and

14

2. For 5 5 i 5 9, [(SI, t)(zi) , will hold the value of the state (or its complement) at 5 at time t - 1.

The idea behind the simulation is that at each time step SI will first compute ~ i , 5 5 i 5 8, by using values
from xi, 1 5 i 5 4; thereby storing the value of I at time t - 1. Then S’ will compute the values of zi based
on the values of z7 and x8. Finally, S‘ will compute the values of zi, I 5 i 5 4 using the newly computed
value of yi for all y such that y is a neighbor of 2. We now describe the components of SI.

1. Graph GI: As shown in the figure the graph on xi, 1 5 i 8 is a complete bipartite graph with one
side of the bipartition being zi, 1 5 i 5 4 and the other side of the bipartition is xi, 5 5 i 5 8.
Finally the vertex z g is connected to z 5 and $6. In addition, for each edge (5, y) E E, S’ contains the
following eight edges

(39,!/1), (29, !/2/2>, (3 9 , 3 3) , ($9, g4)

(y9, $1)~ (?/Si Z2), (99, $31, (?/9,54)

2. Permutation TI: The permutation R has three components T; - 7ri R:, where each ?ri is given as
follows:

= (25,26,z7,28)r vz E v
1 ? r z = x g V X E V

1
r 3 = (z l , Z 2 1 ~ 3 , ~ 4) , VZ E v

3 . Initial state Z1: The initial state Z1 is given as follows:

Zl(z1) =zl(r2) =Zl(ICg) =2&($4) = I (%) , VZ E v
Zl(25) = Z&g) = 43, vx E v
Z i (~ 7) = ZI(Z~) = 1, VX E V

Z1(Ig) = Z(Z),VZ E v
4. Function Set F1: The function set consists of four different functions: f l at nodes 2 5 , 5 6 , f2 at nodes

17, zg, f3 at $9 and finally f4 at $1, . ,x4. Below we describe each of the functions in detail:

Function f1 at 15 and 36.’ The nodes x5 and $6 have five neighbors and hence f1 has 6
arguments. f1 is 1 iff at least 4 out of its 6 arguments is 1 and is 0 otherwise. Formally, given a
set of variables X, let N (X) denote the number of variables set to 1. Then

fl(x)=l iff N (X) > 4

Function f2 at z7 and 58: fi is the complement of f1 ; it is 1 iff less than 4 of its input values
are 1. Formally,

f i (X) = l iff N (X) < 4

Function f3 at $9: Node xg is connected to 16 and 33 among the copies of z and for each
neighbor of z, 19 is also connected to a group of 46, nodes (where 6, is the degree of node I)
as outlined earlier. f3 is 1 iff the number of its arguments equaling 1 is congruent to 2 mod 4 or
3 mod 4. Formally,

f 3 (X) = 1 iff N(X) = 2 mod 4 or N (X) = 3 mod 4

15

(d) Function f4 at $1, 22, x3 and 24: Let IC be the arity of f4. Specifically, Vyi E V such that
(z,yi) E E, we have 9: connected to q, 1 5 j 5 4. Then for IC 2 2, f4 is equal to fz5 when
(IC - 2) of its parameters are 1. For IC < 2, f4 is equal to 0. Formally

f4(X) = fz if IC 2 2
= 0 otherwise

We now prove the correctness of our reduction. For this we need a number of basic properties of the
functions. Define [(SI, -l)(zl) = 0.

Claim 7.1

In other words, after one round of execution, the state of $1 in SI is the same as the state of z in S and
$9 remembers the state of z in the previous time unit.
Proof: The proof is by induction on t. The basis for t = 1 can be verified using the definitions of Z, and
[(SI, -l)(zL). Assume that the claim holds for all times t' < t and consider time t.

(1): It is clear that for 1 5 i 5 4, [(SI, t)fzi) are the same. Note that at time t - 1, exactly two of xi,
5 5 i _< 8 are 1 and the other two are 0. Thus if in the operation of S, at time t, exactly j of the inputs to T
are equal to 1, then in the operation of SI, j + 2 of its inputs are 1. This along with the definition of f4 proves
the required claim.

(2): First note that < (& , t) (z ~) = ,$(SI,~)(S~). By induction hypothesis, 1 L. i 5 4, <(Sl,t)(zj) all
have the same value. In particular they are all simultaneously 1 or 0. Thus by definition of f1(), it is clear
that (SI, t) (z5) and [(SI, t) (z g) solely depend on the value of z 1, z2,q and z4 and are independent of the
value at z g and their own value at the previous time.

(3): The proof of the fact that V t > 0, <(Sl,t)(x7) = c(&, t) (z8) follows along the lines of proof for
part (2). To show that they in turn are equivalent ((SI, t)(ms) follows by the definition 0ff2().

(4): First note that the neighbors 2 5 and $6 of 2 9 have the same values at time t and they come before i g

in our permutation, Each set of 4 values from 59's neighbors is identical and thus all these values sum uag to
0 mod 4. Also note that ((SI, t)(z5) E <(SI, t)l(zs). We thus have two cases to consider.

Case 1: [(SI, t)(s5) sz <(SI, t)(Z6) zs 1 and ((SI, t - l)(zg) = 1. Then N (X) = 3 mod 4 and hence
I(&, t) (z 5) [(sl, t)(z9) E 1.

'Recall that fz denotes the function at node 2 in S.

16

Case 4: <(Sl,t)(~s) = c (& , t) (X 6) E 0 and ((S1,t - l)(xg) E 1. Then N(X) 1 mod 4

By the above claim, it is clear that there is a bijection between c(S1, t) and {(S, t); thus the reachability
problem and the fixed point problem for S are polynomial time reducible to the reachability and the fixed
point problem respectively for $1. This completes the proof of our theorem.

{(&, t) (3 5) <(Sl,t)(Zg) 0.

Using earlier discussion, we can thus prove the following

Theorem 7.2 The REACHABILITY and FIXED POINT problems for SDS with symmetrk (non-identical)
Boolean finctions are PSPACE-hard, even when restricted to SDSs such that:

e Each node is the SDS graph is of constant degree, and

e the pathwidth and hence the treewidth of the graph is bounded by a constant that depends on m and h,
and

e The number of distinct functions used t a constant (that depends only on the number of distinctfinc-
tions used in the proof of Theorem 5.2).

Proof: The proof follows by noting that the construction outlined in proof of Theorem 7.1 replaces each node
of the SyDS S by a set of 9 nodes. Moreover, there can be no edges between two nodes in different sets if the
original nodes they replaced did not have an edge. rn

7.2 Extension to identical functions

Theorem 7.3 Given an SDS (or an SyDS) S (G(V, E) , T,Z) , with 7 = { f I , f ’, . , . f Q) being the set of
distinct symmetric Boolean functions, we can create an instance SZ (G2 (Vi, E2) , F2, T , &) of SDS (@DS)
in polynomial time such that

I . F2 = { f }; i.e. F2 has the samefinction at each node.

2. If the original graph has constant degree then GZ also has constant degree.

Proof: We do the proof in two steps: In the first step, we construct an instance SI (GI (Vi, El), F1, n) in
which we have the same functions but of varying degrees at each node. In step 2, we show how to extend this
idea to construct a new SDS S2 such that each node has identical function.
Step 1: Consider a SDS or SyDS S. It can be modified so that a18 the Boolean hc t ions are the same, as
follows. (This first reduction gives the nodes varying degree, but they all have the “same” symmetric Boolean
function.)

Let A be the maximum degree of the nodes in the graph G of S. Let q be the number of distinct Boolean
functions occurring in S. Thus, for each node i, function f i is function f j for some j (1 5 j 5 a). The
constructed system SI will involve a single Boolean function f ; although they will have varying number of
inputs. Since f is symmetric, we can describe f by specifying what its value is, as a b c t i o n of how many of
its input parameters are 1. Thus, we use the shorthand of specifLing f using an integer as its parameter (this
integer represents how many of its Boolean inputs are 1). The specification off is:

17

Figure 2: Figure explaining the construction of the single hnction in Theorem 7.3.

f (j (A + 2) + I C) = fj(k); 1 S j 5 q, 0 5 IC 5 A + l
Note: If hnction fj has fewer than IC input arguments, then f (j(A + 2) + IC) = 0.
G1 (VI, El) is given as follows: VI = W U U, where W is one to one correspondence with the nodes in

V and El = Ew U Ewu. The edges in EW go between the nodes in W, the graph (W, Ew) is isomorphic to
(V, E). The nodes in U are called auxiliary nodes. There are no edges between nodes in U. Each node in W
is connected to a specified number of distinct auxiliary nodes in U. The auxiliary nodes have degree 1. The
state of each auxiliary node is initialized to 1, and so (since f (1) = f(2) = 1) will be in state 1 throughout the
operation of SI. Suppose that in S, the function for node i is fj. (Recall that 1 5 j 5 q.) Then, in G1 node
i E W is connected to j(A+2) auxiliary nodes. This ensures that in each step of the operation of SI, function
f effectively selects the value that finction fJ would select for the number of original input values that equal
1. The reduction as outlined works for SyDS since there is no permutation. To complete the reduction for
SyDS, we need to specifL the ordering of the vertices in GI. ~1 = ni . ni, where ni is applied to vertices in
W and is identical to 7r. si is a permutation of U and does not really affect our construction. We let R; be the
permutation in which the vertices in U appear in ascending order of their indices in GI. Intuitively speaking,
the function f represents a master function that can act like any function fj. The auxiliary inputs drive the
hnction into distinct range of 1 -inputs (with different number of 1 's).

Claim 7.2 There is u bijection between [(SI, t) and ((S, t) . Specifically, ut each time tJ E(&, t) (W) G
w, W) and I(&, t) (W = 1.

The claim completes the proof of step 1.

Step 2: A similar but a slightly more complicated construction can give all the nodes the same degree (as well
as the same function). This more complicated construction is summarized as follows. Let D = A +q(A +2).
Recall that q denotes the number of distinct functions. Each node in S2 will have degree D. Function f is the
same as described above, except that now f(1) = 0, and f(3) = 1. (For all other counts, the value off is the
same as given above.) There are now two classes of auxiliary nodes: auxiliary 1-nodes, that are initialized to
1, and auxiliary 0-nodes, that are initialized to 0. The auxiliary nodes described above all become auxiliary
l-nodes. In addition, each original node is padded with connections to enough auxiliary 0-nodes so that its
degree is D.

The auxiliary nodes need to have their degree made D. Each auxiliary l-node is connected to one other
auxiliary 1-node, and possibly one original node. Its remaining D neighbors are auxiliary 0-nodes. This
ensures, that at any time during the operation of S2, for a l-node, the number of inputs to f that equal 1 is
either 2 or 3, and so the state remains at 1 throughout the operation of 5'2.

18

The auxiliary O-nodes are grouped into cliques of cardinality D - 1. (Additional auxiliary O-nodes can
be added to round out the final clique.) Each auxiliary 0-node is connected to at most one original node or
auxiliary l-node, and its remaining neighbors are other auxiliary O-nodes. This ensures that its state remains
0 throughout the operation of S2. rn

7.3 Extension to the weighted k-simple-Threshold functions
We extend the result to k-Threshold-SDSs to a weighted version of the problem. Informally, we have weights
on edge of the graph. Now we treat 0's and 1's symmetrically as before but the threshold is formed by the
weighted sum of inputs whose other end point is 0 (or dually 1). Formally, each edge e = (u,v) has a
numerical weight (could be negative) denoted by w(e) . For each node v, let

w ~ N (v)

i.e. it is the sum of the weights of the edges incident on 'u. For any assignment to the node variables, let

Note that since there 'are no self-loops WO(V) and W1 (v) are independent'of the value of node v.

Tl(v) - T(u) be called the "gap" for v. The h c t i o n at no& v is defined as follows:
Each node v has two values To(v) and Tl(v) such that To(w) + Tl(v) > T(v). Let g(u) = TO(v) +

V[V] = 0 if Wo(v) 2 To(v)
= 1 ifWl(v) 2 Tl(u)
I - unchamged

In other words, if the weighted number of O-neighbors is greater than the 0-threshold To(v) then node
value becomes 0. Similarly, if the weighted number of l-neighbors is greater than the l-threshold TI (w) then
node value becomes 1. Else the node does not change the value that it had before the update. We denote an
SDS with weighted fbnctions at nodes as above by Wt-k-Mshold-SDS.

.

Theorem 7.4 The REACHA ABILITY problem and the FIXED POINT REACHABILITY problem for Wt-k-
Threshold-SDSs, 1 5 k 5 n, are computable in polynomial time if if the edge weights are all polynomial in
the size of the problem.

Wt-k-Threshold-SDSs do not have limit cycles of length greater than I (i.e, they only have transients and
jked points).

Proof: The proof follows the earlier proof for unweighted case and is thus brief. For any assignment, we
associate a cost to each edge and node as follows:

The edge potential P(e) of an edge e = (u, u) is define as follows:

P(e) = 20 if e = (u, w), w(e) = w and v[u] # v[v]
- - 0 otherwise

19

As in the proof of unweighted case we show that whenever the value at a node v changes, the total

Consider a particular node v whose value changes from 0 to 1.
potential drops by at least the “gap” g(v).

1. Edges incident on v where the other end point is 1 have their costs reduced to 0. For these edges we
get a total reduction in potential is W1 (v) 2 TI (v).

2. Edges incident on v where the other end point is 0 have their costs increased to the edge weight for a
total increase of Wo(v) which is equal to T(v) - Wl(v) 5 T(v) - Tl(v) = To(v) - g(v).

3. The node cost is increased by TI (v) and decreased to To(v).

Combining the gains and losses gives a net decrease of

By symmetry, when a node v changes from 1 to 0, we also get a reduction in the potential of at least g(v). rn
If we extend the model to allow edges to have unequal effects on its endpoints i(or equivalently use a

directed graph) then convergence is lost because bits can circulate from node to node. An open question is
settle the complexity of the reachability problem under this model.

20

