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Abstract 

Using de Bruijn graphs, we give a characterization of elementary cellular automata 
on the linear lattice that do not have any Gardens of Eden. It turns out that one can 
easily recoginze a CA that does not have any Gardens of Eden by looking at its de 
Rruijn graph. We also present a sufficient condition for the set of words accepted by 
a CA not to constitute a finite-complement language. 

1 Introduction 

Cellular automata (CAS) are discrete dynamical systems with simple construction but 
sophisticated behaviour. The classical model of CAS can be viewed m a dynamical system 
on a lattice (here we only consider the one-dimensional lattice) where the update of sites 
is done synchronously based on local rules. 

The preimages of a CA are of fundamental importance to the study of surjectivity, 
reversibility, and the existence of Gardens-of-Eden [l, 2, 15, 6, 7, 8, 9, 10, 14, 17, 181. The 
de Bruijn graphs have been employed to represent the rules of a CA [ll]. E. Jen used 
the structure of de Bruijn graphs to enumerate preimages of a cellular automaton for the 
special case of elementary rules [5) (local rules for the nearest neighbor.) In general, she 
showed that the number of preimages of an arbitrary sequence can be computed by two 
uncoupled systems of linear recurrence relations with constants coefficients [4]. The idea 
of using de Bruijn graphs to encode a CA was also mentioned by S. Wolfram [IS]. 

In this note, we obtain a very simple characterization of an elementary CA to have 
Gardens of Eden based its de Bruijn graph. We also present a sufficient condition to assert 
that the set of words accepted by a CA does not constitute a finite-complement language. 

2 Gardens of Eden and de Bruijn Graphs 

In this paper, we will be only concerned with elementary cellular automata on F2 = (0,l). 
A rule is a map f from F j  3 3'2, or a Boolean function in three variables. Given a sequence 
X = . - . x - 1 x 0 ~ 2  . on F2, the image of X under the mapping of the elementary CA with 
rule f is the sequence X' = - - - xLlxbxi  - - a ,  where z: = f ( x i - 1 ,  xi, q + 1 ) .  Given a cellular 
automaton T, and two sequences S = SI- . - sn of length n and X = 20 - - X ~ + I  on F2, if 
T maps X into S, then we call X a preimage of S. 

Recall that a k-dimensional de Bruijn graph on a alphabet A is defined as a directed 
graph whose vertices are sequences on A of length k, an arc is of the form 
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However, we will the reverse de Bruijn graph as in the CA literature. For an elemen- 
tary CA, we associate it with a directed graph, called its de Bruijn graph, which is a 
directed graph with four vertices {00,01,10,11} the arc from wx to zy labeled by the 
value f(w,x,y). Such a difinition easily extends to a general one-dimensional CA. For 
a path in the de Bruijn graph of a CA, its label sequence is defined as the list of labels 
occuring in the path as one travels along the path. 

Our first result is the following observation: 

Proposition 2.1 There as a one-to-one correspondence between the preimages of S and 
the paths in the de Bruijn graph with label sequence S .  

For elementary rules, Erica Jen obtained formulas of counting the number of preimages 
of a CA based on an encoding of the local rules into a de Bruijn graph [5]. We are not 
getting into the direction of enumeration. To demonstrate the perspective of the above 
Proposition, we give an example of showing a result of Jen on the Gardens of Eden of a 
CA. A sequence S which does not have a preimage is called a Garden of Eden. A natural 
question to ask about Gardens of Eden is whether a CA does not have any Gardens of 
Eden. This is equivalent to the question whether any sequence S on F2 is a label sequence 
of a path in the de Bruijn graph? If so, the CA does not have any Gardens of Eden. 

Jen pointed out that for Rule 30, which is defined by 

(000,101,110,111) += 0, (001,010,011,100) + 1, 

the corresponding CA does not have any Gardens of Eden. 

0 

10 8 01 

0 
0 

Figure 1: The de Bruijn graph for Rule 30 

Here is a really simple reason. The de Bruijn graph has the following property: for 
any vertex, there are always an incoming arc with label 1 and an incoming arc with label 
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0. Given any sequence S = slsg - - - s,, we may recover a path on the de Bruijn graph with 
label sequence S. Starting with any vertex, say u, finding the vertex v such that (v ,u)  
has label sn. Keeping moving backwards, we get the desired path. 

Suppose that the de Bruijn graph has a similar property: for every vertex, there are 
always an outgoing arc with label 1 and an outgoing arc with label 0. Then we clearly see 
that such a CA does not have any Gardens of Eden. 

The following theorem gives a characterization of elementary CAS that do not have 
Gardens of Eden. 

Theorem 2.2 A n  elementary CA, except for two special Rules 51 and 204, does not 
contain an9 Gardens of Eden, if and only if the de Bruijn graph has the property: Either 
every vertex has two outgoing arcs with diferent labels, or every vertex has two incoming 
arcs with diflerent labels. 

Proof. The sufficienty is obvious. Given a de Bruijn graph as in Figure 2, let us aasume 
that the corresponding CA does not have any Gardens of Eden. 

e 

h 

Figure 2: The de Bruijn graph for a general elementary rule. 

Step One. For notational convenience, we use A, B, C, D to refer to the vertices 00, 01, 
10, 11, and use GOE to refer to a Garden of Eden. We claim that if a CA does not have 
any Gardens of Eden, then the labels in the de Bruijn graph contains four 1’s and four 
0’s. If not, we may assume that there are at most three 0’s in the graph, because of the 
symmetry property betweeg 0 and .1. 

First, if there is no cycle with label 0, then 0000 has to be a GOE. Next, we assume 
that there is only one cycle with label 0 in the graph and e = 0. 
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1. If c = 1, let S1 = 00001, then the end vertex must be B for there is only one cycle 
with label 0. 
If g = d, then the graph can generate Slg, where g = 1 - g. So it is a GOE, 
Otherwise, we consider S1g. The end vertex must be C. If b = f, then Slg6 would 
be a GOE. Otherwise, we consider &do. It must be a GOE, since b and f are 
different, d and g are different, implying that a and h must be 1. 
Hence, for all the cases with c = 1, there must exist a GOE. 
Here are more cases to consider. 

2. If e = c = 0 and f = 0, then 0100 is a GOE. 

3. If e = c = 0 and g = 0, then 010110 is a GOE. 

4. If e = c = 0 and d = 0, then the sequence 010 is a GOE. 

5. If e = c = 0 and b = 0, then 0101 is a GOE. 

6. If e = c = 0 and a = 0, then 00100 is a GOE. 

If there is only one cycle in the graph with label 0 and it is not e or h, then we have: 

1. If b = c = g = 0, then 01010110 is a GOE. 

2. If c = f = g = 0, then 01010 is a GOE. 

3. If b = f = g = 0, then 0101 is a GOE. 

For the cases that there are two cycle with label 0, we have: 

1. If e = 0 and f = g = 0, then 011010110 is a GOE. 

2. If e = h = 0 and c = 0, then 00001000010 is a GOE. 

3. If e = h = 0 and b = 0, then 00001000010 is a GOE. 

4. If e = h = 0 and f = 0, then 000010000 is a GOE. 

From the above analysis, we reach the conclusion that there arc four 1’s and four 0’s 
in the labels. 

Step Two. Suppose that the above de Bruijn graph does not satisfy the conditions in the 
Theorem. We call a vertex X a special vertex if both of its outgoing arcs have the same 
label. For example, if e = c = 1, then we call A a special vertex with label 1. Because of 
the symmetry between 1 and 0, we may consider the following cases: 
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1. Case 1. A is a special vertex with label 0, D is a special vertex with label 1, and 
B,  C are not special vertices. 

(a) For f = g = 1 and b = d = 0, 0101 is a GOE. 
(b) For b = g = 1 and d = f = 0, 101000 is a GOE. 
(c) For f = g = 0 and b = d = 1, 1010 is a GOE. 
(d) For b = g = 0 and f = d = 1, 10110 is a GOE. 

2. Case 2. C is a special vertex with 0, D is a special vertex with 1, and A , B  are not 
special vertices. 

(a) For e = d = 1 and c = g = 0, 01010 is a GOE. 
(b) For c = d = 1 and e = g = 0, 0101 is a GOE. 
(c) For e = g = 1 and c = d = 0, 0000 is a GOE. 
(d) For e = d = 0 and c = g = 1, 00000111 is a GOE. 

3. Case 3. C is a special vertex with label 0, B is a special vertex with 1 and A, D are 
not special vert ices. 

(a) For a = c = 1 and e = h = 0, 1111 is a GOE. 
(b) For h = c = 1 and e = a = 0, 1111101 is a GOE. 
(c) For a = c = 0 and e = h = 1, 0000 is a GOE. 
(d) For a = e = 1 and c = h = 0, 00000011 is a GOE. 

4. Case 4. C is a special vertex with label 0, A is a special vertex with 1 and B, D are 
not special vertices. 

(a) For a = g = 0 and d = h = 1, 101 is a GOE. 
(b) For a = g = 1 and d = h = 0, 0000011 is a GOE. 
(c) For a = d = 1 and g = h = 0, it is just the graph with different incoming arcs 

(d) For a = d = 0 and g = h = 1, it is also the graph with different incoming arcs 

I 

for every vertex. 

from every vertex. 

5. For the cases with all the four vertices are special, one can see that the de Bruijn 
graphs are either the cases for which every vertex has different incoming arcs, or the 
special cases. 

This completes the proof. I 
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The two special Rules 51 and 204 are also of particular interest. There is also a very 
good combinatorial reason for why they do not have any Gardens of Eden. Since Rule 51 
and Rule 204 are symmetric with regard to the exchange of 1 and 0, we only need consider 
Rule 51. It is defined by the following local rule: 

(010,011,110, Ill} 3 0, (000,001,100,101) -+ 1. 

It is easy to see that for a sequence S = 11 - - . 1 consisting of any positive number of l's, 
there exists a path from the vertex 10 to 01 whose label sequence is S.  On the &hec hand, 
there exists a path from vertex 01 to 10 such that the label sequence is 00. - - 01 (of length 
at least 1). Therefore, any sequence on (0,l) can be generated on the de Bruijn graph, 
implying that there is no Garden of Eden. 

10 

1 

01 1 0 8  

0 1 

01 

0 I 

Rule 51 Rule 204 

Figure 3: The de Bruijn graphs for Rule 51 and Rule 204 

In conclusion of this section, we would like to propose the problem of classifying; the 
general one dimensional CAS without Gardens of Eden, based on their de Bruijn graphs 
in the vein of Theorem 2.2. 

3 Finite-complement Languages 

Suppose a, b are two words on alphabet E. If there exist u, v E C* such that b = uav, then 
we will say that a is a subword of b, denoted by a 5 b. If a 5 b and a # b, we say a is a 
proper subword of b, denoted by Q < b. 

We recall the definition of a finite-complement language. 

Definition 3.1 Let L be a language ana' Lc be the complement of L. If there exist a subset 
S 5 Lc which has the following properties: 

6 



1. IS\ < 00. 

2. For every x E Lc, there ezists s E S such that s is the subword of x. 

Then we say that L is a finite-complement language. 

Let BL = {x E LC IVy < x , y  E L } ,  then we have 

Lemma 3.2 L is finite-complement if and only if lB~ l  < +oo. 

Proof. If E $? L, then BL = {E} and the assertion becomes obvious. So we may assume 
that E E L. 

c ‘ ~ ’ r :  We only need to show that BL satisfies the second condition in Definition 3.1. 
Otherwise, there exists x E Lc such that for all s E BL, s is not the subword of I, hence 
there is one with minimal length. We still denote it by x. Since E E L, 2 # e, it has a 
proper subword y. Since x is minimum, there exists s E Br, such that s 5 y, which implies 
s 5 2. A contradiction! Hence Br, satisfies the second condition. 
“e”: Suppose S C Lc satisfies the conditions in Definition 3.1. For every x E BL, there 

exists s E S such that s _< I. However, from the definition of BL, s cannot be a proper 
subword of x, which means that s = x. It follows that BL 5 S, and l B ~ l  5 IS1 5 +oo. I 

Given a CA, if a sequence S has a preirnage, we say that S is an accepted word of the 
CA. Here we give a sufficient condition to ensure that the set of words accepted by a CA 
does not constitute a finite-complement language. Note that khis result is valid for any 
one dimensional CA on the linear lattice. 

Theorem 3.3 If there exists a cycle C in the de Bruijn graph such that for any label 
sequence S of the cycle and for suficiently large n, Sn can be generated only by  paths 
containing the cycle C. Let SO be a label sequence of C. (Note that C may have more than 
one label sequence.) If there exist sequences TI and T2 on F2 which satisfy the following 
conditions: 

1. TISO is an accepted word and is a label sequence of a path with the beginning vertex 
on the cycle C. 

2. SoT2 is an accepted word and is a label sequence of a path with the end vertex on the 
cycle C. 

3. The beginning vertex and the end vertex in the above paths are digerent. 

Then the accepted words of the CA do not constitute a finite-complement language. 
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Proof. From the hypothesis and Condition 3, TlSFTz, n 2 1 do not have preimages for 
sufficiently large n. Suppose S is a finite subset of sequences which do not have preimages 
and for any sequence z which does not have a preimage, there exists s E S such that s 5 z. 
Then there exists M such that the length of s E S is less than M. From Conditions 1 and 
2, it follows that any subsequence of TlStT2 of length less than Son is accepted by the CA, 
which implies they cannot be s E S .  Choosing n sufficiently large, we deduce that T1StT2 

I cannot have s E 5’ aa its subwords. A contradiction! This completes the proof. 

We give an example that has been studied by Jen [5]. 

Example 3.4 For Rule 22, which ia defined b y  

(000,011,101,110,111) 3 0, (001,010,100) += 1 

the corresponding de Bruijn graph i s  shown in Figure 4. 
0 

0 

Figure 4: The de Bruijn graph for Rule 22 

The words accepted by this CA do not constitute a finite-complement language. 

PmoJ We consider the cycle from 10 to 00 to 01 and then return to 10 as the cycle 
C in the above Theroem, which satisfies the condition as in the Theorem. For the basic 
sequence SI = 111, let TI = 10 and T2 = 0101, it is easy to see that T I ( S ~ ) ~  can be 
accepted by the CA and the beginning vertex may be 00 or 01. The sequence {Sl)’”T2 is 
also accpted by the CA and the ending vertex must be the point 10. Thus from Theorem 
3.3, the set of words accepted by the CA according to Rule 22 does not form a finite- 
complement language. I 

Acknowlegment. We would like to thank Q. H. Hou for valuable comments and sugges- 
tions. 
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