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Abstract

Using de Bruijn graphs, we give a characterization of elementary cellular automata
on the linear lattice that do not have any Gardens of Eden. It turns out that one can
easily recoginze a CA that does not have any Gardens of Eden by looking at its de
Bruijn graph. We also present a sufficient condition for the set of words accepted by
a CA not to constitute a finite-complement language.

1 Introduction

Cellular automata (CAs) are discrete dynamical systems with simple construction but
sophisticated behaviour. The classical model of CAs can be viewed as a dynamical system
on a lattice (here we only consider the one-dimensional lattice) where the update of sites
is done synchronously based on local rules.

The preimages of a CA are of fundamental importance to the study of surjectivity,
reversibility, and the existence of Gardens-of-Eden [1, 2, 15, 6, 7, 8, 9, 10, 14, 17, 18]. The
de Bruijn graphs have been employed to represent the rules of a CA [11]. E. Jen used
the structure of de Bruijn graphs. to enumerate preimages of a cellular automaton for the
special case of elementary rules [5) (local rules for the nearest neighbor.) In general, she
showed that the number of preimages of an arbitrary sequence can be computed by two
uncoupled systems of linear recurrence relations with constants coefficients [4]. The idea
of using de Bruijn graphs to encode a CA was also mentioned by S. Wolfram [16].

In this note, we obtain a very simple characterization of an elementary CA to have
Gardens of Eden based its de Bruijn graph. We also present a sufficient condition to assert
that the set of words accepted by a CA does not constitute a finite-complement language.

2 Gardens of Eden and de Bruijn Graphs

In this paper, we will be only concerned with elementary cellular automata on F; = {0,1}.

‘A ruleis a map f from F§ — F,, or a Boolean function in three variables. Given a sequence
X =--z_jzoxy - on Fy, the image of X under the mapping of the elementary CA with
rule f is the sequence X' = .-z’ z4z) - - -, where z} = f(x;-1, 2, %i+1). Given a cellular
automaton T, and two sequences S = 31 ---3, of length n and X = - 2,4, on Fy, if
T maps X into S, then we call X a preimage of S.

Recall that a k-dimensional de Bruijn graph on a alphabet A is defined as a directed
graph whose vertices are sequences on A of length k, an arc is of the form

L1T2 Tk = YT1X2 -~ Tp-1.



However, we will the reverse de Bruijn graph as in the CA literature. For an elemen-
tary CA, we associate it with a directed graph, called its de Bruijn graph, which is a
directed graph with four vertices {00,01,10,11} the arc from wz to zy labeled by the
value f(w,z,y). Such a difinition easily extends to a general one-dimensional CA. For
a path in the de Bruijn graph of a CA, its label sequence is defined as the list of labels
occuring in the path as one travels along the path.

Our first result is the following observation:

Proposition 2.1 There is a one-to-one correspondence between the preimages of S and
the paths in the de Bruijn graph with label sequence S.

For elementary rules, Erica Jen obtained formulas of counting the number of preimages
of a CA based on an encoding of the local rules into a de Bruijn graph [5). We are not
getting into the direction of enumeration. To demonstrate the perspective of the above
Proposition, we give an example of showing a result of Jen on the Gardens of Eden of a
CA. A sequence S which does not have a preimage is called a Garden of Eden. A natural
question to ask about Gardens of Eden is whether a CA does not have any Gardens of
Eden. This is equivalent to the question whether any sequence S on F5 is a label sequence
of a path in the de Bruijn graph? If so, the CA does not have any Gardens of Eden.

Jen pointed out that for Rule 30, which is defined by
{oo0o0,101,110,111} — 0, {001,010,011,100} — 1,

the corresponding CA does not have any Gardens of Eden.

Figure 1: The de Bruijn graph for Rule 30

Here is a really simple reason. The de Bruijn graph has the following property: for
any vertex, there are always an incoming arc with label 1 and an incoming arc with label



0. Given any sequence S = $183 - - - 5, We may recover a path on the de Bruijn graph with
label sequence S. Starting with any vertex, say u, finding the vertex v such that (v,u)
has label s,. Keeping moving backwards, we get the desired path.

Suppose that the de Bruijn graph has a similar property: for every vertex, there are
always an outgoing arc with label 1 and an outgoing arc with label 0. Then we clearly see
that such a CA does not have any Gardens of Eden.

The following theorem gives a characterization of elementary CAs that do not have
Gardens of Eden.

Theorem 2.2 An elementary CA, except for two special Rules 51 and 204, does not
contain any Gardens of Eden, if and only if the de Bruijn graph has the property: Either
every vertez has two outgoing arcs with different labels, or every vertex has lwo incoming
arcs with different labels.

Proof. The sufficienty is obvious. Given a de Bruijn graph as in Figure 2, let us assume
that the corresponding CA does not have any Gardens of Eden.

- Figure 2: The de Bruijn graph for a general elementary rule.

Step One. For notational convenience, we use A, B,C, D to refer to the vertices 00, 01,
10, 11, and use GOE to refer to a Garden of Eden. We claim that if a CA does not have
any Gardens of Eden, then the labels in the de Bruijn graph contains four 1’s and four
0’s. If not, we may assume that there are at most three 0’s in the graph, because of the
symmetry property between 0 and 1.

First, if there is no cycle with label 0, then 0000 has to be a GOE. Next, we assume
that there is only one cycle with label 0 in the graph and e = 0.

3



1. If ¢ = 1, let S1 = 00001, then the end vertex must be B for there is only one cycle
with label 0. '

If g = d, then the graph can generate Sig, where § = 1 — g. So it is a GOE.
Otherwise, we consider S;g. The end vertex must be C. If b = f, then S;gb would
be a GOE. Otherwise, we consider S;d0. It must be a GOE, since b and [ are
different, d and ¢ are different, implying that ¢ and h must be 1.

Hence, for all the cases with ¢ = 1, there must exist a GOE.

Here are more cases to consider.
2. fe=c¢=0and f =0, then 0100 is a GOE.
3. If e=c=0and g =0, then 010110 is a GOE.
4. f e = ¢ =0 and d = 0, then the sequence 010 is a GOE.
5. If e=c=0and b =0, then 0101 is a GOE.
6. If e=c=0and a =0, then 00100 is a GOE.

If there is only one cycle in the graph with label 0 and it is not e or h, then we have:

1. If b =c = g = 0, then 01010110 is a GOE.
2. fc= f =g =0, then 01010 is a GOE.
3. f b= f =g =0, then 0101 is a GOE.

For the cases that there are two cycle with label 0, we have:

1. fe=0and f =g =0, then 011010110 is a GOE.
2. If e=h = 0 and ¢ = 0, then 00001000010 is a GOE.
3. If e = h = 0 and b = 0, then 00001000010 is a GOE.
4. If e = h =0 and f = 0, then 000010000 is a GOE.

From the above analysis, we reach the conclusion that there are four 1’s and four 0’s
in the labels.

Step Two. Suppose that the above de Bruijn graph does not satisfy the conditions in the
Theorem. We call a vertex X a special vertex if both of its outgoing arcs have the same
label. For example, if e = ¢ = 1, then we call A a special vertex with label 1. Because of
the symmetry between 1 and 0, we may consider the following cases:

4



1. Case 1. A is a special vertex with label 0, D is a special vertex with label 1, and
B, C are not special vertices.

(a) For f=g=1and b=d =0, 0101 is a GOE.
(b) Forb=g=1and d= f =0, 101000 is a GOE.
(c) For f=g=0and b=d =1, 1010 is a GOE.
(d) Forb=g=0and f =d=1, 10110 is a GOE.

2. Case 2. C is a special vertex with 0, D is a special vertex with 1, and A, B are not
special vertices.

(a) Fore=d=1and c= g =0, 01010 is a GOE.
(b) Forc=d=1and e =g =0, 0101 is a GOE.
(c) Fore=g=1and ¢c=d =0, 0000 is a GOE.
(d) For e =d =0 and ¢ = g = 1, 00000111 is a GOE.

3. Case 3. C is a special vertex with label 0, B is a special vertex with 1 and A, D are
not special vertices.

Fora=c=1and e=h =0, 1111 is a GOE.
For h=c=1and e =a =0, 1111101 is a GOE.

4. Case 4. C is a special vertex with label 0, A is a special vertex with 1 and B, D are
not special vertices.

(a) Fora=g=0and d=h =1, 101 is a GOE.

(b) For a =g =1 and d = h = 0, 0000011 is a GOE.

(c) Fora=d =1and g = h =0, it is just the graph with different incoming arcs
for every vertex.

(d) For a =d =0 and g = h = 1, it is also the graph with different incoming arcs
from every vertex.

5. For the cases with all the four vertices are special, one can see that the de Bruijn
graphs are either the cases for which every vertex has different incoming arcs, or the
special cases.

This completes the proof. [ |



The two special Rules 51 and 204 are also of particular interest. There is also a very
good combinatorial reason for why they do not have any Gardens of Eden. Since Rule 51
and Rule 204 are symmetric with regard to the exchange of 1 and 0, we only need consider
Rule 51. Tt is defined by the following local rule:

{010,011,110,111} -0, {000,001,100,101} — 1.

It is easy to see that for a sequence § = 11---1 consisting of any positive number of 1’s,
there exists a path from the vertex 10 to 01 whose label sequence is S. On the other hand,
there exists a path from vertex 01 to 10 such that the label sequence is 00- - O (of length
at least 1). Therefore, any sequence on {0,1} can be generated on the de Bruijn graph,
implying that there is no Garden of Eden.

0
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< N o1 10 ™ o1
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1 @
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Rule 51 Rule 204

Figure 3: The de Bruijn graphs for Rule 51 and Rule 204

In conclusion of this section, we would like to propose the problem of classifying the
general one dimensional CAs without Gardens of Eden, based on their de Bruijn graphs
in the vein of Theorem 2.2.

3 Finite-complement Languages

Suppose a, b are two words on alphabet X. If there exist u,v € £* such that b = uav, then
we will say that a is a subword of b, denoted by a < b. Ifa < band a # b, we say a is a
proper subword of b, denoted by a < b.

We recall the definition of a finite-complement language.

Definition 3.1 Let L be a language and L° be the complement of L. If there exist a subset
S C L€ which has the following properties:



1. |5] < .

2. For every x € L®, there exists s € S such that s is the subword of z.

Then we say that L is a finite-complement language.

Let Br, = {z € L°|Vy < z,y € L}, then we have
Lemma 3.2 L is finite-complement if and only if |Br| < +o0.

Proof. If ¢ & L, then By, = {e} and the assertion becomes obvious. So we may assume
that e € L.

“=”: We only need to show that By, satisfies the second condition in Definition 3.1.
Otherwise, there exists £ € L¢ such that for all s € By, s is not the subword of z, hence
there is one with minimal length. We still denote it by z. Since e € L, z # ¢, it has a
proper subword y. Since z is minimum, there exists s € By, such that s < y, which implies
s < z. A contradiction! Hence By, satisfies the second condition.

“«=": Suppose S C L° saﬂsﬁes the conditions in Definition 3.1. For every :r € By, there
exists s € S such that s < z. However, from the definition of By, s cannot be a proper
subword of z, which means that s = z. It follows that By, C S, and |Bg| < |S| £ +00. 1

Given a CA, if a sequence S has a preimage, we say that S is an accepted word of the
CA. Here we give a sufficient condition to ensure that the set of words accepted by a CA
does not constitute a finite-complement language. Note that t;hls result is valid for any
one dimensional CA on the linear lattice.

Theorem 3.3 If there exists a cycle C in the de Bruijn graph such that for any label
sequence S of the cycle and for sufficiently large n, S™ can be generated only by paths
containing the cycle C. Let Sg be a label sequence of C. (Note that C may have more than
one label sequence.) If there exzst sequences Ty and T» on F» which satisfy the following
conditions:

1. T1 Sy is an accepted word and is a label sequence of a path with the beginning vertex
on the cycle C.

2. SoT% is an accepted word and is a label sequence of a path with the end vertex on the
cycle C.

3. The beginning vertex and the end vertez in the above paths are different.

Then the accepted words of the CA do not constitute a finite-complement language.



Proof. From the hypothesis and Condition 3, 715373, n 2> 1 do not have preimages for
sufficiently large n. Suppose S is a finite subset of sequences which do not have preimages
and for any sequence £ which does not have a preimage, there exists s € S such that s < z.
Then there exists M such that the length of s € S is less than M. From Conditions 1 and
2, it follows that any subsequence of T} S§T5 of length less than SF is accepted by the CA,
which implies they cannot be s € S. Choosing n sufficiently large, we deduce that T1 5313
cannot have s € S as its subwords. A contradiction! This completes the proof. ]

We give an example that has been studied by Jen [5].

Example 3.4 For Rule 22, which is defined by
{000,011,101,110,111} — 0, {001,010,100} — 1

the corresponding de Bruijn graph is shown in Figure 4.

0

10 1 o1
@

0

Figure 4: The de Bruijn graph for Rule 22

The words accepted by this CA do not constitute a finite-complement.language.

Proof. We consider the cycle from 10 to 00 to 01 and then return to 10 as the cycle
C in the above Theroem, which satisfies the condition as in the Theorem. For the basic
sequence Sy = 111, let Ty = 10 and Ty = 0101, it is easy to see that T1{S;}* can be
accepted by the CA and the beginning vertex may be 00 or 01. The sequence {S; }*T} is
also accpted by the CA and the ending vertex must be the point 10. Thus from Theorem
3.3, the set of words accepted by the CA according to Rule 22 does not form a finite-
complement language. |
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