
SAND REPORT
SAND2004-6232

UNLIMITED RELEASE

Printed November 2004

Modular Architecture for Sensor Systems (MASS):

Description, Analysis, Simulation, and Implementation

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a

Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security

Administration under Contract DE-AC04-94-AL85000

Approved for public release; further dissemination unlimited.

 2

Issued by Sandia National Laboratories, operated for the United States Department of

Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represent that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

 3

Modular Architecture for Sensor Systems (MASS):

Description, Analysis, Simulation, and Implementation

Jesse Davis, Doug Stark, Nick Edmonds

Sandia National Laboratories

MS9159 P.O. Box 969

Livermore, CA 94551-0969

ABSTRACT

 A particular engineering aspect of distributed sensor networks that has not

received adequate attention is the system level hardware architecture of the individual

nodes of the network. A novel hardware architecture based on an idea of task specific

modular computing is proposed to provide for both the high flexibility and low power

consumption required for distributed sensing solutions. The power consumption of the

architecture is mathematically analyzed against a traditional approach, and guidelines are

developed for application scenarios that would benefit from using this new design.

Furthermore a method of decentralized control for the modular system is developed and

analyzed. Finally, a few policies for power minimization in the decentralized system are

proposed and analyzed.

 4

Table of Contents:

INTRODUCTION .. 8
PROPOSED NODE ARCHITECTURE .. 9
MATHEMATICAL SYSTEM ANALYSIS ... 14

POWER ANALYSIS... 14
Module States: .. 14
Module Parameters and System Assumptions: ... 15
System Power Consumption Derivation: .. 17

Transacting a request to or from another module: ... 18
Transacting a response to or from another module: ... 19
Processing requests: ... 19
Waiting for the bus to be available when wanting to transact a request or response: 20
Waiting for the destination module to be available when wanting to transact a request or response: 20
Operating in a non-interacting state(s):.. 20
Total System Power: ... 21

Centralized System Power: ... 22
MINIMUM POWER SYSTEM CONFIGURATION:... 26

Processing Time vs. Processing Power: ... 26
Wait Time for the Bus: .. 26
Wait Time for a Module:... 28
Inter-module request rate, sample rate, and event rate:... 44
Minimization of total power consumption: ... 48
Optimal Module On-Time When Modules Require Transition Time and Power:............................... 53
Dynamic estimation of aggregate inter-module request rate: .. 57
Module mode changing based on system configuration: .. 59

S Modules: .. 59
GPP Modules:... 61
WNC Modules:.. 61
PS Modules: .. 63

IMPLEMENTATION:... 64
SOFTWARE STRUCTURE:... 64
SIMULATION: ... 66
HARDWARE AND SOFTWARE PROTOTYPE:.. 67

Hardware:... 67
Messaging in MASS: ... 68

Message Types: ... 69
Example Messages:... 70

Task Overview: ... 71
Address Generation and Resolution: .. 72
Processing Request/Response: .. 72
Checking Status of Processing Requests, Modifying Priorities, etc.: .. 73

Future Directions: .. 73
Encrypted Communications: ... 73
Hardware Data Sheets:... 73
Multiple Bus Architecture: .. 74
Alternate Processor Architectures: ... 74
Additional Module Types: ... 74

MASS Documentation by Layer:... 74
Global Data: ... 74
Priority Queues:.. 75
Phy:... 78
Link: .. 79
Net: ... 81
Transport: ... 84
App: Local Event Handler: ... 86

 5

App: Request Processor:... 88
App: Mode Changer.. 92

Writing Code for MASS: ... 94
Starting MASS:.. 94
Processing Requests: .. 94
Sending Requests: ... 94
Configuring the Net Layer: ... 95
Configuring the Transport Layer:... 96
Configuring the Request Processor: ... 96
Configuring the Local Event Handler:.. 97

VISUALIZATION.. 99
CONCLUSION... 102
ACKNOWLEDGEMENTS ... 102
APPENDICES .. 103

APPENDIX A: EXAMPLES OF MASS FUNCTIONALITY ... 103
DISTRIBUTION .. 105

 6

Table of Figures:

Figure 1: Node System Architecture... 10
Figure 2: Module Architecture.. 10
Figure 3: Comparison of centralized and decentralized system power 25
Figure 4: Processing time versus priority for queuing and non-queuing schemes 37
Figure 5: Processing time deviation versus priority for queing and non-queuing schemes

... 38
Figure 6: Priorities used in prioritized scheme versus priority for queing and non-

queuing schemes ... 38
Figure 7: Request retry time versus priority for queing and non-queuing schemes 39
Figure 8: Processing time versus priority for different traffic models.............................. 39
Figure 9: Queue size versus priority for queing and non-queuing schemes 40
Figure 10: Minimum Supporting Queue Sizes for Ensuring a Maximum Probability of

Bumping.. 42
Figure 11: Example Receiver Operating Characteristic ... 46
Figure 12: Sample Rate Tracking the Event Rate... 47
Figure 13: Cummulative error versus averaging window size, m, and control "derivative"

coefficient, d, for sample input ... 47
Figure 14: Optimal control “derivative” coefficients, d, for varying averaging window

size, m, with regression analysis... 48
Figure 15: Power Versus Sample Rate and Probability of False Alarm........................... 53
Figure 16: Timeline of Requests... 54
Figure 17: Power versus turn-off time, Example 1... 55
Figure 18: Power versus turn-off time, Example 2... 56
Figure 19: Arithmetic and Geometric Running Averages .. 58
Figure 20: Convergence of Arithmetic and Geometric Averages in Requests Per Event 59
Figure 21: Layered software structure .. 65
Figure 22: Example meta-state in the simulation physical layer 66
Figure 23: Top level view of the simulation system... 67
Figure 24: Prototyping board used for implementation.. 68
Figure 25: Priority Queue Post process flow .. 77
Figure 26: Priority Queue Pend process flow... 77
Figure 27: Priority Queue GetRemove process flow.. 78
Figure 28: Phy layer process flow .. 79
Figure 29: Link layer receive task process flow ... 80
Figure 30: Link layer transmit task process flow.. 81
Figure 31: Net layer receive task process flow... 83
Figure 32: Net layer transmit task process flow ... 83
Figure 33: Transport layer transmit task process flow.. 86
Figure 34: Transport layer receive task process flow ... 86
Figure 35: Local event handler process flow.. 88
Figure 36: Request processor process flow .. 91
Figure 37: Request processor user task process flow ... 92
Figure 38: Visualization examples.. 100
Figure 39: Example of MASS functionality ... 104

 7

Table of Tables:

Table 1: Module States ... 14
Table 2: Decentralized System Parameters... 16
Table 3: Centralized System Parameters .. 23
Table 4: Simulation parameters .. 24
Table 5: Module Transition Power Parameters .. 54

 8

INTRODUCTION

Much of the research focus in the area of distributed sensor networks has been

devoted to developing power aware or power conservative wireless networking,

operating systems, or application software. The hardware aspects of these systems have

been largely overlooked, yet many potential benefits may be derived by considering the

node system as a whole including both software and hardware components. Furthermore,

implementation of distributed sensor networks can be highly application dependent, and

this realization provides a new systems perspective for engineering generalized solutions.

Only two system level design approaches have previously been made regarding

node hardware. One approach has been to develop highly optimized, low power, and

inflexible systems that are specific to a single application. The other approach has been to

engineer non-optimal, high power, yet extremely flexible systems that can be adapted to

many different applications. These approaches are unsatisfactory to produce

programmatically efficient, deployable sensor systems. The inflexible systems become

one time solutions that cannot be adapted and are thus programmatically expensive, yet

the flexible systems consume large amounts of power and resources and hence require

frequent attendance once deployed. The remainder of this document will discuss and

analyze an architecture developed to strike a balance between the flexibility, optimality,

and power consumption of these two previous approaches. The architecture is specifically

designed to satisfy the needs of event-driven sensor networks.

 9

PROPOSED NODE ARCHITECTURE

There are several key features that an ideal sensor network platform would have.

It would be low power, robust against failure, extensible and adaptable to many

applications, upgradeable as components are advanced, and have capabilities for complex

computational requirements. These features are primary motivations for the idea to

develop a task separated, modular, decentralized architecture. The modularity will

immediately allow better extensibility and upgradeability in comparison to more

traditional centralized approaches, since adding or changing components is as simple as

adding or swapping modules. As will be shown in the power analysis section below, the

modularity also decreases the total power consumption of the system for certain

applications. Furthermore, modularity leads to better robustness and survivability since it

eliminates single point of failure issues, to which centralized approaches are inherently

susceptible. Finally, since the system is flexible and can adapt to many different possible

applications, developing via the modular approach could give a lower long term

programmatic cost. Several partially modular but inflexible architectures include the

Sandia HERD nodes, the Berkeley Wireless Research Center picoRadio test beds, the

Berkeley MICA motes, and the Rockwell WINS and Infocube platforms. The

architecture proposed in Figure 1 is a series of operationally disjoint modules connected

by a central bus, and satisfies many more of the desired system attributes than previous

systems.

 10

Figure 1: Node System Architecture

Each of the modules attached to the central bus acts as a stand alone component.

The sensor modules each have their own data pre-processors (either low power general

purpose processors, DSPs, micro-controllers, or FPGAs depending on level of

computational complexity required) and data storage (either internal or external to the

data pre-processor depending on memory requirements) as shown in Figure 2. This

allows a higher power general purpose processor module to remain in a low power sleep

mode for the majority of node operation. A general purpose processor is kept in the

system in order to allow complex algorithms and node operations to occur when

necessary thus providing a flexibility improvement over the application specific systems

previously implemented. In order to reduce the processing requirements of the general

purpose processing module further, the wireless networking module will handle all

network routing when wireless messages simply need to be hopped on to other nodes.

Distributed Controller

Resource-Specific
Processor

Data
Storage

Inter-Module Control Bus

Inter-Module Data Bus

Power Bus

(Resources: Sensors, Processors,
Wireless Transceivers, Etc…)

Module-Level Architecture

System Resource

N
ext M

odule

Figure 2: Module Architecture

 11

The purpose of the sensor module data pre-processor will be two-fold: it will

acquire and process the raw sensor data into a standard format, and it will act as an event

detector. The advance event detection service that the pre-processor performs will take a

first pass look at the data from the sensor to determine if an event has occurred. This first

pass will likely take the form of threshold monitoring, envelope detection, or something

similarly undemanding. When an event is registered, the sensor module will send a

request to the general purpose processor module for verification. The processor module

will gather the buffered data from the sensor module, fuse it with other relevant sensor

data, and analyze it using higher-level computationally intensive algorithms to verify the

event. If the event is verified, the general purpose processor could then pass along this

high level situational information to other wireless nodes.

In order to make this architecture viable, each module must also have a separate

hardware or software intra-node (inter-module) networking section, labeled as the Intra-

Node Network Connector (INNC) in Figure 2. The INNC will be able to power on or off

the module back-end and act as a gateway to the intra-node network. The INNC also

protects the module from the heterogeneity of the back-ends of other modules, and allows

for the extensibility and reconfigurability of the system. The INNCs are the only sections

of the system which are required to be continuously powered and ready to receive

interrupts. This requirement necessitates they be very low power and have the capability

to enter interrupt ready sleep modes to conserve energy.

In the initial system, there will be four different groups of modules:

 Sensor modules (S)

 General purpose processor (application) modules (GPP)

 Wireless network communications modules (WNC)

 Power supply modules (PS)

Each of these modules will have an INNC for communication to all other modules.

(Note: For the first prototype of MASS, there was only one bus to which all of the

modules were connected. In future evolutions, multiple data bus channels will be

included. Also, the PS does not have a bus interface or communications capabilities in the

first prototype, but this possibility remains open for future developments as well.)

 12

Nodes will consist of combinations of the different module types into various

system configurations. There are three main classes of system configurations:

 Degenerate (D)

 Minimal (M)

 Complex (C)

Degenerate systems cannot support wireless sensor networks at all, minimal systems can

contribute to wireless sensor networks only minimally, and complex systems can

contribute to a wireless sensor network in some complex manner. Each of these classes

breaks down into subclasses based on the particular modules that make up a system.

 The three types of degenerate configurations are

 D1: PS

 D2: PS+S+(S,…)

 D3: PS+GPP+(GPP,…)

 D4: PS+S+GPP+(S,GPP,…)

The reason these systems are degenerate is that a fundamental premise of wireless sensor

networks are communications between the nodes, at least in the sense of routing

information, and these configurations have no WNC. The three types of minimal system

configurations are:

 M1: PS+WNC

 M2: PS+WNC+S

 M3: PS+WNC+GPP

A complex system will be defined as any system consisting of no GPP’s and at least two

S’s, at most one GPP and at least one S, or at least two GPP’s. Thus there will be three

basic types of complex system configurations:

 C1: PS+WNC+S1+S2+(S,…)

 C2: PS+WNC+GPP+S+(S,…)

 C3: PS+WNC+GPP1+GPP2+(S,GPP,…)

The initial phase of system operation will be a discovery of which type of system

exists on a particular node. The system will support hot swapping of modules (i.e.

changing system modules without cycling power or resetting the system), and graceful

degredation (i.e. if a module fails during the course of system operation, this will not

 13

bring down the entire system for certain failure modes). The operation of a module will

change slightly based on what type of system it is in. This function changing will be

explained in more detail in a section below.

 14

MATHEMATICAL SYSTEM ANALYSIS

POWER ANALYSIS

Module States:
In order to capture a general power model of each module, let each module have

the following states:

 transacting a request to or from another module,
 transacting a response to or from another module,
 processing requests,
 waiting for the bus to be available when wanting

to transact a request or response,
 waiting for the destination module to be available

when wanting to transact a request or response,
 and operating in a non-interacting state(s).

Table 1: Module States

The full system will also consume power in the bus(es) that connect the modules. (If the

power supply is centralized, which is likely based on simplicity and cost of

implementation, there will also be additional power consumed due to the inefficiency of

the power supply.) During request and response transacting, modules will be actively

sending or receiving requests and responses from other modules via a system bus. A

module may have to go into a wait state if either a bus or other module is unavailable for

request or response transacting. During a wait state, a module will return to the standard

non-interacting state from which it attempted to make a request or response. During the

request processing state a module will perform any data manipulation or collection

necessary in order to satisfy a request from another module. Finally, the module actions

during a non-interacting state will depend on the specific module type. Data collection

modules will be actively collecting, processing, and storing data or be in a deep sleep

mode in the case of triggered sensors. Event detection modules will be collecting and

processing data and monitoring for events. Processing modules will be in a deep sleep

mode or performing some sort of periodic function. Communication modules will be

routing network traffic and watching for messages from other nodes. A module may have

multiple non-interacting states which it transitions between without any external

involvement. Assume that the transition from state to state occurs in a very short period

 15

of time so that it need not be considered in the system power consumption. Finally, let

each module be able to request service from any other module except itself.

Module Parameters and System Assumptions:

Based on this abstraction, the table below lists the fundamental decentralized

system parameters.
t
ijp (watts) average power consumed by module

i while transacting a request or
response to or from module j (this
may be dependent on module j
because there may be several system
buses each with different drivers)

w
ip (watts) average power consumed by module

i while in a wait state
k

n

i
p (watts) average power consumed by module

i while in its kth non-interacting state
k

p

ij
p (watts) average power consumed by module

i while processing a request from
module j which was operating in its
kth non-interacting state before the
transaction

k

q

i j
d (bits) average amount of data sent from

module i to module j during a
request from i where i was operating
in its kth non-interacting state before
the transaction

k

s

ij
d (bits) average amount of data sent from

module i to module j during a
response from i where j was
operating in its kth non-interacting
state before the transaction

ki j
r (hertz) average rate at which module i

requests service from module j when
module i operates in its kth non-
interacting state

b
iw (seconds) average wait time experienced by

module i before being able to access
a bus for transaction

t
ijw (seconds) average wait time experienced by

module i when attempting to
transact with module j

 16

kij
t (seconds) average time it takes module i to

processes a request from module j
when j was in its kth non-interacting
state before transaction

B
ijp (watts) average power consumed by a bus

while it is being used to transact a
message from module i to module j
(this will likely be dependent on
baud rate)

ijB (bits per second) baud rate of bus used to transact a
message from module i to module j

m (modules) number of modules
Table 2: Decentralized System Parameters

These parameters are meant to be assigned to constant values (or derived from

constant values) in order to describe individual modules in the system. As such, this

parameter set makes certain assumptions about the operation of the system. First, the

system operation is assumed to be constant over time. For given system inputs, the

system will give deterministic outputs, or at least outputs that have a deterministic

average. While the times, powers, bits, and rates may randomly deviate slightly from

these averages, they can be assumed for practical purposes to be constant. The only value

that may deviate significantly from its average is ki j
r , and this will be examined below.

Another major assumption is that the power consumption of the system is modal. In other

words, when a module is in a certain mode of operation or in a certain operating state, the

power a module consumes has at least a constant average. In other words, modules are

considered as holistic entities rather than consisting of components that can operate

independently. (Another approach would be to consider power consumption to be

incremental. The power of a module here would be summed up over different

independently operating components. In effect, the analysis that will be given could be

pushed down to the scale of an a module with independent components adding another

level to the module-node-network hierarchy.)

Another assumption of these parameters is that when operating in a given mode,

each module interacts with other modules in only a single way or several ways that can

be reasonably averaged together. In other words, if module i is in its kth mode and module

j is in its lth mode, the amount of data passed between i and j during requests and

 17

responses has a defined average. If there are several different types of requests module i

might make of module j in a single mode, the average amount of data can be calculated as

a weighted average of the data in each type of request where the weights derive from the

particular rates of each type of request. Similarly, the overall request rate can be

calculated as the sum of rates of request of each type of request. If reasonable, multiple

transaction type modes could be broken into individual transaction type modes for

analysis.

Furthermore, the processing and wait times must fall into some sort of distribution

with a well defined average. In other words, all times in the system have at least a

deterministic average. Additionally, any system buses are assumed to be serial. Parallel

buses could be handled by mathematically breaking each parallel stream into its own bus,

or by averaging the parallel bus into equivalent serial bus parameters. Finally, each

request will have a non-periodic corresponding response of at least a request

acknowledgment. A module may not request periodic responses from another module

without any further requests. An initial request acknowledgement may be succeeded by a

full request response at a later time. All parts of a request response are lumped into single

parameters.

Other parameters are certainly more fundamental than these with regards to

specific types of modules, but as for a general module parameter set, these variables

should be sufficient. For example, for event detection modules, ki j
r can be derived from

sensor sample rate, event rate, and probabilities of detection and false alarm. This type-

specific breakdown of the parameters will be discussed in a subsequent section in more

detail.

System Power Consumption Derivation:

In order to develop the total power consumed by the system, the power will first

be considered on a module by module basis in each of these states and then summed over

the full system. In order to develop the average power consumed by a module, the power

of each module state given in Table 1 must be analyzed. To capture the power

consumption of the bus(es), it will be counted as a subset to a module’s consumption

 18

when that module is the initiator of the transaction. (This assumes that each message has

one and only one source module. Bus power for broadcast messages are counted once

and only once with this initiator module association.)

Transacting a request to or from another module:

Define an interval of length T. In this time period, requests will be made of

module j at rates ki j
r . The average number of requests from module i to module j during

time period T will thus be ki j
Tr . Similarly, the average number of requests from module j

to module i will be kj i
Tr . The time that each transaction takes will be determined by the

amount of data sent and the baud rate of the bus. Specifically, for requests made of j, the

time of each request will be
k

q

i j

ij

d

B
. For requests made by j, the time of each request will

be
k

q

j i

ji

d

B
. Finally, the power consumed by module j while receiving or making a request

will be t
jip . Combining these terms, the total power over an interval of length T consumed

by module j while requesting services of or being requested by module i will be:

k k

k k

q q

i j j it
ji i j j i

ij ji

d d
Tp r r

B B

⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

 Equation 1

Including the power consumed by the bus for any requests made by module j, the total

becomes:

()k k k k k

k k k k k

q q q q q

i j j i j i i j j it B t t B
ji ji ji ji jii j j i j i i j j i

ij ji ji ij ji

d d d d d
T p r r r p T r p r p p

B B B B B

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟+ + = + +

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 Equation 2

The average power is derived from taking this total power per module, dividing

by the length of the interval, T, and summing over all modules, thus the average power

consumed by module j while sending or receiving requests to or from other modules will

be:

 19

()
1,

k k

k k

q q
m

i j j iq t t B
j ji ji jii j j i

i i j ij ji

d d
P r p r p p

B B= ≠

⎛ ⎞
⎜ ⎟= + +
⎜ ⎟
⎝ ⎠

∑

 Equation 3

All of the following power derivations will follow a similar pattern. The power

consumed, time the power is consumed, and rate at which module j is put into a certain

consumption mode will be multiplied together and summed. Only if specific details are

necessary will any detailed derivation be entered into.

Transacting a response to or from another module:

The rate at which module j will respond to a request by module i will simply be

the rate at which module i requests module j. This observation is based on the assumption

that every request begets a single response. Likewise, the rate at which module i will

respond to module j will be the rate at which module j requests module i. The power

consumed by the bus by responses from module j is calculated as in Equation 2. Overall,

the power consumed by module j to send or receive responses to or from other modules,

along with the associated bus power will be:

()
1,

k k

k k

s s
m

ji ijs t B t
j ji ji jii j j i

i i j ji ij

d d
P r p p r p

B B= ≠

⎛ ⎞
⎜ ⎟= + +
⎜ ⎟
⎝ ⎠

∑

 Equation 4

Processing requests:

The power consumed by processing requests is very straightforward. Combining

the power module j requires to process a request from module i, the time it takes to

process the request, and the rate of request, the total power module j consumes in

processing requests is found to be:

1,
k k k

m
p p

j i j ji ji
i i j

P r t p
= ≠

= ∑

 Equation 5

 20

Waiting for the bus to be available when wanting to transact a request or response:

The power consumed while waiting for a bus between j and i to be available is

also a straightforward calculation. There are two parts to the power consumption, one for

transacting a request and one for transacting a response. Combining these two results, the

total power module j consumes while waiting for a bus to be available is found to be:

() ()()
1, 1,

k k k k

m m
b b w b w b w
j j j j j j jj i i j j i i j

i i j i i j

P r w p r w p w p r r
= ≠ = ≠

= + = +∑ ∑

 Equation 6

Waiting for the destination module to be available when wanting to transact a request or

response:

The power consumed while waiting for a module to be available is also a

straightforward calculation. There are two parts to the power consumption, one for

transacting a request and one for transacting a response. Combining these two results, the

total power module j consumes while waiting for other modules to be available is found

to be:

() ()()
1, 1,

k k k k

m m
t t w t w t w
j ji j ji j ji jj i i j j i i j

i i j i i j

P r w p r w p w p r r
= ≠ = ≠

= + = +∑ ∑

 Equation 7

(In the system that will be implemented, the modules will not have a separate waiting

state power since during the wait for a request to be processes, the module may carry out

other functions. Specifically, the module may be in a non-interacting state, and thus for

Equation 7 only, k

w n
j j

p p= , and the time k k

t t
ji jij i i j

r w r w+ can be subtracted from the

summation term in Equation 8.)

Operating in a non-interacting state(s):

Finally, there will be periods during which module j will be operating

independently of all other modules. This will only be during times when it is not

transacting requests, transacting responses, processing requests, waiting for a bus to be

available, or waiting for a destination module to be available. The cumulative amount of

time during a period T during which the module will not be occupied will thus be:

 21

1,

k k k k

k k k k k k k k k k

q q s s
m

i j j i ji ij b b t t
j j ji jii j j i i j j i i j ji j i i j j i i j

i i j ij ji ji ij

d d d d
T r T r T r T r T r t T r w T r w T r w T r w T

B B B B= ≠

⎛ ⎞
⎜ ⎟− + + + + + + + +
⎜ ⎟
⎝ ⎠

∑

 Equation 8

Simplifying Equation 8, this time becomes:

1,

k k k k

k k k

q s q s
m

i j ji j i ijb t b t
j ji j jii j ji j i

i i j ij ji ji ij

d d d d
T T r t w w r w w

B B B B= ≠

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟− + + + + + + + +

⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∑

Equation 9

During this time, the module will be consuming its non-interacting power.

Multiplying by this power and dividing by the interval length, T, in order to find the

average, the average power consumed by module j in a non-interacting state will be:

1,

1
k k k k

k k k k

q s q s
m

i j ji j i ijn b t b t n
j j ji j jii j ji j i j

i i j ij ji ji ij

d d d d
P r t w w r w w p

B B B B= ≠

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟= − + + + + + + + +

⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
∑

Equation 10

Pn will never be negative since it is not possible for a module to be busy for more than

time T during a period of length T.

Total System Power:

Combining Equation 3-Equation 10, the total average power of the modular

system, Pm, will be:
q s p b t n

m j j j j j jP P P P P P P= + + + + +

Equation 11

Which expands to:

() ()() ()
1 1,

k k k

k k k k k k k

q s s
m m

i j ji jin t n b t w n p n B
m ji j ji j jij i j j j ji ji j

j i i j ij ji ji

d d d
P p r p p w w p p t p p p

B B B= = ≠

⎛ ⎛ ⎛ ⎞⎛ ⎞
⎜ ⎜ ⎜ ⎟⎜ ⎟= + + − + + − + − +

⎜ ⎟⎜ ⎜ ⎟⎜ ⎝ ⎠⎝ ⎠⎝⎝
∑ ∑

() ()()k k k

k k k

q s q

j i ij j it n b t w n B
ji j ji j jij i j j

ji ij ji

d d d
r p p w w p p p

B B B

⎞⎞⎛ ⎞⎛ ⎞
⎟⎟⎜ ⎟⎜ ⎟+ + − + + − +

⎜ ⎟ ⎟⎜ ⎟⎟⎝ ⎠⎝ ⎠⎠⎠

Equation 12

 22

As can be seen from Equation 12, if the power consumption of the modules never

fluctuates from its non-interacting power consumption, i.e. if k k

t w n p
ij i i ij

p p p p= = = , the

total average power of the system will simply be:

1 1 1,

k k

pt w n k k k
ij i k ki ij

s q
m m m

ji j in B
m jip p p p i i j j i

j j i i j ji ji

d d
P p p r r

B B= = =
= = = ≠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= + +

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑ ∑

Equation 13

This power is simply the sum of the power consumption of each module plus the power

consumed by transactions on the bus(es). This configuration is similar to the case of a

centralized system in which no components ever fluctuate in power.

Centralized System Power:
In order to compare a standard centralized architecture with the decentralized one

presented, a similar mathematical development must be made for the centralized system.

This discussion is identical to that given in a previous published paper by the authors.

Assume that all components of the centralized system are attached to a single central

processor that has two modes, a processing mode and a sleep mode. Whenever the

processor is not servicing a component or analyzing data collected from components, it is

in sleep mode, otherwise it is in its processing mode. Assume the transitions between the

two modes are close to instantaneous. Based on this abstraction, Table 3 illustrates the six

centralized system parameters .

cti time required to service component i

and analyze resulting data
cri rate at which component i must be

serviced
cpp central processor active power

consumption
csp central processor sleep power

consumption

 23

cpci component i power consumption

n number of components

Table 3: Centralized System Parameters

First, the total processing power, cp, and standby power, cs, of the centralized system

must be calculated:

1 1

i i

n n
c c c c c c

c c c c
i i

p p p and s s p
= =

= + = +∑ ∑

Equation 14

Following a similar derivation to those above, the average power that the centralized

architecture will spend in its processing mode will be:

1

n
c

i i
i

rt p
=
∑

Equation 15

and the average power spent in its standby mode will be:

1

1
n

c
i t

i

r t s
=

⎛ ⎞−⎜ ⎟
⎝ ⎠

∑

Equation 16

Combining these two equations, the total power for a centralized system will be:

 ()
1

n
c c c c c

c i i
i

P s r t p s
=

= + −∑

Equation 17

In order to generate meaningful comparisons, simulations of the centralized and

decentralized power models were performed. Parameter values used for all of the

simulations were kept constant unless the parameter was used as the independent

variable. The parameter values used are shown in Table 4.

Centralized (All components are identical)
Central Processor Standby Power 100uW
Central Processor Processing Power 250mW
Number of External Components 4

 24

Component Sampling Rate 5Hz
Sample Servicing Time 10ms
Component Power 5mW
Decentralized (All non-GPPM modules are

identical)
General Purpose Processor Module
(GPPM) Standby Power

100uW + 1mW = 1.1mW

GPPM Processing Power 250mW + 15mW = 265mW
Number of Modules (Including
GPPM)

4 + 1 = 5

Rate Each Module Requests GPPM
Validation (i.e. Event Rate)

.4Hz

Validation Request Service Time 100ms
Non-GPPM Module Standby Power 5mW + 1mW = 6mW
Non-GPPM Module Processing
Power

5mW + 15mW = 20mW

Table 4: Simulation parameters

 Resulting plots are shown in Figure 3 below. The general result is that there are

certain applications for which a centralized system would be lower and power and others

for which the decentralized system would be lower power. The decentralized system is

lower power for applications requiring high sensor sampling rates, low environmental

event rates (i.e. low rates of requiring GPP validation), low sensor power, and high sensor

service times. The centralized system is lower power for applications requiring low

sensor sampling rates, high environmental event rates, high sensor power, and low sensor

service times. In general, the breakdown seems to clearly place centralized systems into

data collection applications and decentralized systems into in-network event detection

applications.

 25

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

#Components (#Modules=#Components+1)

T
im

e
A

ve
ra

ge
d

S
ys

te
m

 P
ow

er
, W

A

centralized
decentralized

0 0.002 0.004 0.006 0.008 0.01
0.07

0.072

0.074

0.076

0.078

General Purpose Processor Standby Power, W

T
im

e
A

ve
ra

ge
d

S
ys

te
m

 P
ow

er
, W

B

centralized
decentralized

0 0.002 0.004 0.006 0.008 0.01
0.05

0.06

0.07

0.08

0.09

0.1

0.11

Module Standby Power Beyond Component Power, W

T
im

e
A

ve
ra

ge
d

S
ys

te
m

 P
ow

er
, W

C

centralized
decentralized

0 2 4 6 8 10
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Component Sample Rate, Hz

T
im

e
A

ve
ra

ge
d

S
ys

te
m

 P
ow

er
, W

D

centralized
decentralized

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

Module Event Rate, Hz

T
im

e
A

ve
ra

ge
d

S
ys

te
m

 P
ow

er
, W

E

centralized
decentralized

0 0.02 0.04 0.06
0

0.1

0.2

0.3

Component Service Times, s

T
im

e
A

ve
ra

ge
d

S
ys

te
m

 P
ow

er
, W

(Module Service Times are 50ms Greater)

F

centralized
decentralized

0 0.1 0.2 0.3 0.4 0.5
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

General Purpose Processor Processing Power, W

T
im

e
A

ve
ra

ge
d

S
ys

te
m

 P
ow

er
, W

G

centralized
decentralized

0 0.002 0.004 0.006 0.008 0.01
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Component Power, W

T
im

e
A

ve
ra

ge
d

S
ys

te
m

 P
ow

er
, W

(Module Power 1mW Greater in Standby,
15mW Greater When Processing)

H

centralized
decentralized

Figure 3: Comparison of centralized and decentralized system power

 26

Minimum Power System Configuration:
The purpose of a mathematical model for system power in the decentralized

system is to use it to find techniques to minimize the power consumption of the system.

Tradeoffs embedded in Equation 12 indicate that there may be an optimal mode for each

module in the system, and a system configuration so that the system consumes a

minimum amount of power. This section analyzes tradeoffs and control methods for the

modular architecture.

Processing Time vs. Processing Power:

The first tradeoff to be analyzed is that between processing time and processing

power. A well known relationship between power consumption of digital circuits and

frequency of digital circuits is that power is directly proportional to frequency. Assuming

a given process takes a given time at a certain frequency, power will be inversely related

to the length of time a process requires to execute. Assuming a processor is mounted on a

module that has a power consumption consisting of some minimum static power, S

milliWatts, plus a power that is linearly dependent on frequency with slope F mW/MHz,

the execution time for a given process and module power can be related through:

k

k

pji
ji

F
t

p S
=

−

Equation 18

F may be determined experimentally if it is not given on the data sheets of the module’s

components. (Current standard low end values of F are around .5mW/MHz for

microprocessors.)

Wait Time for the Bus:

There is also a relationship between wait times for the bus(es) and the bus usage

for requests and responses. As evident in the derivation of total system power above, the

 27

total amount of time the bus will be used in a period of length T by a module other than

module j will be:

1, 1, { , }

k k k k k k

k k k k

q s s q s qm m
l j lj li i l il l i

l j j l i l l i
l l j i i j llj lj li il il li

d d d d d d
T r r r r

B B B B B B= ≠ = ≠

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟+ + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

∑ ∑

Equation 19

(This assumes a single system bus.) Thus, by the Monte Carlo method, the probability

that the bus is busy when module j attempts to access it any given time will be:

1, 1, { , }

k k k k k k

k k k k

q s s q s qm m
l j ljb li i l il l i

j l j j l i l l i
l l j i i j llj lj li il il li

d d d d d d
q r r r r

B B B B B B= ≠ = ≠

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= + + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

∑ ∑

Equation 20

And correspondingly, the probability that the bus is free is:

1, 1, { , }
1 1

k k k k k k

k k k k

q s s q s qm m
l j ljb b li i l il l i

j j l j j l i l l i
l l j i i j llj lj li il il li

d d d d d d
p q r r r r

B B B B B B= ≠ = ≠

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟= − = − + + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

∑ ∑

Equation 21

A standard wired MAC (Medium Access Control) for a decentralized controlled

system is CSMA (Carrier Sense Multiple Access). The modules will sense the bus to see

if it is being used, and if it is not, immediately start using it. There are additions, such as

Ready-To-Send (RTS) and Clear-To-Send (CTS) messages that can be used to ensure

collision-less communication as well as collision detection (CD) and acknowledge / non-

acknowledge (ACK/NACK) routines to recover from collision if it does occur. If the bus

is busy when it is first sensed, a common method of retrying is for module j to wait an

exponentially distributed random amount of time, such as:

1 b
j

k

t
b
j b

j

t e λ

λ

−

=

Equation 22

where k

b

j
λ is both the average and standard deviation of the retry times. (Note: These

retry time parameters, k

b

j
λ , may be different for each module, or each mode of each

module, and may also differ based on the priority of the request.) Assuming that

communications on the bus will be fast, and that the retry time average, k

b

j
λ , will be long

 28

compared to the length of the bus communications (so that access attempts are essentially

independent trials), the expected wait time for the bus will be:

k

b
jb b

j bj
j

q
w

p
λ=

Equation 23

Shorter retry periods will not reduce the wait time to zero as Equation 23 would

indicate. As the retry periods get shorter, the assumption of the independence of the

access attempts breaks down since two or more attempts may be made during the same

busy period. (The full form of the wait time is quite complex and will not be derived

here.) This causes the minimum expected wait time as k

b

j
λ goes to zero to be:

2 2 2 2

min
1, 1, { , }

1
2

k k k k

k k

s q s qm m
b li i l il l i
j b i l l i

l l j i i j lj li il il li

d d d d
w r r

q B B B B= ≠ = ≠

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑

Equation 24

Which is simply the average length of time to the end of a busy period if the bus is found

to be busy on a first attempt.

Wait Time for a Module:

Another relationship can be determined between average wait times for other

modules in the system and processing times and request rates. This wait time is

intimately related to the method by which modules request each other. As explained

above, each module will have a queue into which other modules may insert themselves

with a given priority of service. The queue is setup so that no module gets completely

ignored in the queue, even if the priority of its request is low. The problem of the wait

time for a given module thus becomes a fairly complex queuing theory question.

The primary variables in a queuing theory question are the inter-arrival times and

the service times of the queue. Inter-arrival time is the time between requests made on the

module. Service time is the amount of time it takes a module to process a request. These

are both considered random variables with a distribution that must be determined. A

 29

reasonable assumption for distribution of inter-arrival times is an exponential distribution

with an aggregate arrival rate of:

,
1, 1,

k k

m m
t t
Total j l l j

l l j l l j

rλ λ
= ≠ = ≠

= =∑ ∑

Equation 25

In other words a distribution of:

() ,
,;

t
Total jxt

Total jM x e λλ λ −=

Equation 26

This distribution essentially assumes that requests are mostly closely spaced in

time and rarely are they separated by a long period of no requests. It also corresponds to

assuming a Poisson distribution for the arrival times into the system. These assumptions

seem reasonable because it is likely that if a request just occurred because there was an

event in the environment, that event will likely cause another request in a short time. In

periods of no environmental activity, there will be no requests or only very infrequent

spurious requests made, but with no regularity.

As for service times, a reasonable assumption is that the service times for a given

type of request will be normally distributed. The service time may not be exactly constant

due to slight variations in the speed of the processor, scaling of the processor speed, or

other variables. The standard deviation of the service times will likely be very small,

however, so a sharp Gaussian distribution is expected. In order to utilize queuing theory,

the distribution of all of the service times must be found. The most common general way

to find the aggregate service time distribution is to simply average the distributions of all

of the service times together. The distribution of the average of several Gaussians will

itself be Gaussian. (In fact, due to the Central Limit Theorem, the average of several

variables, regardless of their own underlying distributions, will be Gaussian.) Queuing

theory doesn’t generally deal with Gaussian distributions, but a similarly shaped

distribution that it does deal with is the Erlangian distribution. Trying to minimize the

integral of the squared difference between an Erlangian distribution and a Gaussian

distribution in general is an algebraically intractable problem. Only guidelines for the

Erlangian distribution parameters can thus be given, but for the specific set of queuing

that is likely to result in the modular architecture proposed, these guidelines should be

 30

sufficient. If the average of the Erlangian distribution is set equal to the average of the

Gaussian distribution, one way to match the distributions is to match the height of their

peaks. Doing this and solving for the Erlangian shaping factor, r, gives:

() ()

()

1 12 1
1 !

r rr r e

r

π μ
σ

− − −−
=

−

Equation 27

The limiting behavior of this complex expression for r is

r
μ
σ

=

Equation 28

Which is better than 5% accurate already for r=5, and also sets the standard deviation of

the two curves equal to each other. Thus the approximation between Gaussian and

Erlangian distribution is:

() ()

2

2

2

2

1

2 2
2

2

2

1; , ; , , 0
21 !

x
x

x
E x r e e G x x

μ
σ

μμ
σσ

μ μ
σ σμ σ μ

μ σ π
σ

−

−⎛ ⎞−− ⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠= ≈ = ≥
⎛ ⎞

−⎜ ⎟
⎝ ⎠

Equation 29

The average, μ , of this distribution, which will differ for each module, can be simply

calculated as the weighted average of service times:

1,

1,

k k

k

m
Total

l j jl
l l j

j m

l j
l l j

r t

r
μ = ≠

= ≠

=
∑

∑

Equation 30

Where

k

k k

q

l jTotal

jl jl
lj

d
t t

B
= +

Equation 31

 31

Is the total service time including the transferring of the service request on the bus. The

standard deviation of the requests, jσ , cannot be explicitly calculated, but a reasonable

assumption might be that it is on the order of 5% of ju .

From introductory queuing theory for the M/E/1 queue, the total service time

(wait time in queue plus processing time), t
ijw , and average queue length, Lj, will thus be:

()

2

2
2

1

2 1

j

j
jL

σ
μ

ρ ρ
ρ

+
= +

−

Equation 32

And

()

2

21

2 1

j
j

jt
ij jw

σ
ρμ

μ
μ

ρ

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠= +
−

Equation 33

Where

1,
k k

m
t Total

j j j l j jl
l l j

r tρ λ μ
= ≠

= = ∑

Equation 34

Is the service load on module j and must be less than 1. The load factor, jρ , essentially

represents the amount of service time (in seconds) requested of module j per second. t
jλ

is the average total arrival rate of requests on module j and is given by:

1,
k

m
t
j l j

l l j

rλ
= ≠

= ∑

Equation 35

Since the queue in module j will be finite with some length Kj, there may be

periods in which service is completely refused and a module i must retry its request. In

general, the probability that the queue is full, i.e. ()j jP L K≥ , is:

 32

()
()()1

1

0

1 1
1 ,

j

r

jK
j j

j j r
k

j j

r
z

r z
P L K k

r
z

r z

ρ
ρ ρ

ρ ρ

−
−

=

⎛ ⎞⎛ ⎞
⎜ ⎟− − ⎜ ⎟⎜ ⎟+ −⎜ ⎟⎝ ⎠≥ = − Ζ ⎜ ⎟

⎛ ⎞⎜ ⎟
−⎜ ⎟⎜ ⎟⎜ ⎟+ −⎝ ⎠⎝ ⎠

∑

Equation 36

Where Z-1 is the inverse z-transform. This is in general not a computable answer, but an

approximation can be made. If an assumption of 5%j jσ μ= is made, then 400r = . As

r →∞ , the Erlangian distribution approaches an impulse at jμ which is simply a

deterministic service time system. In the case for r large, Equation 36 simplifies to:

() ()
1

0
1 1

j

j

K
Kk

j j j j j
k

P L K ρ ρ ρ
−

=

≥ = − − =∑

Equation 37

Thus the probability that module i is turned away from module j is simply:

1,

j

j
k k

K
m

KBusy Total
j j l j jl

l l j

P r tρ
= ≠

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∑

Equation 38

The waiting time thus needs to be revised to take this into account. If module i

retries module j at an average rate of k

R

i j
λ (which may come from an exponential

distribution), the total service time can be revised as:

()

2

21

2 11

j

k
j

j
j jK

jjt R
ij jKi j

jj

w

σ
ρ μ

μρ
λ μ

ρρ

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠= + +
−−

Equation 39

Thus far a non-prioritized, first-come-first-served queue has been assumed. The

queuing discipline described above, however, does have prioritization. With

prioritization, the average waiting time will change to yet another form. The greatest

difficulty with calculating the wait time for the specific prioritized scheme proposed is

that prioritization with finite storage means that there is the possibility of a service

request getting bumped off the queue once that request is already on it. This probability is

complex to calculate primarily because the distribution of the number of requests in the

 33

queue when a given request arrives plus the number of requests that arrive above a given

request after it arrives is non-trivial. If a deterministic average service time is assumed

(due to an extremely sharp Erlangian service time distribution), a concrete result appears,

however. The average slot a priority p request will enter into the queue will be:

1
p

p
p

N
ρ
ρ

=
−

Equation 40

Where

1,
k k

P m
t c c Total

p c l j jl
c p l l j

r tρ μ λ
= = ≠

= =∑ ∑

Equation 41

And
1,

k

m
t c

c l j
l l j

rλ
= ≠

= ∑ denotes the average arrival rate of requests with priority c. (Equation

41 implicitly assumes that the average processing time of all requests is the same

regardless of priority of the request.) If there are K total spots in the queue, then the

average number of spots left in the queue after an arrival will be 1pK N⎢ ⎥− +⎣ ⎦ . Also, the

average length of time remaining for a request already being processed will simply

be 2
μ . Thus the probability of a request with priority p being bumped will be:

1 1 1 2 3 1... 1 1
2 2 2

K N K NBumped K
pP P P P N

μ μ μ− + + − + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + + −⎢ ⎥⎣ ⎦⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

Equation 42

Where

() ()1

0
1

!
t

p

itn
ptn

i

t
P t e

i
λ λ−

−

=

= − ∑

Equation 43

Is the probability of at least n arrivals from a Poisson arrival process in an interval (0,a).

Putting Equation 42 and Equation 43 together results in:

 34

1 1 1
2

0 0

1
21
!

tp
p

i

t
N pK jj

Bumped
p

j i

j

P e
i

λ μ
λ μ⎢ ⎥+ − ⎛ ⎞ −⎣ ⎦ − +⎜ ⎟

⎝ ⎠

= =

⎛ ⎞⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎜ ⎟= −⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑

Equation 44

From introductory queuing theory, the average waiting time in a prioritized

queuing system with no storage bound is computed recursively from:

()2 2

1

1

1 1

P
t

c c c
p c

P P

p p
c p c p

W
λ σ μ

ρ ρ

=

= = +

+
=
⎛ ⎞⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∑

∑ ∑

Equation 45

Where P is the maximum priority, 2
cσ is the variation of processing times for priority c

requests (also equal to
2

c
r

μ for the Erlangian distribution with parameter r), and lμ is

the mean of processing times for priority c requests. Assuming that the variation and

mean of each type of request is similar, Equation 45 can be simplified to:

()2 2

1

1

1 1

P
t

c
p c

P P
t t

c c
c p c p

W
σ μ λ

μ λ μ λ

=

= = +

+
=
⎛ ⎞⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∑

∑ ∑

Equation 46

The total average wait time for a given module will thus be:

1
1

j

k
j

K

jR p
jKi j

jt
p ij jBumped

p

W

w
P

ρ
λ

ρ
μ

+
−

= +
−

Equation 47

This wait time expression is obviously quite complicated. This level of analysis is

probably unnecessary for the modular system described, but it does allow a way for the

variable t
ijw to be removed from the expression for the power of the modular system.

Simulations will be performed to verify these results, and in general, the simulations will

be used as the benchmark for how the actual operation will occur.

 35

One additional constraint that could be put on determining this wait time is that

the population from which requests occur might be considered finite. Since modules may

make more than one request of other modules, however, the number of requests that

could come in is, strictly speaking, infinite. The wait time expression given in Equation

47 is thus the correct wait time for the system. For sake of completeness, the wait time

for an M/M/1/K queue will be cited. This queue has exponential distributions of inter-

arrival times and service times, a single request processor, and a total of K modules that

may request another module only once each. It is not prioritized. The wait time

expression is:

(),

t
p ij jt

Total j

L
w

m L
μ

λ
= +

−

Equation 48

Where

() ,2

1,

,

1,

1 !

!

ltm
Total j

l l j j

ltm
Total j

l l j j

m
l l

l
L

m
l

l

λ
μ

λ
μ

= ≠

= ≠

⎛ ⎞⎛ ⎞
− ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

∑

Equation 49

In order to show the benefits of the queuing approach as described in Equation 47

over a simpler queue-less approach, another brief analysis must be performed. Assume

that there are no queues in the system at all so that if a module is busy processing another

request, a requesting module must simply retry later. The first thing to note is that priority

scheduling cannot be enforced in this type of queue-less system, and this is an immediate

initial drawback. The probability that a node is busy in this system is simply its traffic

load:
Busy
j jP ρ=

Equation 50

Assume a module retries with an average rate of k

R
ji j

cλ μ= where c is a positive constant

and jμ is the average processing time on module j. The wait time for this system can

then be found to be:

 36

()

2

, 1
1

1 1 1
1 11 , 1

1 2

j
j j

j

t
ij j

j
j j

j

c for c

w c
c c

c c for c
c c

ρ
μ μ

ρ

μ
ρ

μ μ
ρ

⎧
+ ≥⎪ −⎪

⎪⎪ ⎛ ⎞⎛ ⎞⎢ ⎥ ⎢ ⎥= ⎨ +⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎛ ⎞⎡ ⎤ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎪ ⎝ ⎠⎜ ⎟− + + <⎜ ⎟⎢ ⎥ ⎢ ⎥⎪ ⎜ ⎟− ⎢ ⎥ ⎣ ⎦⎝ ⎠⎪ ⎜ ⎟
⎪ ⎝ ⎠⎩

Equation 51

Which for 1
c

s
= , where s is an integer when it is greater than 1, simplifies to:

()

, 1
1

1
, 1

1 2

j j
j

jt
ij

j j
j

j

for s
s

w
s

for s
s

ρ μ
μ

ρ

ρ μ
μ

ρ

⎧ ⎛ ⎞
+ ≤⎪ ⎜ ⎟− ⎝ ⎠⎪= ⎨

+⎪ + >⎪ −⎩

Equation 52

An interesting result of this is that as , 0, 0k

R

i j
s c λ→∞ → → , i.e. as the retry

period becomes very short, is:

0
lim

1 2R
ki j

j jt
ij j

j

w
λ

ρ μ
μ

ρ→
= +

−

Equation 53

This is the shortest possible expected wait time in the queue-less system. This result

makes sense because
2

jμ is the average length of time until the end of a processing

interval if module j was busy when another module originally attempted access.

Comparing Equation 52 with Equation 47, the wait time difference between the

two module interaction policies (prioritized queuing or non-queuing) can be determined.

The question is whether:

1
1 1

j

k
j

k

K

jR p
jKi j

j j R
Bumped i j

p j

W

P

ρ
λ

ρ ρ
λ

ρ

+
−

<
− −

Equation 54

The several factors affecting this inequality are the average processing time of requests,

the deviation in average processing time of requests, the number of priorities used in a

 37

prioritization scheme, the retry interval for requests, the distribution of traffic across

priorities, and the size of the queue in the queuing scheme. The figures below

demonstrate how each one of these factors independently affects which of the two

schemes is better. The graphs show the ratio of non-queuing total wait time to prioritized

queuing total wait time across the different priorities, i.e.:

1
1

1

j

k
j

k

K

jR p
jKi j

j
jBumped

p

j R
ji j

j

W

P

ρ
λ

ρ
μ

ρ
λ μ

ρ

+
−

+
−

+
−

When the graph is above 1, the prioritized queuing scheme is thus a better choice, and

these portions are colored yellow. When the graph is below 1, the non-queuing scheme is

a better choice, and these portions are colored blue. Unless the parameter was being

varied, it was set to the middle of the range given when it was varied. For example, the

processing time was set to .05, 50ms, for all simulations other than that generating Figure

4.

Figure 4: Processing time versus priority for queuing and non-queuing schemes

 38

Figure 5: Processing time deviation versus priority for queing and non-queuing schemes

Figure 6: Priorities used in prioritized scheme versus priority for queing and non-queuing schemes

 39

Figure 7: Request retry time versus priority for queing and non-queuing schemes

Figure 8: Processing time versus priority for different traffic models

 40

Figure 9: Queue size versus priority for queing and non-queuing schemes

 These figures offer a wealth of information about queuing versus non-queuing

schemes in general. They will be interpreted only at a topical level here, but much deeper

understandings are likely to emerge on further analysis. From Figure 4 and Figure 5, it is

apparent that for situations in which requests have a low average processing time, but

significant deviation away from an average, the priority queuing scheme is more

beneficial. For a high performance processing resource taking in various different kinds

of data from multiple resources, this will likely be the situation. In fact, in high traffic

situations, the lower priorities would favor a non-queuing scheme whereas the high

priorities favor a queuing scheme. Figure 6 shows that the priority queuing scheme is

essentially only beneficial if a low number of priority levels are used. In other words,

priority queuing is a good choice only if a very low number of priority levels (e.g. 3) are

used. Figure 7 shows that as retry time increases lower average wait times will be

experienced by requests using the queuing scheme, and this result is fairly consistent

 41

across priority level. Figure 8 shows that as traffic distribution across priority levels

becomes imbalanced towards lower priority requests, the priority queuing system

becomes a more favorable scheme. In other words, if the number of high priority requests

is significantly smaller than the number of low priority requests, and high priorities are

used sparingly, the queuing scheme becomes more favorable. Finally, Figure 9 shows

that the size of the queue in a queuing scheme generally has no major effect on whether

to choose a queuing or non-queuing scheme except for low priorities and low queue

sizes. For low priorities and low queue sizes, the non-queuing scheme is favored. This is

likely a result of low priority requests being bumped more often for low queue sizes.

Other than Figure 4 and Figure 5 which offer support towards using the priority queuing

scheme based on the expected usage of node resources, the other simulations simply

provide guidelines as to how best to utilize the priority queuing scheme assuming it is in

place. Thus for implementation purposes, the priority queuing system will be chosen.

One other concern that Equation 54 raises is that evidently as 1ρ → or

1Bumped
pP → , low priority requests will statistically never be serviced. This is only the

case if a certain percentage of the requests are high priority and the queue size is small,

however. Specifically, if t t
p aλ μ λ μ= , i.e. if higher priority traffic makes up 100a% of

the total traffic, the queue size K must be greater than a threshold value, depending on the

total traffic ρ , in order to probabilistically ensure some minimum Bumped
pP . The

simulation results shown below demonstrate how these minimum supporting queue sizes,

K, vary with a , ρ , and Bumped
pP .

 42

Figure 10: Minimum Supporting Queue Sizes for Ensuring a Maximum Probability of Bumping

As expected, as Bumped
pP is allowed to increase, the minimum required queue size

for a given a , ρ combination decreases. Also as expected, as either a or ρ increases

while holding the other parameters constant, the required minimum queue size increases

as well. The simulations reveal that the minimum required queue size increases very

sharply as 1a → and 1ρ → . They also reveal that a and ρ are essentially symmetric

parameters. In other words, if specific values of a and ρ are interchanged with each

other, the required queue size, K, does not change. In fact, Equation 44 demonstrates that

if the product aρ is a constant, no matter what the explicit values of a or ρ , the queue

size required will be the same. The required queue size thus depends only on the amount

of traffic that is at a higher priority than a specific request, not on the total traffic into the

module. The required queue size such that requests of all priorities will have less than a

specific Bumped
pP is simply the case when 1a → in Figure 10.

 43

 Figure 10 can help choose the appropriate queue size once a specific a , ρ , and
Bumped

pP are specified. A reasonable queue size might be about 10 giving .75aρ = for

10%Bumped
pP = , but the specific choice might depend on empirical testing since many of

the effects of queue size will be transition effects, but all of the equations are developed

under steady-state operating assumptions. Additionally, affects that will occur in the

specific implementation of the modular architecture may not be captured by the

somewhat simplified queuing model developed. (Specifically, although the population

from which requests are generated is not strictly finite, since modules may make multiple

requests, it will likely depend in practice on the number of modules in the system and

each of their bandwidths. A finite request population will serve to reduce the necessary

queue size in general.)

 Revisiting Equation 54, and making the assumptions that 10%Bumped
pP < and

10K > , the equation can be simplified to an approximate requirement on ρ :

()1k

p
j

R Bumped p
p ji j

W

P W
ρ

λ
>

− +

Equation 55

In other words, if the traffic, ρ , is above a certain threshold, the prioritized queuing

system will provide lower wait times than the non-queuing system. As p
jW gets smaller,

i.e. as the average wait time in the queue (queuing time) for a priority p request gets

smaller, Equation 55 dictates that a lower traffic, ρ , is necessary such that the prioritized

queuing system generates lower waiting times than the non-queuing system.

Contrastingly, as p
jW gets larger, Equation 55 dictates that a larger traffic, ρ , is

necessary before the queuing system becomes a lower waiting time system than the non-

queuing system. Also, as k

R

i j
λ increases or Bumped

pP decreases, the threshold for ρ

decreases. In other words, for high priority traffic, the queuing system will provide lower

wait times than the non-queuing system for most traffic, but for lower priority traffic, the

queuing system will provide higher wait times than the non-queuing system unless the

traffic is very high. Also as the retry-frequency increases or the probability of being

bumped off the prioritized queue decreases, lower and lower levels of traffic will still

 44

favor implementing the prioritized queuing system over the non-queuing system. There is

thus a tradeoff between being able to ensure prioritized requests and having balanced

wait times across all types of requests.

Inter-module request rate, sample rate, and event rate:

The system as designed is meant to be completely event driven. Although the

architecture can be adapted to other, data collection type, activities, the power analysis

shows that lower power can be achieved with a centralized system for high event

(sample) rates. (A data collection system could be morphed into an event detection

system by considering an event to occur when incoming data deviated significantly from

a previous measurement.) The inter-module request rates, ki j
r , will depend on a few

module-specific parameters: environmental event rate, ije , the sensing sample rate, k

s

i
r ,

the probability of detection, k

d

i j
p , and the probability of false alarm, k

f

i j
p . (These

parameters assume that there is only one sensor per module, there can only be one sample

rate of the sensor, but there can be multiple ways the collected data is processed in order

to determine different types of events which will be reported to different modules.) The

sample rate, probability of detection, and probability of false alarm are all dependent on

the operational mode, k, of the module. The power consumed by a module to perform an

event detection calculation is assumed to increase as the probability of detection

increases, the probability of false alarm decreases, and the sensing sample rate increases.

A simple derivation is needed in order to determine the relationship between ki j
r ,

ije , k

s

i
r , k

d

i j
p , and k

f

i j
p . Define an interval of length T. Let Mk be the total number of

samples in the interval, Eij be the total number of events in the interval which may cause

module i to request service of module j, N be the total number of non-events, and ki j
R be

the total number of requests generated to module j by module i. Evidently:

k ijM E N= +

Equation 56

Also, the number of requests, ki j
R , can be calculated simply as:

 45

k k k

d f
iji j i j i j

R p E p N= +

Equation 57

Combining Equation 56 and Equation 57, dividing by the interval T, and rearranging

gives:

()k k k k

d f s
ij iji j i j i j i

r p e p r e= + −

Equation 58

Since k

s
iji

r e≥ , the sample rate is greater than or equal to the detected event rate, the

request rate will always be positive. Equation 58 demonstrates that if the sensing sample

rate increases, the request rate will increase also due to false alarm requests. ki j
r , k

s

i
r , and

k

f

i j
p can all be measured by a module, where the probability of false alarm use module j’s

processing result as absolute determination of whether an event occurred or not. Given a

receiver operating characteristic (ROC) for the relationship between k

d

i j
p and k

f

i j
p ,

Equation 58 gives a direct method of calculating the true event rate, ije , into the system.

k k k

k k

f s

i j i j i
ij d f

i j i j

r p r
e

p p

−
=

−

Equation 59

(In general k k

d f

i j i j
p p≥ , if 0k

f

i j
p = then 0k

d

i j
p = , and if 1k

d

i j
p = then 1k

f

i j
p = . An

example ROC is given in Figure 11 below. As the decision regions for events and non-

events overlap more and more, i.e. as the signal to noise ratio for a particular sensed

signal becomes large, the ROC becomes k k

d f

i j i j
p p= . This situation implies that any signal

entering the system can be defined as an event, and thus ije →∞ as shown by Equation

59. The verification of events by module j will still leave some total probability of false

alarm for the system, but Equation 58 is the best guess the system can generate for ije .)

 46

Figure 11: Example Receiver Operating Characteristic

 In order to dynamically adjust the mode of the module, a relationship must be

established as to how to change k

s

i
r as ije changes. In other words, what algorithm will be

used to ensure that k

s
iji

r be≥ , the sample rate is some multiple of the event rate. One very

simply algorithm is as follows:

()()11 max min
min , max ,

n n nn

s s s
b dij ij ijk k ki i i

e e er r r
−+

⎛ ⎞⎛ ⎞= + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

Equation 60

nije is the estimated event rate and is equal to the number of events per sample from the

last m samples taken, and minimum and maximum limits on the sample rate are applied.

The relationship between d in Equation 60 and the number of samples, m, in the moving

average
nije was determined experimentally with simulations in order to give the

minimum cumulative error, see Figure 12 (d=5, b=2,
max

2.5s
ki

r = ,
min

.5s
ki

r =), Figure

13, and Figure 14. In general as d gets smaller, and thus the number of samples in the

moving average gets smaller, the response of the system to changes in the environment

gets faster. As d gets smaller, however, the system also gets more sensitive to spurious

events and random changes in the event rate. The determination of the d to use should be

made empirically depending on the type of events observed. b should also be determined

per application since a high b may use undue amounts of processing power, but a low b

risks missing events.

 47

Figure 12: Sample Rate Tracking the Event Rate

Figure 13: Cummulative error versus averaging window size, m, and control "derivative"
coefficient, d, for sample input

 48

Figure 14: Optimal control “derivative” coefficients, d, for varying averaging window size, m, with
regression analysis

Minimization of total power consumption:

 The optimal control of the node has the singular goal of using the least amount of

power necessary while still accomplishing its given mission. Since the node has no

central controller, however, the optimal control must be pushed down to decisions on the

individual modules. The individual modules seek to minimize the amount of power they

cause the system to consume which includes their own power, the power used to transact

their requests to other modules, and the power used by other modules to process their

requests. This power can be given by:

()k k k k k

m
n p trans

i i i j ji ji i j
j i

P p r t p j
≠

= + +∑

Equation 61

 49

where k

trans

i j
j is the amount of power consumed in transacting the request both by the

modules involved and by the media that transacts the request. For sensor modules

operating on nodes with a general purpose processor module, k

trans

i j
j will simply be:

()k

k

q

i jtrans t B t
ij ij jii j

ij

d
j p p p

B
= + +

Equation 62

If there is no local general purpose processor and the data must be shipped to

another node for processing, however, k

trans

i j
j is given by:

() _ _k

k

q

i jtrans t B t wireless comms wireless comms
ij ij jii j

ij

d
j p p p j j

B
= + + + ≈

Equation 63

since wireless communication is generally consumes vastly more power than any

onboard computation or bus communication. As given in [1], the communications power

is given by:

()_wireless comms
TX OUT TX tx st RX rx st

L L
j P P P T P T

R R−> −>
⎛ ⎞= + + + +⎜ ⎟
⎝ ⎠

Equation 64

for a single slot, single packet transmission. L is the length of a packet in bits, R is the

baud rate of the radios, PTX/RX is the power consumed by the transmitter/receiver, POUT is

the output power of the transmitter, and Ttx/rx->st is the start-up time of the

transmitter/receiver.

 All of the variables and sub-variables of Equation 61 have now been tied to

fundamental measurable parameters of the system except for k

n

i
p . (The fundamental

measurable parameters can either be measured off-line as in the case of B
ijp , for example,

or they may be controllable parameters of the system, such as k

s

i
r .) The two dynamically

adjustable parameters on the sensor modules of the system are k

s

i
r and k

f

i j
p , and while the

power consumed by other modules is already related to these via ki j
r in Equation 58, k

n

i
p

 50

has not yet been related to these parameters to form the controllable balance the optimal

power can be derived from.

A definitive functional form to relate k

n

i
p to k

s

i
r and k

f

i j
p is not completely

forthcoming. A reasonable assumption is that there will be some amount of power

consumed by a module independent of either k

s

i
r or k

f

i j
p , and then other components of

the power that will be. This provides a first pass relationship of

(),k k k k

n Base s f

i i i i j
p P f r p= +

Equation 65

where k

Base

i
P is the measurable base power of the module independent of k

s

i
r and k

f

i j
p .

Another reasonable assumption is that the dependence of k

n

i
p on k

s

i
r will be linear. This is

likely because if a fixed amount of processing is required per collected sample, and if

there is a fixed average power per instruction, then as additional samples are processed in

the same time period, the increase in processing instructions will be proportional and thus

the increase in power will be proportional as well.

As for k

f

i j
p , a relationship is less obvious. Firstly, if the complexity of an

algorithm increases, the number of instructions the algorithm requires to execute will also

increase, but the link between complexity of an algorithm and the k

f

i j
p it will provide is

difficult to firmly establish. For example, how does one compare the complexity of a

simple amplitude threshold in the time domain to a 16 point DFT in the frequency

domain? The k

f

i j
p in these two cases depend strongly on the type of noise in the

surrounding environment and also the type of signal that is trying to be detected. Even

attempting to quantify the general difference in k

f

i j
p between a 16 point DFT and a 256

point DFT is difficult without knowing more about the specific problem and algorithm

used to detect a target. In general, k

f

i j
p is usually calculated using Monte Carlo methods

on simulated inputs, and no analytic analyses are possible.

Since there is no analytic analysis possible, a reasonably upper-bound assumption

for the dependence of k

n

i
p on k

f

i j
p will be given. Assume an algorithm with processing

 51

time ()2O n , where n corresponds to some sort of “resolution” of the algorithm. (For a 16

point DFT, the “resolution” would be 16 since the analysis is broken into 16 discrete

frequencies. A radix-2 n-point DFT is actually better with a ()()lgO n n in processing

time.) Furthermore, assume that as the resolution is doubled, the probability of false

alarm only halves. Generally, as resolution is doubled, the probability of false alarm

decreases by well more than half, so this is simply a reasonable upper bound. Thus,

1
k

f

i j
p

n
∝ . This gives an overall inverse quadratic relationship between k

n

i
p and k

f

i j
p in a

worst case. Since the justification of the linear relationship between k

n

i
p and k

s

i
r involves

the number of instructions executed per sample, and the relationship of k

n

i
p and k

f

i j
p is

derived through this instructions per sample ratio, a reasonable assumption is that k

s

i
r and

k

f

i j
p will be together in a single term in the function relating them to k

n

i
p . Thus

()2
1;

k k k

k

m
ijn Base s

i i i
fj j i

i j

c
p P r

p= ≠

= + ∑

Equation 66

where ijc is a constant of proportionality.

 Putting together Equation 58, Equation 61, and Equation 66, the power a module

must seek to minimize will be:

()
()()()2

1; 1,
k k k k k k k k

k

m m
ijBase s d f s p trans

i ij iji i i j i j i ji ji i j
fj j i j j i

i j

c
P P r p e p r e t p j

p= ≠ = ≠

= + + + − +∑ ∑

Equation 67

In order to place a lower bound on k

s

i
r , consider that the sample rate should be fast

enough as to catch any event. In other words, if events have a minimum time duration,

the sample rate should be statically minimum where it is at least the inverse of this

duration time. Also, if a module detects an event every time it senses its environment, it

may very well be missing events in between samples. Thus k

s

i
r should be dynamically

adjusted above the static minimum so that it samples its environment say at least some

 52

constant, b, times as frequently as it detects events, i.e. k

s
iji

r be≥ . The maximum k

s

i
r may

go is simply equal to the maximum samples per second throughput of the algorithm used

to process the samples. The analysis of how to change k

s

i
r in relation to ije has already

been determined above. The restriction on k

f

i j
p is simply 0 1k

f

i j
p≤ ≤ .

 From Equation 67, it is apparent that minimizing k

s

i
r is always preferable since it

only appears linearly. Thus k

s

i
r is chosen in relation to the types of events to be detected,

not in relation to power consumption considerations. Also, each k

f

i j
p may be solved for

independently since they appear only in terms with k

s

i
r and not with other k

f

i j
p ’s. Taking

the derivative of Equation 67, setting equal to 0, and solving for k

f

i j
p gives:

()()3

2 k

k

k k k k

s
ijf i

i j s p trans
iji ji ji i j

r c
p

r e t p j
=

− +

Equation 68

Equation 68 demonstrates a few interesting results. It shows that as the power of

computing on the hierarchical resource becomes greater, the allowable probability of

false alarm on individual modules gets smaller. Interestingly, this result holds no matter

what the base, non-scalable power consumption of the individual modules themselves,

only in relation to how “expensive” it is to use the hierarchical resource. In order to

conserve most power, if a hierarchical resource is “expensive”, its use should be

protected more, but if it is “inexpensive”, its use need not be protected as much. Also, for

a constant environmental event rate, as a module’s sample rate increases, the probability

of false alarm should decrease, but should decrease asymptotically to a minimum. If more

samples are taken, in other words, they should be processed with a lower probability of

false alarm algorithm.

 If the dependence of k

n

i
p on k

f

i j
p is different than inverse square, but still inverse

and monotonic, these general dependency characteristics will not change, and only the

amount to which k

n

i
p is affected by a parameter variation will change. Figure 15 below

shows how k

n

i
p changes with k

f

i j
p and k

s

i
r for inverse, inverse square, and inverse cube

 53

relationships between k

n

i
p and k

f

i j
p . Parameters for these graphs were chosen to be

50k

Base

i
P mW= , 61 10ijc x −= , .9k

d

i j
p = , ije =1, 50kji

t ms= , 500k

p

ji
p mW= , and

250k

trans

i j
j uJ= .

Figure 15: Power Versus Sample Rate and Probability of False Alarm

Since the choice of k

f

i j
p will be discrete as opposed to continuous, Figure 15 shows that

choosing the discrete k

f

i j
p above the optimal k

f

i j
p will give a lower total power than

choosing the discrete k

f

i j
p below the optimal k

f

i j
p .

Optimal Module On-Time When Modules Require Transition Time and Power:

 One other method of decentralized control possible in the system is that modules

should power themselves down when they are not in use. If modules require some

amount of transition time to power on and off, however, a module would want to remain

 54

on if another request will be made shortly in order to conserve the transitioning power.

To find the optimal on-time, the following parameter definitions are necessary.
o
it Total time module i remains on to process

and wait for more requests when its queue

is empty. ,k

o
i ij

t t j≥ ∀ .

n
ij Total power consumed by module i when

transitioning from off to on.
f

ij Total power consumed by module i when

transitioning from on to off.

Table 5: Module Transition Power Parameters

Assume requests occur on the following timeline:

Figure 16: Timeline of Requests

As previously defined in Equation 25 and Equation 26, ,
t
Total jλ is the aggregate inter-

arrival rate of requests into module j from other modules, and () ,
,;

t
Total jxt

Total jM x e λλ λ −= is

the distribution of inter-arrival times, x. Let the power associated with a request is the

total power consumed while processing a request, plus the power consumed by remaining

on after the request is processed, plus any transitioning power generated by the request.

Consider the power associated with Request 2, P:

2

1
2 2

2

1
2 2

,

,

,

,

k

k

k

k

o n f p o
i i i iijo

i o n p
i i ij

o f p o
i i iijo

i o p
i ij

if x t j j p t
if x t

if x t j p x
P

if x t j p t
if x t

if x t p x

⎧ ⎧ ≥ + +⎪⎪ ≥ ⎨⎪ < +⎪⎪ ⎩= ⎨
⎧ ≥ +⎪ ⎪<⎪ ⎨

<⎪ ⎪⎩⎩

Equation 69

Since the exponential distribution is memory-less and hence x1 and x2 are independent:

 55

() () ,
1 2

o t
i Total ito o

i iP x t P x t e λ−≥ = ≥ =

Equation 70

and

() () ,
1 2 1

o t
i Total ito o

i iP x t P x t e λ−< = < = −

Equation 71

Substituting these probabilities into Equation 69, and noting that the average of the

exponential distribution is
,

1
t
Total iλ

, the average power consumed by event two, or any

other event, will be:

(), ,

,

1
o t o tk
i Total i i Total i

k

p

t tijn f p o
i i i tij

Total i

p
P e j j p t eλ λ

λ
−

⎛ ⎞
⎜ ⎟= + + + −
⎜ ⎟
⎝ ⎠

Equation 72

Graphing Equation 72 for 1
2

n f
i ij j+ = , 1k

p

ij
p = , and , 1t

Total iλ = gives Figure 17 below.

Figure 17: Power versus turn-off time, Example 1

 56

Notice that for these parameters, the minimum event power is given as at a turn off time

of 0. In other words, for these parameters, modules should turn off as soon as they can

after processing a request. Graphing Equation 72 for 3
2

n f
i ij j+ = , 1k

p

ij
p = , and , 1t

Total iλ =

gives Figure 18 below.

Figure 18: Power versus turn-off time, Example 2

As can be seen, for these parameters, the minimum power will be achieved by leaving the

module on continuously.

 In general, for 0o
it ≥ , the graph of P will either have a positive bump and then

monotonically decrease, or will simply monotonically decrease. Thus, the minimum

value of P will either occur for 0o
it = or o

it →∞ (or both). From Equation 72, it can be

found that
0i

o

n f
i it

P j j
=
= + and

,

k

i
o

p

ij

tt
Total i

p
P

λ→∞
= . Given that o

it must be greater than some

 57

minimum finite processing time, i i
o pt t= , a module will thus either want to turn off

immediately if ()
,

k

p

iji
p t

Total i

p
P t

λ
≤ or remain on indefinitely.

Dynamic estimation of aggregate inter-module request rate:

The last thing needed to actually employ this time-out turn-off technique is to

estimate ,
t
Total iλ on the individual modules. This will require keeping track of the

difference between arrival times, but a simple timer can accomplish this easily. The same

sort of moving average technique employed above for ije is not necessarily appropriate

because during long periods of no requests, ,
t
Total iλ will simply grow smaller and smaller,

and when a request does eventually occur, the turn-off time, o
it , will be extremely long

and inappropriate. The geometric average is less susceptible to extremely high outliers,

and thus this average is likely a better choice. However, the arithmetic average if outliers

are discounted is really what ,
t
Total iλ should be, so a scale factor must be assigned to the

geometric average in order to compensate for this difference. The arithmetic aggregate

average can be computed from:

1 11n n n

n
a a s

n+ += +
+

Equation 73

Where an is the nth estimate of the arithmetic average and sn is the sth sample taken. The

scaled geometric average can be computed from:

() ()
1

1 1
1 1

1 n

n n
n n ng cg s

c
+ +

+ +=

Equation 74

Where gn is the nth estimate of the geometric average and c is the scaling factor. c is

found by taking the geometric average of several independent random variables, and for

the case of exponentially distributed random variables (as the inter-arrival times are

assumed to be), .561c ≈ . If the samples are taken to be the amount of time between

 58

request arrivals, the average of these times can be computed by one of the averaging

methods shown, and then ,
t
Total iλ will simply be the reciprocal of this average.

 Using Equation 73 and Equation 74, Figure 19 below was generated. Figure 19

shows three different simulations for which an environmental event causes 5, 50, or 500

inter-module request rates. In other words, when an event occurs, sensor modules that

detect the event will request verification from another module 5, 50, or 500 times. These

numbers can also be interpreted as the duration of the event in units of inter-module

requests generated. The average of the exponentially distributed inter-module requests

was set at 10 time units, and periods of no events were assumed to be 1000 time units

long. The final arithmetic and scaled geometric averages are shown in the titles of each

graph.

Figure 19: Arithmetic and Geometric Running Averages

 As can be seen, the scaled geometric average is far less sensitive to long inter-

arrival times even when only a few requests are generated for each event. Another way to

look at this insensitivity is that it takes far fewer requests per event for the geometric

 59

average to converge than for the arithmetic average as evidenced by Figure 20 below.

Simulations also show that increasing the time between events [1000 time units] also had

little effect on the geometric average, but significant effect on the arithmetic average.

Figure 20: Convergence of Arithmetic and Geometric Averages in Requests Per Event

These simulations show that using the scaled geometric running average from Equation

74 will be the better of these two choices for generating estimates of ,
t
Total iλ on each

module. The estimation of ,
t
Total iλ can also be derived from a moving average and outlying

inter-arrival request times, signifying that no events occurred for a long time, may also be

simply discarded and not included in the average if a reasonable discarding strategy is

developed.

Module mode changing based on system configuration:

 Modules will change modes also depending on the configuration of the system,

i.e. the other types of modules comprising the node. (Refer to the “Proposed Node

Architecture” section for configuration definitions.) If the system configuration changes

from C2 to M2, for example, one would not expect an S to continue reporting to a no

longer existent GPP. Following are descriptions of mode changes that will occur for each

type of module.

S Modules:

 S’s may occur in D1, M2, C1, C2, or C3 nodes. They collect data from attached

sensors and analyze this data with a simple algorithm (e.g. threshold detection, etc…) for

 60

possible events. If there is an event, the S logs the data that caused the event and will then

seek to send the data to a GPP for event verification.

If the S is in a D1 (PS+S) node, it will simply log data without attempting to send

it to any other modules, since no others exist. They may log either all of their data, or

only that data in which they detect an event to have possibly occurred. In this

configuration, S modules will use the highest level algorithm they have for event

detection (e.g. they would choose frequency analysis over simply threshold detection).

The reason for this action is in case the node is ever picked up, this un-communicated

data collection can be analyzed post facto.

 If an S is in an M2 (PS+WNC+S) node, any detected events will be sent to the

WNC which will send the data to a GPP on another node for verification. In this way, an

S’s data may be used by the network as a whole even if no GPP exists on board the same

node as the S. In this configuration, the S’s will still log their own data and events and

expect to hear responses from a GPP on another node if that GPP processes its data.

 If an S is in a C1 (PS+WNC+S1+S2+(S…)) node, it will operate the same as in an

M2 node. The reason for this is that even though the system configuration is complex,

there is no GPP on board the node to do any processing of sensor data. Essentially, the

primary difference between M2 and C1 is that there is potentially more wireless traffic out

of a C1 node than an M2 node.

 If an S is in a C2 (PS+WNC+GPP+S+(S…)) node, it will send any preliminary

events and sensor data to its local GPP. It sends the data to a GPP for further analysis and

verification of the event. It will still log its own data, but simply does not need to use the

WNC at all to communicate with GPP’s on other nodes.

 If an S is in C3 (PS+WNC+GPP1+GPP2+(S,GPP…)), it will send its events to

whichever is the appropriate GPP or GPP’s. The GPP’s will determine between

themselves how they partition the tasks of the system and tell each S from which they

require data to report to them if an event occurs. Thus an S in this configuration will need

a list containing the GPP’s to which it needs to report each event it detects.

 61

GPP Modules:

GPP’s may occur in D2, M3, C2, or C3 nodes. The GPP’s are essentially the

“application” modules in the sense that they are the primary components that need to be

reprogrammed from application to application. They are the brain of the system and can

combine and verify data from the S’s (from their own and possibly other nodes), as well

as report to other nodes, collaborate with other nodes, and report to a user. GPP’s will

likely be mostly event driven in the sense that they remain dormant unless stimulated by

an outside stimulus from an S or a request from another node. In other words, they will

be mostly non-self-stimulating for simple applications, but they are not restricted to only

this type of operation. GPP’s are the most abstractly defined and flexible of all the

module types.

 If a GPP is in a D2 (PS+GPP) node, it will have nothing to do and should shut

down completely. Without any stimuli from sensors, the GPP’s will have no data to

compute on, and are therefore useless. The module bus connectors should remain alert in

case another module is attached, but otherwise, the entire processor that the module

supports can be powered down.

 If a GPP is in an M3 (PS+WNC+GPP) node, it can take part in distributed

network computations via the WNC, verify sensor events from M2 or C1 nodes, and

operate in its normal application supporting mode.

 If a GPP is in a C2 (PS+WNC+GPP+S+(S…)) node, it will operate essentially the

same as if it is in M3 just with potentially more request traffic coming in from the

attached S modules.

 If a GPP is in a C3 (PS+WNC+GPP1+GPP2+(S,GPP…)) node, it will have to

collaborate with the S modules that it requires input from in order to coordinate node

operations with the other GPP’s. It may also communicate with the other GPP’s in the

system, and carry on the normal GPP operations of communicating through the WNC

with other nodes.

WNC Modules:

 WNC’s may occur in M1, M2, M3, C1, C2, and C3 nodes. Their operation will be

mostly the same in any of these configurations as they will always route network traffic

 62

and pass messages between modules on disparate nodes. They are essentially meant to be

a way to “wire together” all of the modules in the whole system. There will be slight

differences in operational necessities based on the particular potential configurations,

however, so slightly more configuration-specific detail is required.

 If a WNC is in an M1 (PS+WNC) node, it simply routes information throughout

the network. There is no data sink or source on the node, and so no interaction will occur

with the WNC except by other external WNC’s. In this case, the WNC’s controller will

simply monitor the system bus in case another module is attached.

 If a WNC is in an M2 (PS+WNC+S) node, it will receive messages from the S and

be required to understand what to do with them. In this case, the WNC will send the

event data from the S to all of the neighboring nodes with a return address of itself

attached. This requires the WNC to know who its neighboring nodes are and their system

configurations. If a node with a GPP receives this transmission, it will respond to the

originating WNC saying that it will process the request. The WNC will send a

cancellation of the processing request to any GPP enabled node that responds except for

the first one so that only one GPP will process the request. (It may also send a broadcast

cancellation of the request [with the servicing node address, so that the servicing node

does not cancel the request] to all neighboring nodes exactly as the original request was

sent.) In this way, when the S checks up on its request if it has not heard a response or

acceptance of the request, it can establish a single GPP to which to address this check. If

a node without a GPP receives the WNC’s transmission, it will simply route the

information along to all of its neighbors. These requests will have to be uniquely

identified, so that routing loops don’t occur, and so they can be intelligently stopped. In

this configuration, the WNC is thus supporting simple distributed network computation.

 If a WNC is in an M3 (PS+WNC+GPP) node, it will receive messages for and

transmit messages from the attached GPP. The GPP will be required to control which

other nodes it wishes to communicate with and why. This is therefore an application level

issue that will have to be considered each time a wireless sensor network application is

built. If any distributed network computation between the GPP’s on different nodes is to

occur, the GPP’s will have to organize it themselves. The WNC will also route all

information not intended for its attached modules without disturbing them.

 63

 If a WNC is in a C1 (PS+WNC+S1+S2+(S…)) node, it will operate exactly as it

does in M2. The only difference is that it may be required to handle more traffic and

maintain more state when waiting for a network GPP to respond saying it will process a

given S’s request.

 If a WNC is in a C2 (PS+WNC+GPP+S+(S…)) node, the attached GPP will

control the interaction of the node with other nodes. As in M3, the communication is an

application level issue. Again, the WNC will route all information not intended for its

attached modules.

 If a WNC is in a C3 (PS+WNC+GPP1+GPP2+(S,GPP…)) node, it will operate

much like in the C2 case. It is left up to the multiple collocated GPP’s to sort incoming

traffic between themselves so tasks are not duplicated. Any of the GPP’s may use the

WNC to communicate with other nodes. The particular nodes that the WNC

communicates with will be controlled by the GPP’s, and again the WNC will route all

traffic on its own.

PS Modules:

 PS’s will occur in all configurations. They are simply the power supplies to the

system, and so must be universal node components. In the first prototype, they are

unintelligent modules that simply deliver power to the system, but in possible future

systems, their power delivery may be controlled in a more complex and fine-grained

manner. They may also separate power buses to individual modules in the future which

could allow them to completely power down whole sections of the node. Since these

changes are unlikely to occur in the short term, nothing more will be described about the

PS’s.

 64

IMPLEMENTATION:

SOFTWARE STRUCTURE:

In the MASS implementation communications bus, four of the seven OSI layers

are used. A physical (Phy) layer handles each byte to be transmitted without knowing

what the bytes mean. The physical layer is often given a buffer containing one complete

message and the necessary information to send the message (destination, length of

message, etc.). One layer higher, the data link (Link) layer takes less generic information

(a destination, source, length, data, etc.) and converts it to a format the physical layer can

understand. This may involve changing 16-bit words to bytes, fixing byte ordering,

encoding data, adding a checksum, or a variety of other tasks. Still, the data link layer

doesn’t know what exactly it is transmitting. Above the data link layer, the networking

(Net) layer knows how to handle specific types of data. For example, it may know that

one type of data should be sent to device A on the bus, while all other types of data go to

device B. Additionally, the networking layer may be aware of what device A is and what

it does. It may also know that to devices A and B, it is device C. The final layer, the

transport (Transport) layer, is responsible for fragmenting and reassembling messages

that are too large to be sent monolithically. It will take large messages, break them up

into packets, and add information in a header as to how to reassemble the packets in the

destination module. Taken as a whole, this modular structure to the networking layers

allows relatively simple substitutions of different data formats and busses without

changing the high-level operation of the devices. It also requires each layer to be

successively more intelligent and isolates each layer from the others.

In a typical example, a transport layer may be instructed to transmit a piece of

sensor data. The transport layer sections the data into appropriately sized blocks and adds

information to each block as to its position in the overall data. Each fragment is then

given successively to the networking layer which is told the amount of data and what the

data represents. The networking layer must then decide what to do with the data. It may,

for example, know that this type of data should be sent to device A and that its own bus

designation is device C. The networking layer sends the data, the length of the data, the

source (device C), and the destination (device A) to the data link layer. The data link

 65

layer packages the source (C), the data, and the length of the data into a new set of data

(and therefore a new amount of data), then encodes and adds a checksum to the new data.

The new data is then sent to the physical layer. The physical layer receives only a

destination (A), a length, and a byte array of data which it transmits to the destination.

Device A will process the data in the reverse order. If device A receives the data, but the

data has been corrupted, the data link layer on device A will recognize the data as corrupt

and discard it. In order to ensure reliable end to end communication, the networking layer

on device C would have to wait for a response from the networking layer on device A. If

A does not respond, C would need to attempt to send the data again.

 Above the Transport layer sits the application (App) layer. The App layer is

composed of three major functional units, the Request Processor (RP), Local Event

Handler (LEH), and Mode Changer. The RP processes requests sent to the current

module by other modules. The LEH makes requests of other modules on behalf of the

user. Finally the mode changer tracks the operation of the RP and LEH and dynamically

configures the module for maximum efficiency. The programmer (or user) can interface

with MASS through a simple API that abstracts away the complications of

communicating with other modules. Figure 21 graphically depicts the software structure.

Figure 21: Layered software structure

 66

SIMULATION:

 A simulation of the architecture was undergone following the mathematical

analysis in order to develop an appropriate software structure for the decentralized

system. Since the simulation was built using a high level simulation package, ideas could

be tested quickly without worry of wasted time down dead-end paths that could have

occurred if the simulation stage was skipped. The simulation was built as a large finite

state machine with both parallel and serial state transitions. A method of dynamic self-

addressing was developed and tested during the simulations, as well as the priority queue

based method of requests and responses throughout the node. A description of the

simulation details will not be undertaken because the following section describing the

final software implementation supercedes it. Figure 22 and Figure 23 show screen shots

from the simulation.

Figure 22: Example meta-state in the simulation physical layer

 67

Figure 23: Top level view of the simulation system

HARDWARE AND SOFTWARE PROTOTYPE:

Hardware:

The first iteration of MASS was implemented on an 8051 prototyping board

shown in Figure 24 below. The Keil uVision-II 8051 compiler was used to generate the

code for the microcontroller. The software was developed on uC/OS-II. The 8051

prototyping boards are capable of stacking together on a common 80-pin bus. The

modules were configured to share an I2C bus for communication. As of this writing,

MASS has also been ported to an ARM7 platform, but additional testing is required.

 68

Figure 24: Prototyping board used for implementation

The best available bus for this hardware was the onboard I2C bus. I2C is a multi-

drop, multi-master bus supporting bit rates of 100kbps or higher. In the case of this

hardware, 100kbps was used. Unfortunately, the 8051 links the I2C bit rate to the internal

clock of the microprocessor, which means the processor cannot be completely asleep

while still remaining able to respond to bus activity. This is further complicated by the

clock stretching features of the I2C bus. If the I2C hardware detects bus communication

that is too fast for it to handle, it effectively slows down the entire bus to a manageable

speed. In the case of the 8051, when any processor on the bus was asleep, the entire bus

would slow down to about 8kbps.

Messaging in MASS:

Communication between modules in MASS is accomplished via messages with a

pre-determined structure and finite set of types. Messages in MASS have the following

structure:
struct Message {

INT8U to;
INT8U from;
INT8U flags;
INT8S prio;
INT8U msgID;
INT8U cmd;
INT16U dataLength;
INT8U* dataPtr;};

 69

The to and from fields are the destination and source of the message, respectively. The

flags field is used for fragmentation, the prio field denotes the priority of the

message if it is relevant, msgID serves to uniquely identify a message within a module,

cmd indicates the type of the message, and dataLength specifies the amount of data

contained in the data pointer, dataPtr.

Message Types:

There are 13 different message types in MASS which fall into four broad classes.

• Class 1 messages: IDBroadcast or IDContention messages that are use for

address determination and network stabilization between modules.

• Class 2 messages: messages which can carry significant data payloads, such as

ProcResult and FullProcReq.

• Class 3 messages: single-stage processing request and response messages,

including ProcReq, ProcReqAccept, ReqInQ, ReqProcessing, QFull,

ReqBump, and ChangePriority.

• Class 4 messages: two-stage processing request and response messages, including

ReqForFullReq and FullReqAccept. ProcResultAck also falls in this

class even though it is common to single and dual-stage processing requests.

The purpose and effect of each of these message types is discussed in detail below:

• IDBroadcast: A broadcast message identifying a module to all other modules in

the node. This message contains the module’s address and type information.

• IDContention: A broadcast message used to contest a module that has just

identified itself with an address that is already in use.

• ProcReq (Processing Request): This message is used by one module (the

requestee) to request processing time on another module (requested module). This

message is only a stub; it does not contain the actual data.

• ProcReqAccept (Processing Request Accept): Sent in response to a Processing

Request, this message indicates that the processing request was accepted.

 70

• ReqInQ (Request in Queue): Sent in response to a Processing Request, this

message indicates that the processing request had already been received and

accepted.

• ReqProcessing (Request Processing): Sent in response to a Processing Request,

this message indicates that the processing request was already accepted and is

currently being processed.

• QFull (Queue Full): Sent in response to a Processing Request, this message

indicates that the processing request was denied.

• ReqBumped (Request Bumped): This message is sent to the module that sent a

processing request when that request is bumped out of the requested module’s

queue.

• ChangePriority: Used to request that the requested module change the priority of a

processing request. It can also be used to cancel a processing request.

• ReqForFullReq (Request for Full Request): Sent by the requested module to the

requestee when a processing request reaches the top of the requested module’s

queue and is ready to be processed.

• FullProcReq (Full Processing Request): Sent in response to a Request For Full

Request, this message contains the actual data to be processed and instructions on

how to process it, if any.

• FullReqAccept (Full Request Accept): Sent in response to a Full Processing

Request, this indicates that the Full Processing Request was received correctly.

• ProcResult (Processing Result): The result of a processing the Full Processing

Request.

• ProcResultAck (Processing Result Ack): Indicates that the processing result was

received correctly.

Example Messages:

Below are two example messages with explanations which illustrate the potential uses of

each message field.

• IDBroadcast

o to – 0x00 (Indicates this message is a broadcast)

 71

o from – 0x80 (The bus address of the module sending the message)

o flags – 0x00 (Used by transport layer to fragment messages)

o prio – 0x10 (A signed number representing the priority of the message)

o msgID – 0x00 (An increasing count of the number of messages this

module has sent – unused for IDBroadcast)

o cmd – 0x02 (The number used to identify IDBroadcast messages)

o dataLength – 0x0002 (Number of bytes of data in the dataPtr)

o dataPtr (Address at which the data resides in memory)

 {0x43, 0x40} – A random number in the first byte and a number

representing the type of the module in the second byte

• FullProcReq

o to – 0x74 (Destination is address 0x74)

o from – 0x80 (The bus address of the module sending the message)

o flags – 0x00 (Used by transport layer to fragment messages)

o prio – 0x20 (A signed number representing the priority of the message)

o msgID – 0x05 (This module has sent 5 processing requests)

o cmd – 0x0C (The number used to identify FullProcReq messages)

o dataLength – 0x0004 (Number of bytes of data in the dataPtr)

o dataPtr (Address at which the data resides in memory)

 {0x18, 0x75, 0x38, 0x42} – The actual data associated with the

message, which is only meaningful to the user. MASS does not

interpret or even look at the data.

In both cases, the entire message would be transmitted as string of bytes followed by a

calculated checksum.

Task Overview:

The 13 different messages are use to accomplish a variety of tasks including but

not limited to address generation and resolution, sending processing requests and

receiving the responses, and checking the status of outstanding processing requests.

 72

These tasks are described in order to demonstrate one or more uses for each message

type.

Address Generation and Resolution:

As soon as a module is connected to the bus, it generates an address and sends an

IDBroadcast message to all modules containing that address. Addresses are generated

using the random number generator in stdlib.h which is seeded by reading an analog

to digital converter which is not connected to any sensor. Addresses generated are

checked to make sure that they are locally unique, that is the module generating the

address has not already received an IDBroadcast message from a module with that

address. If a module receives and IDBroadcast message with the same address as it’s

own, it sends an IDContention message to all modules containing its address (which is

the contended address). Upon receiving this IDContention message, the module which

originally sent the IDBroadcast message containing the contended address will generate a

new address and send another IDBroadcast message with this new address. This process

continues until the module is able to successfully generate a unique address which no

other module contends.

Processing Request/Response:

Processing requests are generated by the user through calls to the Local Event

Handler. This results in either a ProcReq or a FullProcReq message being sent

depending on the size of the request data. The module that receives this Processing

Request message responds with a ProcReqAccept or FullReqAccept message if there is

space on the request queue for the request, or a QFull message if the request queue is full.

If the request is already in the processing queue or if the request is currently processing a

ReqInQ or ReqProcessing message may be returned instead. Once the processing

module is ready to process the request it sends a ReqForFullReq message if it does not

already have the data for the request. The requesting module then responds with a

FullProcReq. Once the request is processed, the processing module sends a ProcResult

message to the requesting module. The requesting module then acknowledges the result

with a ProcResultAck message completing the transaction.

 73

Checking Status of Processing Requests, Modifying Priorities, etc.:

While waiting for the result of a processing request, the requesting module may

check the status of the request by sending a ProcReq message with the same priority and

message ID as the request. The processing module will then respond with a ReqInQ or

ReqProcessing message if the request is already in the queue or processing. If the

processing module does not have a copy of the request locally, it will try to insert it into

the queue. This will result in either a QFull or ProcReqAccept message depending on

whether or not the insertion is successful. If the requesting module wants to modify the

priority of the message based on the results of the status request, it can send a

ChangePriority message with the new priority. If at any point the processing module has

to discard a processing request to make room on the queue for a higher priority request it

will notify the module which sent the bumped request with a ReqBumped message.

Future Directions:

Additional functionality will be added to MASS in the future, this section

describes some of the additional features that will be added..

Encrypted Communications:

The ability to encrypt inter-module communications will be added in future

versions of MASS. This encryption will occur in the Phy or Link layers and is intended

to obscure the messages generated from within MASS to prevent eavesdroppers from

gaining information regarding the internal state of a module. The encryption of

communication channels in combination with hardware safeguards which prevent

attackers from reading ROM and RAM will make it difficult for malicious parties to

determine information about a particular MASS module or node. This is not specifically

intended as a replacement for user-layer encryption of inter-node communication.

Hardware Data Sheets:

Currently the Net layer includes facilities for exchanging data sheets between

modules using IDBroadcast messages. The currently unspecified data sheet format will

be replaced with an IEEE 1451.2 compliant data sheet format.

 74

Multiple Bus Architecture:

Currently a single bus is used for both control messages and data related to

processing requests. A second bus will be added to handle data and large messages to

prevent them from tying up the control bus for long periods of time, which may degrade

performance. Control messages will then be modified to specify which channel on the

data bus to receive the data associated with that message on, as opposed to transmitting it

over the control bus. The new bus will most likely have a higher data rate than the

current I2C bus, and have multiple channels to allow multiple simultaneous transfers.

Alternate Processor Architectures:

Porting MASS to additional architectures is also a future goal, current projects

include the ARM7 and TI MSP430.

Additional Module Types:

The development of a Camera module is currently underway for image

recognition research, as well as a General Purpose Processing module to expand the

capability of nodes to perform local computation. The GPP module will most likely use a

powerful general purpose processor such as an ARM9 or PXA255 running Linux

controlled by an 8051. The 8051 will handle the inter-module messaging and turn the

GPP on and off as needed.

MASS Documentation by Layer:

Global Data:

There are several files that contain data which is accessed or exported to a number

of layers. The first of these is global.h which contains compiler directives and

macros, as well as defining the types of messages in the system, the different types of

modules that may exist in the system, some timing parameters, task priorities for all

MASS tasks, and debugging code for turning individual layers on and off. It also contains

the definition of an important structure, the “Message” structure, which defines the

format of all inter-module messages.

 75

The user.h file contains configuration parameters that may be adjusted by the user, as

well as prototypes for API functions. Each configuration parameter and function

prototype is documented and will be covered in additional detail in the following

sections.

Priority Queues:

Most communication between layers in MASS occurs via Prioritized Queues. The

Priority Queue structure provides thread-safe prioritized queuing and dequeuing of

pointers to structures. Priority Queues have a fixed size which is determined at creation

time. If the queue is full, a pointer can only be inserted if it is a higher or equal in priority

than the lowest priority pointer on the queue. In the event of a tie between the priorities of

any pointer on the queue or the pointer to be inserted, the oldest request is removed.

Priority Queues are fairly heavily genericized and non-generic operations are

performed via function pointers in the queue structure. These function pointers can be

assigned to user supplied functions to handle additional data types. The two functions that

may be changed by reassigning their function pointers are the comparison function which

is used to order objects on the queue, and the extract priority function which determines

the priority of an object.

Priority Queues are available to the user whenever MASS is included in the

system. The following functions are available for Priority Queues:

• PQCreate

• PQPost

• PQPend

• PQRemove

• PQGetRemove

• PQStopDequeue

• PQStartDequeue

• PQCreate creates a priority queue given a pointer to memory allocated by the user

in which to store pointers to data objects, the number of data objects that can be

stored in this space, the size of each data object, and the comparison function to be

used to order the pointers on the queue.

 76

• PQPost allows the prioritized insertion of a data object onto a queue. It requires a

pointer to the queue to insert the object into, and the number of ticks to wait before

timing out.

• PQPend allows the highest priority object on the queue to be returned, and blocks if

the queue is empty. It also takes a number of ticks to wait before timing out.

• PQRemove removes all objects on the queue matching a specified pattern,

determined by a pattern, pattern length, and offset into the object at which it should

be found. It returns the number of objects deleted. It also takes a parameter which

specifies how many ticks to wait to gain access to the queue before timing out.

• PQGetRemove finds the first object on the queue matching a specified pattern, also

determined by a pattern, pattern length, and offset into the object at which it should

be found. Upon finding a match it removes it from the queue and returns it to the

user. This means that PQGetRemove removes at most one object from the queue

each time it is called. It also takes a parameter which specifies how many ticks to wait

to gain access to the queue before timing out.

• PQStartDequeue and PQStopDequeue, start and stop the removal of elements

from the queue via PQPend. When dequeuing is turned off, no PQPend operation

will succeed, however unless the pend operation times out, it will proceed as usual

once dequeuing is turned back on.

Process flows for the non-trivial Priority Queue operations follow in Figure 25 through

Figure 27:

 77

Priority Queue: Post

Acquire access to
the queue by

pending on the
mutex flag

Start

Was there
a timeout or an

error?

Release access to
the queue

Return NULL

Yes

Iterate from head of
queue until lower
priority element or
empty slot is found

Space found?

Return element
that was to be

inserted

No

Is the
space empty?

Insert element

Yes

Move element
occupying space
and all elements
behind it back 1

space

Was there space
to move all the
elements back?

Yes

NoYes

Release access to
the queue

Return the bumped
element

No

No

Figure 25: Priority Queue Post process flow

Priority Queue: Pend

Acquire access to
the queue by

pending on the
mutex flag

Start

Was there
a timeout or an

error?

Release access to
the queue

Return NULL

Yes

Increment the head
of the queue

No
Release access to

the queue
Return the old

head

Figure 26: Priority Queue Pend process flow

 78

Priority Queue: GetRemove

Acquire access to
the queue by

pending on the
mutex flag

Start

Was there
a timeout or an

error?

Release access to
the queue

Return NULL

Yes

No Start at the head of
the queue

No Does this element
match the pattern

passed in?

Go to the next
element

Make a copy of this
element (pointer).
Move all elements
after this one up

one spot and clear
the last entry

Is this
element
NULL?

Yes

No No

Release access to
the queue

Return NULL

Yes

Release access to
the queue

Return the copy of
the element

replaced

Figure 27: Priority Queue GetRemove process flow

Phy:

The Phy layer handles the actual reliable transmission of individual bytes across

the I2C bus. In transmit mode, it initiates a transmission, sends the entire content of a

message, sends a checksum, and then terminates the transmission. The Phy layer also

handles collisions between transmissions. When two transmissions collide, the I2C

hardware arbitration allows one message to be completed uninterrupted while the sender

of the second message recognizes the collision. The loser of the collision is able to

receive the message that won arbitration if necessary and wait until the bus is free to try

to send again.

In receive mode, the receiver recognizes the start of a transmission and whether

the message is for it or not. If not, the receiver simply waits for the end of the message

before it starts listening again. If the message is for the receiver, it receives and

acknowledges each byte of data while calculating the checksum of the message. If the

received checksum matches the calculated checksum, the message is passed up to the

Link layer. If not, the message is discarded.

 79

In the event that the Phy layer cannot secure enough memory to store the

incoming message, incoming bytes will be NACKed until memory is available.

The Phy layer can only buffer one message to transmit. Once it has a message to

transmit, it will reject requests to send anything else. For this reason, the Link layer keeps

track of the state of the Phy layer and only allows it to manage one message at a time.

 The process flow for the Phy layer is shown below in Figure 28 below.

Phy Layer

Wait for a interrupt

Pass message to
Link layer

No

Transmit or
Receive?

Yes

Start

Transmit messageReceive message

NACK data

Store current
message

Wait for bus free

Receive winning
message?

Message
to transmit?

Receive

Transmit

No memory

Done

YesNo

No

Arbitration
lost

Done

Checksum OK?

Yes

Discard message

Transmit checksum

Figure 28: Phy layer process flow

Link:

The Link layer will show its use in future implementations of MASS. Currently,

the Link layer checks the integrity of messages and manages the Phy layer. Messages that

do not pass the integrity test are discarded. Once the Phy layer is given a message, the

Link layer shuts down until the Phy layer is free.

In the future, the Link layer will service two more vital roles. First, the Link layer

will manage multiple Phy layers to aid in data throughput. There will likely be at least

two busses: a low data rate control bus (like I2C) and a higher data rate data bus (like an

asynchronous serial or parallel bus). In order to manage communication across multiple

 80

busses, the Link layer will also implement RTS/CTS messages to request time on the

non-control bus or busses with other modules.

Process flows for the receive and transmit side of the Link layer follow in Figure

29 and Figure 30.

Figure 29: Link layer receive task process flow

 81

Link Layer Tx Task

Receive message

No

Integrity
Check?

Yes

Start

Fill in from field

Discard message

Wait for message
from Net layer

Fail

No

Pass

Yes

Wait for Phy free

Attempt to send
message to Phy

layer

Accepted?Post message back
to Link Tx queue

Message bumped?

Discard message

Figure 30: Link layer transmit task process flow

Net:

The Net layer has two main tasks, to inform modules of each other’s existence,

and to keep track of the other modules in the system. The Net layer also has provisions

for returning some relevant data about the state of the system to other interested layers.

The Net layer deals with class one messages, that is ID Contention and ID Broadcast

messages.

There are two tasks in the Net layer, one to deal with messages received from

other modules (the Rx task), and one to deal with messages to be sent to other modules

(the Tx task). The Tx task handles the addressing of outgoing messages (filling in the

“to” and “from” fields). If a message is not addressed to a particular module, or specified

to be a broadcast, the default routing scheme is used by the Net Tx task to address it. As

of the writing of this document, the default routing scheme is to send messages to the first

available General Purpose Processor (GPP), and if no GPP is present to route them to the

first available Wireless Network Connector (WNC). In the future, the default routing

 82

scheme will be configurable. The Net Tx task also handles setting the “from” field of

outbound messages.

The Net Rx task performs most of the work in the Net layer. It is responsible for

sending heartbeat messages to other modules, and keeping track of heartbeat messages it

receives to determine when modules enter and leave the system. It also performs address

determination and handles address conflicts. All class 1 messages originate in the Net

layer and are consumed by it as well. Class 2, 3, and 4 messages received from other

modules are either posted to the transport layer via the transportRxQ, or if the transport

layer is not present, posted directly to the appropriate application layer task. All

processing request, full processing request, change priority, and processing result

acknowledge messages are sent to the Request Processor. All other messages are sent to

the Local Event Handler.

ID Broadcast messages sent by the net layer include one byte of random padding

in the data pointer to guard against two modules sending identical messages. If this

situation occurred and the transmissions collided, it would be unclear as to which

message was successfully transmitted as I2C resolves collisions by giving arbitration to

the message with the highest binary value. Without the random padding, the messages

would have the same value. The random padding significantly reduces the likelihood of

this occurring, though if both modules select the same random byte and have the same

type, an unresolved collision situation is still possible.

The Net layer also handles data sheet management. Data sheets are sent and

received via unicast IDBroadcast messages. Data sheets are descriptions of modules that

can be passed around the system to give it a greater self-awareness. For example, data

sheets may contain information on the type of information collected, the available

processing algorithms resident on a module, tunable parameters of a particular resource,

etc… No specific data sheet format is specified, but the capability was created with the

IEEE standard 1451 in mind.

Process flows for the Net Tx and Rx tasks follow in Figure 31 and Figure 32.

 83

Net Layer Rx Task
Start elapsed time

counter

Pend on NetRxQ

Message
received or

timeout

Error

Timeout

Message
Received

Broadcast ID and
reset Heartbeat

timer

Time to
redetermine
node type?

No

Yes

Determine Node
type

Pend on NetRxQ

Message Type?

Was it a
Broadcast?

Transport
Layer

enabled?

Yes

Post to
TransportRxQ

Update remaining
time to broadcast

heartbeat

Message
Command

Class 4 or FullProcReq

Post to RpRxQ

Class 2,3, or 4

Class 1

Post to LEHRxQ

Class 3 or
ProcResult

Update moduleInfo
table by adding this
module or resetting

it’s heartbeat.
Remove modules
that are at their

heartbeat threshold Yes

Does the
message contain

data

Send this module’s
data sheet

Store source
module’s data sheet

Yes

No

Start

No

No

Figure 31: Net layer receive task process flow

Net Layer Tx Task

Pend on NetTxQ

Address to first
GPP if no GPP

found address to
first WNC

Start

Message Received

Message
Destination?

DEST_DEFAULT

Set from field and
post to LinkTxQ

Other DEST_BROADCASTDoes module
exist? In moduleInfo

Table?

No

Yes

Discard message

Figure 32: Net layer transmit task process flow

 84

Transport:

The transport layer handles fragmentation of large messages to avoid tying up the

bus for long periods of time. The transport layer is an optional component of MASS and

may be compiled out by not defining TRANSPORT_LAYER in global.h.

When the transport layer is present it breaks messages whose total size is greater

than LARGE_MESSAGE into smaller messages of size LARGE_MESSAGE, plus a final

message which may be smaller. This parameter is user configurable and can be found in

user.h. These smaller messages are then reassembled into the original large message at

the destination. MASS’s fragmentation scheme is relatively simple as of the writing of

this document and has some restrictions. The first fragment of a message must be

received before any subsequent fragments will be handled, if the first fragment of a

message has not yet been received, later fragments will be dropped. After the first

fragment is received, later fragments may arrive in any order. Fragment sizes must be the

same between modules, this restriction may be removed at a later point in time.

Fragmentation works by prepending the data payload of each message with the

total message size and the offset into that total amount of data at which the data contained

in the current message resides. In order to preserve the isolation of the transport layer

from other layers, the data payload from a message that is to be fragmented is copied one

fragment at a time into additional messages and then sent as opposed to simply passing in

a pointer to the point in the original data to begin copying from. The latter approach

would result in the Phy layer freeing pointers which did not represent actual memory

allocations, thus corrupting the memory pool. The alternative was to have the Phy layer

have some knowledge of message fragmentation, which was deemed to be undesirable in

that it introduced a dependency between otherwise unconnected layers. The copying of

data from the original large message into the smaller messages results in the use of

approximately twice as much memory as the original large message occupies. The exact

amount of memory required to send a message of size N bytes is:

()2
_

N
N M M

LARGE MESSAGE M

⎛ ⎞
− + ⎜ ⎟−⎝ ⎠

Where M is the size of a message structure, 11 bytes in the current implementation.

 85

The transport layer has two tasks, one to deal with messages received from other

modules (the Rx task), and one to deal with messages to be sent to other modules (the Tx

task). The Tx task performs fragmentation and sends messages out as they are created.

The Rx task performs fragment reassembly by maintaining a linked list of incomplete

fragmented messages. Each fragmented message on the list has a lifetime assigned when

the first fragment is created, this lifetime is defined by

MESSAGE_FRAGMENT_LIFETIME_MS. If all fragments of a message are not received

within this period of time, the message is discarded. Every

FRAGMENT_CLEANUP_INTERVAL_MS ms the fragmented message list is swept and

all expired messages on it discarded. During fragment reassembly, the list is examined

and expired messages deleted, the FRAGMENT_CLEANUP_INTERVAL_MS serves only

to ensure that expired fragments are removed even if no fragmented messages are

received after the expiration of a message to initiate fragment cleanup. When a message

is completely reassembled, it is passed up to the appropriate application layer task.

Other configurable parameters in the Transport layer include the size at which to

fragment messages and the size at which to send data as a Processing request followed by

Full Processing Request rather than a single Full Processing Request. Messages under

SHORT_MESSAGE bytes are sent as a single Full Processing Request. Messages over this

size are sent as a Processing Request with no data, and then a Full Processing Request is

sent when the module that is processing the request requests it. Messages over

LONG_MESSAGE bytes are fragmented, while those under this size are not. Both these

parameters are found in user.h. Finally, the size of the transport queues can be

adjusted, the value of TRANSPORT_QUEUE_LENGTH indicates how many messages can

be stored on each of the Transport layer queues.

Additionally, the transport layer may be disabled entirely by not defining

TRANSPORT_LAYER in global.h. If the transport layer is disabled, no fragmentation

is performed and the Net layer interacts directly with the App layer. This saves a

significant amount of ROM as well as quite a bit of RAM.

Process flows for the Transport Tx and Rx tasks follow in Figure 33 and Figure

34.

 86

Transport Layer Tx Task

Pend on
transportTxQ

Start

Is the message
a LONG_MESSAGE?

Post to netTxQ

No

Determine number
of message
fragments
necessary.

For each message
copy the total

message size and
offset at which this

data resides
followed by the
data payload for
this fragment into
the data pointer.

Post each
message to the

netTxQ

Message received

Yes

Figure 33: Transport layer transmit task process flow

Transport Layer Rx Task

Pend on
transportRxQ

Start

Message
received or

timeout

Timeout

Message
Received

Iterate through list
of currently
incomplete

messages. Delete
messages whose

lifetime has expired

Is message
fragmented?

No

Message
Command

Class 4 or FullProcReq

Post to RpRxQPost to LEHRxQ

Class 3 or
ProcResult

Is this the first
fragment?

Yes

Copy in the data
into message

Create a new entry
in the list of
fragmented

messages for it

Yes

No

Is the message
complete?

No

Yes

Fragment matches
Message?

Yes

No

Discard fragment

Figure 34: Transport layer receive task process flow

App: Local Event Handler:

The Local Event Handler (LEH) is responsible for sending requests from the user

to other modules and returning the responses to those requests to the user. The user gives

 87

the request to the LEH by calling Send with the appropriate data. The LEH stores the

request and begins the process of sending the request to another module. The LEH will

try up to PROC_RQST_RETRIES times to send the request, at an interval of

PROC_RQST_TIMEOUT milliseconds. If the request is not accepted, it is dropped. Once

the request is accepted, the LEH will continue to check the status of the request on an

interval of STATUS_TIMEOUT milliseconds. If the LEH finds that the request has been

removed from the requested module’s queue or is informed by the other module that the

request has been bumped, the LEH will wait REJECTED_TIMEOUT milliseconds and

begin the process again. If at any point the LEH finds that a request has been rejected

more than REJECTED_RETRIES times, the request is dropped.

Once a request is accepted by another module, the LEH waits until it receives a

Request For Full Request from the other module. The LEH then sends the complete

message to the other module. It will wait FULL_RQST_ACCPT_TIMEOUT milliseconds

for a Full Request Accept from the other module before resending the message. If the

LEH tries to send the Full Request FULL_RQST_RETRIES times and fails, the request

is dropped.

Once the Full Request Accept is received, the LEH goes back to checking the

status of the message until the Processing Result is received. The LEH responds to all

Processing Results by sending a Processing Result Acknowledge back to the other

module. Processing Results are checked against existing requests to find the matching

request. If a match is found, the result is passed to the user and the request is deleted. If

no match is found, the result is assumed to be erroneous and is dropped. The user calls

WaitForResult to receive the result of the request.

Requests that have less than SMALL_REQUEST_PAYLOAD bytes of data, the

LEH moves directly to sending a Full Request, skipping the Processing Request and wait

for a Request For Full Request. Separating requests into short requests and long requests

eliminates overhead for short requests that can be sent multiple times if necessary without

impacting performance.

In addition to sending and tracking request and receiving results, the LEH also

allows the user to query the state of requests, delete requests, and change request

priorities. Each time the user calls Send, the user is given a 16-bit key to their request.

 88

This key can be used to get the state of the request by calling GetStatus, or find out

how many times a request has been rejected by calling GetRejections. The user can

also use the key to change the priority of the message by calling

ChangeRequestPriority with a new priority, or remove the request entirely by

specifying DELETE_PRIORITY as the new priority.

The LEH also has the ability to send and receive broadcasts. To send a broadcast,

the user calls Send and specifies the destination as DEST_BROADCAST. Broadcasts do

not generate any results and are sent only once before being discarded. If the LEH

handler receives a broadcast, it is passed directly to the user as if it were a Processing

Result.

The process flow for the Local Event Handler follows in Figure 35.

Local Event Handler
Start

Pend on queue

Search Tracker for
timed out
messages

Send status
request or resend

message

Calculate new
timeout

Message from user?

Add request to
tracker

Broadcast?

Send request, full
request, or change

priority

Send broadcast

Update status of
request in Tracker

Send reply

Remove message
from Tracker

Requires reply?

Message for user?

Send result to user

Match to Tracker?Discard message

Drop message

Message expired?

Yes

Yes

Yes

Yes

Yes

No

No
No

No

No

Yes

Figure 35: Local event handler process flow

App: Request Processor:

The Request Processor is the “server” side of the MASS architecture. This task

handles processing requests from other tasks. It maintains a prioritized list of processing

 89

requests from other tasks and calls a user provided function to process these requests.

When requests are complete it sends the results to the requesting module.

The Request Processor consists of two tasks, the Request Processor itself which

resides in the Application layer, and the User layer task which actually processes requests

by calling a function provided by the user when MASS is started. The Request Processor

handles prioritizing requests, storing and sending results, and responding to status

inquiries or modifications to existing requests from remote modules. The User layer task

simply needs to receive requests one at a time from the Request Processor, processes

them, and return the results to the Request Processor.

The request processing task can be viewed as two major components. The first

handles management of the queue of processing requests and controlling the User layer

task. The second handles getting the results of processing requests to the requesting

modules.

There are three incoming messages which can change the state of the processing

request queue, and depending on the status of the request a response may or may not be

generated. These messages are Processing Request, Full Processing Request, and Change

Priority. There are two methods of injecting requests into the processing request queue,

either all at once, or in two stages, first the request then the data associated with it. In the

first scenario, a Full Processing Request message is received by the Request Processor

which contains identifying information about the request (a request ID number and the

priority of the request), as well as the data to be processed. In the second scenario a

Processing Request message which contains no data is sent first, and when the Request

Processor is ready to process that request, it sends a Request For Full Request message to

the module which originated the request. At this point the module which owns the request

sends a Full Processing Request message which contains the data to be processed.

When a Full Processing Request is received, the processing queue is checked to

see if a request already exists from the node sending the Full Processing Request with the

same request ID number. If so, but the request has no data associated with it, the data is

copied in from the message, in this case, no acknowledgment of the message is sent. If

the request is not found on the processing queue, the requesting module and message ID

for the current processing request is checked to see if it is the same as the message

 90

received. If so, and the currently processing request already has data to process, a

Request Processing message is sent to the sender of the Full Processing Request, however

if the currently processing request has no data, the data from the message is copied in and

a Full Request Accept message is sent. In the case that no request matching the Full

Processing Request is found on the processing queue or as the currently processing

request, the Request Processor attempts to add it to the processing request queue. This

will result in one of two outcomes, either the insertion is successful and Full Request

Accept message is returned, or the insertion is unsuccessful and a Queue Full message is

returned. In addition if any message was bumped from the processing request queue to

insert the request received, the module which sent that request is sent a Request Bumped

message.

Processing Requests are handled in a similar fashion with two exceptions. When a

duplicate request is found in the processing queue, a Request in Queue message is

returned and when a duplicate message is found to be processing, a Request Processing

message is returned.

Change Priority messages generate similar responses with two exceptions. When

a Change Priority message is received for a request that does not exist, the request

referred to by the message is added to the processing request queue and a Processing

Request Accept is returned. If the request is found on the processing queue, then the

priority is changed as specified by the message and a Processing Request Accept is also

returned.

Returning the results of processing requests to the modules which requested them

is accomplished in the following fashion. When a processing request has been processed,

a result structure is created and stored in the results array by the User layer request

processing task and a Processing Result message is placed on the message queue for the

Request Processor. This result structure consists of a Processing Result message, a

timeout field that specifies when the result needs to be (re)sent, and a counter field that

tracks how many times this result has been sent. Upon receiving the Processing Result

message, the request processor scans the results array and sends all results whose timers

have expired, including the result just placed in the array by the User layer task. If the

Processing result message is acknowledged, the result is removed from the results array.

 91

The message will also be removed after it has been sent a number of times equal to

RESULT_SEND_ATTEMPTS. Results are resent every

RESULT_RESEND_INTERVAL_MS. The results array can store information about

RESULT_ARRAY_ENTRIES results and is prioritized in that a higher priority result will

bump a lower priority result when it is inserted.

Other configurable parameters of the Result Processor include

RP_PROC_QUEUE_LENGTH and RP_QUEUE_LENGTH which control the number of

processing requests the processing queue can hold and the number of messages the

message queue can hold respectively.

 The process flows for the Request Processor follow in Figure 36 and Figure 37.

Request Processor

Pend on RPRxQ

Start

Message
Received or

timeout?

Send all results
that have not yet

been
acknowledged

After a result has
been sent the

specified number of
times, remove it

Timeout

Remove result from
results array

Message
Command?

Message
Received

ProcResult

Other Request
on Queue?

ProcResultAck

Yes Message
Command?

Send
ProcReqAcceptSend ReqInQ

Request
Processing?

No

Send
ReqProcessing or

ReqInQ

Message
Command?

ProcReq

New priority
== delete?

No

Yes

Yes

ChangePriority

Does the request
have data?

Yes

Copy data into
dataPtr

FullProcReq

No

FullProcReq

ProcReq

ChangePriority New priority
== delete?

No

Change Request
Priority

Yes

No

Message
Command?

FullProcReq
or ProcReq

Add to Queue

New priority
== delete?

ChangePriority

NoYes

Figure 36: Request processor process flow

 92

Figure 37: Request processor user task process flow

App: Mode Changer

The Mode Changer has the general task of managing the module to conserve as much

power as possible. This is the only part of the application layer that will have to be

specifically tailored depending on the attached resource (beyond simply changing a

configuration variable). The Mode Changer has not been implemented in the first version

of the MASS software, but in its initial design, it seeks to conserve power in four separate

ways:

 Manages the power states of the attached resource

 Manages sampling rates when applicable

 Alters a modules actions based on the current configuration of the node

 Schedules module sleep times

The first duty of the Mode Changer is to manage the power states of the attached

resource. Some resources, such as general purpose processors (GPPs), have several

power states corresponding to varying levels of waking and varying amounts of

 93

peripheral support turned on. The Mode Changer must thus understand the different

states that the attached resource may be put into including knowing what the resources

capabilities are in each state, the power drawn in each state, and the transition times

between states. It may also completely power down the resource if the resource is only

used when triggered by some other module.

In the case of sensors and wireless network connectors (WNCs), the Mode Changer

manages sampling rates to conserve power. For a sensor, each sample taken generally

represents a constant amount of energy expended, so adapting this sample rate to the

expected number of events in the surrounding environment can help minimize power for

a given application. In the case of WNCs, the transceiver may only be required to

actively listen to a channel during certain periods of time and may be completely

powered down otherwise. It is up to the Mode Changer to manage when and for what

duration the transceivers will be actively listening (“sampling”) to a channel.

The Mode Changer can also alter module actions based on the current node

configuration. Since the net layer maintains knowledge about the other modules available

in the system and also about the overall configuration of the node, the Mode Changer can

use this information to control the resource more intelligently. For example, in a simple

node where only a sensor and power supply are present, the Mode Changer on the sensor

module may simply help store the collected data without trying to send it to a non-

existent GPP or WNC.

Finally, the Mode Changer also schedules sleep times for its resource. In order to do

this, it monitors the incoming request rate from other modules and uses this information

to determine what the usage of the local resource is. If its attached resource is being used

only infrequently, the Mode Changer will always put the resource into a low power state

immediately after it finishes processing the requests on its Request Processor queue. If its

attached resource is being used frequently, however, it may leave the resource running at

its full power in expectation of receiving another request soon. This changing of sleep

scheduling can therefore intelligently save the transition time and energy that would

otherwise be required each time a resource is used, and adapt based on current usage

conditions.

 94

Writing Code for MASS:
The MASS API consists of two main parts. The first is the specification of how to

process incoming requests. The second allows the programmer (or user) to make

outgoing requests. The result is a simple and robust system that relieves the user of

worrying about how messages get from one module to another.

Starting MASS:

MASS is initialized by calling InitMASS.

• void* InitMASS(INT8U type, INT8U subtype, void*

(*RequestProcessingFunction) (void*, INT16U, INT16U*))

The type argument is a consists of MODTYPE_[GPP | SENSOR | WNC | user defined]

as found in global.h and must be specified. The subtype argument must be between 0

and 31 inclusive. The third argument is a pointer to a function which will be used by the

request processor to handle requests received from other modules.

Processing Requests:

When MASS is initialized, InitMASS takes as input a function to process

requests, RequestProcessingFunction. The signature of the function pointer

consists of three arguments, a void* to the data to be processed, the length of the data to

be processed, and a pointer to store the length of the result in. A void* to the result is

returned. Request Processor calls this function on data received from other modules. The

user must handle, process, or service the data in a way defined by the application. The

user should not clean up any memory other than what it allocates. Specifically, the data to

be processed should be treated as read-only and should not be freed.

Sending Requests:

Sending requests to another module is as simple as calling Send.

• INT16U Send(INT8S prio, INT8U dest, INT16U dataLength, void*

dataPtr)

 95

The prio argument specifies the priority of the message to be sent. The destination of

the message is specified in dest, and can be either the default routing scheme, a

broadcast, or another specific module in the node. The amount of data to send is indicated

by dataLength, and the data itself is located at dataPtr. Once a message is sent, the

user can check its status with two functions using the return value of Send.

• MsgStatus GetStatus(INT16U key, INT16U timeout)

• INT8U GetRejections(INT16U key, INT16U timeout)

GetStatus can be used to find out the status of the message, and GetRejections can be

used to find out how many times a message has been bumped or been rejected. Both

functions take as input the value returned by Send in key and a timeout in which to

accomplish the task.

• INT16U ChangeRequestPriority(INT16U key, INT8S newPrio, INT16U

timeout)

ChangeRequestPriority can be used to delete a message that is no longer

necessary or change the priority of the message. In either case, the returned value of

Send must be specified in key. The function also takes the new priority to assign to the

message and a timeout in which to accomplish the change of priority.

Configuring the Net Layer:

The Net layer has several user-configurable parameters as well as an API function

which allows the user to request information about modules currently active on the node.

The maximum number of modules the Net layer can store information about can be

modified by changing the value of MODULE_INFO_TABLE_SIZE. The number of

messages that can be stored on the Tx and Rx queues is controlled by

NET_QUEUE_LENGTH. Additional parameters control how module detection and

network stabilization occurs include: HEARTBEAT_TIMER_MS, which determines how

often each module broadcasts it’s ID; HEARTBEAT_THRESHOLD, which determines

how many heartbeat intervals a module must not be heard from before it is removed from

 96

the list of active modules; NODE_TYPE_REDETERMINE_TIME,which determines the

number of heartbeat intervals before the Net layer looks at the list of active modules and

re-determines the type of the node.

The GetModulesByType function in the Net layer allows the user to request

information about modules on the node based on their type. It takes 4 arguments: (

INT8U type, INT8U subtype, INT8U length, INT8U* err). The

type and subtype arguments are the same as those previously described, the length

argument specifies how many bits from high bit to match on, where the type is in the

high three bits and the subtype in the low five. The fourth argument is an error field,

and the return value is a pointer to a linked-list of moduleTypeLLNode, whose

structure is defined in global.h.

Configuring the Transport Layer:

The Transport layer has several user-configurable parameters which control how

message fragmentation and reassembly works, as well as the usual parameter to modify

the length of the Tx and Rx queues (TRANSPORT_QUEUE_LENGTH). The

SHORT_MESSAGE parameter defines the longest processing request (including the

message structure) that can be sent as a single stage request, as opposed to requiring a

Processing Request followed by a Full Processing Request. The LONG_MESSAGE

parameter defines the longest message that can be sent without fragmentation. The

MESSAGE_FRAGMENT_LIFETIME_MS parameter determines how long the Transport

layer will wait to receive all fragments of a message before discarding it. The

FRAGMENT_CLEANUP_INTERVAL_MS parameter determines how often the Transport

layer will traverse the fragmented message list and discard all fragments whose lifetime

has expired.

Configuring the Request Processor:

The Request Processor has two user-configurable queue length parameters,

RP_QUEUE_LENGTH controls the length of the incoming message queue, while

RP_PROC_QUEUE_LENGTH controls the length of the processing queue. There are also

several parameters which relate to how processing results are stored and sent.

RESULT_ARRAY_ENTRIES determines how many processing results can be stored at a

 97

time, when the results array fills up, the lowest priority results are bumped.

RESULT_SEND_ATTEMPTS determines how many times results are sent without being

acknowledged before they are discarded. RESULT_RESEND_INTERVAL_MS

determines how long to wait between resending results. Finally,

FULL_REQ_TIMEOUT_MS determines how long to wait for the data associated with a

processing request before discarding it and moving on to the next request.

Configuring the Local Event Handler:

The user gives data to the Local Event Handler (LEH) by calling “Send.” Send

takes four arguments: INT8U prio, INT8U dest, INT16U dataLength,

void* dataPtr. Prio is the desired priority of the request. Dest can be either

DEST_DEFAULT, DEST_BROADCAST, or a specific module address retrieved from the

Net layer. DataLength is the amount of data located at dataPtr. The user must then

call WaitForResult. WaitForResult takes one parameter, INT16U timeout¸

which specifies how long to wait in clock ticks for a result. WaitForResult returns a

pointer to a message.

The user can also inquire about the state of requests by calling “GetStatus”

and “GetRejections” with the key returned by Send. The user can also delete a

request or change a request’s priority by calling “ChangeRequestPriority” with

the key to the message and the desired new priority.

The LEH provides a number of parameters that can be configured to adjust its

behavior. First, LEH_QUEUE_LENGTH is the number of entries the LEH’s incoming

queue is capable of holding. The maximum number of requests that the LEH can track is

determined by LEH_TRACKER_ENTRIES. Most of the messages that the LEH sends

generate responses. The total number of time to send a processing request before

dropping the request is defined by PROC_RQST_RETRIES. Similarly,

REJECTED_RETRIES defines how many times a request can be denied or bumped

before it is dropped. Finally, FULL_RQST_RETRIES indicates how many times a full

processing request is sent before it is dropped.

The time intervals associated with resending messages are also configurable. Each

timeout is defined in milliseconds and converted to clock ticks at compile time. The

 98

interval between sending processing requests is PROC_RQST_TIMEOUT_MS. The

interval on which the LEH sends status requests to outstanding requests is defined by

STATUS_TIMEOUT_MS. The number of milliseconds to wait between retrying requests

that were rejected or bumped is REJECTED_TIMEOUT_MS, and the amount of time to

wait for a full request accept before resending the full request is

FULL_RQST_ACCPT_TIMEOUT_MS. In general, these timeouts should be on similar

orders of magnitude, with STATUS_TIMEOUT_MS and REJECTED_TIMEOUT_MS

larger than the other two.

 99

VISUALIZATION

 In order to verify the functionality of the MASS system, an I2C sniffer was

inserted into the communications traffic and a terminal program on a desktop computer

could then monitor the bus. The traffic coming in from the bus was in a specialized

format provided by the manufacturer of the I2C sniffer. The terminal buffer could be

captured into a log file for storage and verification. A snippet of an example log file

follows:
Start Time hh mm ss 18 47 21 Initial Status 0x81 User Terminated Monitor Initial Status 0x81 STOP

Sa00 Da2A Da00 Da00 Da00 Da02 Da00 Da02 Da69 Da50 Da13 STOP

Sa00 Da80 Da00 Da00 Da00 Da02 Da00 Da02 DaFA Da48 Da32 STOP

Sa00 Da6E Da00 Da00 Da00 Da02 Da00 Da02 Da86 Da40 DaA8 STOP

Sa00 Da6E Da00 Da00 Da00 Da02 Da00 Da02 Da4D Da40 Da63 STOP

Sa00 Da2A Da00 Da00 Da00 Da02 Da00 Da02 DaA5 Da50 DaDF STOP

Sa00 Da6E Da00 Da00 Da00 Da02 Da00 Da02 DaB3 Da40 Da9D STOP

Sa00 Da80 Da00 Da00 Da00 Da02 Da00 Da02 Da2A Da48 DaE2 STOP

… ________ ________

 To From Flags Prio MsgID Cmd DataLength Data CheckSum Stop

The first line of this log file displays initialization information as to the initial

status and start time of the logging. Each of the following lines contains several bytes in

hexadecimal notation prefixed by a two letter sequence “Sa” or “Da” and terminated with

a “STOP”. The prefix “Sa” stands for start, the prefix “Da” stands for data, and the

“STOP” stands for I2C stop condition. Thus there is always one start byte, followed by

several data bytes, and terminated with a single stop condition. The ordering of these

bytes is precisely the same as described above in the section “Messaging in MASS:”. In

other words, the first byte is the destination address (“00” is the broadcast address), the

second byte is the source address, the third byte is a flags field concerning transport layer

fragmentation (“00” indicates no necessary transport layer action), the fourth byte is the

priority of the message (“00” being the highest priority), the fifth byte is the message ID

number (which in the case of these messages does not matter), the sixth byte is the

command (“02” is an IDBroadcast command), the seventh and eighth bytes are the

number of appended data bytes (in this case “0002” 2), the next DataLength bytes are

appended data, and the last byte before the stop condition is a checksum. The

interpretation of these log files can thus provide an insight into the operations of a MASS

 100

stack for any given traffic on the bus, and they were used extensively for testing and

debugging purposes.

 While these log files are readable to the trained eye, they are quite cryptic to a

MASS beginner. In order to alleviate this difficulty, a visualization of these log files was

thus created. The visualization simply parses the log files line by line and animates the

messaging actions. Figure 38 below shows two examples of visualizations of the same

log file at different points in time. (Note: The log file used for these examples is the same

as above.)

Figure 38: Visualization examples

 101

 The visualization uses color coded animation to cue the observer as to the actions

occurring on the bus. Blue indicates requests or notifications, green indicates positive

responses, yellow indicates warning responses, and red indicates negative responses.

Most importantly, the visualization also displays a translation of each line in the log file

into English at the top of the screen. These translations are the critical component of the

visualization and allow an unfamiliar user to quickly determine current node state and the

meaning of the current message on the bus. The visualization also keeps an InQ and

OutQ for each module keeping track of the requests currently in the Local Event Handler

and Request Processor. The messages on the queues are identified by who they are from

or to as well as their message ID and priority. Finally, the visualization keeps track of

which modules are active and which have become de-active in the system. As defined in

the Net layer, if “heartbeat” messages are not heard by the other modules at some

minimum rate, a module will be dropped from the module list of the other modules in the

system. The visualization thus keeps track of the “heartbeat” messages sent by each

module and if the appropriate number of messages are not sent, it is Xed out of the

system.

 102

CONCLUSION

 A modular architecture for sensor network nodes was described. The need and

justification for the development of the novel architecture was explained, and a high level

description of the proposed architecture was presented. The architecture was then

analyzed mathematically with respect to a previous standard centralized architecture and

numerous control mechanisms and tradeoffs were determined. The full process of

implementation was also discussed from a high level view of the software architecture

through topical simulation of the design and finally through each detailed layer of the

software. The software was designed to have a simple user API and to be flexible,

extensible, and modular for ease of use and maintenance. Future intended developments

of the Finally, a visualization tool used to debug and monitor system state was also

described.

 This architecture has been submitted for two United States patents – one for the

hardware design and one for the software design. Young versions of the architecture have

already been used in two prototype applications for rapid response and perimeter security

type missions. The architecture will continue to be developed and used, and comparisons

to traditional architectures will be analyzed experimentally. As the architecture is

integrated into more applications, the proposed power savings and performance benefits

as well as programmatic time and money savings will be determined critically.

ACKNOWLEDGEMENTS

 We would like to first thank the Sandia National Laboratories Computer Science

Research Foundation for sponsoring this work. Nothing could have happened without its

support. We would also like to thank the Embedded Reasoning Institute for leveraging

some of its own resources in order to help support and lend guidance during the

development of this architecture.

 103

APPENDICES

Appendix A: Examples of MASS functionality

Module 1

1. User requests processing task
2. Local Event Handler generates a

processing request, adds the
request to the tracker, and passes
it to the Transport layer

3. Transport layer fragments
message if necessary and passes
it to the Net layer

4. The Net layer addresses the
message using the default routing
scheme if the message is not
already addressed

7. Tracker requests status of request

12. The local event handler
acknowledges the receipt of the
processing result

Module 2

5. Message is received by the Phy

layer, assembled by the
Transport layer, and posted to the
request processor via the RPRxQ

6. Request Processor posts the
message to the processing queue

8. Request processor sends request

in queue message
9. Request Processor sends the

request to the User layer request
processing task

10. The User layer request
processing task processes the
request, adds the result to the
results list, and notifies the
Request Processor

11. The Request Processor sends the
result of the processing task to
the module which requested it

 104

Phy

Transport

Net

Link

Local Event Handler

User

Queue

Queue

Queue

Queue

Queue

API Calls

Phy

Transport

Net

Link

Request Processor

User

Queue

Queue

Queue

Queue

Queue

Current
Processing

Task

Results[]
Queue

Tracker

Queue

Send Request

1 2 34

Figure 39: Example of MASS functionality

 105

DISTRIBUTION

1 MS9915 Jesse Davis 8961

1 MS9154 Doug Stark 8245

1 MS9101 Ron Kyker 8245

1 MS9101 Chris Kershaw 8232

1 MS9915 Nina Berry 8961

1 MS9158 Teresa Ko 8961

1 MS9158 Rob Armstrong 8961

1 MS9158 Mitch Sukalski 8961

1 MS9401 Greg Cardinale 8245

1 MS9151 Jim Handrock 8960

1 MS9153 Brian Damkroger 8240

1 MS9003 Ken Washington 8900

1 MS9153 Doug Henson 8200

1 MS9018 Central Technical File 8945-1

2 MS0899 Technical Library 9616

1 MS0612 Review & Approval Desk 9612

 for DOE/OSTI via URL

1 Nick Edmonds 8961
2200 W Sudbury Dr.

 Apt. B-08
 Bloomington, IN 47403

