SAND REPORT

SAND2004-6232
UNLIMITED RELEASE
Printed November 2004

Modular Architecture for Sensor Systems (MASS):

Description, Analysis, Simulation, and Implementation

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security
Administration under Contract DE-AC04-94-AL85000

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of

Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represent that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728

E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900

E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

Modular Architecture for Sensor Systems (MASS):

Description, Analysis, Simulation, and Implementation

Jesse Davis, Doug Stark, Nick Edmonds

Sandia National Laboratories
MS9159 P.O. Box 969
Livermore, CA 94551-0969

ABSTRACT

A particular engineering aspect of distributed sensor networks that has not
received adequate attention is the system level hardware architecture of the individual
nodes of the network. A novel hardware architecture based on an idea of task specific
modular computing is proposed to provide for both the high flexibility and low power
consumption required for distributed sensing solutions. The power consumption of the
architecture is mathematically analyzed against a traditional approach, and guidelines are
developed for application scenarios that would benefit from using this new design.
Furthermore a method of decentralized control for the modular system is developed and
analyzed. Finally, a few policies for power minimization in the decentralized system are

proposed and analyzed.

Table of Contents:

INTRODUGCTION ..ttt et e e e e e st e b bbbt e e s e e s s e bbb b e e e sesssasb bbb e s e seessabbbbaeesesssabbebes 8
PROPOSED NODE ARCHITECTURE ...ttt ettt bb b 9
MATHEMATICAL SYSTEM ANALYSIS ...ttt 14
POWER ANALY SIS ittt e ettt e e e e e s s e bbbt e e e e s s e s bbb aeeeaessssabbbeareeeesssasaberes 14
Y oo [T SR = (S 14
Module Parameters and SyStem ASSUMPLIONS:oieriieriiieriee et 15
System Power Consumption DEFIVALION:cciiiiiiiiiee ettt 17
Transacting a request to or from another MOAUIE:ccviiiiiiiiiiecce et be e 18
Transacting a response to or from another module:
[(0T [0]0 =10 (V1= Co OO U PRSP 19
Waiting for the bus to be available when wanting to transact a request Or reSPONSE:coeevveevveerrveeeveeenn. 20
Waiting for the destination module to be available when wanting to transact a request or response: 20
Operating in a NON-INtErACHING SLALE(S) .. .vviiriiirieiie it ettt ettt s et e e sre e b e e sreesbeesbeeeareesaaeenbeennes 20
01 =1 ISV 1 a0 =] R 21
Centralized SYSIEM POWET:oiuiiie it st e et e e e st e e e b e besbesbesbeeneereeneeneesrens 22
MINIMUM POWER SYSTEM CONFIGURATION:uutteiitireeeirreesiureeestueeessssneessssesessssnsesssssssessssseessnsnsesssssees 26
Processing Time VS. Processing POWET:ccccviiiieiciescre sttt 26
WAt TIME FOF ThE BUS: . .eiiiiiieie ettt be et e et e e st e et e e s be e be s sreetesnreanns 26
Wit TIME fOr @ MOGUIE:cveeiieece ettt et e e e et s be e s beesbeebesneeans 28
Inter-module request rate, sample rate, and VENE Fate:coovvieiirieiiee e 44
Minimization of total POWEr CONSUMPLION:cviiiieiieieeie e 48
Optimal Module On-Time When Modules Require Transition Time and POWer:...........ccccccocevenennene 53
Dynamic estimation of aggregate inter-module request rate:cccooeieienene e 57
Module mode changing based on system configUIation:ccoeiiiiii i 59
S IMOAUIES: ..ottt et r e e bt e s be e b e e be e st e s he e b e e be e Rt e s beera e beeR b e beeRe e beeRbeabeeRe e beeRbeabeereebeearenreats 59
GPP MOQUIES:cvveeveectie ettt
WWNC IMOQUIES: ...ttt ettt ettt ettt ett e et st e e be e s ab e e be e e tbeesbtesabeeebeeesbeesabeanbeseaseesbeesabeebeeenbeesabeenbeeareas 61
T 1Y 0o 0] =TSR 63
IMIP LEMEN T AT ION oo e e e e e e e e e st b bbb e e e s e s s saa b bbb e e e e e s s e bbb b e eeeeeeenas 64
SOFTWARE STRUGCTURE ...ttt ettt e e e s s s s bbbt e s e e s s s sbbbaeeeeessesabares 64
] 1YL I N I 10\ PRSI 66
HARDWARE AND SOFTWARE PROTOTYPE:ottt sibvb e aaains 67
[E L0 11T USROS PR RSURR 67
MESSAGING TN IMASS: ...ttt e bbbt b e bt e st et et et sbesbesbeeb e e e et e 68
MESSAE TYPES: vvverereirrerieriereeiestesiesteseeeesaere e sresaesees
EXAMPIE IMEBSSAGES: ...ttt ettt sb ettt bbb bbbt e bt e bt bt et e s e e bt e bt e bt e bt ne e b e e nt et e b e b b ne 70
TASK OVEBIVIBW: euviiiitieeiteecetee et e et e e be et eebe e e beeeabe s s abeeeabe e sabeeeabeesabeeeabeessbeesabeestbeeaabeesbbeenbeeesbeeenseeeses 71
Address Generation and RESOIULION:cccuviiiiiiriiiie ettt re e sbe e stbe e sbe e s veesbeestreesreeebeesbeeeares 72
ProCeSSING REGUEST/ RESDONSE:ciuveireiiteeeitee it eetee ettt e steestbeesbeesrseesbeesabeebeessbeeabeesabeesbaessbeeabeessseesbeesnbeeabeeanres 72
Checking Status of Processing Requests, Modifying Priorities, BIC.:c..ccviivieiieeeecee e 73
[(T T BT g=To1 o] TSR 73
ENCrypted COMMUNICATIONS:vviitieireictee et e ettt ettt e et e et e e et e e eae e et e e ebeeeaeeesbeesareesbessnteeabeeasteesaeesnteensesareens 73
HArdWare Datal SHEELS:coveiceeeeie ettt ettt e et et e et e e et e e ebeeete e e sbeesabeeebeeesteesaeesnbeesbeserteesaeeanresannas 73
Multiple Bus ArchiteCture:........cccoeevvveveeeiieiieecie e
Alternate Processor Architectures:cccceevevvevvennene
AdAItIONA] MOAUIE TYPES: ...vviveiriiitietie ittt ettt ettt re e sr et et e s re e sbesbeebesbe e besbeenbesbeesbesbeanbesbeeseesbeenbesbeereearean 74
MASS DOCUMENLALION DY LAYET: .. .ociiiiiie ettt sttt re e e 74
(€] (0] Tl D v LSO OSPUTO PP ROTRRURRRRPOR 74
Priority QUEUBS:ccueiieieieiiniese e
Py e E R bR R e R R R bR bR Rt Rt Rt bR bt h et et b e 78
T 79
L
TrANSPOIE: .o
PN o] o Mo Yoo Y =T a LA PV o | [USSR 86

AP . REGUESE PrOCESSOI ... i iitiieiettie e ettt e ettt e e ettt e e et e e e ebe e e e e tbeeeeaeeeeaabeeesbaeeeasssaeessbeeesnbeeaaasseeeessbeeesnbaeesasseeeans 88

PN] Y oo [O g =T g o= RS 92

WIItING COAE TOF MASS: ...ttt er e et e e e e besrestesreeneereeneeneees 94
SEAITING IMASS: ...ttt b e e et s e stk e s be e be e e s e s e e Rt e R e e ke e b e s e n e s e e bt e beebeebe st et ereeneeneebenbeean 94

[(0T (]8R0 (U (Io) ST U 94

SENAING REGUESES: ..vtviieiteiesiett ettt sttt te st e e et e s e seebe s te s b e e ess e s e eseebeebe s b e s esbeseebeebesbesbe s enseseeneaneebesbeean 94
CoNfIQUIING the NBE LAYEI:veeviiteeieiiecee ittt sttt sb e et st sbesre e sbesbb e b e sbe e beabeesbesreesbesbsenbesbeebesbeenbesreeses 95
Configuring the TranSPOIT LAYEI:coviiciiecieecie ettt ettt s re e be e st e e ebeesabeesbaesabeesbeesabeesreesnreennes 96
Configuring the REGUESE PrOCESSOI:viiiveiiteieireeiere ettt ettt e steesteeeteesreesteestbeesbeessseesseesrbeesbeessseesssesrreesreesnbeenses 96
Configuring the Local EVENE HANAIET:coviiieeeie ettt sttt eaa et e s te e sre e te e saeeenbeeenes 97
VISUALIZATION . ..ottt e e s e e e e e s e e bbb e e e e e e s e s bbb e s eeeee s s st bereeeeas 99
(O10]) (64 U ST 10 1 OO 102
ACKNOWLEDGEMENTS ..ottt et e ettt e bt e e s eb e e s s ate e e s sabe e e s sbaeeesseeeesenrenas 102
F N o = N |] O T 103
APPENDIX A: EXAMPLES OF MASS FUNCTIONALITY L.uttiiiiiiieieiitieeeeitie e e eeitee e e staeeesstveeeesntaeeesnneeessnneeaeas 103

DL SN IR F= 10 I L] O 105

Table of Figures:

Figure 1: Node System ArChITECTUIE.oiiiiiieieeee e 10
Figure 2: Module ArChitECUE.........veiiee e 10
Figure 3: Comparison of centralized and decentralized System pOWerccccocvrvreenne. 25
Figure 4: Processing time versus priority for queuing and non-queuing schemes........... 37
Figure 5: Processing time deviation versus priority for queing and non-queuing schemes
... 38
Figure 6: Priorities used in prioritized scheme versus priority for queing and non-
QUEUING SCREIMES ...ttt e te e raenre e 38
Figure 7: Request retry time versus priority for queing and non-queuing schemes......... 39
Figure 8: Processing time versus priority for different traffic models............c.cccooenee. 39
Figure 9: Queue size versus priority for queing and non-queuing schemes..................... 40
Figure 10: Minimum Supporting Queue Sizes for Ensuring a Maximum Probability of
BUMIPING ... bbbt 42
Figure 11: Example Receiver Operating CharacteristiCcccoovivevveve e 46
Figure 12: Sample Rate Tracking the EVent Rate...........ccocviiiiiiiiiiiicicece e 47
Figure 13: Cummulative error versus averaging window size, m, and control "derivative"
coefficient, d, for SAMPIe INPULccoeiiiiiiee e 47
Figure 14: Optimal control “derivative” coefficients, d, for varying averaging window
Size, M, With regression aNalySIS........coiveiriieiierie e 48
Figure 15: Power Versus Sample Rate and Probability of False Alarm................c.c........ 53
Figure 16: TIMElNE OF REQUESTS.......ccviiiieieiertcsieriee e 54
Figure 17: Power versus turn-off time, EXample L.......c.cccovoviiieiiein i 55
Figure 18: Power versus turn-off time, EXample 2.........cccccooeriiiniiiniinceeec e 56
Figure 19: Arithmetic and Geometric RUNNING AVEIAQESccvecveiveerieeieiieieeeesiesveenas 58
Figure 20: Convergence of Arithmetic and Geometric Averages in Requests Per Event 59
Figure 21: Layered SOftWare StTUCTUIEcooveieiiiiieie e 65
Figure 22: Example meta-state in the simulation physical layercccocovviiiininnnn, 66
Figure 23: Top level view of the simulation SYSteM.........cccccveveiieiieie s 67
Figure 24: Prototyping board used for implementation.............c.ccoceviiienienieninie s, 68
Figure 25: Priority Queue Post process fIoWcccccvevviie i 77
Figure 26: Priority Queue Pend process fIowW ..o 77
Figure 27: Priority Queue GetRemove process fIoW..........cccooviieivicn v 78
Figure 28: Phy layer ProCess fIOWccooieiiiiiiiiiie s 79
Figure 29: Link layer receive task process flOWccccveveveeveeieiiieiiece e 80
Figure 30: Link layer transmit task process flow............coccovviviiiiiiiii e, 81
Figure 31: Net layer receive task process floW..........cccccvvveiieiecie i 83
Figure 32: Net layer transmit task process flowccccooviiiiiiiiicic e 83
Figure 33: Transport layer transmit task process flow..........cccccvevviieivere i sieece e 86
Figure 34: Transport layer receive task process flowcccooevviiiiiiiiesieneencee 86
Figure 35: Local event handler process FlOW..........ccccevviieiieiecie e 88
Figure 36: Request processor ProCess FIOWcccoiviiiiiiiiiienie e 91
Figure 37: Request processor user task process flowccccvvvvevviviiieie s 92
Figure 38: Visualization eXamples............cocuoiiiiiiiiiiieeee e 100
Figure 39: Example of MASS functionalitycccccevveieeieiie e 104

Table of Tables:

Table 1: MOAUIE STALESocveeiieiie et enteenee s 14
Table 2: Decentralized System Parameters..........ccoooveiveieiieieeiecie e 16
Table 3: Centralized SyStem Parameterscccoovvieieierene e 23
Table 4: SIMUIAtiON PArAMELELScove it sre e 24
Table 5: Module Transition POWer Parametersc.ccoooerieieiieeseeiesieeseesie e seesieaneens 54

INTRODUCTION

Much of the research focus in the area of distributed sensor networks has been
devoted to developing power aware or power conservative wireless networking,
operating systems, or application software. The hardware aspects of these systems have
been largely overlooked, yet many potential benefits may be derived by considering the
node system as a whole including both software and hardware components. Furthermore,
implementation of distributed sensor networks can be highly application dependent, and
this realization provides a new systems perspective for engineering generalized solutions.

Only two system level design approaches have previously been made regarding
node hardware. One approach has been to develop highly optimized, low power, and
inflexible systems that are specific to a single application. The other approach has been to
engineer non-optimal, high power, yet extremely flexible systems that can be adapted to
many different applications. These approaches are unsatisfactory to produce
programmatically efficient, deployable sensor systems. The inflexible systems become
one time solutions that cannot be adapted and are thus programmatically expensive, yet
the flexible systems consume large amounts of power and resources and hence require
frequent attendance once deployed. The remainder of this document will discuss and
analyze an architecture developed to strike a balance between the flexibility, optimality,
and power consumption of these two previous approaches. The architecture is specifically

designed to satisfy the needs of event-driven sensor networks.

PROPOSED NODE ARCHITECTURE

There are several key features that an ideal sensor network platform would have.
It would be low power, robust against failure, extensible and adaptable to many
applications, upgradeable as components are advanced, and have capabilities for complex
computational requirements. These features are primary motivations for the idea to
develop a task separated, modular, decentralized architecture. The modularity will
immediately allow better extensibility and upgradeability in comparison to more
traditional centralized approaches, since adding or changing components is as simple as
adding or swapping modules. As will be shown in the power analysis section below, the
modularity also decreases the total power consumption of the system for certain
applications. Furthermore, modularity leads to better robustness and survivability since it
eliminates single point of failure issues, to which centralized approaches are inherently
susceptible. Finally, since the system is flexible and can adapt to many different possible
applications, developing via the modular approach could give a lower long term
programmatic cost. Several partially modular but inflexible architectures include the
Sandia HERD nodes, the Berkeley Wireless Research Center picoRadio test beds, the
Berkeley MICA motes, and the Rockwell WINS and Infocube platforms. The
architecture proposed in Figure 1 is a series of operationally disjoint modules connected
by a central bus, and satisfies many more of the desired system attributes than previous

systems.

Node-I.evel Architecture

Communication | Sensor
Module | Module 1

Processing
Module

Module

i g i o i s s o i i i il

Figure 1: Node System Architecture

Each of the modules attached to the central bus acts as a stand alone component.
The sensor modules each have their own data pre-processors (either low power general
purpose processors, DSPs, micro-controllers, or FPGAs depending on level of
computational complexity required) and data storage (either internal or external to the
data pre-processor depending on memory requirements) as shown in Figure 2. This
allows a higher power general purpose processor module to remain in a low power sleep
mode for the majority of node operation. A general purpose processor is kept in the
system in order to allow complex algorithms and node operations to occur when
necessary thus providing a flexibility improvement over the application specific systems
previously implemented. In order to reduce the processing requirements of the general
purpose processing module further, the wireless networking module will handle all

network routing when wireless messages simply need to be hopped on to other nodes.

Module-Level Architecture

Inter-Module Control Bus

| inter-Module Data Bus)
« 0 Powerbus

Distributed Controller

Data
Storage

8NPOIAl 1X3N

(Resources: Sensors, Processors,
Wireless Transceivers, Etc...) 1

Figure 2: Module Architecture

10

The purpose of the sensor module data pre-processor will be two-fold: it will
acquire and process the raw sensor data into a standard format, and it will act as an event
detector. The advance event detection service that the pre-processor performs will take a
first pass look at the data from the sensor to determine if an event has occurred. This first
pass will likely take the form of threshold monitoring, envelope detection, or something
similarly undemanding. When an event is registered, the sensor module will send a
request to the general purpose processor module for verification. The processor module
will gather the buffered data from the sensor module, fuse it with other relevant sensor
data, and analyze it using higher-level computationally intensive algorithms to verify the
event. If the event is verified, the general purpose processor could then pass along this
high level situational information to other wireless nodes.

In order to make this architecture viable, each module must also have a separate
hardware or software intra-node (inter-module) networking section, labeled as the Intra-
Node Network Connector (INNC) in Figure 2. The INNC will be able to power on or off
the module back-end and act as a gateway to the intra-node network. The INNC also
protects the module from the heterogeneity of the back-ends of other modules, and allows
for the extensibility and reconfigurability of the system. The INNCs are the only sections
of the system which are required to be continuously powered and ready to receive
interrupts. This requirement necessitates they be very low power and have the capability
to enter interrupt ready sleep modes to conserve energy.

In the initial system, there will be four different groups of modules:

» Sensor modules (S)

» General purpose processor (application) modules (GPP)

> Wireless network communications modules (WNC)

> Power supply modules (PS)
Each of these modules will have an INNC for communication to all other modules.
(Note: For the first prototype of MASS, there was only one bus to which all of the
modules were connected. In future evolutions, multiple data bus channels will be
included. Also, the PS does not have a bus interface or communications capabilities in the

first prototype, but this possibility remains open for future developments as well.)

11

Nodes will consist of combinations of the different module types into various
system configurations. There are three main classes of system configurations:
> Degenerate (D)
» Minimal (M)
» Complex (C)
Degenerate systems cannot support wireless sensor networks at all, minimal systems can
contribute to wireless sensor networks only minimally, and complex systems can
contribute to a wireless sensor network in some complex manner. Each of these classes
breaks down into subclasses based on the particular modules that make up a system.
The three types of degenerate configurations are
» Di:PS
» D, PS+S+(S,...)
> Ds: PS+GPP+(GPP,...)
> Dj: PS+S+GPP+(S,GPP,...)
The reason these systems are degenerate is that a fundamental premise of wireless sensor
networks are communications between the nodes, at least in the sense of routing
information, and these configurations have no WNC. The three types of minimal system
configurations are:
» M;i: PS+WNC
» My PSYWNC+S
» Ms: PSYWNC+GPP
A complex system will be defined as any system consisting of no GPP’s and at least two
S’s, at most one GPP and at least one S, or at least two GPP’s. Thus there will be three
basic types of complex system configurations:
» C1: PSYWNC+S;+S,+(S,...)
» Cy PStYWNC+GPP+S+(S,...)
» Cs: PS+WNC+GPP,+GPP,+(S,GPP,...)
The initial phase of system operation will be a discovery of which type of system
exists on a particular node. The system will support hot swapping of modules (i.e.
changing system modules without cycling power or resetting the system), and graceful
degredation (i.e. if a module fails during the course of system operation, this will not

12

bring down the entire system for certain failure modes). The operation of a module will
change slightly based on what type of system it is in. This function changing will be

explained in more detail in a section below.

13

MATHEMATICAL SYSTEM ANALYSIS

POWER ANALYSIS

Module States:
In order to capture a general power model of each module, let each module have

the following states:

transacting a request to or from another module,
transacting a response to or from another module,
processing requests,

waiting for the bus to be available when wanting
to transact a request or response,

waiting for the destination module to be available
when wanting to transact a request or response,

» and operating in a non-interacting state(s).

Table 1: Module States

VVVYY

A\

The full system will also consume power in the bus(es) that connect the modules. (If the
power supply is centralized, which is likely based on simplicity and cost of
implementation, there will also be additional power consumed due to the inefficiency of
the power supply.) During request and response transacting, modules will be actively
sending or receiving requests and responses from other modules via a system bus. A
module may have to go into a wait state if either a bus or other module is unavailable for
request or response transacting. During a wait state, a module will return to the standard
non-interacting state from which it attempted to make a request or response. During the
request processing state a module will perform any data manipulation or collection
necessary in order to satisfy a request from another module. Finally, the module actions
during a non-interacting state will depend on the specific module type. Data collection
modules will be actively collecting, processing, and storing data or be in a deep sleep
mode in the case of triggered sensors. Event detection modules will be collecting and
processing data and monitoring for events. Processing modules will be in a deep sleep
mode or performing some sort of periodic function. Communication modules will be
routing network traffic and watching for messages from other nodes. A module may have
multiple non-interacting states which it transitions between without any external

involvement. Assume that the transition from state to state occurs in a very short period

14

of time so that it need not be considered in the system power consumption. Finally, let
each module be able to request service from any other module except itself.

Module Parameters and System Assumptions:

Based on this abstraction, the table below lists the fundamental decentralized

system parameters.

p;j (watts) average power consumed by module
i while transacting a request or
response to or from module j (this
may be dependent on module j
because there may be several system
buses each with different drivers)

p" (watts) average power consumed by module
i while in a wait state

p, (watts) average power consumed by module

' i while in its k" non-interacting state

piij (watts) average power consumed by module

i while processing a request from
module j which was operating in its
k™ non-interacting state before the
transaction
d? (bits) average amount of data sent from

H module i to module j during a
request from i where i was operating
in its K™ non-interacting state before
the transaction
ds, (bits) average amount of data sent from

! module i to module j during a
response from i where j was
operating in its K™ non-interacting
state before the transaction
M (hertz) average rate at which module i
requests service from module j when
module i operates in its k™ non-
interacting state
W’ (seconds) average wait time experienced by
module i before being able to access
a bus for transaction
Witj (seconds) average wait time experienced by
module i when attempting to
transact with module j

15

ti,-k (seconds) average time it takes module i to
processes a request from module j
when j was in its k™ non-interacting
state before transaction

pi'J? (watts) average power consumed by a bus
while it is being used to transact a
message from module i to module j
(this will likely be dependent on

baud rate)
B, (bits per second) baud rate of bus used to transact a
message from module i to module j
m (modules) number of modules

Table 2: Decentralized System Parameters

These parameters are meant to be assigned to constant values (or derived from
constant values) in order to describe individual modules in the system. As such, this
parameter set makes certain assumptions about the operation of the system. First, the
system operation is assumed to be constant over time. For given system inputs, the
system will give deterministic outputs, or at least outputs that have a deterministic
average. While the times, powers, bits, and rates may randomly deviate slightly from
these averages, they can be assumed for practical purposes to be constant. The only value

that may deviate significantly from its average is L and this will be examined below.

Another major assumption is that the power consumption of the system is modal. In other
words, when a module is in a certain mode of operation or in a certain operating state, the
power a module consumes has at least a constant average. In other words, modules are
considered as holistic entities rather than consisting of components that can operate
independently. (Another approach would be to consider power consumption to be
incremental. The power of a module here would be summed up over different
independently operating components. In effect, the analysis that will be given could be
pushed down to the scale of an a module with independent components adding another
level to the module-node-network hierarchy.)

Another assumption of these parameters is that when operating in a given mode,
each module interacts with other modules in only a single way or several ways that can
be reasonably averaged together. In other words, if module i is in its k™ mode and module

jis in its I mode, the amount of data passed between i and j during requests and

16

responses has a defined average. If there are several different types of requests module i
might make of module j in a single mode, the average amount of data can be calculated as
a weighted average of the data in each type of request where the weights derive from the
particular rates of each type of request. Similarly, the overall request rate can be
calculated as the sum of rates of request of each type of request. If reasonable, multiple
transaction type modes could be broken into individual transaction type modes for
analysis.

Furthermore, the processing and wait times must fall into some sort of distribution
with a well defined average. In other words, all times in the system have at least a
deterministic average. Additionally, any system buses are assumed to be serial. Parallel
buses could be handled by mathematically breaking each parallel stream into its own bus,
or by averaging the parallel bus into equivalent serial bus parameters. Finally, each
request will have a non-periodic corresponding response of at least a request
acknowledgment. A module may not request periodic responses from another module
without any further requests. An initial request acknowledgement may be succeeded by a
full request response at a later time. All parts of a request response are lumped into single
parameters.

Other parameters are certainly more fundamental than these with regards to
specific types of modules, but as for a general module parameter set, these variables

should be sufficient. For example, for event detection modules, r; can be derived from

sensor sample rate, event rate, and probabilities of detection and false alarm. This type-
specific breakdown of the parameters will be discussed in a subsequent section in more
detail.

System Power Consumption Derivation:

In order to develop the total power consumed by the system, the power will first
be considered on a module by module basis in each of these states and then summed over
the full system. In order to develop the average power consumed by a module, the power
of each module state given in Table 1 must be analyzed. To capture the power

consumption of the bus(es), it will be counted as a subset to a module’s consumption

17

when that module is the initiator of the transaction. (This assumes that each message has
one and only one source module. Bus power for broadcast messages are counted once

and only once with this initiator module association.)

Transacting a request to or from another module:

Define an interval of length T. In this time period, requests will be made of

module j at rates L - The average number of requests from module i to module j during
time period T will thus beTrikj . Similarly, the average number of requests from module j
to module i will beTrJ_ki . The time that each transaction takes will be determined by the

amount of data sent and the baud rate of the bus. Specifically, for requests made of j, the

q
time of each request will be—L . For requests made by j, the time of each request will
ij
dd.
be#. Finally, the power consumed by module j while receiving or making a request
ji

will be ptji . Combining these terms, the total power over an interval of length T consumed

by module j while requesting services of or being requested by module i will be:

dd dd,
TPy | re =2+, —-
i Bij g

ji

Equation 1
Including the power consumed by the bus for any requests made by module j, the total
becomes:

dd dd de df dd
t i“j j*i B ki |_ i At it B
T pji{r.kj B. +rjki B.]+r,k. Pji B. T[rlkj B. pJ'i"_rj“i B. (pii+pji)

ij ji ji ij ji

Equation 2
The average power is derived from taking this total power per module, dividing
by the length of the interval, T, and summing over all modules, thus the average power
consumed by module j while sending or receiving requests to or from other modules will
be:

18

m q q

P= 2 g P g (P el)

i=L,i%] ji

Equation 3
All of the following power derivations will follow a similar pattern. The power

consumed, time the power is consumed, and rate at which module j is put into a certain
consumption mode will be multiplied together and summed. Only if specific details are

necessary will any detailed derivation be entered into.

Transacting a response to or from another module:

The rate at which module j will respond to a request by module i will simply be
the rate at which module i requests module j. This observation is based on the assumption
that every request begets a single response. Likewise, the rate at which module i will
respond to module j will be the rate at which module j requests module i. The power
consumed by the bus by responses from module j is calculated as in Equation 2. Overall,
the power consumed by module j to send or receive responses to or from other modules,

along with the associated bus power will be:

S S
m

ds, °,
Pr= 2 g (Pt PR) g P

L Ul

Equation 4

Processing requests:

The power consumed by processing requests is very straightforward. Combining
the power module j requires to process a request from module i, the time it takes to
process the request, and the rate of request, the total power module j consumes in

processing requests is found to be:

p_ p

Equation 5

19

Waiting for the bus to be available when wanting to transact a request or response:

The power consumed while waiting for a bus between j and i to be available is
also a straightforward calculation. There are two parts to the power consumption, one for
transacting a request and one for transacting a response. Combining these two results, the

total power module j consumes while waiting for a bus to be available is found to be:

7= 3 (ro g winr) - 3 (i om,)

i=L,i%] i=Li%]

Equation 6

Waiting for the destination module to be available when wanting to transact a request or
response:

The power consumed while waiting for a module to be available is also a

straightforward calculation. There are two parts to the power consumption, one for
transacting a request and one for transacting a response. Combining these two results, the
total power module j consumes while waiting for other modules to be available is found
to be:

t N t t v t
P = lz_<rjkiwji Py + b, Wj PY“) = ;_(Wji p\J'N(rjki *h))
i=Li#] i=Li#]j
Equation 7
(In the system that will be implemented, the modules will not have a separate waiting
state power since during the wait for a request to be processes, the module may carry out

other functions. Specifically, the module may be in a non-interacting state, and thus for

Equation 7 only, p;’ = p',, and the time r.w: +r,w. can be subtracted from the
j Nl i“jon

summation term in Equation 8.)

Operating in a non-interacting state(s):

Finally, there will be periods during which module j will be operating
independently of all other modules. This will only be during times when it is not
transacting requests, transacting responses, processing requests, waiting for a bus to be
available, or waiting for a destination module to be available. The cumulative amount of

time during a period T during which the module will not be occupied will thus be:

20

[||

di. d’ di
T- Z£ IJT+r B"T+riij—“T+r é‘T+rtT+r WIT +0, WiT 1 WiT +r, WT]

i=li#] ji ji ij
Equation 8
Simplifying Equation 8, this time becomes:
m dq ds dq ds
T-T > |r, +—+t W WG [T | S W
i=1)i#] Bij Bji Bji i
Equation 9

During this time, the module will be consuming its non-interacting power.
Multiplying by this power and dividing by the interval length, T, in order to find the
average, the average power consumed by module j in a non-interacting state will be:

dq d?.k dq dS
P'=|1- z ot W W +r | =+ — + W +w || [Pl
i=Li] I] Bji g 8 Bji Bij :
Equation 10

P" will never be negative since it is not possible for a module to be busy for more than

time T during a period of length T.

Total System Power:

Combining Equation 3-Equation 10, the total average power of the modular
system, P, will be:
P,=P'+P°+P’+P’+P/+P/
Equation 11
Which expands to:

P, f{p +§][Hﬁl+%lﬁﬁrﬁ}PTM+Wﬁ(ﬂ—p) «(pp - ﬁd+§iﬁ
J

i=1i#] ji

d?ki di?k t n b t w n d?ki B
Tl 5t (pji—pjk)+(wj+wji)(pj —pjk)+ =Pl

ji

Equation 12

21

As can be seen from Equation 12, if the power consumption of the modules never

: . . L
fluctuates from its non-interacting power consumption, i.e. if p; = p/" = pi, = piJF’k , the

total average power of the system will simply be:

m m m dsk dgki
Pm|pi‘j=piw=pi”k=pi;’k :Z Py +ZZ P [rikj ?-’_ri“i BJ J

Equation 13
This power is simply the sum of the power consumption of each module plus the power
consumed by transactions on the bus(es). This configuration is similar to the case of a

centralized system in which no components ever fluctuate in power.

Centralized System Power:
In order to compare a standard centralized architecture with the decentralized one

presented, a similar mathematical development must be made for the centralized system.
This discussion is identical to that given in a previous published paper by the authors.
Assume that all components of the centralized system are attached to a single central
processor that has two modes, a processing mode and a sleep mode. Whenever the
processor is not servicing a component or analyzing data collected from components, it is
in sleep mode, otherwise it is in its processing mode. Assume the transitions between the
two modes are close to instantaneous. Based on this abstraction, Table 3 illustrates the six

centralized system parameters .

“t; time required to service component i

and analyze resulting data

i rate at which component i must be
serviced
Po central processor active power

consumption

Sp central processor sleep power

consumption

22

Pei component i power consumption

n number of components

Table 3: Centralized System Parameters

First, the total processing power, °p, and standby power, °s, of the centralized system

must be calculated:

n n
“pP="p.+>.°p, and °‘s=°s.+> °p,
i=1 i=1
Equation 14
Following a similar derivation to those above, the average power that the centralized

architecture will spend in its processing mode will be:
n
Z nt°p
i=1

Equation 15
and the average power spent in its standby mode will be:
(1— Dort,] °s
i=1

Equation 16
Combining these two equations, the total power for a centralized system will be:

Pc _ cs_f_icri cti(cp_cs)
i=1

Equation 17

In order to generate meaningful comparisons, simulations of the centralized and
decentralized power models were performed. Parameter values used for all of the
simulations were kept constant unless the parameter was used as the independent

variable. The parameter values used are shown in Table 4.

Centralized (All components are identical)
Central Processor Standby Power 100uW

Central Processor Processing Power | 250mW

Number of External Components 4

23

Component Sampling Rate SHz

Sample Servicing Time 10ms

Component Power 5mwW

Decentralized (All non-GPPM modules are
identical)

General Purpose Processor Module
(GPPM) Standby Power

100uW + ImW = 1.1mW

GPPM Processing Power

250mW + 15mW = 265mW

Number of Modules (Including
GPPM)

4+1=5

Rate Each Module Requests GPPM | .4Hz
Validation (i.e. Event Rate)
Validation Request Service Time 100ms

Non-GPPM Module Standby Power

5mW + 1mwW = emW

Non-GPPM Module Processing
Power

SmW + 15mW = 20mW

Table 4: Simulation parameters

Resulting plots are shown in Figure 3 below. The general result is that there are
certain applications for which a centralized system would be lower and power and others
for which the decentralized system would be lower power. The decentralized system is
lower power for applications requiring high sensor sampling rates, low environmental
event rates (i.e. low rates of requiring GPP validation), low sensor power, and high sensor
service times. The centralized system is lower power for applications requiring low
sensor sampling rates, high environmental event rates, high sensor power, and low sensor
service times. In general, the breakdown seems to clearly place centralized systems into
data collection applications and decentralized systems into in-network event detection

applications.

24

= 0.25 = 0.078
- —— centralized - —— centralized
g — - decentralized g — - decentralized
3 0.2 [$)
[a 0.076
: -5
§ 0.15 ~ §
) 0 0.074
ie) i)
g 01 g
S _ =
g ~ 20.072f — - L
2005 A 2 -
) =) T - - _
£ P £ o=
= o = 0.07
0 2 4 6 8 10 0 0.002 0.004 0.006 0.008 0.01
#Components (#Modules=#Components+1) General Purpose Processor Standby Power, W
C D
= 011 = 0.16
- —— centralized - —— centralized
€ 0.1} — - decentralized e £0.141| — — decentralized
o I (e}
a - a
0.12
£ 0.09 e £
i g 2 01
n - 0 .
@ 0.08 e @
'ﬁé’ e § 0.08
@ 0.07 @
o P g 0.06
< g <
o 0.06f 7 o 0.04
E £
= 0.05 = 0.02
0 0.002 0.004 0.006 0.008 0.01 0 2 4 6 8 10
Module Standby Power Beyond Component Power, W Component Sample Rate, Hz
E F
= 0.25 = 0.3
- —— centralized Phd - —— centralized
g 0.2 | L=_=_decentralized s g — - decentralized
[e] . [e]
o e o (Module Service Times arg’50ms Greater)
% - - % 0.2
% 0.15 _ 3
> - >
(] - (]
° e °
o 0.1 e [}
2 - 201
g v g S
Z 0.05} 7 z -
Q Q
E £
F oo F oo
0 0.5 1 15 2 0 0.02 0.04 0.06
Module Event Rate, Hz Component Service Times, s
G H
=z 0.16 z 011
- —— centralized - —— centralized
£ 0.147| — - decentralized € 0.17| - - decentralized
[e] [e) -
QE- 0.12 é 0.09| (Module Power 1mW Greater in Starid
9 i 9] 15mW Greater When Processi
9 01 < $ 0.08 g
) = %)
g 0.08 _ 3 0.07
2 A 2
o 0.06 Py o 0.06
> - >
s <
o 0.04F -~ o 0.05
= 0.02 F0.04
0 0.1 0.2 0.3 0.4 0.5 0 0.002 0.004 0.006 0.008 0.01
General Purpose Processor Processing Power, W Component Power, W

Figure 3: Comparison of centralized and decentralized system power

25

Minimum Power System Configuration:
The purpose of a mathematical model for system power in the decentralized

system is to use it to find techniques to minimize the power consumption of the system.
Tradeoffs embedded in Equation 12 indicate that there may be an optimal mode for each
module in the system, and a system configuration so that the system consumes a
minimum amount of power. This section analyzes tradeoffs and control methods for the

modular architecture.

Processing Time vs. Processing Power:

The first tradeoff to be analyzed is that between processing time and processing
power. A well known relationship between power consumption of digital circuits and
frequency of digital circuits is that power is directly proportional to frequency. Assuming
a given process takes a given time at a certain frequency, power will be inversely related
to the length of time a process requires to execute. Assuming a processor is mounted on a
module that has a power consumption consisting of some minimum static power, S
milliWatts, plus a power that is linearly dependent on frequency with slope F mW/MHz,
the execution time for a given process and module power can be related through:

F
i pP -8

Ji

Equation 18
F may be determined experimentally if it is not given on the data sheets of the module’s
components. (Current standard low end values of F are around .5mW/MHz for

MICroprocessors.)

Wait Time for the Bus:

There is also a relationship between wait times for the bus(es) and the bus usage

for requests and responses. As evident in the derivation of total system power above, the

26

total amount of time the bus will be used in a period of length T by a module other than
module j will be:

m d(i dsk m dsk dﬂ d-sk di
T Z rlk' | +r'k| l + Z rikl LL.}.L].}.[‘IM('_'_F#
Evet B Blj : Blj i=Li={],I} B, By B, B

Equation 19

(This assumes a single system bus.) Thus, by the Monte Carlo method, the probability

that the bus is busy when module j attempts to access it any given time will be:

m d?(dsk m dsk di d-sk di
qu) - Z M - * T o+ Z i =t iy —to
el By U By i Bi B B: B

Equation 20

And correspondingly, the probability that the bus is free is:

m di. ds, m d’, dif d, di
D L I E e e
I=11] : Blj : Blj i=Li={j.I} Bn Bn Bil Bn

Equation 21

A standard wired MAC (Medium Access Control) for a decentralized controlled
system is CSMA (Carrier Sense Multiple Access). The modules will sense the bus to see
if it is being used, and if it is not, immediately start using it. There are additions, such as
Ready-To-Send (RTS) and Clear-To-Send (CTS) messages that can be used to ensure
collision-less communication as well as collision detection (CD) and acknowledge / non-
acknowledge (ACK/NACK) routines to recover from collision if it does occur. If the bus
is busy when it is first sensed, a common method of retrying is for module j to wait an

exponentially distributed random amount of time, such as:

Equation 22

where /111 is both the average and standard deviation of the retry times. (Note: These

retry time parameters, /IJ'.’k , may be different for each module, or each mode of each

module, and may also differ based on the priority of the request.) Assuming that

communications on the bus will be fast, and that the retry time average, /1;1 , will be long

27

compared to the length of the bus communications (so that access attempts are essentially
independent trials), the expected wait time for the bus will be:
w; =2 q—l‘;
J
Equation 23
Shorter retry periods will not reduce the wait time to zero as Equation 23 would
indicate. As the retry periods get shorter, the assumption of the independence of the
access attempts breaks down since two or more attempts may be made during the same

busy period. (The full form of the wait time is quite complex and will not be derived

here.) This causes the minimum expected wait time as /1;1 goes to zero to be:

2 2 2 2
m d’, dd d’, di
Wi =5 2 2 Il | 2|+ o o || |
qu 1Ll j i=Liz{j.1} Bi B B, B,

Equation 24
Which is simply the average length of time to the end of a busy period if the bus is found

to be busy on a first attempt.

Wait Time for a Module:

Another relationship can be determined between average wait times for other
modules in the system and processing times and request rates. This wait time is
intimately related to the method by which modules request each other. As explained
above, each module will have a queue into which other modules may insert themselves
with a given priority of service. The queue is setup so that no module gets completely
ignored in the queue, even if the priority of its request is low. The problem of the wait
time for a given module thus becomes a fairly complex queuing theory question.

The primary variables in a queuing theory question are the inter-arrival times and
the service times of the queue. Inter-arrival time is the time between requests made on the
module. Service time is the amount of time it takes a module to process a request. These
are both considered random variables with a distribution that must be determined. A

28

reasonable assumption for distribution of inter-arrival times is an exponential distribution

with an aggregate arrival rate of:

m

m
Mo i = D) = D M

1=1,1#j 1=11#j
Equation 25
In other words a distribution of:

M (X;2) = Ay &7
Equation 26

This distribution essentially assumes that requests are mostly closely spaced in
time and rarely are they separated by a long period of no requests. It also corresponds to
assuming a Poisson distribution for the arrival times into the system. These assumptions
seem reasonable because it is likely that if a request just occurred because there was an
event in the environment, that event will likely cause another request in a short time. In
periods of no environmental activity, there will be no requests or only very infrequent
spurious requests made, but with no regularity.

As for service times, a reasonable assumption is that the service times for a given
type of request will be normally distributed. The service time may not be exactly constant
due to slight variations in the speed of the processor, scaling of the processor speed, or
other variables. The standard deviation of the service times will likely be very small,
however, so a sharp Gaussian distribution is expected. In order to utilize queuing theory,
the distribution of all of the service times must be found. The most common general way
to find the aggregate service time distribution is to simply average the distributions of all
of the service times together. The distribution of the average of several Gaussians will
itself be Gaussian. (In fact, due to the Central Limit Theorem, the average of several
variables, regardless of their own underlying distributions, will be Gaussian.) Queuing
theory doesn’t generally deal with Gaussian distributions, but a similarly shaped
distribution that it does deal with is the Erlangian distribution. Trying to minimize the
integral of the squared difference between an Erlangian distribution and a Gaussian
distribution in general is an algebraically intractable problem. Only guidelines for the
Erlangian distribution parameters can thus be given, but for the specific set of queuing

that is likely to result in the modular architecture proposed, these guidelines should be

29

sufficient. If the average of the Erlangian distribution is set equal to the average of the
Gaussian distribution, one way to match the distributions is to match the height of their

peaks. Doing this and solving for the Erlangian shaping factor, r, gives:

V2zr(r-1)"tet™ u
(r-1)! o

Equation 27
The limiting behavior of this complex expression for r is
Jr=t
O
Equation 28

Which is better than 5% accurate already for r=5, and also sets the standard deviation of
the two curves equal to each other. Thus the approximation between Gaussian and
Erlangian distribution is:

Equation 29
The average, u, of this distribution, which will differ for each module, can be simply

calculated as the weighted average of service times:

_ 1=11#]
ILl] - m
Z rlkj
1=1,1%
Equation 30
Where
Total dﬂ'
tjl‘;a ty + !
BIj
Equation 31

30

Is the total service time including the transferring of the service request on the bus. The

standard deviation of the requests, o, cannot be explicitly calculated, but a reasonable
assumption might be that it is on the order of 5% of u;.

From introductory queuing theory for the M/E/1 queue, the total service time

(wait time in queue plus processing time), w

., and average queue length, L, will thus be:

o]
1+—
L. :p+p2i
j 2(1-p)
Equation 32
And
o}
pui| 1+ —5
ij] 2(1—/0)
Equation 33
Where
t _ C Total
Pi :}”J’luj o z_rlkjtnk
1=1,1#j
Equation 34

Is the service load on module j and must be less than 1. The load factor, p;, essentially

represents the amount of service time (in seconds) requested of module j per second. /1}

is the average total arrival rate of requests on module j and is given by:

m

i}: z rlkj

1=1,1#j
Equation 35
Since the queue in module j will be finite with some length K;, there may be

periods in which service is completely refused and a module i must retry its request. In

general, the probability that the queue is full, i.e. P(L; > K;), is:

31

r
1-p)(1-2)] ————
| tak Z)(HPJ—/JJZJ K

Z . ,
k=0 r
— | -z
r+p,—p;z

Where Z* is the inverse z-transform. This is in general not a computable answer, but an

Equation 36

approximation can be made. If an assumption of o; =5%y; is made, then r =400. As
r — oo, the Erlangian distribution approaches an impulse at x; which is simply a

deterministic service time system. In the case for r large, Equation 36 simplifies to:

K;-1
P(L; > Kj)zl—(l—pj)kz_;p;(= p}

Equation 37
Thus the probability that module i is turned away from module j is simply:
K d “
Bus! i Total
PJ. Y — pj _(rlkjtjlk j
1=1,1%j
Equation 38

The waiting time thus needs to be revised to take this into account. If module i

retries module j at an average rate of ﬂii‘j (which may come from an exponential

distribution), the total service time can be revised as:

Equation 39
Thus far a non-prioritized, first-come-first-served queue has been assumed. The

queuing discipline described above, however, does have prioritization. With
prioritization, the average waiting time will change to yet another form. The greatest
difficulty with calculating the wait time for the specific prioritized scheme proposed is
that prioritization with finite storage means that there is the possibility of a service
request getting bumped off the queue once that request is already on it. This probability is

complex to calculate primarily because the distribution of the number of requests in the

32

gueue when a given request arrives plus the number of requests that arrive above a given
request after it arrives is non-trivial. If a deterministic average service time is assumed
(due to an extremely sharp Erlangian service time distribution), a concrete result appears,

however. The average slot a priority p request will enter into the queue will be:

N, =—2f
p 1_
p P
Equation 40
Where
- t S Total
— _ C C4 lotal
p,o—,uzc/i - Z rlkj tj|k
c=p 1=1,1# j
Equation 41

m

And A'= Z Crij denotes the average arrival rate of requests with priority c. (Equation

1=1,1%)
41 implicitly assumes that the average processing time of all requests is the same

regardless of priority of the request.) If there are K total spots in the queue, then the

average number of spots left in the queue after an arrival will be K —| N, +1]. Also, the
average length of time remaining for a request already being processed will simply

be% . Thus the probability of a request with priority p being bumped will be:

paumped _ p-iNaj (%)+ pr-N-2 (37“)++ pX (ugﬂN +1J—1D

Equation 42
Where

n-—)
P"(t) :1—e‘p”“i()
i=0

il
Equation 43
Is the probability of at least n arrivals from a Poisson arrival process in an interval (0,a).

Putting Equation 42 and Equation 43 together results in:

33

1-e

j=0 i=0 I!

|Np+1]-1 (1 K-(pltﬂ(l*‘ Jjjl
PpBumped — pz 7’)/“{?“) J 2

Equation 44
From introductory queuing theory, the average waiting time in a prioritized

queuing system with no storage bound is computed recursively from:

Equation 45

2

Where P is the maximum priority, .o° is the variation of processing times for priority c

2
requests (also equal to C'”/ for the Erlangian distribution with parameter r), and |z is

the mean of processing times for priority ¢ requests. Assuming that the variation and

mean of each type of request is similar, Equation 45 can be simplified to:

(02 +u2)zp: A
c=1

WP =
P P
c=p c=p+l
Equation 46
The total average wait time for a given module will thus be:
Py
F WP
. "] 1_10j i
PWii - 1 PBumped ’uJ
p
Equation 47

This wait time expression is obviously quite complicated. This level of analysis is

probably unnecessary for the modular system described, but it does allow a way for the

variable Witj to be removed from the expression for the power of the modular system.

Simulations will be performed to verify these results, and in general, the simulations will

be used as the benchmark for how the actual operation will occur.

34

One additional constraint that could be put on determining this wait time is that
the population from which requests occur might be considered finite. Since modules may
make more than one request of other modules, however, the number of requests that
could come in is, strictly speaking, infinite. The wait time expression given in Equation
47 is thus the correct wait time for the system. For sake of completeness, the wait time
for an M/M/1/K queue will be cited. This queue has exponential distributions of inter-
arrival times and service times, a single request processor, and a total of K modules that
may request another module only once each. It is not prioritized. The wait time

expression is:

L
P ﬂ’lt'otal,j(m_l‘) #
Equation 48
Where
m t I
Z |2(| _l)!(mJ ﬂ'TotaI,j
_I=Ll#] | Hj
- [
i I'[mJ ﬂ’;otal,j
EvIN H;j
Equation 49

In order to show the benefits of the queuing approach as described in Equation 47
over a simpler queue-less approach, another brief analysis must be performed. Assume
that there are no queues in the system at all so that if a module is busy processing another
request, a requesting module must simply retry later. The first thing to note is that priority
scheduling cannot be enforced in this type of queue-less system, and this is an immediate
initial drawback. The probability that a node is busy in this system is simply its traffic

load:

Busy __
P = p;

Equation 50

Assume a module retries with an average rate of ﬂiﬁj = cu; where c is a positive constant

and 4, is the average processing time on module j. The wait time for this system can

then be found to be:

35

Li (ca;)+, for c21

1-p;
Pj 1 1 c\lc
— {—lc,uj l—c[—J + +u;, for c<1
1-pi|lcC c 2
Equation 51
Which for ¢ = 1 , Where s is an integer when it is greater than 1, simplifies to:
S
L(ﬂ}r,uj, for s<1
. 1-p;\ s
iji —
, (s+1
pi #()+,uj, for s>1
1-p; 25
Equation 52

An interesting result of this is that as s -, ¢—0, /1i'fj — 0, i.e. as the retry

period becomes very short, is:

]

Equation 53
This is the shortest possible expected wait time in the queue-less system. This result

makes sense because % is the average length of time until the end of a processing

interval if module j was busy when another module originally attempted access.
Comparing Equation 52 with Equation 47, the wait time difference between the
two module interaction policies (prioritized queuing or non-queuing) can be determined.
The question is whether:
Kj
a2 P we

i jl_p'] J D
J < J _
1— PpBumped 1_pj i“j

Equation 54
The several factors affecting this inequality are the average processing time of requests,

the deviation in average processing time of requests, the number of priorities used in a

36

prioritization scheme, the retry interval for requests, the distribution of traffic across
priorities, and the size of the queue in the queuing scheme. The figures below
demonstrate how each one of these factors independently affects which of the two
schemes is better. The graphs show the ratio of non-queuing total wait time to prioritized
queuing total wait time across the different priorities, i.e.:

i]__ijj—’_WJp

__ pBumped
1-P,

+ 1

Pi

1-p

R
. ﬂikj + 4,
J

When the graph is above 1, the prioritized queuing scheme is thus a better choice, and
these portions are colored yellow. When the graph is below 1, the non-queuing scheme is
a better choice, and these portions are colored blue. Unless the parameter was being
varied, it was set to the middle of the range given when it was varied. For example, the
processing time was set to .05, 50ms, for all simulations other than that generating Figure
4,

(non-prioritized wait){prioritized wait)

priority processing time

traffic arrivals

priority

Figure 4: Processing time versus priority for queuing and non-queuing schemes

37

(non-priaritized wait)/(prioritized wait)

0.01

0 0005
priarity processing time deviation

traffic artivals

3 T T T T T T T T =

hertz

priatity

Figure 5: Processing time deviation versus priority for queing and non-queuing schemes

(non-prioritized wait)/{prioritized wait)

priority printities used in maodel

traffic arrivals
15 T T T T T T T T

hertz

I I I I I
] 2 4 B g 10 12 14 16 18 20
priarity

Figure 6: Priorities used in prioritized scheme versus priority for queing and non-queuing schemes

38

(non-priaritized wait)/(prioritized wait)

priority retry time

traffic arrivals
3 T T T T T T T T)

herz

priority

Figure 7: Request retry time versus priority for queing and non-queuing schemes

{non-priaritized wait)/{prioritized wait) (nor-prioritized wait)/(prioritized waif) (non-prioritized wait)/(priotitized wait) (nan-prioritized wait)(prioritizad wait)

5 .
) qg 0.1 processingtime 10 0.1 processingtime 10 0.1 processing time 10 0.1 processing time
priority priarity priority priority
traffic arrivals traffic arrivals trafiic arrivals traffic arrivals
0.5 0.65 15
07 0.6
25
06 0.55 4
2 0.5
05
- . 045 n
15 T 04 i T s
£ £ 2 n4 £
0.3
1 0.35
0.2 03 0
0.5
0.1 025
a a 0z 05
o i 10 0 -1 10 0 i 10 o g 10
priotity priority priority priority

Figure 8: Processing time versus priority for different traffic models

39

(non-prioritized wait)iprioritized wait)

priotity fueue size

traffic arrivals
3 T T T T T T T T —

hertz

priority

Figure 9: Queue size versus priority for queing and non-queuing schemes

These figures offer a wealth of information about queuing versus non-queuing
schemes in general. They will be interpreted only at a topical level here, but much deeper
understandings are likely to emerge on further analysis. From Figure 4 and Figure 5, it is
apparent that for situations in which requests have a low average processing time, but
significant deviation away from an average, the priority queuing scheme is more
beneficial. For a high performance processing resource taking in various different kinds
of data from multiple resources, this will likely be the situation. In fact, in high traffic
situations, the lower priorities would favor a non-queuing scheme whereas the high
priorities favor a queuing scheme. Figure 6 shows that the priority queuing scheme is
essentially only beneficial if a low number of priority levels are used. In other words,
priority queuing is a good choice only if a very low number of priority levels (e.g. 3) are
used. Figure 7 shows that as retry time increases lower average wait times will be

experienced by requests using the queuing scheme, and this result is fairly consistent

40

across priority level. Figure 8 shows that as traffic distribution across priority levels
becomes imbalanced towards lower priority requests, the priority queuing system
becomes a more favorable scheme. In other words, if the number of high priority requests
is significantly smaller than the number of low priority requests, and high priorities are
used sparingly, the queuing scheme becomes more favorable. Finally, Figure 9 shows
that the size of the queue in a queuing scheme generally has no major effect on whether
to choose a queuing or non-queuing scheme except for low priorities and low queue
sizes. For low priorities and low queue sizes, the non-queuing scheme is favored. This is
likely a result of low priority requests being bumped more often for low queue sizes.
Other than Figure 4 and Figure 5 which offer support towards using the priority queuing
scheme based on the expected usage of node resources, the other simulations simply
provide guidelines as to how best to utilize the priority queuing scheme assuming it is in
place. Thus for implementation purposes, the priority queuing system will be chosen.

One other concern that Equation 54 raises is that evidently as p —1 or
PpB””"""j — 1, low priority requests will statistically never be serviced. This is only the

case if a certain percentage of the requests are high priority and the queue size is small,

however. Specifically, if p/lty =aA'u, i.e. if higher priority traffic makes up 100a% of

the total traffic, the queue size K must be greater than a threshold value, depending on the

total traffic p, in order to probabilistically ensure some minimum PpBumped . The

simulation results shown below demonstrate how these minimum supporting queue sizes,

K, vary with a, p,and P>™ .

41

Bumped

Bumped

P =30% P "2100%

Figure 10: Minimum Supporting Queue Sizes for Ensuring a Maximum Probability of Bumping
As expected, as PpBumped is allowed to increase, the minimum required queue size
for a given a, p combination decreases. Also as expected, as either aor p increases

while holding the other parameters constant, the required minimum queue size increases
as well. The simulations reveal that the minimum required queue size increases very

sharply as a —1 and p —1. They also reveal that a and p are essentially symmetric
parameters. In other words, if specific values of a and o are interchanged with each

other, the required queue size, K, does not change. In fact, Equation 44 demonstrates that

if the product ap is a constant, no matter what the explicit values of a or p, the queue

size required will be the same. The required queue size thus depends only on the amount
of traffic that is at a higher priority than a specific request, not on the total traffic into the

module. The required queue size such that requests of all priorities will have less than a

specific PpBumped is simply the case when a —1 in Figure 10.

42

Figure 10 can help choose the appropriate queue size once a specific a, p, and

PpBumped are specified. A reasonable queue size might be about 10 giving ap =.75 for

PpB””"""j =10% , but the specific choice might depend on empirical testing since many of

the effects of queue size will be transition effects, but all of the equations are developed
under steady-state operating assumptions. Additionally, affects that will occur in the
specific implementation of the modular architecture may not be captured by the
somewhat simplified queuing model developed. (Specifically, although the population
from which requests are generated is not strictly finite, since modules may make multiple
requests, it will likely depend in practice on the number of modules in the system and
each of their bandwidths. A finite request population will serve to reduce the necessary

queue size in general.)

Revisiting Equation 54, and making the assumptions that P*™* <10% and
K >10, the equation can be simplified to an approximate requirement on p:
WP
P > R Bujm ed
AL (1=PRm)+ WP

Equation 55
In other words, if the traffic, o, is above a certain threshold, the prioritized queuing

system will provide lower wait times than the non-queuing system. As W gets smaller,
i.e. as the average wait time in the queue (queuing time) for a priority p request gets
smaller, Equation 55 dictates that a lower traffic, p, is necessary such that the prioritized
queuing system generates lower waiting times than the non-queuing system.

Contrastingly, as W,” gets larger, Equation 55 dictates that a larger traffic, p, is

necessary before the queuing system becomes a lower waiting time system than the non-

queuing system. Also, as ﬁ,ifj increases or PpB“'“""‘j decreases, the threshold for p

decreases. In other words, for high priority traffic, the queuing system will provide lower
wait times than the non-queuing system for most traffic, but for lower priority traffic, the
queuing system will provide higher wait times than the non-queuing system unless the
traffic is very high. Also as the retry-frequency increases or the probability of being
bumped off the prioritized queue decreases, lower and lower levels of traffic will still

43

favor implementing the prioritized queuing system over the non-queuing system. There is
thus a tradeoff between being able to ensure prioritized requests and having balanced

wait times across all types of requests.

Inter-module request rate, sample rate, and event rate:

The system as designed is meant to be completely event driven. Although the
architecture can be adapted to other, data collection type, activities, the power analysis
shows that lower power can be achieved with a centralized system for high event
(sample) rates. (A data collection system could be morphed into an event detection
system by considering an event to occur when incoming data deviated significantly from

a previous measurement.) The inter-module request rates, R will depend on a few

module-specific parameters: environmental event rate, e;, the sensing sample rate, ry,

the probability of detection, pi‘ij , and the probability of false alarm, pi{j . (These

parameters assume that there is only one sensor per module, there can only be one sample
rate of the sensor, but there can be multiple ways the collected data is processed in order
to determine different types of events which will be reported to different modules.) The
sample rate, probability of detection, and probability of false alarm are all dependent on
the operational mode, k, of the module. The power consumed by a module to perform an
event detection calculation is assumed to increase as the probability of detection
increases, the probability of false alarm decreases, and the sensing sample rate increases.

A simple derivation is needed in order to determine the relationship between L

& ry, pi‘ij ,and piij . Define an interval of length T. Let My be the total number of

1
samples in the interval, E;j; be the total number of events in the interval which may cause

module i to request service of module j, N be the total number of non-events, and Ri"j be

the total number of requests generated to module j by module i. Evidently:
M,=E;+N
Equation 56
Also, the number of requests, Rikj , can be calculated simply as:

44

. f
Ry, = PyEy + piN

J
Equation 57
Combining Equation 56 and Equation 57, dividing by the interval T, and rearranging

gives:
_ Ad f s
ri"j - pikjeij + pi"j (rlk eij)
Equation 58
Since r; > ¢, the sample rate is greater than or equal to the detected event rate, the
request rate will always be positive. Equation 58 demonstrates that if the sensing sample

rate increases, the request rate will increase also due to false alarm requests. Lo rif , and

piﬁj can all be measured by a module, where the probability of false alarm use module j’s

processing result as absolute determination of whether an event occurred or not. Given a

receiver operating characteristic (ROC) for the relationship between pi‘ij and pin,

Equation 58 gives a direct method of calculating the true event rate, g, into the system.

N piﬁjrif
Equation 59
(In general picij > pin, if pi‘;j =0 then picij =0, and if picij =1 then piij =1.An
example ROC is given in Figure 11 below. As the decision regions for events and non-
events overlap more and more, i.e. as the signal to noise ratio for a particular sensed

signal becomes large, the ROC becomes pi‘ﬂj = piij . This situation implies that any signal

entering the system can be defined as an event, and thus e; — oo as shown by Equation

59. The verification of events by module j will still leave some total probability of false

alarm for the system, but Equation 58 is the best guess the system can generate for ¢; .)

45

0 \ 1
P

Figure 11: Example Receiver Operating Characteristic

In order to dynamically adjust the mode of the module, a relationship must be

established as to how to change r; as e; changes. In other words, what algorithm will be

used to ensure that r; > be; , the sample rate is some multiple of the event rate. One very

simply algorithm is as follows:

S . S
rIk n+l_ mln(rik max1max(rik min,b(eij n+d (eIJ n_eij nl))jj

Equation 60

€, i Is the estimated event rate and is equal to the number of events per sample from the
n

last m samples taken, and minimum and maximum limits on the sample rate are applied.

The relationship between d in Equation 60 and the number of samples, m, in the moving

average eij was determined experimentally with simulations in order to give the
n

minimum cumulative error, see Figure 12 (d=5, b=2, r_i =2.5, rsk =.5), Figure
i i

max min

13, and Figure 14. In general as d gets smaller, and thus the number of samples in the
moving average gets smaller, the response of the system to changes in the environment
gets faster. As d gets smaller, however, the system also gets more sensitive to spurious
events and random changes in the event rate. The determination of the d to use should be
made empirically depending on the type of events observed. b should also be determined
per application since a high b may use undue amounts of processing power, but a low b

risks missing events.

46

25 T T T T T T

1
—— Ewvent rate

— Sample rate
Errar
ab -
1.5+ —
1+ |— —
05
ol
-05 | | | | | | 1
1] 20 40 G0 g0 100 120 140 160

Figure 12: Sample Rate Tracking the Event Rate

= o = =
= ~l P o
|

=
wn

Integrated errar for sample input

0.3

&0

a0 o0

20

Control "derivative” coefficient, o Aweraging window size, m

Figure 13: Cummulative error versus averaging window size, m, and control "'derivative"
coefficient, d, for sample input

47

45 T T T T T T T T T

40+

Kig

30k

d 25+

20

15
d=.881m-.4857

1o} m=1.135d+.5513 ;
r2=.9984

s _

I:II:I EI 1:] 1I5 2:] EIS 3:] 3I5 4:] 4I5 g0

m

Figure 14: Optimal control “derivative” coefficients, d, for varying averaging window size, m, with
regression analysis

Minimization of total power consumption:

The optimal control of the node has the singular goal of using the least amount of
power necessary while still accomplishing its given mission. Since the node has no
central controller, however, the optimal control must be pushed down to decisions on the
individual modules. The individual modules seek to minimize the amount of power they
cause the system to consume which includes their own power, the power used to transact
their requests to other modules, and the power used by other modules to process their
requests. This power can be given by:

R =030 (195)

J#l

Equation 61

48

strans

where bk is the amount of power consumed in transacting the request both by the

modules involved and by the media that transacts the request. For sensor modules

s trans

operating on nodes with a general purpose processor module, Jit] will simply be:

-trans dilaj t B t
Ji; :_B (pij + P+ pji)
ij
Equation 62

If there is no local general purpose processor and the data must be shipped to

another node for processing, however, jit[j_‘“S is given by:

di
strans 1] t B t = wireless _comms
iy =5 (P By Pl)+]

1

= wireless _comms

~)
Equation 63
since wireless communication is generally consumes vastly more power than any
onboard computation or bus communication. As given in [1], the communications power
IS given by:
s wireless_comms __ L P P P T P L T
J - E(x 1 Four)+ % lwsst T PR E"’ rx—>st

Equation 64
for a single slot, single packet transmission. L is the length of a packet in bits, R is the

baud rate of the radios, Prxrx is the power consumed by the transmitter/receiver, Pour is
the output power of the transmitter, and Tyt IS the start-up time of the
transmitter/receiver.

All of the variables and sub-variables of Equation 61 have now been tied to

fundamental measurable parameters of the system except for p; . (The fundamental
measurable parameters can either be measured off-line as in the case of pi? , for example,
or they may be controllable parameters of the system, such as r;.) The two dynamically

adjustable parameters on the sensor modules of the system are r; and pin , and while the

power consumed by other modules is already related to these via i, in Equation 58, piﬂ

49

has not yet been related to these parameters to form the controllable balance the optimal

power can be derived from.

A definitive functional form to relate p; to ry and piij is not completely

forthcoming. A reasonable assumption is that there will be some amount of power

consumed by a module independent of either r, or pi{j , and then other components of

the power that will be. This provides a first pass relationship of
n _ pBase s f
P =P+ f (r pikj)
Equation 65

where PikBase is the measurable base power of the module independent of r; and piﬁj.

Another reasonable assumption is that the dependence of p; on r; will be linear. This is

likely because if a fixed amount of processing is required per collected sample, and if
there is a fixed average power per instruction, then as additional samples are processed in
the same time period, the increase in processing instructions will be proportional and thus

the increase in power will be proportional as well.

As for piﬁj , a relationship is less obvious. Firstly, if the complexity of an

algorithm increases, the number of instructions the algorithm requires to execute will also

increase, but the link between complexity of an algorithm and the pi{j it will provide is

difficult to firmly establish. For example, how does one compare the complexity of a

simple amplitude threshold in the time domain to a 16 point DFT in the frequency

domain? The pi‘;j in these two cases depend strongly on the type of noise in the

surrounding environment and also the type of signal that is trying to be detected. Even

attempting to quantify the general difference in piij between a 16 point DFT and a 256

point DFT is difficult without knowing more about the specific problem and algorithm

used to detect a target. In general, piﬁj is usually calculated using Monte Carlo methods

on simulated inputs, and no analytic analyses are possible.

Since there is no analytic analysis possible, a reasonably upper-bound assumption

for the dependence of p; on piij will be given. Assume an algorithm with processing

50

time O(nz), where n corresponds to some sort of “resolution” of the algorithm. (For a 16

point DFT, the “resolution” would be 16 since the analysis is broken into 16 discrete

frequencies. A radix-2 n-point DFT is actually better with a O(n Ig(n)) in processing

time.) Furthermore, assume that as the resolution is doubled, the probability of false
alarm only halves. Generally, as resolution is doubled, the probability of false alarm
decreases by well more than half, so this is simply a reasonable upper bound. Thus,

p.ﬁj oc —. This gives an overall inverse quadratic relationship between p; and p_ij ina
I n 1

worst case. Since the justification of the linear relationship between p; and r; involves
the number of instructions executed per sample, and the relationship of p; and pi[j is

derived through this instructions per sample ratio, a reasonable assumption is that rif and

pi‘;j will be together in a single term in the function relating them to pi’; . Thus

Equation 66

where c; is a constant of proportionality.

Putting together Equation 58, Equation 61, and Equation 66, the power a module

must seek to minimize will be:

R S S (g e (et ol + i)
J:lm(j) eyt

In order to place a lower bound on r;, consider that the sample rate should be fast

Equation 67

enough as to catch any event. In other words, if events have a minimum time duration,
the sample rate should be statically minimum where it is at least the inverse of this

duration time. Also, if a module detects an event every time it senses its environment, it

may very well be missing events in between samples. Thus r; should be dynamically

adjusted above the static minimum so that it samples its environment say at least some

51

constant, b, times as frequently as it detects events, i.e. r; >be; . The maximum r; may

go is simply equal to the maximum samples per second throughput of the algorithm used

to process the samples. The analysis of how to change r, in relation to e; has already

been determined above. The restriction on pi{j is simply 0< piij <1.

From Equation 67, it is apparent that minimizing ry is always preferable since it
only appears linearly. Thus r; is chosen in relation to the types of events to be detected,

not in relation to power consumption considerations. Also, each piij may be solved for
independently since they appear only in terms with r; and not with other Py ’s. Taking

the derivative of Equation 67, setting equal to 0, and solving for pi{j gives:

S
of = 20.C;
g3 (rs _e) t P - trans
i ij ji% pji" Jikj

Equation 68
Equation 68 demonstrates a few interesting results. It shows that as the power of

computing on the hierarchical resource becomes greater, the allowable probability of
false alarm on individual modules gets smaller. Interestingly, this result holds no matter
what the base, non-scalable power consumption of the individual modules themselves,
only in relation to how *“expensive” it is to use the hierarchical resource. In order to
conserve most power, if a hierarchical resource is “expensive”, its use should be
protected more, but if it is “inexpensive”, its use need not be protected as much. Also, for
a constant environmental event rate, as a module’s sample rate increases, the probability
of false alarm should decrease, but should decrease asymptotically to a minimum. If more
samples are taken, in other words, they should be processed with a lower probability of

false alarm algorithm.

If the dependence of p; on pin is different than inverse square, but still inverse

and monotonic, these general dependency characteristics will not change, and only the

amount to which p; is affected by a parameter variation will change. Figure 15 below

shows how p; changes with pi[j and r,; for inverse, inverse square, and inverse cube

52

relationships between p; and piij . Parameters for these graphs were chosen to be
Piksase =50mW, c; =1x107°, pi‘ij =.9, =1, tjik =50ms, p;’ik =500mW , and

jie = 2503 .

Inverse Square Inverse Cube
/| T
i T
e QR Cat:
BRI i S
Power .} \\W “‘“&:““‘L S +0
o2\ [
s o
o ;

Inverse

Figure 15: Power Versus Sample Rate and Probability of False Alarm

Since the choice of pin will be discrete as opposed to continuous, Figure 15 shows that
choosing the discrete pi{j above the optimal piﬁj will give a lower total power than

choosing the discrete piij below the optimal piij.

Optimal Module On-Time When Modules Require Transition Time and Power:

One other method of decentralized control possible in the system is that modules
should power themselves down when they are not in use. If modules require some

amount of transition time to power on and off, however, a module would want to remain

53

on if another request will be made shortly in order to conserve the transitioning power.
To find the optimal on-time, the following parameter definitions are necessary.
t° Total time module i remains on to process

and wait for more requests when its queue

is empty. t’ 2t Vi .

i Total power consumed by module i when
transitioning from off to on.
i Total power consumed by module i when

transitioning from on to off.

Table 5: Module Transition Power Parameters

Assume requests occur on the following timeline:

X Xa
A A ,
i A4 K Time
Request 1 Request 2 Request 5

Figure 16: Timeline of Requests

As previously defined in Equation 25 and Equation 26, ﬂ}otal'j is the aggregate inter-

arrival rate of requests into module j from other modules, and M (X; 4) = A1 J.e‘“*"“*'*j is

the distribution of inter-arrival times, x. Let the power associated with a request is the
total power consumed while processing a request, plus the power consumed by remaining
on after the request is processed, plus any transitioning power generated by the request.

Consider the power associated with Request 2, P:

it x>t , "+ +pht’
if x>t _ _ :
if x,<t’ , j'+ pi;’k X,
P=
if x>t , j+pit’
if x <t® { :
if x,<t’, pi;’k X,

Equation 69
Since the exponential distribution is memory-less and hence x; and X, are independent:

54

Equation 70
and

P(X1 < t.o) = P(x2 < ti‘)) _1_ g o

Equation 71
Substituting these probabilities into Equation 69, and noting that the average of the

exponential distribution is

——, the average power consumed by event two, or any

otal ,i

other event, will be:

p

_qot | ; p ot
P =@ t Aotal i [Jin + Jif + pi;)ktio + t'Jk (etl Aotal _1)}

otal ,i

Equation 72
Graphing Equation 72 for j" + j;' :%, piJF’k =1, and Ay, ; =1 gives Figure 17 below.

13 T T T T T T T T T

1.2

1.1

0.9

0.8

0.7

0.6

|:|5 1 | | | | 1 | | |
a

Figure 17: Power versus turn-off time, Example 1

55

Notice that for these parameters, the minimum event power is given as at a turn off time

of 0. In other words, for these parameters, modules should turn off as soon as they can

after processing a request. Graphing Equation 72 for j" + j;' =g, pijﬁ =1,and A, =1

gives Figure 18 below.

18 T T T T T T T T T

1.7F .

1.6

1.5

1.4

1.3

1.2

1.1

Figure 18: Power versus turn-off time, Example 2

As can be seen, for these parameters, the minimum power will be achieved by leaving the

module on continuously.

In general, for t’ >0, the graph of P will either have a positive bump and then

monotonically decrease, or will simply monotonically decrease. Thus, the minimum
value of P will either occur for t* =0 or t’ — oo (or both). From Equation 72, it can be

p

- Py« :
found that P|, = j'+j' and P|, ~=—"—.Given that t’ must be greater than some

otal i

56

minimum finite processing time, t! :t‘p , @ module will thus either want to turn off

immediately if P(t'p)s —— or remain on indefinitely.

otal i

Dynamic estimation of aggregate inter-module request rate:

The last thing needed to actually employ this time-out turn-off technique is to

estimate A, ; on the individual modules. This will require keeping track of the

difference between arrival times, but a simple timer can accomplish this easily. The same

sort of moving average technique employed above for g; is not necessarily appropriate
because during long periods of no requests, A, ; will simply grow smaller and smaller,

and when a request does eventually occur, the turn-off time, t’, will be extremely long

and inappropriate. The geometric average is less susceptible to extremely high outliers,
and thus this average is likely a better choice. However, the arithmetic average if outliers

are discounted is really what A, ; should be, so a scale factor must be assigned to the

geometric average in order to compensate for this difference. The arithmetic aggregate

average can be computed from:

n
= n+1an +Sn+l

n+1

Equation 73
Where a, is the nth estimate of the arithmetic average and s, is the sth sample taken. The

scaled geometric average can be computed from:

n 1

Oni = %(an)m (S’n+1)m
Equation 74
Where g, is the nth estimate of the geometric average and c is the scaling factor. c is
found by taking the geometric average of several independent random variables, and for
the case of exponentially distributed random variables (as the inter-arrival times are
assumed to be), ¢ ~.561. If the samples are taken to be the amount of time between

57

request arrivals, the average of these times can be computed by one of the averaging

methods shown, and then Ay, ; will simply be the reciprocal of this average.

Using Equation 73 and Equation 74, Figure 19 below was generated. Figure 19
shows three different simulations for which an environmental event causes 5, 50, or 500
inter-module request rates. In other words, when an event occurs, sensor modules that
detect the event will request verification from another module 5, 50, or 500 times. These
numbers can also be interpreted as the duration of the event in units of inter-module
requests generated. The average of the exponentially distributed inter-module requests
was set at 10 time units, and periods of no events were assumed to be 1000 time units

long. The final arithmetic and scaled geometric averages are shown in the titles of each

Events Cause 5 Inter-Module Requests A=190 G 26
100 s
Inter- e
Artival
Time
a0 h 1
o 100 QDD 300 400 500 600 700 &00 a00 1000
Total Number of Inter-Arrival Times
Used in the Running Average
Events Cause 50 Inter Module Requests A=30, G=11 Events Cause 500 Inter Module Requests A=12, G=10
100 100
— inter-arrival times — inter-arrival times
running arithmetic average running arithmetic average
a0 - ___ running geometric average a0 ___ tunning geometric average
a0 = a0
70+ — 70+
Inter- o}] Inter- gl
Arrival Arrival
Time T 1 Time
| ‘ ‘ an
| |
i1 -
2” bl h
h Ii Ifl‘ n

HIMy |
' 1 ‘ HIH ll l\ Hl ‘\ || ||‘M1 \|U|N III l h||‘l|”| |H‘ ” '[””[Hl‘p ‘| HH"] mﬂ Mm
o 100 200 300 400 S00 BO0 7EIEI SIJIJ 500 1000 100 200 300 400 500 600 700 EDD 400 1000
Total Number of Inter-Arrival Times Total Number of Inter-Arrival Times
Used in the Running Average Used in the Running Average

Figure 19: Arithmetic and Geometric Running Averages

As can be seen, the scaled geometric average is far less sensitive to long inter-
arrival times even when only a few requests are generated for each event. Another way to

look at this insensitivity is that it takes far fewer requests per event for the geometric

58

average to converge than for the arithmetic average as evidenced by Figure 20 below.
Simulations also show that increasing the time between events [1000 time units] also had

little effect on the geometric average, but significant effect on the arithmetic average.

Convergence of Arithmetic Average - Convergence of Geometric Average
2000 T T T T T T T T T T T T T T T T T

1300 | 1300

1800 |- 1800

1400 - 1400

1200+ 1200

Average
1000

Average
1000 -

800 - 800

600 - 00

400 400

200 - 4 200 -L
\ \

Uu 20 4‘EI E:J s‘u TE‘IEI 12||J M‘EI 1éu 180 200 o 20 40 B0 &0 100 120 140 160 180 200
Inter-Module Reauests Per Event Inter-Module Requests Per Event

Figure 20: Convergence of Arithmetic and Geometric Averages in Requests Per Event

These simulations show that using the scaled geometric running average from Equation

74 will be the better of these two choices for generating estimates of A, ; on each

module. The estimation of A, ; can also be derived from a moving average and outlying

inter-arrival request times, signifying that no events occurred for a long time, may also be
simply discarded and not included in the average if a reasonable discarding strategy is
developed.

Module mode changing based on system configuration:

Modules will change modes also depending on the configuration of the system,
i.e. the other types of modules comprising the node. (Refer to the “Proposed Node
Architecture” section for configuration definitions.) If the system configuration changes
from C, to M, for example, one would not expect an S to continue reporting to a no
longer existent GPP. Following are descriptions of mode changes that will occur for each
type of module.

S Modules:

S’s may occur in D1, M,, Cy, Cy, or C3 nodes. They collect data from attached

sensors and analyze this data with a simple algorithm (e.g. threshold detection, etc...) for

59

possible events. If there is an event, the S logs the data that caused the event and will then
seek to send the data to a GPP for event verification.

If the Sis in a Dy (PS+S) node, it will simply log data without attempting to send
it to any other modules, since no others exist. They may log either all of their data, or
only that data in which they detect an event to have possibly occurred. In this
configuration, S modules will use the highest level algorithm they have for event
detection (e.g. they would choose frequency analysis over simply threshold detection).
The reason for this action is in case the node is ever picked up, this un-communicated
data collection can be analyzed post facto.

If an Sis in an M, (PS+WNC+S) node, any detected events will be sent to the
WNC which will send the data to a GPP on another node for verification. In this way, an
S’s data may be used by the network as a whole even if no GPP exists on board the same
node as the S. In this configuration, the S’s will still log their own data and events and
expect to hear responses from a GPP on another node if that GPP processes its data.

Ifan Sisina C; (PS+tWNC+S;+S,+(S...)) node, it will operate the same as in an
M node. The reason for this is that even though the system configuration is complex,
there is no GPP on board the node to do any processing of sensor data. Essentially, the
primary difference between M; and C; is that there is potentially more wireless traffic out
of a C; node than an M; node.

Ifan Sisina C, (PS+tWNC+GPP+S+(S...)) node, it will send any preliminary
events and sensor data to its local GPP. It sends the data to a GPP for further analysis and
verification of the event. It will still log its own data, but simply does not need to use the
WNC at all to communicate with GPP’s on other nodes.

If an Sis in C3 (PS+WNC+GPP;+GPP,+(S,GPP...)), it will send its events to
whichever is the appropriate GPP or GPP’s. The GPP’s will determine between
themselves how they partition the tasks of the system and tell each S from which they
require data to report to them if an event occurs. Thus an S in this configuration will need
a list containing the GPP’s to which it needs to report each event it detects.

60

GPP Modules:

GPP’s may occur in Dy, M3, C,, or C3 nodes. The GPP’s are essentially the
“application” modules in the sense that they are the primary components that need to be
reprogrammed from application to application. They are the brain of the system and can
combine and verify data from the S’s (from their own and possibly other nodes), as well
as report to other nodes, collaborate with other nodes, and report to a user. GPP’s will
likely be mostly event driven in the sense that they remain dormant unless stimulated by
an outside stimulus from an S or a request from another node. In other words, they will
be mostly non-self-stimulating for simple applications, but they are not restricted to only
this type of operation. GPP’s are the most abstractly defined and flexible of all the
module types.

If a GPP is in a D, (PS+GPP) node, it will have nothing to do and should shut
down completely. Without any stimuli from sensors, the GPP’s will have no data to
compute on, and are therefore useless. The module bus connectors should remain alert in
case another module is attached, but otherwise, the entire processor that the module
supports can be powered down.

If a GPP is in an M3 (PS+WNC+GPP) node, it can take part in distributed
network computations via the WNC, verify sensor events from M, or C; nodes, and
operate in its normal application supporting mode.

If a GPPisina C; (PS+tWNC+GPP+S+(S...)) node, it will operate essentially the
same as if it is in M3 just with potentially more request traffic coming in from the
attached S modules.

If a GPP is in a C3 (PS+WNC+GPP;+GPP,+(S,GPP...)) node, it will have to
collaborate with the S modules that it requires input from in order to coordinate node
operations with the other GPP’s. It may also communicate with the other GPP’s in the
system, and carry on the normal GPP operations of communicating through the WNC

with other nodes.

WNC Modules:

WNC’s may occur in My, My, M3, Cy, C,, and C3 nodes. Their operation will be

mostly the same in any of these configurations as they will always route network traffic

61

and pass messages between modules on disparate nodes. They are essentially meant to be
a way to “wire together” all of the modules in the whole system. There will be slight
differences in operational necessities based on the particular potential configurations,
however, so slightly more configuration-specific detail is required.

If a WNC is in an M; (PS+WNC) node, it simply routes information throughout
the network. There is no data sink or source on the node, and so no interaction will occur
with the WNC except by other external WNC’s. In this case, the WNC’s controller will
simply monitor the system bus in case another module is attached.

If a WNC is in an M, (PS+WNC+S) node, it will receive messages from the S and
be required to understand what to do with them. In this case, the WNC will send the
event data from the S to all of the neighboring nodes with a return address of itself
attached. This requires the WNC to know who its neighboring nodes are and their system
configurations. If a node with a GPP receives this transmission, it will respond to the
originating WNC saying that it will process the request. The WNC will send a
cancellation of the processing request to any GPP enabled node that responds except for
the first one so that only one GPP will process the request. (It may also send a broadcast
cancellation of the request [with the servicing node address, so that the servicing node
does not cancel the request] to all neighboring nodes exactly as the original request was
sent.) In this way, when the S checks up on its request if it has not heard a response or
acceptance of the request, it can establish a single GPP to which to address this check. If
a node without a GPP receives the WNC’s transmission, it will simply route the
information along to all of its neighbors. These requests will have to be uniquely
identified, so that routing loops don’t occur, and so they can be intelligently stopped. In
this configuration, the WNC is thus supporting simple distributed network computation.

If a WNC is in an M3 (PS+WNC+GPP) node, it will receive messages for and
transmit messages from the attached GPP. The GPP will be required to control which
other nodes it wishes to communicate with and why. This is therefore an application level
issue that will have to be considered each time a wireless sensor network application is
built. If any distributed network computation between the GPP’s on different nodes is to
occur, the GPP’s will have to organize it themselves. The WNC will also route all
information not intended for its attached modules without disturbing them.

62

IfaWNC isina C; (PS+WNC+S;+S,+(S...)) node, it will operate exactly as it
does in M,. The only difference is that it may be required to handle more traffic and
maintain more state when waiting for a network GPP to respond saying it will process a
given S’s request.

IfaWNC isina C, (PS+WNC+GPP+S+(S...)) node, the attached GPP will
control the interaction of the node with other nodes. As in M3, the communication is an
application level issue. Again, the WNC will route all information not intended for its
attached modules.

If aWNC is in a C3 (PS+WNC+GPP;1+GPP,+(S,GPP...)) node, it will operate
much like in the C; case. It is left up to the multiple collocated GPP’s to sort incoming
traffic between themselves so tasks are not duplicated. Any of the GPP’s may use the
WNC to communicate with other nodes. The particular nodes that the WNC
communicates with will be controlled by the GPP’s, and again the WNC will route all

traffic on its own.

PS Modules:

PS’s will occur in all configurations. They are simply the power supplies to the
system, and so must be universal node components. In the first prototype, they are
unintelligent modules that simply deliver power to the system, but in possible future
systems, their power delivery may be controlled in a more complex and fine-grained
manner. They may also separate power buses to individual modules in the future which
could allow them to completely power down whole sections of the node. Since these
changes are unlikely to occur in the short term, nothing more will be described about the
PS’s.

63

IMPLEMENTATION:

SOFTWARE STRUCTURE:

In the MASS implementation communications bus, four of the seven OSI layers
are used. A physical (Phy) layer handles each byte to be transmitted without knowing
what the bytes mean. The physical layer is often given a buffer containing one complete
message and the necessary information to send the message (destination, length of
message, etc.). One layer higher, the data link (Link) layer takes less generic information
(a destination, source, length, data, etc.) and converts it to a format the physical layer can
understand. This may involve changing 16-bit words to bytes, fixing byte ordering,
encoding data, adding a checksum, or a variety of other tasks. Still, the data link layer
doesn’t know what exactly it is transmitting. Above the data link layer, the networking
(Net) layer knows how to handle specific types of data. For example, it may know that
one type of data should be sent to device A on the bus, while all other types of data go to
device B. Additionally, the networking layer may be aware of what device A is and what
it does. It may also know that to devices A and B, it is device C. The final layer, the
transport (Transport) layer, is responsible for fragmenting and reassembling messages
that are too large to be sent monolithically. It will take large messages, break them up
into packets, and add information in a header as to how to reassemble the packets in the
destination module. Taken as a whole, this modular structure to the networking layers
allows relatively simple substitutions of different data formats and busses without
changing the high-level operation of the devices. It also requires each layer to be
successively more intelligent and isolates each layer from the others.

In a typical example, a transport layer may be instructed to transmit a piece of
sensor data. The transport layer sections the data into appropriately sized blocks and adds
information to each block as to its position in the overall data. Each fragment is then
given successively to the networking layer which is told the amount of data and what the
data represents. The networking layer must then decide what to do with the data. It may,
for example, know that this type of data should be sent to device A and that its own bus
designation is device C. The networking layer sends the data, the length of the data, the

source (device C), and the destination (device A) to the data link layer. The data link

64

layer packages the source (C), the data, and the length of the data into a new set of data
(and therefore a new amount of data), then encodes and adds a checksum to the new data.
The new data is then sent to the physical layer. The physical layer receives only a
destination (A), a length, and a byte array of data which it transmits to the destination.
Device A will process the data in the reverse order. If device A receives the data, but the
data has been corrupted, the data link layer on device A will recognize the data as corrupt
and discard it. In order to ensure reliable end to end communication, the networking layer
on device C would have to wait for a response from the networking layer on device A. If
A does not respond, C would need to attempt to send the data again.

Above the Transport layer sits the application (App) layer. The App layer is
composed of three major functional units, the Request Processor (RP), Local Event
Handler (LEH), and Mode Changer. The RP processes requests sent to the current
module by other modules. The LEH makes requests of other modules on behalf of the
user. Finally the mode changer tracks the operation of the RP and LEH and dynamically
configures the module for maximum efficiency. The programmer (or user) can interface
with MASS through a simple API that abstracts away the complications of

communicating with other modules. Figure 21 graphically depicts the software structure.

User
Rx Tx
- A1 Calls | a1 calls |-
Mode Local Request
Changer Event Processar -
Handler Ij;il
A I ______ ‘ Current
urren
PP < | Pracessing
| Task
LA
T Results[]
A Queue: 10 Queue: 10
Queue: 10
Queue: 10 Transpﬂn
Q e: 0
Queue: 10 NEt
Q e: 0
Link
Phy

Figure 21: Layered software structure

65

SIMULATION:

A simulation of the architecture was undergone following the mathematical
analysis in order to develop an appropriate software structure for the decentralized
system. Since the simulation was built using a high level simulation package, ideas could
be tested quickly without worry of wasted time down dead-end paths that could have
occurred if the simulation stage was skipped. The simulation was built as a large finite
state machine with both parallel and serial state transitions. A method of dynamic self-
addressing was developed and tested during the simulations, as well as the priority queue
based method of requests and responses throughout the node. A description of the
simulation details will not be undertaken because the following section describing the

final software implementation supercedes it. Figure 22 and Figure 23 show screen shots

Send [(loeal_address~=0jé.
{global_clk==cts_hold_off_expire)]
"Watt_Random_to_avoid_Broadcast_Response_Cortention
e wait=exprand(intial_bus_accass_period); (iaclearsend_feiled)s Retuest_To_Send
: isclear(zend_sucoess)] en: last_stempted_send_D = SendGueuetaddress, 1),
afterCerait clk)husy_count=0; last_sttempted_send_message = SendCueus(message, 1],
T

- e e aftercsend_actions_wait It _attempted_send_data=SendQueue(data,1);

Colision_Avoidance [0 e - ' teend _wal) message_out = [SendQueue(address 1) local_address ris_message ris_detal;

send tine = message_oul[4]+3;
T put_on_bus=1;
du put_on_bus=1;

[(SendQueue(messale,t)==cts_message)
(SendQueve(address,1)==0)]

Pous_free]
{wsit=exprand(bus_retry_period);

Trts_court=rts_retries]
fis_counte+)

after(va o)

4 Aftertzend_time ik

(it Lnti_Retry
8 busy_court++;

vuisit_For_CTS
en; clear(cls_received);
message_out = [,
put_on_bus=0;

U put_on_bus=0;

[busy_court=bus_retries|{zet(ous_busy)
i

Failed_Send
en; faled_sends++
settsend_tailed),

put_on_bus=(;

i ater(cts_wak_fime cl)

Jset(cts_timeouty,
[isset(cts_received)]
{clear(cts_received), b

Ielear(send_to_bus),

Send_Message
en: message_out = [SendQueue(address, 1) local_address SendQueue(message,1) SendGueue(data 1)}

send_fime = message_oul[4}3;
pu_on_bus=1,;
o put_on_bus=1; /

Figure 22: Example meta-state in the simulation physical layer

Successiul_Send
&N successful_sends+;
message_out = 0
sef{send_sucoess),
put_on_bus=0;
remove_sert_from_send_queuet);

after(send_time cl)

66

clk

On:1, Off.0

I8

message_out

bus_free

age_in send_message

h

Module

on:1, Off:1

F=
,:.4-‘

messaga_out
free

¥ 1r+

h

OR

h

.
™

age_in send_message

hoduled

on:1, Off:2

I8

message_out

Bus_Message

bus_free

age_in send_message

Module2

On:1, Off:3

15

clk

¥

OR

¥

meszage_out
bus_free

¥ 1r+

_in send_message

hoduled

age_from_bus busy

@

bus_free message_to_bus

Hardware:

Figure 23: Top level view of the simulation system

Bus

67

Gatel

HARDWARE AND SOFTWARE PROTOTYPE:

The first iteration of MASS was implemented on an 8051 prototyping board
shown in Figure 24 below. The Keil uVision-I1 8051 compiler was used to generate the
code for the microcontroller. The software was developed on uC/OS-II. The 8051
prototyping boards are capable of stacking together on a common 80-pin bus. The
modules were configured to share an 12C bus for communication. As of this writing,

MASS has also been ported to an ARM7 platform, but additional testing is required.

Figure 24: Prototyping board used for implementation

The best available bus for this hardware was the onboard 12C bus. 12C is a multi-
drop, multi-master bus supporting bit rates of 100kbps or higher. In the case of this
hardware, 100kbps was used. Unfortunately, the 8051 links the 12C bit rate to the internal
clock of the microprocessor, which means the processor cannot be completely asleep
while still remaining able to respond to bus activity. This is further complicated by the
clock stretching features of the 12C bus. If the 12C hardware detects bus communication
that is too fast for it to handle, it effectively slows down the entire bus to a manageable
speed. In the case of the 8051, when any processor on the bus was asleep, the entire bus

would slow down to about 8kbps.

Messaging in MASS:

Communication between modules in MASS is accomplished via messages with a
pre-determined structure and finite set of types. Messages in MASS have the following
structure:

struct Message {
| NT8U t o;
| NT8U from
| NT8U f | ags;
| NT8S pri o;
| NT8U nsgl D
| NT8U cnd;
| NT16U dat aLengt h;
| NTBU* dataPtr; };

68

The t o and f r omfields are the destination and source of the message, respectively. The
f | ags field is used for fragmentation, the pr i o field denotes the priority of the
message if it is relevant, msgl D serves to uniquely identify a message within a module,
cnd indicates the type of the message, and dat aLengt h specifies the amount of data

contained in the data pointer, dat aPt r.

Message Types:

There are 13 different message types in MASS which fall into four broad classes.

e Class 1 messages: | DBr oadcast or | DCont ent i on messages that are use for
address determination and network stabilization between modules.

e Class 2 messages: messages which can carry significant data payloads, such as
ProcResul t and Ful | Pr ocReq.

e Class 3 messages: single-stage processing request and response messages,
including Pr ocReq, Pr ocRegAccept , Reql nQ ReqPr ocessi ng, Qrul |,
ReqBunp, and ChangePriority.

e Class 4 messages: two-stage processing request and response messages, including
ReqgFor Ful | Reqg and Ful | RegAccept . ProcResul t Ack also falls in this

class even though it is common to single and dual-stage processing requests.

The purpose and effect of each of these message types is discussed in detail below:

e |DBroadcast: A broadcast message identifying a module to all other modules in
the node. This message contains the module’s address and type information.

e [DContention: A broadcast message used to contest a module that has just
identified itself with an address that is already in use.

e ProcReq (Processing Request): This message is used by one module (the
requestee) to request processing time on another module (requested module). This
message is only a stub; it does not contain the actual data.

e ProcRegAccept (Processing Request Accept): Sent in response to a Processing

Request, this message indicates that the processing request was accepted.

69

e ReglInQ (Request in Queue): Sent in response to a Processing Request, this
message indicates that the processing request had already been received and
accepted.

¢ ReqgProcessing (Request Processing): Sent in response to a Processing Request,
this message indicates that the processing request was already accepted and is
currently being processed.

e QFull (Queue Full): Sent in response to a Processing Request, this message
indicates that the processing request was denied.

e RegBumped (Request Bumped): This message is sent to the module that sent a
processing request when that request is bumped out of the requested module’s
queue.

e ChangePriority: Used to request that the requested module change the priority of a
processing request. It can also be used to cancel a processing request.

e RegForFullReq (Request for Full Request): Sent by the requested module to the
requestee when a processing request reaches the top of the requested module’s
queue and is ready to be processed.

e FullProcReq (Full Processing Request): Sent in response to a Request For Full
Request, this message contains the actual data to be processed and instructions on
how to process it, if any.

e FullRegAccept (Full Request Accept): Sent in response to a Full Processing
Request, this indicates that the Full Processing Request was received correctly.

e ProcResult (Processing Result): The result of a processing the Full Processing
Request.

e ProcResultAck (Processing Result Ack): Indicates that the processing result was

received correctly.

Example Messages:

Below are two example messages with explanations which illustrate the potential uses of
each message field.
o |DBroadcast
0 to - 0x00 (Indicates this message is a broadcast)

70

from — 0x80 (The bus address of the module sending the message)
flags — 0x00 (Used by transport layer to fragment messages)

prio — 0x10 (A signed number representing the priority of the message)

©O O O o

msglID — 0x00 (An increasing count of the number of messages this

module has sent — unused for IDBroadcast)

@]

cmd — 0x02 (The number used to identify IDBroadcast messages)
o0 datalLength — 0x0002 (Number of bytes of data in the dataPtr)
o0 dataPtr (Address at which the data resides in memory)
= {0x43, 0x40} — A random number in the first byte and a number
representing the type of the module in the second byte
e FullProcReq
0 to - 0x74 (Destination is address 0x74)
from — 0x80 (The bus address of the module sending the message)
flags — 0x00 (Used by transport layer to fragment messages)
prio — 0x20 (A signed number representing the priority of the message)
msglID — 0x05 (This module has sent 5 processing requests)
cmd — 0xOC (The number used to identify FullProcReq messages)
dataLength — 0x0004 (Number of bytes of data in the dataPtr)
dataPtr (Address at which the data resides in memory)
= {0x18, 0x75, 0x38, 0x42} — The actual data associated with the

message, which is only meaningful to the user. MASS does not

O O O O O o o©o

interpret or even look at the data.

In both cases, the entire message would be transmitted as string of bytes followed by a
calculated checksum.

Task Overview:

The 13 different messages are use to accomplish a variety of tasks including but
not limited to address generation and resolution, sending processing requests and

receiving the responses, and checking the status of outstanding processing requests.

71

These tasks are described in order to demonstrate one or more uses for each message
type.

Address Generation and Resolution:

As soon as a module is connected to the bus, it generates an address and sends an
IDBroadcast message to all modules containing that address. Addresses are generated
using the random number generator in stdlib.h which is seeded by reading an analog
to digital converter which is not connected to any sensor. Addresses generated are
checked to make sure that they are locally unique, that is the module generating the
address has not already received an IDBroadcast message from a module with that
address. If a module receives and IDBroadcast message with the same address as it’s
own, it sends an IDContention message to all modules containing its address (which is
the contended address). Upon receiving this IDContention message, the module which
originally sent the IDBroadcast message containing the contended address will generate a
new address and send another IDBroadcast message with this new address. This process
continues until the module is able to successfully generate a unique address which no
other module contends.

Processing Request/Response:

Processing requests are generated by the user through calls to the Local Event
Handler. This results in either a ProcReq or a FullProcReq message being sent
depending on the size of the request data. The module that receives this Processing
Request message responds with a ProcRegAccept or FullRegAccept message if there is
space on the request queue for the request, or a QFull message if the request queue is full.
If the request is already in the processing queue or if the request is currently processing a
ReqInQ or ReqgProcessing message may be returned instead. Once the processing
module is ready to process the request it sends a ReqForFullReq message if it does not
already have the data for the request. The requesting module then responds with a
FullProcReqg. Once the request is processed, the processing module sends a ProcResult
message to the requesting module. The requesting module then acknowledges the result

with a ProcResultAck message completing the transaction.

72

Checking Status of Processing Requests, Modifying Priorities, etc.:

While waiting for the result of a processing request, the requesting module may
check the status of the request by sending a ProcReq message with the same priority and
message ID as the request. The processing module will then respond with a ReqInQ or
ReqProcessing message if the request is already in the queue or processing. If the
processing module does not have a copy of the request locally, it will try to insert it into
the queue. This will result in either a QFull or ProcRegAccept message depending on
whether or not the insertion is successful. If the requesting module wants to modify the
priority of the message based on the results of the status request, it can send a
ChangePriority message with the new priority. If at any point the processing module has
to discard a processing request to make room on the queue for a higher priority request it
will notify the module which sent the bumped request with a RegBumped message.

Future Directions:

Additional functionality will be added to MASS in the future, this section
describes some of the additional features that will be added..

Encrypted Communications:

The ability to encrypt inter-module communications will be added in future
versions of MASS. This encryption will occur in the Phy or Link layers and is intended
to obscure the messages generated from within MASS to prevent eavesdroppers from
gaining information regarding the internal state of a module. The encryption of
communication channels in combination with hardware safeguards which prevent
attackers from reading ROM and RAM will make it difficult for malicious parties to
determine information about a particular MASS module or node. This is not specifically

intended as a replacement for user-layer encryption of inter-node communication.

Hardware Data Sheets:

Currently the Net layer includes facilities for exchanging data sheets between
modules using IDBroadcast messages. The currently unspecified data sheet format will
be replaced with an IEEE 1451.2 compliant data sheet format.

73

Multiple Bus Architecture:

Currently a single bus is used for both control messages and data related to
processing requests. A second bus will be added to handle data and large messages to
prevent them from tying up the control bus for long periods of time, which may degrade
performance. Control messages will then be modified to specify which channel on the
data bus to receive the data associated with that message on, as opposed to transmitting it
over the control bus. The new bus will most likely have a higher data rate than the

current 1°C bus, and have multiple channels to allow multiple simultaneous transfers.

Alternate Processor Architectures:

Porting MASS to additional architectures is also a future goal, current projects
include the ARM7 and TI MSP430.

Additional Module Types:

The development of a Camera module is currently underway for image
recognition research, as well as a General Purpose Processing module to expand the
capability of nodes to perform local computation. The GPP module will most likely use a
powerful general purpose processor such as an ARM9 or PXA255 running Linux
controlled by an 8051. The 8051 will handle the inter-module messaging and turn the
GPP on and off as needed.

MASS Documentation by Layer:

Global Data:

There are several files that contain data which is accessed or exported to a number
of layers. The first of these is global . h which contains compiler directives and
macros, as well as defining the types of messages in the system, the different types of
modules that may exist in the system, some timing parameters, task priorities for all
MASS tasks, and debugging code for turning individual layers on and off. It also contains
the definition of an important structure, the “Message” structure, which defines the

format of all inter-module messages.

74

The user . h file contains configuration parameters that may be adjusted by the user, as
well as prototypes for API functions. Each configuration parameter and function
prototype is documented and will be covered in additional detail in the following

sections.

Priority Queues:

Most communication between layers in MASS occurs via Prioritized Queues. The
Priority Queue structure provides thread-safe prioritized queuing and dequeuing of
pointers to structures. Priority Queues have a fixed size which is determined at creation
time. If the queue is full, a pointer can only be inserted if it is a higher or equal in priority
than the lowest priority pointer on the queue. In the event of a tie between the priorities of
any pointer on the queue or the pointer to be inserted, the oldest request is removed.

Priority Queues are fairly heavily genericized and non-generic operations are
performed via function pointers in the queue structure. These function pointers can be
assigned to user supplied functions to handle additional data types. The two functions that
may be changed by reassigning their function pointers are the comparison function which
is used to order objects on the queue, and the extract priority function which determines
the priority of an object.

Priority Queues are available to the user whenever MASS is included in the

system. The following functions are available for Priority Queues:

e PQCreate
e PQPost
e PQPend

e PQRenove

o PQCet Renpve

e PQSt opDequeue

e PQSt art Dequeue

e PQCr eat e creates a priority queue given a pointer to memory allocated by the user

in which to store pointers to data objects, the number of data objects that can be
stored in this space, the size of each data object, and the comparison function to be
used to order the pointers on the queue.

75

e PQPost allows the prioritized insertion of a data object onto a queue. It requires a
pointer to the queue to insert the object into, and the number of ticks to wait before
timing out.

e PQPend allows the highest priority object on the queue to be returned, and blocks if
the queue is empty. It also takes a number of ticks to wait before timing out.

e PQRenove removes all objects on the queue matching a specified pattern,
determined by a pattern, pattern length, and offset into the object at which it should
be found. It returns the number of objects deleted. It also takes a parameter which
specifies how many ticks to wait to gain access to the queue before timing out.

e PQCet Renpve finds the first object on the queue matching a specified pattern, also
determined by a pattern, pattern length, and offset into the object at which it should
be found. Upon finding a match it removes it from the queue and returns it to the
user. This means that PQGet Renove removes at most one object from the queue
each time it is called. It also takes a parameter which specifies how many ticks to wait
to gain access to the queue before timing out.

e PQSt art Dequeue and PQSt opDequeue, start and stop the removal of elements
from the queue via PQPend. When dequeuing is turned off, no PQPend operation
will succeed, however unless the pend operation times out, it will proceed as usual

once dequeuing is turned back on.

Process flows for the non-trivial Priority Queue operations follow in Figure 25 through

Figure 27:

76

Priority Queue: Post

Start

|

Acquire access to
the queue by
pending on the
mutex flag

as there
atimeout or an
error?

Release access to
the queue
Return NULL

T

Iterate from head of
queue until lower
priority element or
empty slot is found

Space found?

Move element
occupying space
and all elements
behind it back 1
space

Return element
that was to be
inserted

Insert element

Figure 25: Priority Queue Post process flow

Release access to
the queue
Return the bumped
element

Priority Queue: Pend

Start

Acquire access to
the queue by
pending on the
mutex flag

as there
a timeout or an
error?

Yes

>

Increment the head
of the queue

Release access to
the queue
Return the old
head

Release access to
the queue
Return NULL

Figure 26: Priority Queue Pend process flow

77

Priority Queue: GetRemove

Start

|

Acquire access to
the queue by
pending on the
mutex flag

as there
atimeout or an
error?

Is this
element
NULL?

No Start at the head of
the queue

Go to the next
element

No Degs this element No
match the pattern
passed i
Release access to

the queue Release access to Make a copy of this
Return NULL the queue element (pointer).
Return NULL Move all elements

after this one up
one spot and clear
the last entry

Release access to
the queue
Return the copy of
the element
replaced

Figure 27: Priority Queue GetRemove process flow

Phy:

The Phy layer handles the actual reliable transmission of individual bytes across
the 12C bus. In transmit mode, it initiates a transmission, sends the entire content of a
message, sends a checksum, and then terminates the transmission. The Phy layer also
handles collisions between transmissions. When two transmissions collide, the 12C
hardware arbitration allows one message to be completed uninterrupted while the sender
of the second message recognizes the collision. The loser of the collision is able to
receive the message that won arbitration if necessary and wait until the bus is free to try
to send again.

In receive mode, the receiver recognizes the start of a transmission and whether
the message is for it or not. If not, the receiver simply waits for the end of the message
before it starts listening again. If the message is for the receiver, it receives and
acknowledges each byte of data while calculating the checksum of the message. If the
received checksum matches the calculated checksum, the message is passed up to the

Link layer. If not, the message is discarded.

78

In the event that the Phy layer cannot secure enough memory to store the
incoming message, incoming bytes will be NACKed until memory is available.

The Phy layer can only buffer one message to transmit. Once it has a message to
transmit, it will reject requests to send anything else. For this reason, the Link layer keeps
track of the state of the Phy layer and only allows it to manage one message at a time.

The process flow for the Phy layer is shown below in Figure 28 below.

Phy Layer
Start
Wait for a interrupt Transmit
Receive $
Receive?
Arbitration
No memory Receive message Transmit message lost e CHISE
9 g message
Done
Done

No . L

NACK data Checksum OK? Yes eceive winnin
message?

Yes
Transmit checksum Wait for bus free —
. Pass message to
Discard message Link layer
No Message Yes
to transmit?
Figure 28: Phy layer process flow
Link:

The Link layer will show its use in future implementations of MASS. Currently,
the Link layer checks the integrity of messages and manages the Phy layer. Messages that
do not pass the integrity test are discarded. Once the Phy layer is given a message, the
Link layer shuts down until the Phy layer is free.

In the future, the Link layer will service two more vital roles. First, the Link layer
will manage multiple Phy layers to aid in data throughput. There will likely be at least
two busses: a low data rate control bus (like 12C) and a higher data rate data bus (like an

asynchronous serial or parallel bus). In order to manage communication across multiple

79

busses, the Link layer will also implement RTS/CTS messages to request time on the
non-control bus or busses with other modules.

Process flows for the receive and transmit side of the Link layer follow in Figure
29 and Figure 30.

Link Layer Rx Task

Start
v

. Wit for mess=g e ‘
fratn Phy layer

Receive message

v

Post message to
Met layer

4

Yes

Digcard message ——

Figure 29: Link layer receive task process flow

80

Link Layer Tx Task Start
!

Wait for message
from Net layer

!

Receive message

Integrity
Check?

Fail

Fill in from field

Discard message —%

Attempt to send
message to Phy
layer

Post message back

to Link Tx queue Wait for Phy free ——

bumped?.

Yes

Discard message

Figure 30: Link layer transmit task process flow
Net:

The Net layer has two main tasks, to inform modules of each other’s existence,
and to keep track of the other modules in the system. The Net layer also has provisions
for returning some relevant data about the state of the system to other interested layers.
The Net layer deals with class one messages, that is ID Contention and ID Broadcast
messages.

There are two tasks in the Net layer, one to deal with messages received from
other modules (the Rx task), and one to deal with messages to be sent to other modules
(the Tx task). The Tx task handles the addressing of outgoing messages (filling in the
“to” and “from” fields). If a message is not addressed to a particular module, or specified
to be a broadcast, the default routing scheme is used by the Net Tx task to address it. As
of the writing of this document, the default routing scheme is to send messages to the first
available General Purpose Processor (GPP), and if no GPP is present to route them to the

first available Wireless Network Connector (WNC). In the future, the default routing

81

scheme will be configurable. The Net Tx task also handles setting the “from” field of
outbound messages.

The Net Rx task performs most of the work in the Net layer. It is responsible for
sending heartbeat messages to other modules, and keeping track of heartbeat messages it
receives to determine when modules enter and leave the system. It also performs address
determination and handles address conflicts. All class 1 messages originate in the Net
layer and are consumed by it as well. Class 2, 3, and 4 messages received from other
modules are either posted to the transport layer via the transportRxQ, or if the transport
layer is not present, posted directly to the appropriate application layer task. All
processing request, full processing request, change priority, and processing result
acknowledge messages are sent to the Request Processor. All other messages are sent to
the Local Event Handler.

ID Broadcast messages sent by the net layer include one byte of random padding
in the data pointer to guard against two modules sending identical messages. If this
situation occurred and the transmissions collided, it would be unclear as to which
message was successfully transmitted as 1°C resolves collisions by giving arbitration to
the message with the highest binary value. Without the random padding, the messages
would have the same value. The random padding significantly reduces the likelihood of
this occurring, though if both modules select the same random byte and have the same
type, an unresolved collision situation is still possible.

The Net layer also handles data sheet management. Data sheets are sent and
received via unicast IDBroadcast messages. Data sheets are descriptions of modules that
can be passed around the system to give it a greater self-awareness. For example, data
sheets may contain information on the type of information collected, the available
processing algorithms resident on a module, tunable parameters of a particular resource,
etc... No specific data sheet format is specified, but the capability was created with the
IEEE standard 1451 in mind.

Process flows for the Net Tx and Rx tasks follow in Figure 31 and Figure 32.

82

Net Layer Rx Task

Pend on NetRxQ

Update modulelnfo
table by adding this
module or resetting
it's heartbeat.
Remove modules
that are at their
heartbeat threshold

Start —

Store source
module’s data sheet

data sheet

Send this module’s

Class 3 or
ProcResult

Message
Command

Class 4 or |FullProcReq

Start elapsed time
counter

Was ita
Broadcast?

Class 1

Message Type? Received

Class 2,3, or 4

ransport
Layer
nabled?

Yes

Post to LEHRXQ

Post to RpRxQ

Post to
TransportRxQ

Pend on NetRxQ

Message _— essage
received or

timeout

Timeout

Broadcast ID and
reset Heartbeat

timer
Time to No
redetermine
ode W
Yes

e

Update remaining
time to broadcast
heartbeat

Determine Node

type

Net Layer Tx Task

Figure 31: Net layer receive task process flow

Start

Discard message

xist? In modulelnfo
Table?

Yes

Pend on NetTxQ

Other

Message |Received

Message
Destination?

DEST_DEFAULT

Address to first
GPP if no GPP
found address to
first WNC

Set from field and

DEST_BROADCAST

post to LinkTxQ

Figure 32: Net layer transmit task process flow

83

Transport:
The transport layer handles fragmentation of large messages to avoid tying up the

bus for long periods of time. The transport layer is an optional component of MASS and
may be compiled out by not defining TRANSPORT _LAYER in global.h.

When the transport layer is present it breaks messages whose total size is greater
than LARGE MESSAGE into smaller messages of size LARGE MESSAGE, plus a final
message which may be smaller. This parameter is user configurable and can be found in
user.h. These smaller messages are then reassembled into the original large message at
the destination. MASS’s fragmentation scheme is relatively simple as of the writing of
this document and has some restrictions. The first fragment of a message must be
received before any subsequent fragments will be handled, if the first fragment of a
message has not yet been received, later fragments will be dropped. After the first
fragment is received, later fragments may arrive in any order. Fragment sizes must be the
same between modules, this restriction may be removed at a later point in time.

Fragmentation works by prepending the data payload of each message with the
total message size and the offset into that total amount of data at which the data contained
in the current message resides. In order to preserve the isolation of the transport layer
from other layers, the data payload from a message that is to be fragmented is copied one
fragment at a time into additional messages and then sent as opposed to simply passing in
a pointer to the point in the original data to begin copying from. The latter approach
would result in the Phy layer freeing pointers which did not represent actual memory
allocations, thus corrupting the memory pool. The alternative was to have the Phy layer
have some knowledge of message fragmentation, which was deemed to be undesirable in
that it introduced a dependency between otherwise unconnected layers. The copying of
data from the original large message into the smaller messages results in the use of
approximately twice as much memory as the original large message occupies. The exact

amount of memory required to send a message of size N bytes is:

2(N-M)+M N
LARGE _ MESSAGE — M

Where M is the size of a message structure, 11 bytes in the current implementation.

84

The transport layer has two tasks, one to deal with messages received from other
modules (the Rx task), and one to deal with messages to be sent to other modules (the Tx
task). The Tx task performs fragmentation and sends messages out as they are created.
The Rx task performs fragment reassembly by maintaining a linked list of incomplete
fragmented messages. Each fragmented message on the list has a lifetime assigned when
the first fragment is created, this lifetime is defined by
VESSAGE _FRAGVENT LI FETI ME_WS. If all fragments of a message are not received
within this period of time, the message is discarded. Every
FRAGVENT _CLEANUP_I NTERVAL_MS ms the fragmented message list is swept and
all expired messages on it discarded. During fragment reassembly, the list is examined
and expired messages deleted, the FRAGVENT _CLEANUP_| NTERVAL _ VS serves only
to ensure that expired fragments are removed even if no fragmented messages are
received after the expiration of a message to initiate fragment cleanup. When a message
is completely reassembled, it is passed up to the appropriate application layer task.

Other configurable parameters in the Transport layer include the size at which to
fragment messages and the size at which to send data as a Processing request followed by
Full Processing Request rather than a single Full Processing Request. Messages under
SHORT _MESSAGE bytes are sent as a single Full Processing Request. Messages over this
size are sent as a Processing Request with no data, and then a Full Processing Request is
sent when the module that is processing the request requests it. Messages over
LONG_MESSAGE hytes are fragmented, while those under this size are not. Both these
parameters are found in user . h. Finally, the size of the transport queues can be
adjusted, the value of TRANSPORT _QUEUE_LENGTH indicates how many messages can
be stored on each of the Transport layer queues.

Additionally, the transport layer may be disabled entirely by not defining
TRANSPORT_LAYERin gl obal . h. If the transport layer is disabled, no fragmentation
is performed and the Net layer interacts directly with the App layer. This saves a
significant amount of ROM as well as quite a bit of RAM.

Process flows for the Transport Tx and Rx tasks follow in Figure 33 and Figure
34.

85

Transport Layer Tx Task

Start
Determine number Pend on le
of message transportTxQ
fragments
necessary.

For each message
copy the total Message received
message size and
offset at which this
data resides
followed by the
data payload for

this fragment into
the data pointer. Yes s the message
WESSA 7

No

Post each
message to the
netTxQ

Post to netTxQ

Figure 33: Transport layer transmit task process flow

Transport Layer Rx Task

Start
Create a new entry
in the list of
fragmented
messages for it
Pend on le
No Yes transportRxQ
. Pfagment matche Is this the first
Discard fragment fragment?
Yes
Yes
s the message Copy in the data Is message Message essage
complete? into message fragmented? Received received or
No timeout
Yes No Timeout
Iterate through list
Class 3 or Message of currently
ProcResullt Command incomplete
messages. Delete
messages whose
Class 4 or [FullProcReq lifetime has expired
Post to LEHRXQ Post to RpRxQ

Figure 34: Transport layer receive task process flow

App: Local Event Handler:
The Local Event Handler (LEH) is responsible for sending requests from the user

to other modules and returning the responses to those requests to the user. The user gives

86

the request to the LEH by calling Send with the appropriate data. The LEH stores the
request and begins the process of sending the request to another module. The LEH will
try up to PROC_RQST_RETRI ES times to send the request, at an interval of
PROC_RQST_TI MEQUT milliseconds. If the request is not accepted, it is dropped. Once
the request is accepted, the LEH will continue to check the status of the request on an
interval of STATUS_TI MEQUT milliseconds. If the LEH finds that the request has been
removed from the requested module’s queue or is informed by the other module that the
request has been bumped, the LEH will wait REJECTED_TI MEQUT milliseconds and
begin the process again. If at any point the LEH finds that a request has been rejected
more than REJECTED_RETRI ES times, the request is dropped.

Once a request is accepted by another module, the LEH waits until it receives a
Request For Full Request from the other module. The LEH then sends the complete
message to the other module. It will wait FULL_RQST_ACCPT_TI MEQUT milliseconds
for a Full Request Accept from the other module before resending the message. If the
LEH tries to send the Full Request FULL_RQST_RETRI ES times and fails, the request
is dropped.

Once the Full Request Accept is received, the LEH goes back to checking the
status of the message until the Processing Result is received. The LEH responds to all
Processing Results by sending a Processing Result Acknowledge back to the other
module. Processing Results are checked against existing requests to find the matching
request. If a match is found, the result is passed to the user and the request is deleted. If
no match is found, the result is assumed to be erroneous and is dropped. The user calls
Wi t For Resul t to receive the result of the request.

Requests that have less than SMALL _REQUEST _PAYLQOAD bytes of data, the
LEH moves directly to sending a Full Request, skipping the Processing Request and wait
for a Request For Full Request. Separating requests into short requests and long requests
eliminates overhead for short requests that can be sent multiple times if necessary without
impacting performance.

In addition to sending and tracking request and receiving results, the LEH also
allows the user to query the state of requests, delete requests, and change request

priorities. Each time the user calls Send, the user is given a 16-bit key to their request.

87

This key can be used to get the state of the request by calling Get St at us, or find out
how many times a request has been rejected by calling Get Rej ect i ons. The user can
also use the key to change the priority of the message by calling

ChangeRequest Pri ori ty with a new priority, or remove the request entirely by
specifying DELETE_PRI ORI TY as the new priority.

The LEH also has the ability to send and receive broadcasts. To send a broadcast,
the user calls Send and specifies the destination as DEST _BROADCAST. Broadcasts do
not generate any results and are sent only once before being discarded. If the LEH
handler receives a broadcast, it is passed directly to the user as if it were a Processing
Result.

The process flow for the Local Event Handler follows in Figure 35.

Local Event Handler

X No No
Discard message Match to Tracker? (|

Yes

Start

from user?

Search Tracker for
timed out
messages

Update status of
request in Tracker

Send status
request or resend
message

Send broadcast
tracker

Add request to

Drop message

Send reply

Message for user?

Yes

Send request, full
request, or change
priority

Send result to user

I

Remove message Calculate new
from Tracker timeout

Figure 35: Local event handler process flow

App: Request Processor:
The Request Processor is the “server” side of the MASS architecture. This task

handles processing requests from other tasks. It maintains a prioritized list of processing

88

requests from other tasks and calls a user provided function to process these requests.
When requests are complete it sends the results to the requesting module.

The Request Processor consists of two tasks, the Request Processor itself which
resides in the Application layer, and the User layer task which actually processes requests
by calling a function provided by the user when MASS is started. The Request Processor
handles prioritizing requests, storing and sending results, and responding to status
inquiries or modifications to existing requests from remote modules. The User layer task
simply needs to receive requests one at a time from the Request Processor, processes
them, and return the results to the Request Processor.

The request processing task can be viewed as two major components. The first
handles management of the queue of processing requests and controlling the User layer
task. The second handles getting the results of processing requests to the requesting
modules.

There are three incoming messages which can change the state of the processing
request queue, and depending on the status of the request a response may or may not be
generated. These messages are Processing Request, Full Processing Request, and Change
Priority. There are two methods of injecting requests into the processing request queue,
either all at once, or in two stages, first the request then the data associated with it. In the
first scenario, a Full Processing Request message is received by the Request Processor
which contains identifying information about the request (a request ID number and the
priority of the request), as well as the data to be processed. In the second scenario a
Processing Request message which contains no data is sent first, and when the Request
Processor is ready to process that request, it sends a Request For Full Request message to
the module which originated the request. At this point the module which owns the request
sends a Full Processing Request message which contains the data to be processed.

When a Full Processing Request is received, the processing queue is checked to
see if a request already exists from the node sending the Full Processing Request with the
same request ID number. If so, but the request has no data associated with it, the data is
copied in from the message, in this case, no acknowledgment of the message is sent. If
the request is not found on the processing queue, the requesting module and message 1D

for the current processing request is checked to see if it is the same as the message

89

received. If so, and the currently processing request already has data to process, a
Request Processing message is sent to the sender of the Full Processing Request, however
if the currently processing request has no data, the data from the message is copied in and
a Full Request Accept message is sent. In the case that no request matching the Full
Processing Request is found on the processing queue or as the currently processing
request, the Request Processor attempts to add it to the processing request queue. This
will result in one of two outcomes, either the insertion is successful and Full Request
Accept message is returned, or the insertion is unsuccessful and a Queue Full message is
returned. In addition if any message was bumped from the processing request queue to
insert the request received, the module which sent that request is sent a Request Bumped
message.

Processing Requests are handled in a similar fashion with two exceptions. When a
duplicate request is found in the processing queue, a Request in Queue message is
returned and when a duplicate message is found to be processing, a Request Processing
message is returned.

Change Priority messages generate similar responses with two exceptions. When
a Change Priority message is received for a request that does not exist, the request
referred to by the message is added to the processing request queue and a Processing
Request Accept is returned. If the request is found on the processing queue, then the
priority is changed as specified by the message and a Processing Request Accept is also
returned.

Returning the results of processing requests to the modules which requested them
is accomplished in the following fashion. When a processing request has been processed,
a result structure is created and stored in the results array by the User layer request
processing task and a Processing Result message is placed on the message queue for the
Request Processor. This result structure consists of a Processing Result message, a
timeout field that specifies when the result needs to be (re)sent, and a counter field that
tracks how many times this result has been sent. Upon receiving the Processing Result
message, the request processor scans the results array and sends all results whose timers
have expired, including the result just placed in the array by the User layer task. If the

Processing result message is acknowledged, the result is removed from the results array.

90

The message will also be removed after it has been sent a number of times equal to
RESULT_SEND_ATTEMPTS. Results are resent every
RESULT_RESEND | NTERVAL _MS. The results array can store information about
RESULT_ARRAY_ ENTRI ES results and is prioritized in that a higher priority result will
bump a lower priority result when it is inserted.

Other configurable parameters of the Result Processor include
RP_PROC QUEUE LENGTHand RP_QUEUE LENGTHwhich control the number of
processing requests the processing queue can hold and the number of messages the
message queue can hold respectively.

The process flows for the Request Processor follow in Figure 36 and Figure 37.

Request Processor

Start

Remove result from Send ReqinQ Send
results array q ProcRegAccept

—> Pend on RPRxQ

ProcResultAck ProcReq No
essage Message Messa Other iori
N ge Request New priority
Received or Received Command? on Queue? == delete?
imeout?
Timeout ProcResult No Yes
FullProcReq
Send all results
that have not yet Request No Change Request
been Processing? Priority [4
acknowledged
Yes
After a result has Send ProcReq
been sent the ReqProcessing or c’\:risrzzgz,, Add to Queue [+
specified number of ReqInQ -
times, remove it

ChangePriority No

FullProcReq
or ProcReq

Message
Command?

ChangePriority

New priority
== delete?

New priority

s Copy data into
== delete?

dataPtr

]

Figure 36: Request processor process flow

91

Reqguest Processor: User Task

Start

v

Pend on request ‘
fiag

Flag posted,
Feques received

Does the
Request have
data’?

Send
RegForFullReq and
pend on request
clata flag

Tmeout o
request data
eceived

Timeout

Drata received

Call user supplied

P reduest processing

function

v

Aeld result to
results izt and
=end message to
Reguest Processor
to =end results

I

Figure 37: Request processor user task process flow

App: Mode Changer
The Mode Changer has the general task of managing the module to conserve as much

power as possible. This is the only part of the application layer that will have to be
specifically tailored depending on the attached resource (beyond simply changing a
configuration variable). The Mode Changer has not been implemented in the first version
of the MASS software, but in its initial design, it seeks to conserve power in four separate
ways:

» Manages the power states of the attached resource

» Manages sampling rates when applicable

> Alters a modules actions based on the current configuration of the node

» Schedules module sleep times

The first duty of the Mode Changer is to manage the power states of the attached

resource. Some resources, such as general purpose processors (GPPs), have several
power states corresponding to varying levels of waking and varying amounts of

92

peripheral support turned on. The Mode Changer must thus understand the different
states that the attached resource may be put into including knowing what the resources
capabilities are in each state, the power drawn in each state, and the transition times
between states. It may also completely power down the resource if the resource is only
used when triggered by some other module.

In the case of sensors and wireless network connectors (WNCs), the Mode Changer
manages sampling rates to conserve power. For a sensor, each sample taken generally
represents a constant amount of energy expended, so adapting this sample rate to the
expected number of events in the surrounding environment can help minimize power for
a given application. In the case of WNCs, the transceiver may only be required to
actively listen to a channel during certain periods of time and may be completely
powered down otherwise. It is up to the Mode Changer to manage when and for what
duration the transceivers will be actively listening (“sampling”) to a channel.

The Mode Changer can also alter module actions based on the current node
configuration. Since the net layer maintains knowledge about the other modules available
in the system and also about the overall configuration of the node, the Mode Changer can
use this information to control the resource more intelligently. For example, in a simple
node where only a sensor and power supply are present, the Mode Changer on the sensor
module may simply help store the collected data without trying to send it to a non-
existent GPP or WNC.

Finally, the Mode Changer also schedules sleep times for its resource. In order to do
this, it monitors the incoming request rate from other modules and uses this information
to determine what the usage of the local resource is. If its attached resource is being used
only infrequently, the Mode Changer will always put the resource into a low power state
immediately after it finishes processing the requests on its Request Processor queue. If its
attached resource is being used frequently, however, it may leave the resource running at
its full power in expectation of receiving another request soon. This changing of sleep
scheduling can therefore intelligently save the transition time and energy that would
otherwise be required each time a resource is used, and adapt based on current usage

conditions.

93

Writing Code for MASS:
The MASS API consists of two main parts. The first is the specification of how to

process incoming requests. The second allows the programmer (or user) to make
outgoing requests. The result is a simple and robust system that relieves the user of

worrying about how messages get from one module to another.

Starting MASS:

MASS is initialized by calling | ni t MASS.

e void* InitMASS(INT8U type, |NT8U subtype, void*
(*Request Processi ngFuncti on) (void*, |INT16U, |NT16U*))

The type argumentis a consists of MODTYPE_[GPP | SENSOR | WNC | user defined]
as found in global.h and must be specified. The subt ype argument must be between 0
and 31 inclusive. The third argument is a pointer to a function which will be used by the
request processor to handle requests received from other modules.

Processing Requests:

When MASS is initialized, | ni t MASS takes as input a function to process
requests, Request Processi ngFunct i on. The signature of the function pointer
consists of three arguments, a voi d* to the data to be processed, the length of the data to
be processed, and a pointer to store the length of the result in. A voi d* to the result is
returned. Request Processor calls this function on data received from other modules. The
user must handle, process, or service the data in a way defined by the application. The
user should not clean up any memory other than what it allocates. Specifically, the data to

be processed should be treated as read-only and should not be freed.

Sending Requests:

Sending requests to another module is as simple as calling Send.

e INT16U Send(INT8S prio, INT8U dest, INT16U datalLength, void*
dataPtr)

94

The prio argument specifies the priority of the message to be sent. The destination of
the message is specified in dest, and can be either the default routing scheme, a
broadcast, or another specific module in the node. The amount of data to send is indicated
by datalLength, and the data itself is located at dataPtr. Once a message is sent, the

user can check its status with two functions using the return value of Send.

e MsgStatus GetStatus(INT16U key, INT16U timeout)
e INT8U GetRejections(INT16U key, INT16U timeout)

GetStatus can be used to find out the status of the message, and GetRejections can be
used to find out how many times a message has been bumped or been rejected. Both
functions take as input the value returned by Send in key and a timeout in which to

accomplish the task.

e INT16U ChangeRequestPriority(INT16U key, INT8S newPrio, INT16U
timeout)

ChangeRequestPriority can be used to delete a message that is no longer
necessary or change the priority of the message. In either case, the returned value of
Send must be specified in key. The function also takes the new priority to assign to the

message and a timeout in which to accomplish the change of priority.

Configuring the Net Layer:

The Net layer has several user-configurable parameters as well as an API function
which allows the user to request information about modules currently active on the node.
The maximum number of modules the Net layer can store information about can be
modified by changing the value of MODULE | NFO_TABLE_SI ZE. The number of
messages that can be stored on the Tx and Rx queues is controlled by
NET _QUEUE_LENGTH. Additional parameters control how module detection and
network stabilization occurs include: HEARTBEAT _TI MER_MS, which determines how
often each module broadcasts it’s ID; HEARTBEAT _THRESHOLD, which determines

how many heartbeat intervals a module must not be heard from before it is removed from

95

the list of active modules; NODE_TYPE_REDETERM NE_TI ME, which determines the
number of heartbeat intervals before the Net layer looks at the list of active modules and
re-determines the type of the node.

The Get Modul esBy Type function in the Net layer allows the user to request
information about modules on the node based on their type. It takes 4 arguments: (
| NTBU type, | NT8U subtype, INT8U |l ength, INT8U* err).The
t ype and subt ype arguments are the same as those previously described, the | engt h
argument specifies how many bits from high bit to match on, where the t ype is in the
high three bits and the subt ype in the low five. The fourth argument is an error field,
and the return value is a pointer to a linked-list of nodul eTypeLLNode, whose
structure is defined in gl obal . h.

Configuring the Transport Layer:

The Transport layer has several user-configurable parameters which control how
message fragmentation and reassembly works, as well as the usual parameter to modify
the length of the Tx and Rx queues (TRANSPORT _QUEUE_LENGTH). The
SHORT _MESSAGE parameter defines the longest processing request (including the
message structure) that can be sent as a single stage request, as opposed to requiring a
Processing Request followed by a Full Processing Request. The LONG MESSAGE
parameter defines the longest message that can be sent without fragmentation. The
VESSAGE_FRAGVENT _LI FETI ME_MS parameter determines how long the Transport
layer will wait to receive all fragments of a message before discarding it. The
FRAGVENT _CLEANUP_I NTERVAL _ VS parameter determines how often the Transport
layer will traverse the fragmented message list and discard all fragments whose lifetime

has expired.

Configuring the Request Processor:

The Request Processor has two user-configurable queue length parameters,
RP_QUEUE_LENGTH controls the length of the incoming message queue, while
RP_PROC_QUEUE_LENGTH controls the length of the processing queue. There are also
several parameters which relate to how processing results are stored and sent.
RESULT_ARRAY_ENTRI ES determines how many processing results can be stored at a

96

time, when the results array fills up, the lowest priority results are bumped.
RESULT_SEND_ATTEMPTS determines how many times results are sent without being
acknowledged before they are discarded. RESULT _RESEND | NTERVAL NS
determines how long to wait between resending results. Finally,

FULL_REQ TI MEQUT_MS determines how long to wait for the data associated with a
processing request before discarding it and moving on to the next request.

Configuring the Local Event Handler:

The user gives data to the Local Event Handler (LEH) by calling “Send.” Send
takes four arguments: INT8U prio, INT8U dest, INT16U datalLength,
void* dataPtr. Prio is the desired priority of the request. Dest can be either
DEST_DEFAULT, DEST_BROADCAST, or a specific module address retrieved from the
Net layer. Dat aLengt h is the amount of data located at dat aPt r . The user must then
call Wai t For Resul t . Wi t For Resul t takes one parameter, INT16U timeout,
which specifies how long to wait in clock ticks for a result. Wai t For Resul t returns a
pointer to a message.

The user can also inquire about the state of requests by calling “Get St at us”
and “Get Rej ect i ons” with the key returned by Send. The user can also delete a
request or change a request’s priority by calling “ChangeRequest Pri ori t y” with
the key to the message and the desired new priority.

The LEH provides a number of parameters that can be configured to adjust its
behavior. First, LEH_QUEUE_LENGTH is the number of entries the LEH’s incoming
queue is capable of holding. The maximum number of requests that the LEH can track is
determined by LEH_TRACKER_ENTRIES. Most of the messages that the LEH sends
generate responses. The total number of time to send a processing request before
dropping the request is defined by PROC_RQST_RETRIES. Similarly,
REJECTED_RETRIES defines how many times a request can be denied or bumped
before it is dropped. Finally, FULL_RQST_RETRIES indicates how many times a full
processing request is sent before it is dropped.

The time intervals associated with resending messages are also configurable. Each
timeout is defined in milliseconds and converted to clock ticks at compile time. The

97

interval between sending processing requests is PROC_RQST_TIMEOUT_MS. The
interval on which the LEH sends status requests to outstanding requests is defined by
STATUS_TIMEOUT_MS. The number of milliseconds to wait between retrying requests
that were rejected or bumped is REJECTED_TIMEOUT _MS, and the amount of time to
wait for a full request accept before resending the full request is
FULL_RQST_ACCPT_TIMEOUT_MS. In general, these timeouts should be on similar
orders of magnitude, with STATUS_TIMEOUT_MS and REJECTED_TIMEOUT_MS

larger than the other two.

98

VISUALIZATION

In order to verify the functionality of the MASS system, an 12C sniffer was
inserted into the communications traffic and a terminal program on a desktop computer
could then monitor the bus. The traffic coming in from the bus was in a specialized
format provided by the manufacturer of the 12C sniffer. The terminal buffer could be

captured into a log file for storage and verification. A snippet of an example log file
follows:

Start Time hh mm ss 18 47 21 Initial Status 0x81 User Terminated Monitor Initial Status 0x81 STOP
Sa00 Da2A Da00 Da00 Da00 Da02 Da00 Da02 Da69 Das0 Dal3 STOP

Sa00 Da80 Da00 Da00 Da00 Da02 Da00 Da02 DaFA Da48 Da32 STOP

Sa00 Da6E Da00 Da00 Da00 Da02 Da00 Da02 Da86 Dad40 DaA8 STOP

Sa00 Da6E Da00 Da00 Da00 Da02 Da00 Da02 Dad4D Da40 Da63 STOP

Sa00 Da2A Da00 Da00 Da00 Da02 Da00 Da02 DaA5 Da50 DaDF STOP

Sa00 Da6E Da00 Da00 Da00 Da02 Da00 Da02 DaB3 Da40 Dad9D STOP

Sa00 Da80 Da00 Da00 Da00 Da02 Da00 Da02 Da2A Da48 DaE2 STOP

To From Flags Prio MsglD Cmd DatalLength Data CheckSum Stop
The first line of this log file displays initialization information as to the initial

status and start time of the logging. Each of the following lines contains several bytes in
hexadecimal notation prefixed by a two letter sequence “Sa” or “Da” and terminated with
a “STOP”. The prefix “Sa” stands for start, the prefix “Da” stands for data, and the
“STOP” stands for 12C stop condition. Thus there is always one start byte, followed by
several data bytes, and terminated with a single stop condition. The ordering of these
bytes is precisely the same as described above in the section “Messaging in MASS:”. In
other words, the first byte is the destination address (“00” is the broadcast address), the
second byte is the source address, the third byte is a flags field concerning transport layer
fragmentation (“00” indicates no necessary transport layer action), the fourth byte is the
priority of the message (“00” being the highest priority), the fifth byte is the message 1D
number (which in the case of these messages does not matter), the sixth byte is the
command (“02” is an IDBroadcast command), the seventh and eighth bytes are the
number of appended data bytes (in this case “0002” - 2), the next DataLength bytes are
appended data, and the last byte before the stop condition is a checksum. The

interpretation of these log files can thus provide an insight into the operations of a MASS

99

stack for any given traffic on the bus, and they were used extensively for testing and
debugging purposes.

While these log files are readable to the trained eye, they are quite cryptic to a
MASS beginner. In order to alleviate this difficulty, a visualization of these log files was
thus created. The visualization simply parses the log files line by line and animates the
messaging actions. Figure 38 below shows two examples of visualizations of the same

log file at different points in time. (Note: The log file used for these examples is the same

as above.)
ol x|
Fle Edt Wew Insert Tools Desktop ‘Window Help L
DEEE| k) aao®E 08 O
| am 0x80
Broadcast
RS
oea| | M | | owe | 0¥
T o = O 5 o 5
S o 5 D 5 o S o
(®]]] im]

P [k Yew just [ooh Qeslcan wndew fwe
CF@a K aans v 0B =0

Full request Dn? axcopted
Fioem QB0 Tu: CeE

[..,:,.| L@%«_(]_: 1.;;[[m|

o
]

00 PO P00 DY)
YOO TOPO 3001 DY)

L g Tl S T s T

Figure 38: Visualization examples

100

The visualization uses color coded animation to cue the observer as to the actions
occurring on the bus. Blue indicates requests or notifications, green indicates positive
responses, yellow indicates warning responses, and red indicates negative responses.
Most importantly, the visualization also displays a translation of each line in the log file
into English at the top of the screen. These translations are the critical component of the
visualization and allow an unfamiliar user to quickly determine current node state and the
meaning of the current message on the bus. The visualization also keeps an InQ and
OutQ for each module keeping track of the requests currently in the Local Event Handler
and Request Processor. The messages on the queues are identified by who they are from
or to as well as their message 1D and priority. Finally, the visualization keeps track of
which modules are active and which have become de-active in the system. As defined in
the Net layer, if “heartbeat” messages are not heard by the other modules at some
minimum rate, a module will be dropped from the module list of the other modules in the
system. The visualization thus keeps track of the “heartbeat” messages sent by each
module and if the appropriate number of messages are not sent, it is Xed out of the

system.

101

CONCLUSION

A modular architecture for sensor network nodes was described. The need and
justification for the development of the novel architecture was explained, and a high level
description of the proposed architecture was presented. The architecture was then
analyzed mathematically with respect to a previous standard centralized architecture and
numerous control mechanisms and tradeoffs were determined. The full process of
implementation was also discussed from a high level view of the software architecture
through topical simulation of the design and finally through each detailed layer of the
software. The software was designed to have a simple user API and to be flexible,
extensible, and modular for ease of use and maintenance. Future intended developments
of the Finally, a visualization tool used to debug and monitor system state was also
described.

This architecture has been submitted for two United States patents — one for the
hardware design and one for the software design. Young versions of the architecture have
already been used in two prototype applications for rapid response and perimeter security
type missions. The architecture will continue to be developed and used, and comparisons
to traditional architectures will be analyzed experimentally. As the architecture is
integrated into more applications, the proposed power savings and performance benefits

as well as programmatic time and money savings will be determined critically.

ACKNOWLEDGEMENTS

We would like to first thank the Sandia National Laboratories Computer Science
Research Foundation for sponsoring this work. Nothing could have happened without its
support. We would also like to thank the Embedded Reasoning Institute for leveraging
some of its own resources in order to help support and lend guidance during the

development of this architecture.

102

APPENDICES

Appendix A: Examples of MASS functionality

=

Module 1

User requests processing task
Local Event Handler generates a
processing request, adds the
request to the tracker, and passes
it to the Transport layer
Transport layer fragments
message if necessary and passes
it to the Net layer

The Net layer addresses the
message using the default routing
scheme if the message is not
already addressed

Tracker requests status of request

12. The local event handler

acknowledges the receipt of the
processing result

103

5.

10.

11.

Module 2

Message is received by the Phy
layer, assembled by the
Transport layer, and posted to the
request processor via the RPRxQ
Request Processor posts the
message to the processing queue

Request processor sends request
in queue message

Request Processor sends the
request to the User layer request
processing task

The User layer request
processing task processes the
request, adds the result to the
results list, and notifies the
Request Processor

The Request Processor sends the
result of the processing task to
the module which requested it

Send Request
User User

API Calls

I
Local Event Handler

Request Processor
Tracker
Bast
ueue
ueue
ueue

ueue

ueue

Ko
’#’—r
f’—»

ueue

Current
Processing
Task

veuey o 1ANSpPOrt ueve 'yl 4 1ransport

P O

ueue

i
RALE

ueue Net ueue Net
Link Link
Phy Phy

Figure 39: Example of MASS functionality

104

DISTRIBUTION

MS9915 Jesse Davis

MS9154 Doug Stark

MS9101 Ron Kyker

MS9101 Chris Kershaw

MS9915 Nina Berry

MS9158 Teresa Ko

MS9158 Rob Armstrong

MS9158 Mitch Sukalski

MS9401 Greg Cardinale

MS9151 Jim Handrock

MS9153 Brian Damkroger

MS9003 Ken Washington

MS9153 Doug Henson

MS9018 Central Technical File

MS0899 Technical Library

MS0612 Review & Approval Desk
for DOE/OSTI via URL

1 Nick Edmonds
2200 W Sudbury Dr.
Apt. B-08
Bloomington, IN 47403

e T S S S S S T e e e = = T = =

105

8961
8245
8245
8232
8961
8961
8961
8961
8245
8960
8240
8900
8200
8945-1
9616
9612

8961

