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Predecessor and Permutation Existence Problems for Sequential
Dynamical Systems
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S. S. Ravy 23 DANIEL J. ROSENKRANTZ 2 RICHARD E. STEARNS 2
Abstract

Motivated by the aim to build computer simulations for large scale systems [BMR99, BR99], we study
a class of finite discrete dynamical systems called Sequential Dynamical Systems (SDSs). An SDS S
is a triple (G, F,n), where (i) G(V, E) is an undirected graph with n nodes with each node having a

1-bit state, (ii) F = {f1, fo,---, fn}, With f; denoting a symmetric Boolean function associated with
node v; and (iii) 7 is a permutation of (or total order on) the nodes in V. A configuration of an SDS is
a bit vector (b1, ba, .. ., b,), where b; is the value of the state of node v;. A single SDS transition from

one configuration to another is obtained by updating the states of the nodes by evaluating the function
associated with each of them in the order given by 7. Here, we address the complexity of two problems
for SDSs.

Given an SDS S and a configuration C, the PREDECESSOR EXISTENCE (or PRE) problem is to de-
termine whether there is a configuration C’ such that S goes from C’ to C in one step. We show that
the PRE problem NP-complete for several simple classes of SDSs (e.g. SDSs for which the set of node
functions is {AND, OR}, SDSs whose underlying graphs are planar). We also identify several classes of
SDSs for which the PRE problem can be solved efficiently (e.g. SDSs where each node function is from
{OR, NOR} or {AND, NAND} or {XOR, XNOR}). We also show that the PRE problem is solvable in
polynomial time when the function at each node is linear or when the underlying graph G is of bounded
treewidth. Many of the easiness results extend to the case where we want to find an ancestor configuration
that precedes a given configuration by a polynomial number of steps.

Given the underlying graph G(V, E), and two configurations C and C’ of an SDS &, the PERMUTA-"
TION EXISTENCE (or PME) problem is to determine whether there is a permutation of nodes that takes
S from C' to C in one step. We show that the PME problem is NP-complete even when the function
associated with each node is a simple-threshold function. We also show that a generalized version of the
PME (GEN-PME) problem is NP-complete for SDSs where each node function is NOR and the underlying
graph has a maximum node degree of 3. When each node computes the OR function or when each node
computes the AND function, we show that the GEN-PME problem is solvable in polynomial time.

Our results extend some of the earlier results by Sutner [Su95] and Green [Gr87] on the complexity
of the PREDECESSOR EXISTENCE problem for 1-dimensional cellular automata.
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1 Introduction and Motivation

We study the computational complexity of some basic problems that arise in the context of a new class of
discrete finite dynamical systems, called Sequential Dynamical Systems (henceforth referred to as SDS),
proposed in [BR99, BMR99, BMROO0]. A formal definition of such a system is given in Section 2. SDSs are
closely related to classical Cellular Automata (CA), a widely studied class of dynamical systems in physics
and complex systems. They are also closely related to a recently proposed extension of CA called graph
automata [NR98, Ma98]. Decidability issues for dynamical systems in general and CA in particular have
been widely studied in the literature [Wo86, Gu89]. In contrast, computational complexity questions arising
in the study of CA and related dynamical systems have received comparatively less attention.

In simple terms, an SDS § = (G, F, ) consists of three components. G(V, E) is an undirected graph
with n nodes with each node having a 1-bit state®. F = {f1, fo,..., fa}, With f; denoting a symmetric
Boolean function associated with node v;. 7 is a permutation of (or a total order on) the nodes in V. A
configuration of an SDS is an n-bit vector (b, by, ..., b,), where b; is the value of the state of node v;
(1 <i < n). Asingle SDS transition from one configuration to another is obtained by updating the state of
each node using the corresponding Boolean function. These updates are carried out in the order specified by
w. The phase space of SDS S, denoted by P, is a directed graph with one node for each of the 2" possible
configurations; there is a directed edge from the node representing configuration C’ to that representing
configuration C if S moves from C’ to C in one transition.

The above definition of an SDS can be easily extended to allow (i) non-symmetric node functions, (ii)
functions with ranges of cardinality larger than two and (iii) allowing a partial order on the nodes rather than
a total order. See Section 2 for a discussion of such extensions.

The research reported here is a part of a program to provide a formal basis for the design and analysis of
large-scale computer simulations, especially for socio-technical systems. Examples of such systems include
various national infrastructures including transportation, power and communication. See
http://tsasa.lanl.gov for additional details on this program. It is difficult to give a precise def-
inition of a computer simulation that is applicable to the various settings where it is used. Nevertheless, an
important aspect of any computer simulation is the generation of global dynamics by iterated composition
of local mappings. Thus, we view simulations as comprised of a collection of entities with state values,
local rules (functions) for state transitions, an interaction graph capturing the local dependency of an entity
on other neighboring entities and an update sequence or schedule such that the causality in the system is
modeled by the iterated composition of local functions. The informal description of SDS given above is seen
to capture exactly these features.

We now discuss an example from [BB+99] to illustrate how an SDS-like model is used in the TRANSIMS
(Transportation Analysis and Simulation System) project at the Los Alamos National Laboratory. For ease
of exposition, we assume a single lane road which can be modeled as a one dimensional array of cells,
with each cell representing a certain segment of the road. The state of each car (driver) may assume one of
vmaz + 1 possible values; these values correspond to discrete speeds from 0 to v,z The state of each cell
may assume one of v, + 2 different values, the additional value being used to represent an empty cell. In
the TRANSIMS system implementation, v,,,; Was usually a small number (such as 5). At each instant, the
behavior of a car (e.g. whether the speed increases, decreases or remains the same) is a function of its state

4The restriction to binary states is a mathematical convenience, and allows us to present stronger lower bound results.



and the state of the car that is immediately ahead. By associating a variable with each grid cell, the time
evolution of the system can be cast as the time evolution of the corresponding SDS. An important point to
note is that unlike CA (which are synchronous), the order of updating the cells yields completely different
dynamics in many cases. For instance, updating the states from front to back acts like a perfect predictor and
thus never yields clusters of vehicles. On the other hand, updating downstream yields more realistic traffic
dynamics [BB+99].

In [BHM+00], we studied the complexity of determining some phase space properties (e.g. reachability
of a given configuration, fixed point reachability) of SDSs. Here, we focus on the complexity of two basic
problems for SDSs, namely PREDECESSOR EXISTENCE and PERMUTATION EXISTENCE. We now discuss
these problems informally and defer the formal definitions to Section 2. Given an SDS S = (G, F,7) and a
configuration C, the PREDECESSOR EXISTENCE (or PRE) problem is to determine whether the configuration
C has a predecessor; that is, whether there is a configuration C’' such that S moves from C’ to C in one tran-
sition. Given a partially specified SDS S consisting of the underlying graph G(V, E), the set F of Boolean
functions associated with the nodes and two configurations C and C’, the PERMUTATION EXISTENCE (or the
PME) problem is to determine whether there is a permutation 7 of the nodes such that under permutation ,
S moves from C' to C in one transition. The PRE problem is a classical problem studied by the dynamical
systems community in the context of CA [Su95, Gr87]. The PME problem is important in the context of
SDSs since two different node permutations may give rise to totally different behaviors of the underlying
dynamical system. An investigation of these problems is helpful in obtaining a better understanding of the
dynamical systems modeled by SDSs.

The remainder of the paper is organized as follows. In Section 2 we provide the necessary definitions.
Section 3 summarizes our results and related results from the literature. Sections 4 and S present our results
for PREDECESSOR EXISTENCE and PERMUTATION EXISTENCE problems respectively. Finally, Section 6
offers some concluding remarks.

2 Definitions and Problem Formulations

2.1 Sequential Dynamical Systems

We begin with a formal definition of sequential dynamical systems. Our definition closely follows the orig-
inal definition of SDS in [BMR99, BMR00, MR99, Re00]. We also recall basic definitions of phase space
parameters studied in this paper.

A Sequential Dynamical System (SDS) S is a triple (G, F, 7), whose components are as follows:

1. G(V, E) is an undirected graph without multi-edges or self loops. G is referred to as the underlying
graph of S. We use n to denote |V| and m to denote |E|. The nodes of G are numbered using the
integers 1,2, ..., n.

2. Each node has one bit of memory, called its state. The state of node 4, denoted by s;, takes on a value
from Fo= {0, 1}. We use ¢; to denote the degree of node <. Each node 1 is associated with a symmetric
Boolean function f; : 117‘25‘+1 — F2, (1 <43 < n). Werefer to f; as a local transition function. The
inputs to f; are the state of 7 and the states of the neighbors of 7. By “symmetric” we mean that the
function value does not depend on the order in which the input bits are specified; that is, the function
value depends only on how many of its inputs are 1. We use F to denote {f1, fa2,..., fu}



3. Finally, 7 is a permutation of {1,2,...,n} specifying the order in which nodes update their states
using their local transition functions. Alternatively, m can be envisioned as a total order on the set of

nodes.

Computationally, the transition of an SDS from one configuration to another involves the following steps:

for i=1to n do
(1) Node = (4) evaluates fr(;). (This computation uses the current values of the state of m (i) and those of

the neighbors of 7 (3).)
(2) Node 7 (i) sets its state s,(;) to the Boolean value computed in Step (1).
end-for

Stated another way, the nodes are processed in the sequential order specified by permutation 7. The
“processing” associated with a node consists of computing the value of the node’s Boolean function and
changing its state to the computed value.

We point out that the assumption of symmetric Boolean functions can be easily relaxed to yield more
general SDSs. We give special attention to the symmetry condition for two reasons. First, our lower bounds
for such SDSs imply stronger lower bounds for computing phase space properties of CA and communicating
finite state machines (CFSMs). Second, symmetry provides one possible way to model “mean field effects”
used in statistical physics and studies of other large-scale systems. A similar assumption has been made in
[BPT91]. '

Recall that a configuration of an SDS is a bit vector (b1,bs,...,b,). A configuration C of an SDS
S = (G, F,n) can also be thought of as a function C : V — F,. Given a configuration C, the state of a
node v in C is denoted by C(v); for a subset W of nodes, C(W) denotes the states of the nodes in W. We
refer to C(W') as a subconfiguration of C. The function computed by SDS &, denoted by Fig, specifies for
each configuration C, the next configuration C’ reached by S after carrying out the update of node states in
the order given by 7. Thus, Fg : F; — 3 is a global function on the set of configurations. The function
Fg can therefore be considered as defining the dynamic behavior of SDS S. We also say that SDS S moves
from a configuration C to a configuration Fg(C) in one time unit. The configuration reached by applying the
global transition function for ¢ time units to a configuration C is denoted by Fg*(C).

2.2 Problems Considered

Given an SDS &, let |S| denote the size of the representation of S. In general, this includes the number of
nodes, edges and the description of the local transition functions. When Boolean local transition functions
are given as tables, |S| = O(m + |T'|n), were |T'| denotes the maximum size of the table, n is the number
of nodes and m is the number of edges in the underlying graph. For a node v with degree §,, the size of the
table specifying an arbitrary Boolean function is O(2%), while the size of the table specifying a symmetric
Boolean function is O(4,). We assume that evaluating any local transition function given values for its inputs
can be done in polynomial time.

In this paper, we study two basic problems and their extensions that arise in the context of SDSs. Some
of these problems have been studied in the context of CA. We provide formal definitions of the problems
below.



1. Given an SDS S = (G(V, E), F,w) and a configuration C, the PREDECESSOR EXISTENCE problem
(abbreviated as PRE) is to determine whether there is a configuration C’ such that F(C') = C.

2. Given a partially specified SDS S consisting of graph G(V, E), the set F of symmetric Boolean func-
" tions associated with the nodes of G, an initial configuration C’ and a final configuration C, the PER-
MUTATION EXISTENCE problem (abbreviated as PME) is to determine whether there is a permutation

7 for S such that Fg(C') = C.

As stated, the PRE problem asks for an immediate predecessor; that is, whether there is a configuration C’
from which a given configuration C can be reached in one transition. It is possible to generalize the problem
to the case where we are given an integer ¢ > 1, and the goal is to determine whether there is a configuration
C' from which C can be reached in exactly ¢ transitions. We call this the £-PRE problem.

Given an SDS 8= (G(V,E), F,n), let W = {v;,...,v;,} be a subset of nodes in V. The states of
nodes in W can be represented as the bit vector (bj,, bs,, ..., b;, ). Green [Gr87] considered the following
three problems in the context of infinite CA.3 These problems can be viewed as extensions of the ¢t-PRE

problem.

3. Givenan SDS § = (G(V, E), F, ), a subset of nodes W, a bit vector B = (b;,, b;,, ..., b;, ) that speci-
fies the state values for the nodes in W and an integer ¢ > 1, the {¢~SUB-CONFIGURATION PREDECES-
SOR EXISTENCE problem (abbreviated as {-SUB-PRE) is to determine whether there are configurations
C' and C such that F5*(C') = C and B is a subconfiguration of C.

4. Given an SDS S = (G(V, E), F, ), a subset of nodes W, a bit vector B = (biy, b4y, ..., bg, ) that
specifies the state values for the nodes in W and an integer £ > 1, the {-SUB-CONFIGURATION RE-
CURRENCE problem (abbreviated as t-SUB-RECUR) is to determine whether there are configurations
C' and C such that F*(C') = C and B is a subconfiguration of both C’ and C (i.e., whether the sub-
configuration represented by B will occur again after exactly ¢ time steps).

5. Given an SDS § = (G(V, E), F, ), an integer ¢ > 1 and a temporal sequence { b,(1), b,(2), ...,
by (t) ) of ¢ state values of a given node v, the {-TEMPORAL SEQUENCE PREDECESSOR EXISTENCE
problem (abbreviated as ¢t-TEMP-SEQ-PRE) is to determine whether there is a configuration C such that
Fs'(C)(v) = by(i), 1<j <t

Another way of thinking about subconfigurations is to assume that a configuration specifies Boolean state
values for some nodes and “don’t care” values for other nodes. The corresponding subconfiguration is ob-
tained by retaining only the Boolean values. Using this idea, it is possible to formulate a generalized version
of the PME problem as follows.

6. Given a partially specified SDS S consisting of graph G(V, E), the set F of symmetric Boolean func-
tions associated with the nodes of G, an initial configuration C’ and a final configuration C possibly
containing don’t care values, the GENERALIZED PERMUTATION EXISTENCE problem (abbreviated as
GEN-PME) is to determine whether there is a permutation 7 for S such that Fg(C') and C agree in
all the components of C that have Boolean values. (In other words, C specifies succinctly a set of
configurations, and Fg(C’) may be any one of these configurations.)

The actual definitions in [Gr87] are slightly different. Since the main goal of [Gr87] was to prove NP-completeness, the
problems were formulated with time ¢ equal to the number of nodes in the subconfiguration.

4



A summary of our results for these problems is provided in Section 3.

2.3 Variants of SDS

As mentioned earlier, the definition of an SDS can be extended to obtain several variants. A brief description
of these SDS variants is given below.

As defined, the state of an SDS is a Boolean value and the functions associated with the nodes are
symmetric and Boolean. When we allow the state of each node to to take on values from a finite domain
and the node functions to produce values from the domain, we obtain a Finite Range SDS (FR-SDS). If the
states may store unbounded values and the node functions may also produce unbounded values, we obtain a
Generalized SDS (Gen-SDS).

A Linear SDS is one in which each local transition function is a linear combination of its inputs. To
be more precise, consider each node v;, and let N(i) = {vi,,vi,,...,v;, } denote the neighbors of v;. Let
N'(z) = N(z) U {v;}. In a linear SDS, each local transition function f; has the following form:

fi(8iy8iyy---8i) =0 + Z ai;8;. 3
v; EN'(3)

Here, a; and a;; (1 < ¢ < nand 1 < j < r) are (scalar) constants, s; is the state value of node v; and
the arithmetic operations (addition and scalar multiplications) are assumed to be carried out over a field. We
assume that the field operations can be carried out efficiently. Under this assumption, it is well known (see
for example [Von93]) that solving a set linear equations over the field can be done in polynomial time. We
use this fact in Section 4.2. When the state of each node is Boolean, each linear local transition function is
either XOR (exclusive or) or XNOR (the complement of exclusive or).

A Synchronous Dynamical System (SyDS) is an SDS without the node permutation. In an SyDS, in
each time step, all the nodes synchronously compute and update their state values. Thus, SyDSs are similar
to CA. We can extend the definition of an SyDS to obtain an FR-SyDS and a Gen-SyDS in a manner similar
to that of SDS.

2.4 Other Relevant Definitions

Two special classes of Boolean functions considered in this paper are that of k-simple-threshold functions
and exactly-k-functions. We provide formal definitions of these classes below.

Definition 2.1 1. The k-simple-threshold (Boolean) function has value 1 if at least k of the inputs have
value 1; otherwise, the value of the function is zero.

2. The exactly-k (Boolean) function has value 1 if exactly k of the inputs have value 1; otherwise, the
value of the function is zero.

It should be noted that k-simple-threshold functions are a special case of threshold functions [Ko070].
An SDS in which each local transition function is a k-simple-threshold (exactly-k) function for some % is
referred to as a simple-threshold-SDS (exact-SDS). Finally, SDSs in which all nodes compute a transition
function f of the same type (but not necessarily of the same arity) are referred to as f-SDSs. Thus for
example, OR-SDSs are SDSs in which each local transition function is the OR function. Extending this
notation, an (f, g)-SDS is an SDS in which each local transition function is either of type f or of type g.



In this paper, NP-completeness results are established using reductions from variants of the Satisfiability
(SAT) problem. An instance of SAT is specified by a collection X = {21, z3, ..., Zn} of n Boolean variables
and a collection C = {c1,¢3,...,cn} of m clauses, where each clause is a set of literals. The question is
whether there is an assignment of Boolean values to the variables so that each clause is satisfied (i.e., contains
at least one true literal). The bipartite graph BG associated with an instance of SAT has one node for each
variable and one node for each clause; there is an edge between a variable node and a clause node if the
variable occurs (positively or negatively) in the clause. Definitions of the various forms of SAT used in the
paper are given below. Each of these variants is known to be NP-complete [GJ79, DF86).

Definition 2.2 (a) 3SAT is the restricted version of SAT in which each clause contains exactly three literals.

(b) 3SAT-20CCUR is the restricted version of SAT in which each clause contains exactly three literals and

each literal occurs in at most two clauses.

(c) MONOTONE 3SAT is the restricted version of SAT in which each clause contains exactly three positive
(unnegated) literals or exactly three negated literals.

(d) In PLANAR POSITIVE EXACTLY 1-IN-3 3SAT (abbreviated as PL-PE3SAT), each clause contains
exactly three positive literals, the associated bipartite graph is planar, and the question is whether
there is a truth assignment to the variables such that each clause contains exactly one true literal.

Finally, we recall the concept of treewidth.

Definition 2.3 [ALS91, Bo88, RS86] Let G(V, E) be a graph. A tree-decomposition of G is a pair ({X; |i €
I}, T = (I, F)), where {X; | i € I} is a family of subsets of V and T = (I, F) is a tree with the following
Dproperties:

2. For every edge e = (v,w) € E, there is a subset X;, i € I, withv € X; and w € X;.
3. Foralli,j,k € I, if j lies on the path from i to k in T, then X; (X}, C X;.

The treewidth of a tree-decomposition ({X; | 1 € I}, T) is max;er{|X;| — 1}. The treewidth of a graph is
the minimum over the treewidths of all tree decompositions. A class of graphs is treewidth bounded if there
is a constant k such that the treewidth of every graph in the class is at most k.

A number of graph classes are known to have bounded treewidth. They include k-outerplanar graphs,
k-bandwidth bounded graphs (both for constant k), series parallel graphs, Halin graphs, chordal graphs of
bounded clique size, etc. For many optimization problems that are NP-hard for general graphs, optimal
solutions can be computed in polynomial time when attention is restricted to the class of treewidth-bounded
graphs. A considerable amount of work has been done in this area (see [ALS91, Bo88, RS86] and the
references therein).



3 Summary of Results and Related Work

3.1 PREDECESSOR EXISTENCE Problem

Sutner [Su95] and Green [Gr87] considered the PRE problem and its generalizations in the context of CA.
Their work motivated our study the PRE problem for SDSs.

We show that the PRE problem is NP-complete for any of the following restricted classes of SDSs: (i)
Each node of the SDS computes the k-simple-threshold function, for any k£ > 2, (ii) each node computes the
exactly-k function for any k > 1, (iii) the set of node functions used in the SDS is {OR, AND} and (iv) SDSs
whose underlying graphs are planar. We present polynomial algorithms for the PRE problem for SDSs for
which the set of node functions is any non-empty subset of one of the following sets: {OR, NOR}, {AND,
NAND} and {XOR, XNOR}. Note the interesting contrast between this easiness result and the hardness
result (iii) above. These results can be extended to obtain polynomial time algorithms for the ¢-SUB-PRE,
t-SUB-RECUR and ¢-TEMP-SEQ-PRE problems when when ¢ is polynomial in |S]|.

We also show that when the underlying graph of an FR-SDS (or an FR-SyDS) is of bounded treewidth, the
PRE problem can be solved efficiently with no restrictions on the node functions other than that the function
evaluation can be done efficiently. This result can be extended to obtain polynomial time algorithms for the
t-SUB-PRE, t-SUB-RECUR and t-TEMP-SEQ-PRE problems when either (i) ¢ = O(log n) and the domain of
state values is of constant size or (ii) when ¢ is a constant and the domain of state values is bounded by a
polynomial in |S|. Many of these polynomial time algorithms are obtained by reducing the corresponding
problem to a generalized satisfiability problem [Sc78] that can be solved in polynomial time.

Our results extend the earlier work of Sutner [Su95] and Green [Gr87] on the complexity of the PRE-
DECESSOR EXISTENCE problem for CA. For instance, our results on polynomial time solvability when re-
stricted to the class of treewidth bounded graphs extend Sutner’s result since CA can be easily seen to have
bounded treewidth (in fact, they are of bounded bandwidth). Second, the results also show that Green’s NP-
completeness results are close to being tight since the corresponding problems are efficiently solvable when
t = O(logn). Finally, our polynomial time results can be extended to solve a number of other variants when
instances are restricted to treewidth bounded graphs. Examples other than those mentioned above include
the problem of finding a predecessor with maximum (or minimum) number of state values being 1 (or 0),
constraining the states of a specified subset of nodes, etc.

3.2 The PERMUTATION EXISTENCE Problem

The PME problem is unique to SDSs since state updates in CA are carried out in a synchronous fashion. As
mentioned in Section 1, the motivation for the PME problem comes from the fact that the behavior of an SDS
under two different permutations may be very different.

We show that the PME problem is NP-complete even when each local transition function is a simple-
threshold function. We also show that the GEN-PME problem is NP-complete for any of the following
restricted classes of SDSs: (i) NOR-SDSs (or NAND-SDSs) where the underlying graph has maximum node
degree of 3 and (ii) SDSs whose underlying graphs are planar. We present polynomial time algorithms for the
GEN-PME problem for OR-SDSs and AND-SDSs. We also present polynomial time algorithms for the PME
problem (without don’t care values) for NOR-SDSs and NAND-SDSs. These results show an interesting
contrast between the complexity of GEN-PME and PME problems for NOR-SDSs and NAND-SDSs.



3.3 Previous Work

Computational aspects of CA have been studied by a number of researchers; see for example [M090, Mo91,
CPY89, Wo86, Gu89, Gr87, Su95]. Much of this work addresses decidability of properties for infinite CA.
Barrett, Mortveit and Reidys [BMR99, BMR00, MR99, Re00, Re00a] and Laubenbacher and Pareigis [LP00]
investigate the mathematical properties of sequential dynamical systems. The PRE problem was shown to be
NP-complete for finite CA by Sutner [Su95] and Green [Gr87]. Sutner also showed that PRE problem for
finite 1-dimensional CA with a fixed neighborhood radius can be solved in polynomial time. As mentioned
earlier, Green [Gr87] studied generalized versions of the PRE problem for infinite CA. The problems were
so formulated that his results are also applicable to finite 1-dimensional CA. References [Su95, Gr87] do not
consider other restrictions on CA that lead to polynomial algorithms for the PRE problem. Our approach,
which relies on an efficient reduction to the generalized satisfiability problem, allows us to identify a number
of restricted classes of SDSs for which the PRE problem can be solved efficiently.

4 The PREDECESSOR EXISTENCE Problem

4.1 NP-Completeness Results

Theorem 4.1 The PRE problem is NP-complete for the following classes of SDSs:
1. k-simple-threshold-SDSs, for each k > 2.
2. Exactly-k-SDSs, for each k > 1.
3. SDSs for wh?‘ch the set of local transition functions is {AND, OR}.

4. SDSs whose underlying graphs are planar.

Proof: It is obvious that PRE is in NP. We establish the NP-hardness of PRE for each of the above cases
through an appropriate reduction from a restricted version of SAT. In each case, we assume that corresponding
SAT instance has n variables and m clauses.

Part 1: We use a reduction from 3SAT and construct an SDS § as follows. First, the underlying graph
G(V, E) has the following vertices and edges. V = Vi UV, U V3, where Vi = {a1,0as....,ax}, Vo =
{zi, T, i | for each variable z;} and V3 = {c;,d; | for each clause c;}. The set E has the following edges.

1. Foreachp,q,1 < p < g < k, the edge {a,, az}. (Thus, the k nodes in V; form a clique.) -
2. Foreachi, 1 <1 < n,edges {z;,v:} and {T7, y:}.

3. Foreach j,1 < j < m, edge {cj,d;}, and an edge from c; to the nodes for each of the three literals
occurring in clause c;.

4. Foreachp,i,1 <p <k -2and1 <1< n,the edge {ap, i}
5. Foreachpandi,1 <p < kand 1 < < n,edges {ap,z;} and {ap, T3 }.

6. Foreachpandj,1 <p <k —1land1l < j < m,edges {ap,d;} and {a,,c;}.



The permutation 7 is given by
m= (a'la-"aa'k)yh"'1ynadla"'1dm,cl>"-)c'rn,m15'"’wn;:E_l’"‘?ﬁ)-

The required final configuration C has value 1 for each a,, 0 for each y;, 0 for each dj, 1 for each c;, 1
for each z;, and 1 for each T;.

Suppose that there is a configuration C’ such that S can reach C in one transition from C’. Setting the
initial value of each a,, to 1 will ensure that each C(ap) = 1. Because C(y;) = 0, at most one of z; and Z; has
initial value 1. Because C(d;) = 0, the initial value of each c; must be 0. Because C(c;) = 1, the initial value
for at least one of the three literals occurring in clause c; must be 1. Because each z; and T; is connected
to all the a,’s, each of which has a final value of 1, the required final value of 1 for z; and Z; imposes no
restriction on initial values.

Using the above observations, it can be verified that the 3SAT instance has a solution if and only if the
constructed PRE instance has a solution.

Part 2: The reduction is again from 3SAT. The underlying graph G(V, E) has the following nodes and
edges. V = V43U Vo U V3, where Vi = {ay1,02,...,ax,b}, V2 = {c; | foreach clause ¢;} and V5 =
{Zi, T3, 2i, Yi,1, ¥i,2s - - - » Vi | fOr each variable z;}. (Note that V3 has k+3 nodes for each variable z;, 1 <
1 < n.) The edge set E consists of the following.

1. For each p, g such that 1 < p < g < k, the edge {ay, az}. (Thus, these k nodes form a clique.)
2. Foreachp, 1 < p <k, the edge {ap, b}.
3. Foreachp,j,1 <p <k —1land1l < j < m,the edge {ap,c;}.

4. Foreach j,1 < j < m, the edge {b, c;}, and an edge from ¢; to the nodes for each of the three literals
occurring in clause c;.

5. Foreach i, 1 < ¢ < m, edges {z;,z} and {Z;, % }.
6. Foreachiandp,1 <4 <mand1 < p < k, the edges {z;,yip} and {77, yi p}-

7. Foreach i, p,and g, suchthat 1 < i <nand1 < p < g <k, the edge {yip, yi,q}- (Thus, each set of
k nodes {yi1,...,yix} forms a clique.)

8. Foreachiandp,1 <7 <mnand1<p< k- 1,the edge {2, yip}-
The permutation  is as follows.

(a'17 e aakab’ Cly-++yCmyY1,1,Y1,2y - -, Y16y 21, Y2,1, Y2,25 - - - s Y2y 22500 0y
Yn,1:Yn2y- s Ynkr2n, L1, .- 7-7"11,55—1, s 17;7:)

The required final state C has value 1 for each ay, 1 for b, 0 for each c;, 1 for each y; 5, 1 for each z;, 0 for
each z;, and O for each 7;.

Suppose that there is a configuration C’ such that S can reach C in one step. Setting the initial value of
each a, to 1 will ensure that each C(ap) = 1. Next, consider node b. Because C(b) = 1, and the k nodes that
precede b in 7 are all connected to b and have final values of 1, the initial value of b and all the clause nodes
is forced to be 0. Next, consider each node c;. Of the nodes that precede ¢; in , exactly k are connected to
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cx, and have final value 1. Since the initial and the final values of c; are both 0, the initial value of at least
one of the three literals occurring in clause c; must be 1. Next, consider each node y; x, with final value 1.
Because all the ¥ — 1 nodes y; 1,. .., y; k-1 that precede y; 1 in w, have final value 1, and are connected to
Yi k» at most one of z; and Z; can have an initial value of 1. The purpose of z; is to ensure that z; and z7 will
have final value 0.

Part 3: The reduction is from MONOTONE 3SAT. The constructed graph G(V, E) has V = {z1, za, .. ., Zp,
€1,€2, - - -, Cm, G, b, d}. The edges in E are as follows.

1. Foreachi, 1 < i < n, the edge {a, z;}.

2. Foreachi,j,1 <i<n,1<j < m,the edge {z;, c;} whenever the literal z; or Z; appears in clause

C]‘.
3. Foreach j, 1 < j < m, the edge {b,c;} if ¢; has all positive literals.
4, Foreach j, 1 < j < m, the edge {d, ¢;} if ¢; has all negative literals.

The node functions are as follows. For a, b, each node z; and each clause c; with only positive literals, the
function is OR; for d and each clause c; with only negative literals, the function is AND. The permutation
7 is (a,b,d,c1,¢2,...,Cm,T1,T2,...,Zn). The required final configuration C has C(a) = 1, C(b) = 0,
C(d) = 1, C(c;) = 1if c; has all positive literals, C(c;) = 0 if c; has all negative literals and C(z;) = 1, for
1<i<n. ‘

We can now argue that the PRE instance has a solution if and only if the instance of MONOTONE 3SAT
has a solution. The reason is as follows. The initial value C(b) = O forces the initial value of each clause
containing only positive literals to be 0. The initial value C(d) = 1 forces the initial value of each clause
containing only negative literals to be 1. Since each positive literal clause has initial value 0 and final value
1, at least one of the variables in the clause must have initial value 1. Similarly, since each negative literal
clause has initial value 1 and final value 0, at least one of the variables in the clause must have initial value
0. Node a enables each of the variable nodes to have the final value 1. '

Part 4: The reduction is from PL-PE3SAT. We create the following SDS S. For each variable z; € X, S
has one node (denoted by z;), 1 < i < n. For each clause ¢; € C, S has two nodes (denoted by c; and c}),
1 < j < m. There is an edge between c; and c;. for each j, 1 < j < m. Further, if the clause ¢; contains
positive literals z;,, T;, and x;,, then there are edges between c; and z;, for r = 1, 2, 3. This completes the
specification for the undirected graph of S. Note that underlying graph of the resulting SDS is planar since it
is obtained from the (planar) bipartite graph corresponding to the PL-PE3SAT instance by simply attaching
a node c; of degree 1 to each clause node ¢; (1 < j < m).

The symmetric Boolean functions associated with nodes are as follows. For each node z; (1 < ¢ < n)and
cg (1 £ j < m), the associated Boolean function is the logical OR function. For the node ¢; (1 < j < m),
the associated Boolean function takes on the value 1 if exactly one of the inputs is 1; otherwise, the function
value is 0.

The permutation 7 for S is (¢}, ch, ..., ¢, €1,€2,. .. ,Cm, &1, L2, . . ., Ln). The required final configura-
tion C has value 0 for each node c;- (1 <€ j <m)and 1 for all other nodes.

We now show that there is a configuration C’ such that S can reach the configuration C in one transition
from C' if and only if the PL-PE3SAT instance is satisfiable.
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Suppose there is a satisfying truth assignment to the PL-PE3SAT instance. We construct the following
configuration C’: For each of the nodes c¢; and c;- (1 < j < m), the initial state is set to 0. For each node z;
(1 <1 < n), the initial state is set to the truth value given by the satisfying assignment to the PL-PE3SAT
instance. Using the permutation , it is straightforward to verify that starting from C’, S reaches C in one
step.

Now, suppose there is a configuration C’ such that S can reach the configuration C in one step. We claim
that C’ must set the state of each node ¢; and c;- (1 € j < m)1o0. To see this, suppose C’ initializes some
node ¢; (or 03') to 1. Since cg appears before ¢; in the permutation, when c; executes, its value would become
1. This is a contradiction since C specifies the value of ‘39 to be 0. The claim follows.

In view of the claim, when a node c; executes, its initial value is 0. Therefore, exactly one of the nodes
corresponding to the variables in clause ¢; must be set to 1 by C’ so that the final value of ¢; becomes 1.
In other words, the values assigned by C’ to the states of the nodes z;, zo, ..., T, must form a satisfying
assignment to the PL-PE3SAT. This completes the proof of Part 4 and also that of the theorem. n

4.2 Polynomial Time Results

We now present polynomial algorithms for the PRE problem for restricted classes of SDSs. Our algorithms
are based on efficiently reducing the PRE problem and its variants to polynomial time solvable instances of
systems of linear equations or generalized satisfiability problems. As will be seen, whenever the answer to a
problem is “yes”, our algorithms can also generate a feasible solution with the desired property.

We begin with our results for linear Gen-SDSs using the form of local transition functions given in
Equation (1).

Theorem 4.2 Let S be a linear Gen-SDS with n nodes such that for each i, 1 < ¢ < n, the scalar constant

a;; used in the expression for the local transition function f; is nonzero. For such a linear Gen-SDS, the

answer to the PRE problem is always “yes”. Moreover, for a given final configuration C, there is a unique
- predecessor configuration C', which can be found in time linear in the size of the underlying graph.

Proof: Let C = (b1, by, ..., b,) denote the required final configuration. To solve the PRE problem for S, we
associate a variable z; with each node v; of S and construct a system of linear equations over the algebraic
field corresponding to S. This construction is done in such a way that any solution to the system of linear
equations provides a solution to the PRE problem for §. When the condition a;; # 0 is satisfied for each 1,
we show that the resulting system of equations has a unique solution.

To construct the system of linear equations, consider the node v;. Let N (i) denote the set of neighbors
of v;. In N(i), let v;,, viy, ..., v;, denote the nodes that precede v; in the permutation and let v;,, vj,, ...,
vj, denote the nodes that follow v; in the permutation. Using Equation (1), the linear equation for v;, where
the arithmetic operations are carried out over the field corresponding to S, is the following:

T p
a; + aixz; + Z aiiqbiq + Z Qij, Tj, = b;. 2)
g=1 q:l

There is one such equation for each node v;. It can be verified that any solution to the above system of
equations over the field corresponding to Sis a solution to the PRE problem.

11



The above construction produces n equations in n unknowns. Suppose that we envision the nodes being
enumerated in reverse order of 7. Then the n equations are in triangular form, and such a system of equations
has a unique solution.

When node v; is being considered, for all nodes v; with j < i (i.e,, 7(v;) > 7(v;)), the unique value
C'(v;) has already been determined. Therefore, in the equation for determining the new value of v;, the only
unknown is C’(v;). This is because the other values in the equation are from C for neighboring nodes before
v; in 7, the already computed valued from C for neighboring nodes after v; in m, and C(v;). Since the entry
a;; is not zero, this equation has a unique solution. n

For linear Gen-SDSs that do not satisfy the condition mentioned in Theorem 4.2 and for linear Gen-
SyDSs, the linear equation approach can be used to obtain an efficient algorithm to determine whether the
PRE problem has a solution. This is shown in the next theorem.

Theorem 4.3 The PREDECESSOR EXISTENCE problem for linear Gen-SDSs and linear Gen-SyDSs can be
solved in polynomial time.

Proof: First consider a linear Gen-SDS. Using the steps mentioned in the proof of Theorem 4.2, we construct
a system of equations. When one or more of the a;; entries are zero, the resulting system may not have a
solution or may have multiple solutions. Since the feasibility of any system of linear equations over a field
can be determined in polynomial time [Von93], it follows that the PRE problem for linear SDSs can be solved
in polynomial time.

For linear Gen-SyDSs, since the nodes update their states synchronously, the form of linear equations is
slightly different from the one given in Equation 2. Using N'(%) to denote the set consisting of node v; and
its neighbors, the equation for node v; in the case of a linear Gen-SyDS is as follows.

o; + Z aigTq = b;. ' 3)
vgEN'(?)
Again, the feasibility of the set of linear equations can be determined in polynomial time. [ |

As mentioned earlier, when the state values are Boolean, XOR and XNOR are linear functions over the
field F> under addition modulo 2. Thus, by Theorem 4.2, for any SDS where each local transition function
is from the set {XOR, XNOR}, the PRE problem has a unique solution which can be found efficiently.

An approach similar to that used in the proof of Theorems 4.2 and 4.3 can be used to obtain polynomial
algorithms for the PRE problem for other restricted classes of SDSs characterized by specific (Boolean) local
transition functions. The idea is to efficiently reduce the PRE problem for such SDSs to a polynomial time
solvable version of the Satisfiability (SAT) problem for Boolean formulas. We now outline this reduction.

Let S denote the given linear SDS and let C = (b1, b2, ..., b,) denote the required final configuration,
with b; € {0,1}. To solve the PRE problem for S, we associate a Boolean variable z; with each node
v; of S and construct a set 7 = {T1,T%,...,T,} of terms, with term T; corresponding to node v; of S.
To construct term T;, consider the node v; with local transition function f;. Let N (i) denote the set of
neighbors of v;. In N(3), let v;;, vjy, ..., v;. denote the nodes that precede v; in the permutation and let
Vjys Ujps - -+, U5, denote the nodes that follow v; in the permutation. We first construct the formula F; =
Jil@s, big, big,y oo b4y, Ty Ty - -+, j,). I by = 1, the term T is Fj itself; if b; = 0, the term T; is F;. The
resulting instance of SAT is the conjunction of the terms in 7. It can be verified that the PRE problem for S
has a solution if and only if the resulting SAT instance has a solution.
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We need the following concepts introduced by Schaefer [Sc78] to state and prove our next few results.

Definition 4.1 (/Sc78])
LetS = {R1, Ry, - , Rn} be a finite set of finite arity Boolean relations. (A Boolean relation is defined to
be any subset of {0,1}P for some integer p > 1. The integer p is called the rank or arity of the relation.)
An S-formula is a conjunction of clauses each of the form Ri(gl,gz, --+), where £1,&9,- -+ are distinct,
unnegated variables whose number matches the rank of R;,i € {1,--- ,m} and R; is the relation symbol
representing the relation R;. The S-satisfiability problem (denoted by SAT(S)) is the problem of deciding
whether a given S-formula is satisfiable.

The problem SAT(S) is the variant of the problem SAT(S) in which the constants 0 and 1 are also
allowed to occur in S-formulas.

A logical relation R is weakly positive if R(z1, z2, . . .) is logically equivalent to some CNF formula hav-
ing at most one negated variable in each conjunct. A logical relation R is weakly negative® if R(z;, zo, .. J)
is logically equivalent to some CNF formula having at most one unnegated variable in each conjunct. A
logical relation R is affine if R(z1, 2, ...) is logically equivalent to some system of linear equations over
the two-element field F; = {0,1}.

Theorem 4.4 [Sc78] Let S be a finite set of finite arity Boolean relations such that one of the following
condition holds: (i) Every relation in S is weakly positive (ii) Every relation in S is weakly negative (iii)
Every relation in S is affine. Then SAT(S) can be solved in polynomial time. ]

Theorem 4.5 1. The PRE problem for SDSs in which each local transition function is OR or NOR is
efficiently reducible to the SAT(S) problem where every relation in S is weakly positive.

2. The PRE problem for SDSs in which each local transition function is AND or NAND is efficiently
reducible to the SAT(S) problem where every relation in S is weakly negative.

3. The PRE problem for SDSs in which each local transition function is XOR or XNOR is efficiently
reducible to the SAT(S) problem where every relation in S is affine.
Thus, the PRE problem for the above restricted classes of SDSs can be solved efficiently. Moreover, these
results hold even for SyDSs.

Proof sketch: Since the proofs for the three parts are very similar, we will only present the proof for for
Part 1 of the theorem. (A proof for Part 3 is implicit in the proof of Theorem 4.3.)

Consider a given node v; and its associated variable ;. Suppose the local transition function f; associated
with v; is OR. (The proof for NOR is similar.) If the bit b; corresponding to v; in the final configuration C
is 1, then the term corresponding to v; is the OR of a collection of variables; the resulting term contains no
negated literals. If the bit b; corresponding to v; in the final configuration C is 0, then the term for v; is the
NOR of a collection of variables. By DeMorgan’s law, the NOR of a collection of variables is equivalent to
the conjunction of their negations; in this case, each conjunct contains exactly one negated literal. Thus, by
definition, each resulting term corresponds to a weakly positive Boolean relation. The reduction for SyDSs
can be done in an analogous manner. [ |

Such clauses are also referred to as HORN clauses.
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Recall that given an integer t > 1 and the -PREDECESSOR EXISTENCE ({-PRE) problem is to determine
whether there is a configuration C’ from which C can be reached in exactly ¢ transitions. Our polynomial
results for the PRE problem for SDSs with restricted local transition functions (Theorems 4.3 and 4.5) also
extend to the ¢-PRE problem, when ¢ is bounded by a polynomial in the size of the given SDS. This can be
seen through a straightforward modification of the reduction to SAT (or to a set of linear equations). For each
node of the SDS, we have ¢ Boolean variables, one corresponding to each (backward) time step. The term
for node v; and time j is constructed from the variables of adjacent nodes corresponding to time j or j + 1
depending on whether the node follows or precedes v; in the permutation.

We illustrate the construction for SDSs with ¢ = 2; the generalization is straightforward. Let z} and z;“’
denote the two variables corresponding to node v;. (The interpretation is that z{ represents the value of the
state of node v; at the ;%P preceding time step, j = 1, 2.) The construction produces two terms corresponding
to node v;. To describe the construction, let N (i) denote the set of neighbors of v;. In N(3), let v;,, vy,

v;, denote the nodes that precede v; in the permutation and let 'Ujl, Vjgs + - o5 Uy denote the nodes that
follow v; in the permutation. Let F}' = f;(z},bi,,b;,, . bzr’“’]u v ,le-p). If b; = 1, the first term
corresponding to v; is F} itself; if b; = 0, the first term corresponding to v; is le— Let F? represent the
expression (l‘ = fi(z? Il’:,1 , x}z, ,:z:}r, wfl 1 T5y0 - )) where = denotes logical equivalence. This
logical equivalence can be easily converted into a collectlon of subformulas connected by conjunctions. The
resulting collection of subformulas is the second term corresponding to node v;.

In general, when £ is bounded by a polynomial in the size of S, the number of terms in the resulting SAT
instance is also bounded by a polynomial. Thus, the polynomial time results extend to this case as stated in
the following theorem.

Theorem 4.6 When t is polynomial in |S|, the t-PRE problem can be solved efficiently for any of the fol-
lowing classes of SDSs or SyDSs: (i) SDSs (or SyDSs) in which each local transition function is from {OR,
NOR} (ii) SDSs (or SyDSs) in which each local transition function is from {AND, NAND} (iii) SDSs (or
SyDSs) in which each local transition function is from {XOR, XNOR}. n

Finally, we note that the above results can be extended to obtain polynomial time algorithms for the
t-SUB-PRE, t-TEMP-SEQ-PRE and #-SUB-RECUR problems. This follows by noting that in our reduction
only the subconfiguration values are prescribed in advance; the state values of the remaining nodes can be
anything so far as the subconfiguration values are preserved. Thus, we get:

Theorem 4.7 When t is polynomial in
problems can be solved efficiently for any of the following classes of SDSs or SyDSs: (i) SDSs (or SyDSs) in
which each local transition function is from {OR, NOR} (ii) SDSs (or SyDSs) in which each local transition
JSunction is from {AND, NANDY} (iii) SDSs (or SyDSs) in which each local transition function is from {XOR,
XNOR}. , ]

4.3 Treewidth Bounded Graphs

In this section, we give polynomial algorithms for the predecessor existence problems when the underlying
graph of the SDS is of bounded treewidth. To discuss this result, we need a definition and a result from the
literature.
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Definition 4.2 [HM+94] Let X = {x1,22,...,Zn} be a set of Boolean variables and let T= {T1,Ts,..., T}
be a collection of terms, where each term is a Boolean function of a subset of the variables in X. The in-
teraction graph for T has one node for each variable in X, there is an edge between two nodes if the two
corresponding variables appear together in some term of T .

Theorem 4.8 [HM+94] Let X = {x1,x3,...,Zn} be aset of Boolean variables and let T= {T1,T5,...,Tn}
be a collection of terms, where each term is a Boolean function of a subset of the variables in X. If the in-
teraction graph of T has bounded treewidth, then the SAT problem for T can be solved in polynomial time.
|

Theorem 4.9 Let S be an SDS where each local transition function is Boolean and the underlying graph
has bounded treewidth. The PRE problem for S can be solved in polynomial time.

Proof: Given SDS § and the required final configuration C, we construct the set of terms as described earlier.
The key observation about this construction is the following. The interaction graph of the resulting set of
terms is a subgraph of the underlying graph of the SDS. Since the latter has bounded treewidth by assumption,
the former has bounded treewidth as well. By Theorem 4.8, the SAT problem for the resulting set of terms
can be solved in polynomial time. Thus, the PRE problem for SDS S can also be solved in polynomial time.
[

We now briefly mention a number of extensions of the above result.

1. We first note that the result of Theorem 4.9 also extends to SyDSs (finite CA). This follows by a straight-
forward modification of the construction of the set of linear equations or the set of terms described above.
The result for finite CA was previously obtained by Sutner [Su95] who also showed that the PRE problem
for finite 1-dimensional CA with a fixed neighborhood radius  can be solved in polynomial time. The latter
result also follows from the extension of Theorem 4.9 to SyDSs since 1-dimensional CA with neighborhood
radius r give rise to graphs of treewidth at most 2r + 1. '

2. A second extension concerns the counting problem associated with the PRE problem. Here, the goal is
to determine the number of predecessors of a given configuration. When the interaction graph of a set of
Boolean terms is treewidth bounded, it is known that the number of satisfying assignments for the terms can
also be found in polynomial time [SH96]. It follows that for SDSs whose underlying graphs are treewidth
bounded, the number of predecessors of a given configuration can be determined in polynomial time. A
simple consequence is that for such SDSs, the problem of determining whether a configuration has a unique
predecessor can also be solved in polynomial time.

3. The t-PRE problem for SDSs whose underlying graphs are treewidth bounded can be solved in polynomial
time when ¢ = O(logn), where n is the number of nodes. This result holds with no restrictions on the local
transition functions except that they can be computed efficiently. To see this, note that when we reduce the ¢-
PRE problem for a treewidth bounded SDS to SAT, the treewidth of the resulting interaction graph is O(£- w),
where w is the treewidth of the underlying graph of the SDS. The algorithm for SAT when the interaction
graph has treewidth q runs in time n|D|°(9 [HM+94], where 7 is the number of variables and | D| is the size
of the domain of state values. Since ¢ = O(t - w) and w is fixed, we obtain polynomial algorithms for the
t-PRE problem for treewidth bounded graphs under the following two scenarios: (i) when t = O(logn) and
|D| is a constant or (ii) when t is a constant and | D} is bounded by a polynomial in |S]|.
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4. Finally note that combining the ideas used to prove Theorem 4.7 and the above ideas for treewidth
bounded graphs, we can obtain polynomial time algorithms for the {-SUB-PRE, ¢-SUB-RECUR and #-TEMP-
SEQ-PRE problems when either (i) t = O(logn) and | D] is a constant or (ii) when ¢ is a constant and |D)| is
bounded by a polynomial in |S|.

S The PERMUTATION EXISTENCE Problem

5.1 NP-Completeness Results

Theorem 5.1 The PME problem is NP-complete for SDSs in which each local transition function is a simple-
threshold function.

Proof: The membership of PME in NP is obvious. So, we focus on proving the NP-hardness through a
reduction from 3SAT.

Let X = {z1,z3,...,zn} denote the variables and C = {c1,ca,...,cn} denote the clauses in the given
instance of 3SAT. For each variable z;, the underlying graph of the SDS has five nodes, denoted by z},
1 < r < 5. For each clause c;, the underlying graph of the SDS has one node, denoted by c;. The edges in
the graph are as follows.

1. Foreachi, 1 < i < n, add the four edges {z}, Z} {2222}, {z2,22} and {z}, 23}

2. Foreachiand j, (1 < i <nand1l < j < m),if variable z; appears positively in clause c;, then add
the two edges {z}, ¢;} and {z?, c;}; if variable z; appears negatively in clause c;, then add the two
edges {z?,¢;} and {z},c;}.

The threshold functions associated with nodes are as follows. For each 7 (1 < ¢ < n), the local transition
function associated with nodes z} and z3 is the g-simple-threshold function, where q is one more than the
degree of the node; in other words, for every input, the value of this threshold function is zero. The local
transition function associated with nodes xf and :cf is the 0-simple-threshold function; in other words, for
every input, the value of this threshold function is 1. The node z? has five inputs; the the local transition
function associated with nodes z7 is the 3-simple-threshold function. Each clause node ¢; (1 £j <m)has
seven inputs; the local transition function associated with nodes c; is the 4-simple-threshold function.

The initial configuration C’ sets each of the nodes z}, x;?’, :cf (1 <7 < n)to 1 and the other nodes to 0.
The final configuration C requires each of the nodes z}, z3, 22 (1 < i < n) to have the value 0 and the other
nodes to have the value 1.

For each i, the point of = is that, in order to change it to 0, z} must be made 0 before z} is made 1 or
? must be made 0 before z? is made 1. Stated differently, if =} and 22 are ever simultaneously 1, z? and }
are never simultaneously 1, and vice versa. The first case is associated with making the variable z; true and
the second with making z; false.

Suppose a satisfying assignment sets z; to true. Then updates can be made in the following order: change
3 10 0, 23 t0 0, z? to 1, change clause variables, change z¢ to 1 and change z} to 0. Because z} and z2 are
both 1 when clauses are changed, a contribution of 2 is made by z; toward the threshold of 4 for the clause.
With contributions of at least 1 from the other literals, the clause variable is changed to 1. A similar update
order can be obtained when the satisfying assignment sets z; to false.
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Using the above observations, it can be verified that the resulting PME instance has a solution if and only
if the 3SAT instance has a solution. ]

Recall that in the generalized version of the PME (GEN-PME) problem, the final configuration may con-
tain don’t care values. Our next theorem shows that the GEN-PME problem is NP-complete even for simple
SDSs.

Theorem 5.2 The GENERALIZED PERMUTATION EXISTENCE problem is NP-complete for each of the fol-
lowing classes of SDSs.

1. SDSs in which every local transition function is NOR and whose underlying graphs have a maximum
node degree of 3.

2. SDSs in which every local transition function is NAND and whose underlying graphs have a maximum
node degree of 3.

3. SDSs whose underlying graphs are planar.

Proof: The GEN-PME problem is obviously in NP. We establish NP-hardness through reductions from
restricted versions of SAT.

Part 1: The reduction is from 3SAT-20CCUR. The underlying graph of the SDS has one node for each
literal and one node for each clause. There is an edge between each clause and the three literals in that
clause. There is also an edge between the two literals corresponding to a variable. Since each literal occurs
in at most two clauses and each clause has only three literals, the degree of each node in the resulting graph
is at most 3.

For each clause node, the initial and final state values are 0. For each literal node, the initial state value
is 0 and the final state value is don’t care.

We now argue that the GEN-PME problem has a solution if and only if the given instance of 3SAT-
20CCUR has a solution. Suppose there is a satisfying assignment. We choose the final value 1 for all true
literals and the final value O for all false literals. The permutation is obtained by first having all the true
literals (in an arbitrary order) followed by the other nodes (also in an arbitrary order). It can be verified that
the nodes reach the specified final values. For the converse, suppose there is a permutation that makes each
clause node have the final value 0. Since there is an edge between the two literals corresponding to a variable,
and each node function is NOR, at most one of the two literals can have a final value of 1. Since each clause
node goes from 0 to 0, at the time the clause node is evaluated, at least one of the literals in the clause must
have the value 1. In other words, each clause can be satisfied.

Part 2: The proof is along the same lines as that of Part 1 using a dual argument.

Part 3: We use a reduction from the PL-PE3SAT problem. Given an instance of PL-PE3SAT with variable
set X and clause set C, we create the following partial SDS S. For each variable z; € X, & has two nodes
(denoted by z; and z}), 1 < i < n. For each clause ¢; € C, S has one node (denoted by ¢),1<j<m.
There is an edge between z; and z; for each %, 1 < i < n. Further, If the clause c; contains positive literals
Tj, Tj, and x;,, then there is an edge between z;, and ¢; for r = 1,2, 3. This completes the specification
for the undirected graph of S. Note that underlying graph of the resulting SDS is planar since it is obtained
from the (planar) bipartite graph corresponding to the PL-PE3SAT instance by simply attaching a node
of degree 1 to each variable node z; (1 <1 < n).
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The Boolean functions associated with each node are as follows. For each node z; and 2 (1 < i < n),
the associated Boolean function is the NOR function. For the node ¢; (1 < j < m), the associated Boolean
function takes on the value 1 if exactly one of the inputs is 1; otherwise, the function value is 0.

The initial configuration C’ assigns the value 0 to each node. The final configuration C requires each node
¢j (1 < j < m) to have the value 1; the values for every other node is “don’t care”.

This completes the specification of of the partial SDS S. We now show that there is a permutation 7 such
that S can reach one of the final configurations specified by C in one transition if and only if the PL-PE3SAT
instance is satisfiable.

Suppose there is a satisfying truth assignment to the PL-PE3SAT instance. We construct the following
permutation 7 for S. The first 2n entries of m specify the order for the nodes z; and z} (1 < 1 < n). If the
satisfying truth assignment sets z; to 1, then 7 puts x; ahead of z;; otherwise,  puts z} ahead of ;. The last
m entries of 7 are ¢y, ¢, . . ., . It can be verified that when the SDS executes one step in the order specified
by , the final value of z; is identical to the value given by the satisfying assignment. As a consequence,
when the nodes corresponding to the clauses execute, each of them has a final value of 1. This is in the set of
allowable final configurations specified by C. Thus, 7 is a valid solution to the constructed generalized PME
instance.

Now, suppose there is a permutation 7 for S such that S, starting from C’, reaches one of the final
configurations specified by C in one step. We carry out this step of S using 7 and claim that the final values
assigned to the z, z3, . . ., T, give an exactly 1-in-3 satisfying assignment to the PL-PE3SAT instance. To
see this, assume that some clause c; is not satisfied in an exactly 1-in-3 fashion. Let z;,, z;, and z;;, denote
the three variables appearing in c;. Since the final value of node c; is 1, when node c; was executed, exactly
one of z;,, T;, and z;, was 1. Without loss of generality, suppose z;, was 1 and the other two nodes were 0
when c; executed. Now, in the final state if z;, is also 1, then ;, must have executed after ¢;. However, node
c; with value 1 is one of the inputs to z;,. So, if z;, executes after ¢;, then z;, would be set to 0, contradicting
our assumption that the final value of z;,. Therefore, each clause of the PL-PE3S AT is satisfied in an exactly
1-in-3 fashion. This completes the proof of the theorem. [

5.2 Polynomial Algorithms
Theorem 5.3 The generalized PME problem can be solved in polynomial time for OR-SDSs and AND-SDSs.

Proof sketch: We present the proof for OR-SDSs. A proof for AND-SDSs can be obtained by a dual
argument.

Consider an OR-SDS. If there is any node that goes from 1 in the initial configuration to 0 in the final
configuration, stop and output NO. Similarly, if there is any node that goes from 0 to 0 and has a neighbor
whose initial value is 1, stop and output NO. Change the final state to 1 for every node that goes from 1 to
don’t care. Define a node to be a stable-0 if its initial and final values are both 0. Define a node to be a
stable-1 if its initial and final values are both 1. Define a given node to be a viable-1 node if its initial value is
0, its final value is either 1 or don’t care, and there exists a path of zero or more viable-1 nodes connecting the
given node to a stable-1 node. (Computationally, this can be computed by starting from the stable-1 nodes,
and identifying viable-1 nodes as a node whose initial value is 0, final value is either 1 or don’t care, and is
adjacent to either a stable-1 node or a node that has been determined to be a viable-1 node.)
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If there is any node whose initial value is 0, final value is 1, and is not a viable-1 node, then stop and
output NO, otherwise, output YES.

If the algorithm outputs “yes”, the permutation can be determined as follows. First, the don’t cares are
resolved. All nodes whose initial value is 0, final value is don’t care, and are a viable-1, have their final value
changed to 1. All nodes whose initial value is 0, final value is don’t care, and are not a viable-1, have their
final value changed to 0.

The permutation first has all the nodes with final value 0. Then it has all the stable-1 nodes. Then it has
the viable-1 nodes, in the order of their minimum distance from the set of stable-1 nodes, where distance is
determined using the subgraph of nodes whose final value is 1. [

The following result shows that for NOR-SDSs and NAND-SDSs, the PME problem (without don’t care
values) can be solved in polynomial time. This result brings out the contrast in the complexity of GEN-PME
and PME problems for NOR-SDSs and NAND-SDSs.

Theorem 5.4 The PME problem for NOR-SDSs and NAND-SDSs can be solved in linear time.

Proof: We will give the proof for NOR-SDSs. The proof for NAND-SDSs is similar.

If there is any node that goes from 1 to 1, stop and output “no”. If there are two adjacent nodes that both
go from 0 to 1, stop and output “no”. (Whichever node goes first in the permutation, the other node must
have the final value of 0.) If there is any node v that go from 0 to 0, and all of the neighbors of v also go from
0 to 0, then stop and output “no”. ,

Otherwise, stop and output “yes”. The permutation can be constructed as follows. (The permutation is
described by specifying disjoint groups of nodes. Within each group, nodes can be ordered arbitrarily.)

The first group of nodes in the permutation are those that go from 0 to 0, and have at least one neighbor
that goes from 1 to 0. (The initial value of the neighbor justifies the transitions.) The next group of nodes
are those that go from 1 to 0. The next group of nodes are those that go from 0 to 1. (At this point in the
algorithm, the neighbors of these nodes all have value 0.) The final group consists of nodes that go from 0 to
0, and which have not yet been placed in the permutation. (Each such node has a neighbor that went from 0
to 1, justifying its transition.) [ |

6 Concluding Remarks

We considered the PREDECESSOR EXISTENCE and PERMUTATION EXISTENCE problems in the context of
SDSs. We showed that these problems are NP-complete even for several simple classes of SDSs. We also
identified several restricted classes of SDSs for which the two problems can be solved efficiently. We close
by mentioning some open problems resulting from our work.

It would be of interest to investigate whether the complexities of PRE and PME problems can be charac-
terized in a manner similar to Schaefer’s characterization of generalized SAT [Sc78]. It is also of interest to
identify other useful classes of SDSs for which the PRE or the PME problems and their generalizations can
be solved efficiently. In Sections 4.2 and 4.3, we discussed the ¢-PRE problem where the goal is to find an
ancestor configuration that precedes the given configuration by exactly ¢ steps. Our polynomial results hold
when £ is given in unary. When ¢ is given in binary, the complexity of the ¢-PRE problem is open.

The close relationship between PRE problem and the generalized SAT problem allowed us to obtain
polynomial algorithms for the problem for several restricted classes of SDSs. It would be useful to identify
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a suitable problem that is closely related to the PME problem. Similar to ¢-PRE, one can also formulate the
t-PME problem in conjunction with the PME problem. Results on ¢-PME for different representations of ¢
will provide additional insights into the foundations of SDSs.
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