

LA-UR-

0 1 0 5 2 0

Approved for public release;
distribution is unlimited.

Title: NON-CARRIER-ADDED 186,188Re LABELED
17a-ETHYNYLESTRADIOL: A POTENTIAL BREAST
CANCER IMAGING AND THERAPY AGENT

Author(s): M. Fassbender, C-INC
D. Phillips, C-INC
E. Peterson, C-SIC
K. Ott, C-SIC
J. Arterburn

Submitted to: Pharmaceutical Conference
Interlaken, Switzerland
June 10th through the 15th

Los Alamos NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the author identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

NON-CARRIER-ADDED $^{186,188}\text{Re}$ LABELED 17α -ETHYNYLESTRADIOL: A POTENTIAL BREAST CANCER IMAGING AND THERAPY AGENT

M. Fassbender ¹, D.R. Phillips ¹, E.J. Peterson ², K.C. Ott ² and J.B. Arterburn ³

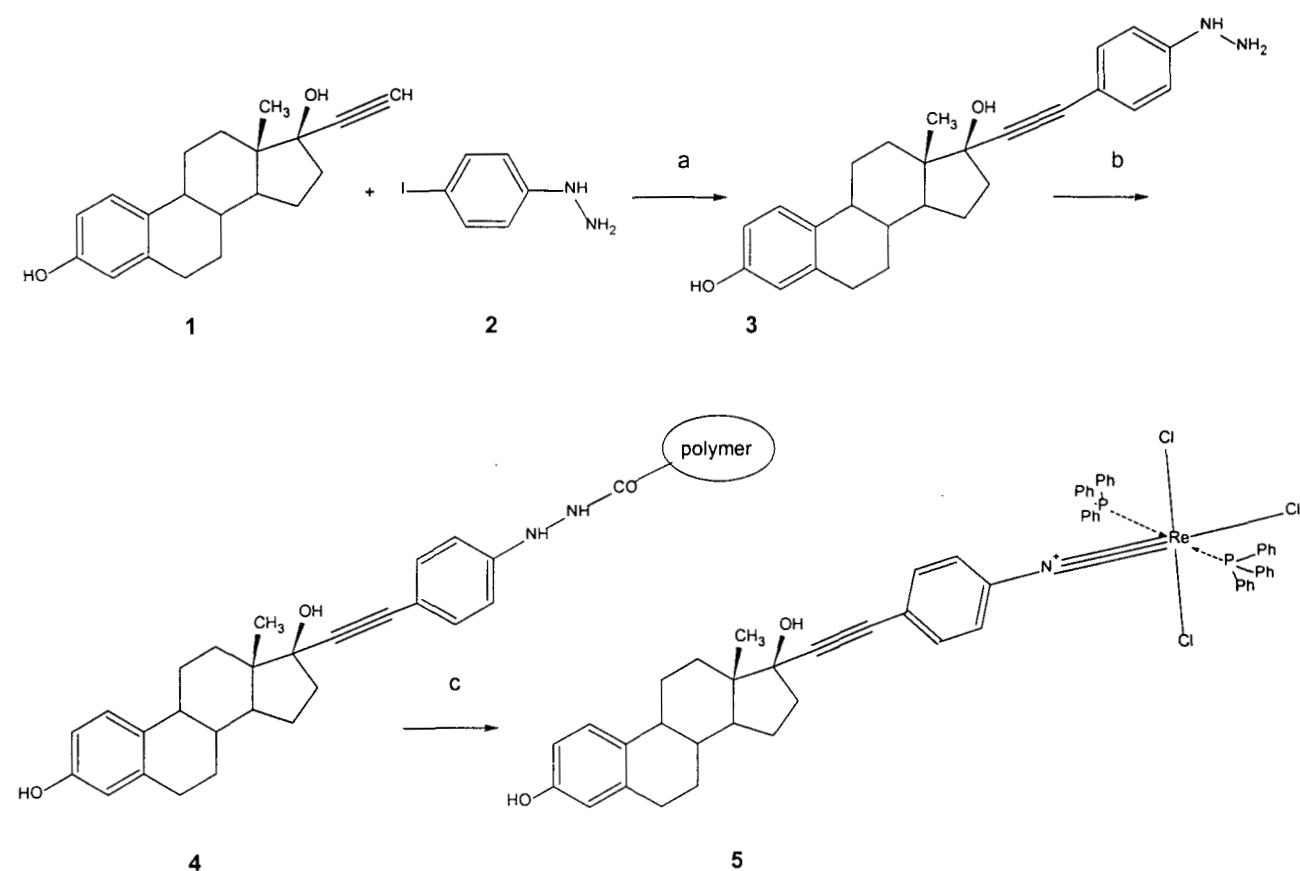
¹Los Alamos National Laboratory, C-INC, Los Alamos, NM 87545, U.S.A.

²Los Alamos National Laboratory, C-SIC, Los Alamos, NM 87545, U.S.A.

³Department of Chemistry and Biochemistry MSC 3C, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003, U.S.A.

Introduction

Receptor-targeted radiopharmaceuticals constitute potential agents for the diagnosis and therapy of cancer. Breast cancer is the most prevalent form of diagnosed cancer in women in the United States, and it accounts for the second highest number of cases of cancer fatalities (1). In approximately two-thirds of the breast tumors, estrogen and progesterone steroid hormone receptors can be found. Such tumors can often be treated successfully with anti-estrogen hormone therapy (2). Hence, the ability to determine the estrogen receptor (ER) content of the breast tumor is essential for making the most appropriate choice of treatment for the patient. Along with this diagnostic aspect, steroid-based radiopharmaceuticals with high specific activity offer an encouraging prospect for therapeutic applications: $^{186,188}\text{Re}$ labeled steroids binding to receptors expressed by cancer cells appear to be potential agents for the irradiation of small to medium-sized tumors.


^{186}Re has been regarded as an ideal radionuclide for radiotherapy due to its appropriate half-life of 90 h and β -energy of 1.07 MeV. Moreover, the γ -emission of 137 keV that allows *in vivo* imaging while in therapy is an additional bonus. ^{188}Re is obtained from a $^{188}\text{W}/^{188}\text{Re}$ radionuclide generator system, representing an advantage for availability at radiopharmacy laboratory by daily elution. In addition, ^{188}Re emits high energy beta particles with an average energy of 769 keV, and the emission of the 155 keV allows simultaneous imaging for biodistribution evaluation *in vivo*.

In order to avoid competitive saturation of the binding sites of the ligand receptor, Re labeled steroids with high specific activity are required, and the removal of all excess unlabeled ligands is mandatory. ^{188}Re is eluted from a $^{188}\text{W}/^{188}\text{Re}$ generator produced and provided by Oak Ridge National Laboratory (3).

This paper outlines the solid phase-supported preparation of an n.c.a. [^{188}Re]Re-imido estradiol compound. The characteristic feature of the presented route is the simultaneous formation of the steroid-radioisotope linkage and release of the labeled steroid product into solution (4,5). The unlabeled ligand can then be separated by simple filtration.

Experimental

In order to obtain the polymer-bound estradiol conjugate, ethynylestradiol **1** is coupled to 4-iodophenyl hydrazine **2** according to Sonogashira (6) in the presence of a palladium-catalyst (7,8). The free hydrazine **3** is then attached to Tentagel carboxy resin using (1-benzotriazolyl)oxytris(pyrrolidino) phosphonium hexafluorophosphate (PyBOP) and diisopropylethylamine in dichloromethane to give the corresponding solid-supported acetyl hydrazine derivative **4**, which is separated from the reaction mixture. In the labeling step, the coated resin **4** is treated with trichlorooxobis-(triphenylphosphane) [^{188}Re]rhenium (V), whereby the hydrazine is cleaved (9,10) to give a nitrido-complex: the labeled substrate **5** is released (Figure 1).

Figure 1: a) 5 mol % $\text{Pd}(\text{OAc})$, 10 mol % CuI , PPh_3 , NHEt_2 , 25°C , 3 h, 87 %; b) Tentagel carboxy resin, PyBOP, NetiPr_2 , CH_2Cl_2 , 25°C , 20h, 100% (based on loading capacity=0.26 mmol g^{-1}); c) $[^{188}\text{Re}][\text{ReOCl}_3(\text{PPh}_3)_2]$, PPh_3 , CH_2Cl_2 , 40°C , 3h.

The prepared Re-labeled steroid is subsequently purified and quality controlled using normal-phase solid-phase extraction (Silica 60, 1. CH_2Cl_2 /hexane=60:40 (v/v); 2. CH_2Cl_2 /methanol=90:10)) and semi-preparative reverse-phase (C-8 on silica column, methanol/water=60:40 (v/v) eluent) HPLC.

References

1. Cancer Facts and Figures; *American Cancer Society*: New York, 1997.
2. Mc Guire, W.L. Estrogen Receptors in Human Cancer; Raven Press, New York, 1975.
3. B.M. Coursey et al., Assay of the Eluent from the Alumina-Based Tungsten-188-Rhenium-188 Generator, *Radioact. Radiochem.* **4**: 38 (1990).
4. Arterburn J.B. et al. *Radiochim. Acta* **79**: 119-121 (1997).
5. Arterburn J.B. et al. *Angew. Chem. Int. Ed.* **39(4)**: 771-772 (2000).
6. Sonogashira K. et al. *Tetrahedron Lett.* **50**: 4467-4470 (1975).
7. Arterburn J.B. et al. *Tetrahedron Letters* **41**: 839-842 (2000)
8. Stephens R.D. and Castro C.E. *J. Org. Chem.* **28**: 3313-3315 (1963).
9. Chatt J. et al. *J. Chem. Soc. (A)* 2288 (1969).
10. Chatt J. et al. *J. Chem. Soc. (A)* 2239 (1970).