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Attractor states and quantum instabilities in de Sitter space

Paul R. Anderson? *, Wayne Eaker! !, Salman Habib? ¥, Carmen Molina-Paris?3 §, and Emil Mottola? **
! Department of Physics Wake Forest University, Winston-Salem, North Carolina, 27109
2 T-8, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mezico, 87545
% Centro de Astrobiologia, CSIC-INTA, Carrctera de Ajalvir Km. 4, 28850 Torrejé n, Madrid, Spain

The asymptotic behavior of the energy-momentum tensor for a free quantized scalar field with
mass m and curvature coupling £ in de Sitter space is investigated. It is shown that for an arbitrary,
homogeneous and isotropic, fourth order adiabatic state for which the two-point function is infrared
finite, {T,,) approaches the Bunch-Davies de Sitter invariant value at late times if m? + R > 0. In
the case m = £ = 0, the energy-momentum tensor approaches the de Sitter invariant Allen-Folacci
value for such a state. For m? + £€R = 0 but m and ¢ not separately zero it is shown that at late
times (T,5) grows linearly in terms of cosmic time leading to an instability of de Sitter space. The
asymptotic behavior is again independent of the state of the field. For m? + éR < 0, it is shown
that, for most values of m and §, (Tus) grows exponentially in terms of cosmic time at late times in
a state dependent manner.

I. INTRODUCTION

The exponential expansion and maximal symmetry of de Sitter space allow for the possibility that quantum effects
can be important even at late times when the universe is large. This has been born out by calculations of both the
energy-momentum tensor, (T,3) and the quantity (¢?). For example it has been shown for free scalar fields that
(#%) has a constant value and (Ty) is equal to a constant times the metric tensor if the fields are in the de Sitter
invariant state that is sometimes referred to as the Euclidean vacuum and sometimes referred to as the Bunch-Davies
state [1-4]. It has also been shown that the quantity (¢?) diverges at late times in de Sitter space if m? + (R < 0,
with m the mass of the field and £ its coupling to the scalar curvature R {5-8].
~ The fact that quantum effects can be significant when the universe is large means that it is possible for backreaction
effects to also be important. In fact if certain components of the energy-momentum tensor become too large then
de Sitter space will be unstable. This is because the backreaction of the fields on the spacetime geometry will cause
the expansion rate to cease being exponential. It is well known that such instabilities occur for certain classical
scalar fields in de Sitter space [9,10] and for certain interacting quantized fields {10]. It would seem likely that similar
instabilities might occur for free quantized fields particularly given the divergent behavior exhibited by the quantity
(¢?) in some cases.

Most previous studies of quantum effects in de Sitter space have focused on either de Sitter invariant states or
the special O(4) invariant state discovered by Allen [11] that occurs for the massless minimally coupled scalar field.
Some exceptions are studies of the behavior of the quantity (¢?) for arbitrary states [5-7], and a study of the energy
of excited states for scalar fields [12]. The most general class of states for which the energy-momentum tensor is
ultraviolet finite in a homogeneous and isotropic spacetime are fourth order adiabatic states [13]. It is important to
consider this general class of states because, unless the universe was expanding exponentially when it began, it is very
unlikely that the fields will be in de Sitter invariant states.

In this paper we investigate the asymptotic behavior of (Ty) for quantized scalar fields in arbitrary fourth order
adiabatic states in de Sitter space. The wave equation for free scalar fields can be solved analytically in de Sitter
space for all values of the mass and the curvature coupling. Its solutions depend only on the wave number k of the
mode and the parameter v? = % —m?a? —12¢, with R = 12a72 the constant scalar curvature of de Sitter spacetime.
For R(v) < %, corresponding to m? + £R > 0, we prove that for all fourth order adiabatic states the renormalized
value of (Typ) at late times asymptotically approaches the value it has if the field is in the Bunch-Davies state. The
conformally invariant scalar field (m = 0, £ = }) falls into this class.
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The case v = g— corresponding to m? + ¢R = 0 is more complicated. In the massless minimally coupled case we
prove that (Tys) for all physically admissible states approaches the Allen-Folacci de Sitter invariant value [8,14,15].
Numerical evidence for this result was found previously in Ref. [16]. If m? = —¢R # 0 then we show that (T) grows
linearly in terms of cosmic (proper) time at late times. This leads to an instability of de Sitter space.

An instability also occurs for most values of m and § if v > 2 , corresponding to m2 + £R < 0. In these cases (Typ)
grows exponentially at late times for all fourth order adiabatic states in a state dependent manner.

The paper is organized as follows. In Section II we review the quantization of free scalar fields in a general
Robertson-Walker, RW, spacetime. In Section Il we analyze the late time behavior of (Tg) in de Sitter space for the
case v < 3/2. The cases v = 3/2 and v > 3/2 are discussed in Sections IV and V respectively. A brief discussion of

our results is given in Section VL

II. SCALAR FIELD IN A ROBERTSON-WALKER BACKGROUND

The metric for a general RW spacetime can be written in the form

2
ds®> = a*(n) (—dnZ + T r 5 +r2dQ?‘) . (2.1)
— K7
Here 7 is the conformal time, a(n) is the scale factor, and £ = 0,+1,—1 corresponds to the cases of flat, spherical,
and hyperbolic spatial sections, respectively. Throughout we use units such that i = ¢ = 1 and the Misner, Thorne,
and Wheeler [17] conventions for the curvature tensors, Rj,; =T, . — ... and Ray = Ry,
We consider in this paper a free quantized scalar field ¢ with the quadrat1c action

§= "% / d*2v/=g [(Va)g™ (Vi) + m*¢® + ER¢?] (2.2)

where V, denotes the covariant derivative, R is the scalar curvature, and g = det(gq). The mass m and curvature
coupling ¢ are allowed to have any real value. The wave equation for ¢ obtained by varying this action is

_[L8 (:9)_1,0 ' _

with A®) the covariant spatial Laplacian. For spacetimes with the metric (2.1) the field ¢ can be expanded as a mode
sum in the form, [13]

1 - | * *
#,) = o5 [ 900 [ otn) + al K Govi0n)] (2.4
where the integration measure is given by
[ &k if k=0,
JEZCERAE SN R
Zk,l,m if k=41,

and the spatial part of the mode functions Yy (x) obeys the equation

—~ AP Y (x) = (K? — k) Yi(x), (2.5)
with & = 1,2,... in the case of closed spatial sections, K = +1. The time dependent part of the mode functions vy
obeys the equation

1
v + [kz +m?a? + (5 - 6) aZR} Ye=0, (2.6)

where primes denote derivatives with respect to the conformal time variable 7, and the scalar curvature in a general
RW spacetime is given by

a' &k



For the quantum field to satisfy the canonical commutation relations, the creation and annihilation operators are
. required to obey the commutation relations [ay, al,] = dkks, whereupon the 1 must obey the Wronskian condition

by — by = (2.8)

The unrenormalized expressions for the components of (Ty;) are given by [18]
1
= (L) = s [ )2t 1) (AP + (8 + m2a)

+ (66 1) [Snvi +viv) - (5 —x) 0]} (299

a2

1 \ ! ! * 41
—Ey + 3pu = (T>u = Py / dp(k)(2n, + 1) {_mzazlwklz + (66 1) ["W);clz + %(¢k¢l: + "/)kd’k)]

+ (66 —1) [1&’ +m2a? + (%" - %;) + (g - é) a2R] |¢k|2]} . (2.9b)

where we are considering states with an arbitrary number of particles n, = (aax), and the scalar measure dp(k) is

given by
Cdkk? if k=0,—1,
[ aut = fo dkKE
> k2 f k=+1.

As we are considering spatially homogeneous and isotropic initial states (consistent with the RW symmetry), ny
depends only on the magnitude k of the spatial wave vector k.

Since (Tup)y is quartically divergent, a procedure for defining finite, renormalized expectation values must be given.
We will follow the adiabatic regularization method [19-22]. In this method the renormalization counterterms are
constructed using a fourth order expansion for (Tg;). We denote these counterterms by (Tup)ed. They are given in
Refs. [18,23]. The renormalized expressions are then

<Tab>ren = (Tab)u - (Tab>ad . (2.10)

This subtraction scheme is not manifestly covariant in form, since space and time are treated quite differently. However,
adiabatic regularization is equivalent to a covariant point splitting procedure in which the points are split only in the
spacelike hypersurface of constant n [23,24], and the values of the renormalized (Tqp) obtained by this procedure are the
same as in a strictly covariant one. Hence this subtraction procedure does correspond to adjustment of counterterms
to the quantum effective action, and (Tup)ren is covariantly conserved. As discussed in detail in Ref. [23] the adiabatic
terms in all cases consist of an integral rather than a sum over k. The reason is that subtraction corresponds to purely
local counterterms in the effective action, and thus must be independent of the global compactness or non-compactness
of the spatial sections.

A useful variation of the method of adiabatic regularization has been developed by two of us [25]. In this method
one first computes a quantity (Tgp)q4, obtained by expanding the adiabatic counterterms (Tgp)qq in inverse powers of
k and truncating at order k~3. The same renormalized energy-momentum tensor defined in Eq. (2.10) is separated
into the sum of two finite terms by adding and subtracting (Tep)q so that

(Tab)ren = (Tab>n + (Tab)an B
(Tab>n = <Tab)u - (Tab>d )
(Tav)an = (Tav)a — (Tab)ad - (2.11)
The full expressions for (Typ)q and (Top)an are given in Ref. [25] for a general RW spacetime. The advantage of this
splitting is that (Tap)n and (Tus)an are separately conserved, and moreover, (Tyy)an may be computed analytically in

terms of the scale factor a(n) and its derivatives [25]. Thus the state dependence of the renormalized (Typ)ren resides
completely in (Typ)n, which can be computed numerically.

II1. R(v) < 3/2

We now focus on the asymptotic evaluation of (T,;) in de Sitter space. The geometry of de Sitter spacetime can
be described in a number of different coordinate systems. If x = 0 the spatial sections are flat and the scale factor is



a(n):—;}—, —oo<n<0, £=0, (3.1)
with a a real, positive constant, and R = 12a~2. If k = +1 then the scale factor is

a(n) = a secn —%<n<g, k=41, (3.2)
which is equivalent to a(n) = acscn with 0 < p < 7. Again R = 12a72.
We shall use the & = 0 coordinates in the analysis of the R(r) < 3/2 case and the & = 1 coordinates for the cases
v > 3/2. No confusion should be caused by our use of the same symbol 7 for conformal time in both cases of flat and
closed spatial sections, since these are treated separately.
For the case of Eq. (3.1) the general solution to the mode equation can be written as [4]

ivme

(—mn)te s [ea (k) HD (~kn) + ca(R)HSD (—km)| (3.3)

N

Yi(n) =

where the H.(,l)’(z) are Hankel functions and

v =

—-m?a® —12¢. (3.4)

L=}

When 2 > 0 we will choose v to be the positive root of (3.4). From Eq. (3.3) we see that solutions to the mode
equation in de Sitter space depend on m and £ only through their dependence on the parameter v. Note that because

of the minus sign in the arguments of the Hankel functions, it is the function HY that corresponds to a positive
frequency mode in the large k limit. The normalization of the mode function in (3.3) has been chosen so that the
Wronskian condition (2.8) becomes simply

les (B)* — lea(R)[* = 1. (3.5)

The Bunch-Davies state is defined by the choice, ¢; = 1 and ¢, = 0 (with ny = 0) for all k. The renormalized value
of (Typ) in the Bunch-Davies state is [3,4]

2
e o (I )+ ) ()
1 1, 1 1\ 2 ) R?
— m? (g—a)R—l—SmR—§<§—6> R +T60}’ (3.68)

where ¥(2z) = ﬂ‘(’ézﬂﬁ is the digamma function.
For the general state with c; # 0 to remain fourth order adiabatic, we must have for large values of &

C(k)
Kt

Co (k) =

(3.7)

for some complex function C(k) which vanishes in the limit k — oo. This condition is necessary for an arbitrary
(spatially homogeneous) state to posses a finite energy-momentum tensor after the fourth order adiabatic subtraction
defined by (2.10). Likewise the same condition of finite (T,5) requires us to restrict the average number of particles

(aLak) =nyg by

N(k)

ne = T (38)
for some real function N (k) which vanishes in the limit & — oo. The two ultraviolet conditions
kll)n;o IC(k)| = k]._l_)n;lo N(k)=0, (3.9

'In Ref. [4] the arguments of the Hankel functions are given as kn rather than —krn. We have chosen to use non-negative
arguments to avoid complications that result from the fact that these functions have branch cuts along the negative real axis.



on the physically allowed states guarantee that the Green’s function for the scalar field is locally of the Hadamard
form {26-29], and that the divergences of (T,;) match those of the fourth order adiabatic vacuum, and are removed
" by the adiabatic subtraction procedure.

To understand why the Bunch-Davies state serves as an attractor state let us observe that at late times 5 — 07,
the general state mode function (3.3) behaves like

ka ~ (__17)% 4 ~ (]‘V—% . (3.10)
Substituting this into (2.9a) and (2.9b) shows that to leading order at late times the contributions to the mode sums
of (T'*4). behave like (—=1)3~2” ~ a®~ for v real. Since the renormalization counterterms are state independent [18],
the state dependent terms are the same in the unrenormalized and renormalized quantities. One can perform all the
UV renormalization in the Bunch-Davies state at a fixed time and collect the remaining finite state dependent terms
which are unaffected by the subtraction procedure, and they all fall off at least as fast as (—1)3~2” as n — 0~ for
R(v) < .
To prove this result we first note that for an arbitrary fourth order adiabatic state we can make use of Eq. (3.5) to
show that

(Tab)ren = (Tab)BD + <Tab>SD ) (311)

where (Tus)sp is composed of finite state dependent terms, depending on the coefficients c1(k),ca(k), and ng. It may
be expressed as an integral over the wave number k in the form

1 o0
(Tab)SD = Zﬁ‘/ov dk Iab(k), 'I]) . (3,12)

The leading order contributions to I%, at late times are the same as those for (I'*,),, discussed above. Thus they go
like (—7)*~2¥. To find the asymptotic behavior of (I'"*y)sp one must first compute the mode integral and then take
the limit n — 0~. We proved in Ref. [30] that it is possible to interchange the order of these operations. Since I
vanishes at late times for all values of k it is then clear that (T%;)sp do as well. Therefore, for an arbitrary fourth
order adiabatic state and for R(v) < 3/2 (T%,) asymptotically approaches the values they would have if the field was
in the Bunch-Davies state.

IV. v =3/2

To treat the case v = 3/2 carefully, it is easiest to work with closed spatial sections and a discrete set of mode
functions in order to treat the most infrared sensitive, spatially homogeneous &k = 1 mode separately from the rest,
instead of dealing with an infrared sensitive continuous mode integral. The scale factor for « = +1 is given by Eq.
(3.2). The general solution of the mode equation (2.8) is

Yi(n) = aefr(n) + Befi(n), (4.1)
with
e—ikn

fr(n) = 2Rk~

(k+itann), k=23,..., (4.2)

The Wronskian condition

fefd' = fifi =1, (4.3)
gives

ek |? — 18ef® = 1. (44)

The Bunch-Davies state is given by ar = 1 and 8 = 0.
In Eq. (4.2) the k = 1 mode function is singular. Thus it must be treated separately if the two-point function is to
be free of infrared divergences. The behavior of the k = 1 mode is

P1(n) = secy [g (n +siny cosn) + B] (4.5)

(3



and its normalization is
A*B—B*A=1. (4.6) °

It has been shown that if v = 3/2 then the quantity (¢?) grows linearly in terms of cosmic time ¢t with dt = adn
[5,6,8]. The same type of behavior occurs for the nonzero components of (T'%;) if m2a? = —12¢ # 0. To see this one
can use Eq. (2.11) to divide the energy-momentum tensor into a state dependent part (To,)rn and a state independent
part (Tap)an. They are separately conserved and explicit expressions for them in a general RW spacetime are given
in Ref. [25]. The quantity (Tos)n can be computed by substituting Eqgs. (4.1), (4.2), and (4.5) into Eqgs. (2.9a) and
(2.9b) and subtracting the relevant expressions for (Tqp)q that are given in Ref. [25]. We find that (Tys). approaches
a state dependent constant in the limit n — n/2. We also find that the quantity (T,3)an has the asymptotic behavior

3 3¢t
(Tab)an — gabﬁ log(pa) — g“”Zrz%s

Thus the nonzero components of (T“;,)rm diverge in a state independent manner as n = « / 2.

In the important case that m = £ = 0 two surprising results occur. First from Eq. (4.7) it is seen that (Tap)an does
not diverge asymptotically. Second (Tqp)» does not approach a state dependent constant. To see why the latter result
occurs it is useful to introduce the de Sitter invariant energy-momentum tensor found by Allen and Folacci [8,14,15].
One can derive the expression for their energy-momentum tensor by not including the & = 1 mode in the mode
sum, choosing the Bunch-Davies state, ax = 1 and 3 = 0 for the modes with k > 1, and substituting the resulting
expressions into Eq. (2.10). The result is

(4.7)

119R?
13824072

Using Egs. (4.4), (2.9a) and (2.9b) we then find that for a general state (including the contribution of the k =1
mode)

(Tab)AF = Gab (4.8)

|AJ? cos® n
£=—(T%)ren = —(T%)ar + (1 + 2n1)—m—

oo

1 1
ot Z { [2n4 + 2(1+ 2n2)|Bx|?] [K* cos* n + k(—cos®* n + 3 cos? n)]
k=2

. o 1
+ (14 2n%) [(ﬁka;‘cez’k" + Brare 2FMNE(— cos® n + 3 cos? 1)

+ i (Brage®™ — Brape ™)k cos* nsinn] } (4.9a)
2| AJ? cos®
(Tren = (Tyar + (1 + 2ny) AAL O
w2

1 o0

T 4n2at Z { [2"k +2(1+ 2nk)|ﬂk|2] k cos?
k=2

+ (1 + an) [(,Bka”:eZikn +,3£Olke_2ik")(—2k3 cos? n+ k cos? 77)

+ 2i (Brage®™ ™ — Brage 2 M2 cos® nsing] } . (4.9b)

Provided the k sums converge, it is clear that all the state dependent terms contain at least one factor of a2 =
a2 cos?n, and so vanish in the limit of n — 5. However, the requirement that the state be fourth order adiabatic
just guarantees this convergence, for the same reason as in the previous analysis in spatially flat coordinates. Indeed

we have

|:3k| = % ’
g = N;g(f) , (4.10)

for some C(k) and N(k) that vanish as k — oo. This is sufficient to guarantee the absolute convergence of all terms
in the sums. Since all state dependent terms are multiplied by at least two powers of cosn = a/a, which vanishes
in the late time limit n — 3, we conclude that any fourth order adiabatic state of the massless, minimally coupled
scalar field for which the two-point function is infrared finite, has an energy-momentum tensor which approaches the
AF value, (Tap) ar in the late time limit 7 — z



V.v>3/2

For v > 3/2 we again use the x = 1 coordinates. The mode functions are of the form (4.1) with the normalization
(4.4). In Ref. [30] it was shown that

1
I‘(Ic+%+u)1‘(k+%—u)]2 e_“"’F<1
2

_ 1 ) 1—itann
fk(’?)—[ 2 %! 2+V,2_V’k+17 ) ’ (5'1)

where F is the hypergeometric function. For all real values of v

i (77'—’ Zr_) . [F (k+1-v) T(2v) (—i)* (isecn)"_% . (5.2)

2 A (k+3+v)| T(3+v) & 2

Thus the modes grow like a’~% at late times which implies that the leading order terms in (T9) grow like a®*~2 at
late times. Therefore (T'%;) diverges exponentially in terms of the cosmic time, ¢, in a state dependent manner unless
the leading order terms cancel. In Ref. [30] it was shown that this occurs for the following values of m and £ for a
given value of v

2.2 _ _v(v-3)(2v - 1)

e Av—-2)
_ (2v—-3) .

The next to leading order terms in (T%) go like a®*~> so if v > 5/2, (T'%) still diverges exponentially unless the
coefficient of the next to leading order terms also vanishes.

VI. SUMMARY AND DISCUSSION

We have shown that in the case R(v) < 3/2 the Bunch-Davies state serves as a fixed point attractor for the energy-
momentum tensor in the sense that, for an arbitrary fourth order adiabatic state, (T,p) approaches the value it would
have if the field was in the Bunch-Davies state. This is a striking result. Certainly no such attractor behavior of
(Tap), independent of initial conditions occurs in Minkowski space for any mass. One may regard this result as a
kind of cosmic “no hair” theorem for scalar quantum fields in de Sitter space. It is in accord with one’s classical
intuition that any initial energy density satisfying the weak energy condition (¢ + p > 0) is redshifted away by the
exponential de Sitter expansion. At asymptotically late times what is left behind is a kind of frozen “quantum vacuum
energy condensate,” satisfying the de Sitter invariant equation of state p = —&. This result justifies the choice of the
Bunch-Davies vacuum in calculations of quantum fluctuations of free fields, i.e., without backreaction, in a long-lived
de Sitter expansion phase of inflationary cosmological models.

For v = 3/2 we have shown that if m2a? = —12¢ # 0 the nonvanishing components of (T'%;) diverge linearly with
respect to cosmic time at late times indicating the existence of a quantum instability. For the case m = £ = 0, the
energy-momentum tensor does not asymptotically diverge. Instead, for any fourth order adiabatic state for which the
two-point function is infrared finite, (T'%,) asymptotically approaches the de Sitter invariant value found by Allen and
Folacci [8,14,15]. There are two reasons for this surprising result. One is that the coefficient of the asymptotically
divergent terms in (T'%,) vanishes if m = £ = 0. The other is that the coefficient of the leading order (at late times)
mode contributions to (T“b) also vanishes if m = £ = 0.

Finally, for the case v > 3/2 we find that, for most values of m and ¢, the nonzero components of (T'%) diverge
exponentially in proper time at late times in a state dependent manner for an arbitrary fourth order adiabatic state.

The divergent behavior of the energy-momentum tensor found for v > 3/2 is of exactly the same type as that
found for the energy-momentum tensor of classical scalar fields with the same values of m and £ [9,10]. However
the fact that the effective mass of the field, which is equal to m2a? + ¢R, is tachyonic in this case and the fact that
either m? or £ must be negative means that the resulting instability of de Sitter space is probably of little physical
relevance. A similar observation applies to the instability found for v = 3/2. Here the effective mass is zero, but it
is still necessary to have a negative value for either m? or £. However, it is possible that a similar divergence of the
energy-momentum tensor for gravitons occurs in de Sitter space. The reason is that in any RW spacetime the mode
equation for gravitons in a particular gauge is identical to that for the massless minimally coupled scalar field [31)].
Work is currently in progress to calculate the energy-momentum tensor for gravitons in de Sitter space in order to
determine if such an instability exists.
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