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Attractor states and quantum instabilities in de Sitter space 

Paul R. Anderson1i2 *, Wayne Eaker' t, Salman Habib2 $, Carmen M ~ l i n a - P a r i s ~ > ~  f ,  and Emil Mottola2 ** 
Department of Physics Wuke Forest University, Winston-Salem, North Carolina, 271 09 

T-8, Theoretical Dioision, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545 
Centro de  Astrobiologiu, CSIC-INTA, Carretera de  Ajaliiir K m .  4, 28850 Torrejo' n, Madrid, Spain 

The asymptotic behavior of the eriergy-momentiim tcnsor for a frce quantized scalar field with 
mass m and curvature coupling E in de Sitter space is investigated. It is shown that for an arbitrary, 
homogeneous and isotropic, fourth order adiabatic state for which thc two-point function is infrared 
finite, ( T a b )  approaches the Biinch-Davies de Sittcr invariant value at late times if m2 + [ R  > 0. In 
the case m, = E = 0, thc energy-momentum tensor approaches the de Sitter invariant Allen-Folacci 
value for such a state. For m2 + ( R  = 0 but m and ( not scparately zero it is shown that at late 
times ( T a b )  grows linearly hi terms of cosmic time leading to an instability of de Sitter space. The 
asymptotic behavior is again independent of the state of the field. For 7ri2 + ( R  < 0, it is shown 
that, for most values of rri and (, (Tab) grows cxporientially in  terms of cosmic time at late times in 
a statc dcpendent manner. 

I. INTRODUCTION 

The exponential expansion and maximal symmetry of de Sitter space allow for the possibility that quantum effects 
can be important even at  late times when the universe is large. This has been born out by calculations of both the 
energy-momentum tensor, (Tub) and the quantity (42). For example it has been shown for free scalar fields that 
(42) has a constant value and (Tab) is equal to a constant times the metric tensor if the fields are in the de Sitter 
invariant state that is sometimes referred to as the Euclidean vacuum and sometimes referred to as the Bunch-Davies 
state [l-41. It has also been shown that the quantity (4') diverges at late times in de Sitter space if m2 + 5R 5 0, 
with m the mass of the field and 5 its coupling to the scalar curvature R [5-81. 

The fact that quantum effects can be significant when the universe is large means that it is possible for backreaction 
effects to also be important. In fact if certain components of the energy-momentum tensor become too large then 
de Sitter space will be unstable. This is because the backreaction of the fields on the spacetime geometry will cause 
the expansion rate to cease being exponential. I t  is well known that such instabilities occur for certain classical 
scalar fields in de Sitter space [9,10] and for certain interacting quantized fields [lo]. It would seem likely that similar 
instabilities might occur for free quantized fields particularly given the divergent behavior exhibited by the quantity 
(4') in some cases. 

Most previous studies of quantum effects in de Sitter space have focused on either de Sitter invariant states or 
the special O(4) invariant state discovered by Allen [ll] that occurs for the massless minimally coupled scalar field. 
Some exceptions are studies of the behavior of the quantity (42) for arbitrary states [5-71, and a study of the energy 
of excited states for scalar fields [12]. The most general class of states for which the energy-momentum tensor is 
ultraviolet finite in a homogeneous and isotropic spacetime are fourth order adiabatic states [13]. It  is important to 
consider this general class of states because, unless the universe was expanding exponentially when it began, it is very 
unlikely that the fields will be in de Sitter invariant states. 

In this paper we investigate the asymptotic behavior of (Tub) for quantized scalar fields in arbitrary fourth order 
adiabatic states in de Sitter space. The wave equation for free scalar fields can be solved analytically in de Sitter 
space for all values of the mass and the curvature coupling. Its solutions depend only on the wave number IC of the 
mode and the parameter Y' = - m2a2 - 125, with R = 12a-' the constant scalar curvature of de Sitter spacetime. 
For !R(v) < I ,  corresponding to m2 + 5R > 0, we prove that for all fourth order adiabatic states the renormalized 
value of (Tab) at late times asymptotically approaches the value it has if the field is in the Bunch-Davies state. The 
conformally invariant scalar field ( m  = 0, 5 = i) falls into this class. 
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The case u = i corresponding to m2 + <R = 0 is more complicated. In the massless minimally coupled case we 
prove that (Tub) for all physically admissible states approaches the Allen-Folacci de Sitter invariant value [8,14,15]. 
Numerical evidence for this result was found previously in Ref. [16]. If m2 = -<R # 0 then we show that (Tub) grows 
linearly in terms of cosmic (proper) time at  late times. This leads to an instability of de Sitter space. 

An instability also occurs for most values of m, and [ if u > i, corresponding to m2 + <R < 0. In these cases (Tub) 
grows exponentially at late times for all fourth order adiabatic states in a state dependent manner. 

The paper is organized as follows. In Section I1 we review the quantization of free scalar fields in a general 
Robertson-Walker, RW, spacetime. In Section I11 we analyze the late time behavior of (Tub) in de Sitter space for the 
case u < 312. The cases u = 312 and u > 312 are discussed in Sections IV and V respectively. A brief discussion of 
our results is given in Section VI. 

11. SCALAR FIELD I N  A ROBERTSON-WALKER BACKGROUND 

The metric for a general RW spacetime can be written in the form 

ds2 = a2(q) (-d$ + * 1 - K r 2  +r2dQ2) . 

Here 7 is the conformal time, a(q) is the scale factor, and K = 0,+1,-1 corresponds to the cases of flat, spherical, 
and hyperbolic spatial sections, respectively. Throughout we use units such that ft = c = 1 and the Misner, Thorne, 
and Wheeler [I71 conventions for the curvature tensors, Rtcd = r ;d ,c  - ... and Rub = R:cb. 

We consider in this paper a free quantized scalar field + with the quadratic action 

S = - -  / d 4 4 ?  [(Va+)gab(Vb#) + m2#’ + ER#2] , (2.2) 2 

where V, denotes the covariant derivative, R is the scalar curvature, and g 
coupling < are allowed to have any real value. The wave equation for + obtained by varying this action is 

det(g,b). The mass m and curvature 

with A(3) the covariant spatial Laplacian. For spacetimes with the metric (2.1) the field + can be expanded as a mode 
sum in the form, [13] 

(2.4) 
1 

+(rl,x) = a(rl) /dp(k) [akyk(x)$k(o) + aLy<(x)$i(q)] > 

where the integration measure is given by 

s d3k if K = O ,  

/dP(k) { if K = -1 9 

if K =  + 1 ,  

and the spatial part of the mode functions & ( X )  obeys the equation 

-A(3)yk(X) = (k2  - K ) Y k ( X )  , (2.5) 

with IC = 1 , 2 , .  . . in the case of closed spatial sections, K = +l. The time dependent part of the mode functions ‘$k 
obeys the equation 

where primes denote derivatives with respect to the conformal time variable q, and the scalar curvature in a general 
RW spacetime is given by 

R = 6 ( $ + 3 ) .  
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For the quantum field to satisfy the canonical commutation relations, the creation and annihilation operators are 
required to obey the commutation relations [ak, ai,] = &p, whereupon the $k must obey the Wronskian condition 

$J&' - $rC*?& = i. 

The unrenormalized expressions for the components of (Tub) are given by [18] 

where we are considering states with an arbitrary number of particles nk = (ai&), 
given by 

(2.9b) 

and the scalar measure dp(lc) is 

As we are considering spatially homogeneous and isotropic initial states (consistent with the RW symmetry), nk 
depends only on the magnitude k of the spatial wave vector k. 

Since (Tab)u is quartically divergent, a procedure for defining finite, renormalized expectation values must be given. 
We will follow the adiabatic regularization method [19-221. In this method the renormalization counterterms are 
constructed using a fourth order expansion for (Tub). We denote these counterterms by (Tab)ad. They are given in 
Refs. [18,23]. The renormalized expressions are then 

(Tab)ren = (Tab)u - (Tab)ad. (2.10) 

This subtraction scheme is not manifestly covariant in form, since space and time are treated quite differently. However, 
adiabatic regularization is equivalent to a covariant point splitting procedure in which the points are split only in the 
spacelike hypersurface of constant q [23,24], and the values of the renormalized (Tab) obtained by this procedure are the 
same as in a strictly covariant one. Hence this subtraction procedure does correspond to adjustment of counterterms 
to the quantum effective action, and (Tab)Ten is covariantly conserved. As discussed in detail in Ref. [23] the adiabatic 
terms in all cases consist of an integral rather than a sum over IC.  The reason is that subtraction corresponds to purely 
local counterterms in the effective action, and thus must be independent of the global compactness or non-compactness 
of the spatial sections. 

A useful variation of the method of adiabatic regularization has been developed by two of us [25]. In this method 
one first computes a quantity (Tab)d, obtained by expanding the adiabatic counterterms (Tub)ad in inverse powers of 
k and truncating at order The same renormalized energy-momentum tensor defined in Eq. (2.10) is separated 
into the sum of two finite terms by adding and subtracting (Tub)d so that 

(2.11) 

The full expressions for (Tub)d and (Tab)an are given in Ref. [25] for a general RW spacetime. The advantage of this 
splitting is that (Tab)n and (Tab)aT1 are separately conserved, and moreover, (Tab)an may be computed analytically in 
terms of the scale factor a(q)  and its derivatives [25]. Thus the state dependence of the renormalized (TcJb)ren resides 
completely in (Tab)rL, which can be computed numerically. 

111. %(v) < 3/2 

We now focus on the asymptotic evaluation of (Tub) in de Sitter space. The geometry of de Sitter spacetime can 
be described in a number of different coordinate systems. If K. = 0 the spatial sections are flat and the scale factor is 
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( 3 4  
0: 

u ( q ) = - - - ,  - c a < q < o ,  K = O ,  
rl 

with a a real, positive constant, and R = 12a-’. If IC. = +1 then the scale factor is 

(3.2) 
lr A 

a(q)  = a  secq , -- < q < 5, IF. = +1, 2 

which is equivalent to a(q)  = crcscq with 0 < q < A. Again R = 12a-’. 
We shall use the IC. = 0 coordinates in the analysis of the ?R(u) < 3/2 case and the IF. = 1 coordinates for the cases 

v 2 3/2. No confusion should be caused by our use of the same symbol q for conformal time in both cases of flat and 
closed spatial sections, since these are treated separately. 

For the case of Eq. (3.1) the general solution to the mode equation can be written as [4] 

&z [ C 1 ( k ) H p ( - k q )  + c 2 ( k ) H p ( - k q ) ]  , (3-3) 
1 

$ k ( r ] )  2(-r7))’e 

where the H;)’(’) are Hankel functions and 

125. (3.4) u2 E - - m2Q2 - 9 
4 

When u2 > 0 we will choose u to be the positive root of (3.4). From Eq. (3.3) we see that solutions to the mode 
equation in de Sitter space depend on m and E only through their dependence on the parameter u. Note that because 
of the minus sign in the arguments of the Hankel functions, it is the function HL1) that corresponds to a positive 
frequency mode in the large k limit. The normalization of the mode function in (3.3) has been chosen so that the 
Wronskian condition (2.8) becomes simply 

IC1(IC)l2 - IC2(k)l2 = 1 .  (3.5) 

The Bunch-Davies state is defined by the choice, c1 = 1 and c2 = 0 (with nk = 0) for all IC. The renormalized value 
of (Tab) in the Bunch-Davies state is [3,4] 

where $ ( z )  = is the digamma function. 
For the general state with c2 # 0 to remain fourth order adiabatic, we must have for large values of k 

(3.6a) 

for some complex function C ( k )  which vanishes in the limit k --t ca. This condition is necessary for an arbitrary 
(spatially homogeneous) state to posses a finite energy-momentum tensor after the fourth order adiabatic subtraction 
defined by (2.10). Likewise the same condition of finite (Tab) requires us to restrict the average number of particles 

t (akak) = n k  by 

N ( k )  n k  = - 
k4 ’ 

for some real function N ( k )  which vanishes in the limit k --t 00. The two ultraviolet conditions 

lim IC(IC)l = lim N ( L )  = 0 ,  
k - t m  k - + m  (3.9) 

‘In Ref. [4] the arguments of the Hankel functions are given as IC7 rather than -kq.  Wc have chosen to usc non-negative 
arguments to avoid complications that result from thc fact that these functions have branch cuts along the negative real axis. 
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on the physically allowed states guarantee that the Green’s function for the scalar field is locally of the Hadamard 
form [26-291, and that the divergences of ( T a b )  match those of the fourth order adiabatic vacuum, and are removed 
by the adiabatic subtraction procedure. 

an attractor state let us observe that a t  late times q + 0- ,  
the general state mode function (3.3) behaves like 

TO understand why the Bunch-Davies state serves 

(3.10) 

Substituting this into (2.9a) and (2.9b) shows that to leading order at late times the contributions to the mode sums 
of (Tab)u behave like ( - ~ 7 ) ~ - ” ’  N u2v-3 for v real. Since the renormalization counterterms are state independent [18], 
the state dependent terms are the same in the unrenormalized and renormalized quantities. One can perform all the 
UV renormalization in the Bunch-Davies state at a fixed time and collect the remaining finite state dependent terms 
which are unaffected by the subtraction procedure, and they all fall off at least as fast as (-v)~-”’ as q + 0- for 

To prove this result we first note that for an arbitrary fourth order adiabatic state we can make use of Eq. (3.5) to 

.-L 
?Jk N ( -q) i  - n a . 

R(v) < 3. 
show that 

(Tab)ren = (Tab)BD -k ( T a b ) S D  7 (3.11) 

where ( T a b ) S D  is composed of finite state dependent terms, depending on the coefficients cl(IC), c z ( k ) ,  and n k .  It may 
be expressed as an integral over the wave number k in the form 

(3.12) 

The leading order contributions to Iab at late times are the same as those for (Tab)u discussed above. Thus they go 
like ( -v)~-~ ’ .  To find the asymptotic behavior of ( T a b ) s ~  one must first compute the mode integral and then take 
the limit q + 0-. We proved in Ref. [30] that it is possible to interchange the order of these operations. Since Iar, 
vanishes a t  late times for all values of IC it is then clear that ( T a b ) s ~  do as well. Therefore, for an arbitrary fourth 
order adiabatic state and for R(Y) < 3/2 (Tab) asymptotically approaches the values they would have if the field was 
in the Bunch-Davies state. 

IV. v = 312 

To treat the case v = 3/2 carefully, it is easiest to work with closed spatial sections and a discrete set of mode 
functions in order to treat the most infrared sensitive, spatially homogeneous IC = 1 mode separately from the rest, 
instead of dealing with an infrared sensitive continuous mode integral. The scale factor for K = +1 is given by Eq. 
(3.2). The general solution of the mode equation (2.6) is 

with 

( I c + i t a n ~ ) ,  IC=2,3 ,... , 

The Wronskian condition 

MZ’ - f a ;  = i , 

lwJ2 - lPk12  = 1. 

(4.3) 

(4.4) 

gives 

The Bunch-Davies state is given by Q E  = 1 and pk = 0. 

be free of infrared divergences. The behavior of the k = 1 mode is 
In Eq. (4.2) the IC = 1 mode function is singular. Thus it must be treated separately if the two-point function is to 

(4.5) 1 +l(q) = secq [+ (q  +sinq cosv) + B 
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and its normalization is 

A’B - B’A = i . (4.6) 

It  has been shown that if v = 312 then the quantity (4’) grows linearly in terms of cosmic time t with d t  = adr] 
[5,6,8]. The same type of behavior occurs for the nonzero components of (Tab) if m2a2 = -125 # 0. To see this one 
can use Eq. (2.11) to divide the energy-momentum tensor into a state dependent part (Tab)TL and a state independent 
part (Tab)an. They are separately conserved and explicit expressions for them in a general RW spacetime are given 
in Ref. [25]. The quantity (Tab)n can be computed by substituting Eqs. (4.1), (4.2), and (4.5) into Eqs. (2.9a) and 
(2.9b) and subtracting the relevant expressions for (Tab)d that are given in Ref. [25]. We find that (Tab)n approaches 
a state dependent constant in the limit q + ~ / 2 .  We also find that the quantity (Tab)an has the asymptotic behavior 

Thus the nonzero components of (Tab)ren diverge in a state independent manner as 7 + a /2 .  
In the important case that m = E = 0 two surprising results occur. First from Eq. (4.7) it is seen that (Tab)an does 

not diverge asymptotically. Second (Tab)n does not approach a state dependent constant. To see why the latter result 
occurs it is useful to introduce the de Sitter invariant energy-momentum tensor found by Allen and Folacci [8,14,15]. 
One can derive the expression for their energy-momentum tensor by not including the k = 1 mode in the mode 
sum, choosing the Bunch-Davies state, f f k  = 1 and p k  = 0 for the modes with k > 1, and substituting the resulting 
expressions into Eq. (2.10). The result is 

119R2 
1 3 8 2 4 0 ~ ~  (Tab)AF = gab 

Using Eqs. (4.4), (2.9a) and (2.9b) we then find that for a general state (including the contribution of the k = 1 
mode) 

(4.9a) 

(4.9b) 

Provided the k sums converge, it is clear that all the state dependent terms contain at least one factor of a-’ = 
a-’ cos2 7, and so vanish in the limit of 7 + 5 .  However, the requirement that the state be fourth order adiabatic 
just guarantees this convergence, for the same reason as in the previous analysis in spatially flat coordinates. Indeed 
we have 

(4.10) 

for some C ( k )  and N ( k )  that vanish as IC + 03. This is sufficient to guarantee the absolute convergence of all terms 
in the sums. Since all state dependent terms are multiplied by at least two powers of cosq = a/a, which vanishes 
in the late time limit q + 5, we conclude that any fourth order adiabatic state of the massless, minimally coupled 
scalar field for which the two-point function is infrared finite, has an energy-momentum tensor which approaches the 
AF value, (Tab)~p in the late time limit 7 + 4. 
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V. v > 312 
1 

For v > 3/2 we again use the K = 1 coordinates. The mode functions are of the form (4.1) with the normalization 
(4.4). In Ref. [30] it was shown that 

where F is the hypergeometric function. For all real values of v 

Thus the modes grow like a”-+ at  late times which implies that the leading order terms in (Tab) grow like a2v-3 at 
late times. Therefore (Tab) diverges exponentially in terms of the cosmic time, t ,  in a state dependent manner unless 
the leading order terms cancel. In Ref. [30] it was shown that this occurs for the following values of m and ( for a 
given value of v 

~ ( 2 ~ - 3 ) ( 2 ~ -  1) 
m a  = -  

4(v - 2) ’ 
(2Y - 3) <=- 
S(Y - 2) ‘ 

(5.3) 

The next to leading order terms in (Tab) go like a2”-’ so if v > 5/2, ( T a b )  still diverges exponentially unless the 
coefficient of the next to leading order terms also vanishes. 

VI. SUMMARY AND DISCUSSION 

We have shown that in the case !R(v) < 3/2 the Bunch-Davies state serves as a fixed point attractor for the energy- 
momentum tensor in the sense that, for an arbitrary fourth order adiabatic state, (Tab) approaches the value it would 
have if the field was in the Bunch-Davies state. This is a striking result. Certainly no such attractor behavior of 
(Tab), independent of initial conditions occurs in Minkowski space for any mass. One may regard this result as a 
kind of cosmic “no hair” theorem for scalar quantum fields in de Sitter space. It is in accord with one’s classical 
intuition that any initial energy density satisfying the weak energy condition ( E  + p > 0) is redshifted away by the 
exponential de Sitter expansion. At asymptotically late times what is left behind is a kind of frozen “quantum vacuum 
energy condensate,” satisfying the de Sitter invariant equation of state p = --E. This result justifies the choice of the 
Bunch-Davies vacuum in calculations of quantum fluctuations of free fields, ie., without backreaction, in a long-lived 
de Sitter expansion phase of inflationary cosmological models. 

For v = 3/2 we have shown that if m2a2 = -12J # 0 the nonvanishing components of ( T a b )  diverge linearly with 
respect to cosmic time at  late times indicating the existence of a quantum instability. For the case m = < = 0, the 
energy-momentum tensor does not asymptotically diverge. Instead, for any fourth order adiabatic state for which the 
two-point function is infrared finite, (Tab) asymptotically approaches the de Sitter invariant value found by Allen and 
Folacci [8,14,15]. There are two reasons for this surprising result. One is that the coefficient of the asymptotically 
divergent terms in ( T a b )  vanishes if m = ( = 0. The other is that the coefficient of the leading order (at late times) 
mode contributions to ( T a b )  also vanishes if m = ( = 0. 

Finally, for the case v > 3/2 we find that, for most values of m and I ,  the nonzero components of ( T a b )  diverge 
exponentially in proper time at late times in a state dependent manner for an arbitrary fourth order adiabatic state. 

The divergent behavior of the energy-momentum tensor found for v > 3/2 is of exactly the same type as that 
found for the energy-momentum tensor of classical scalar fields with the same values of rn and [9,10]. However 
the fact that the effective mass of the field, which is equal to rns2a2 + ER, is tachyonic in this case and the fact that 
either m2 or ( must be negative means that the resulting instability of de Sitter space is probably of little physical 
relevance. A similar observation applies to the instability found for v = 3/2. Here the effective mass is zero, but it 
is still necessary to have a negative value for either m2 or J. However, it is possible that a similar divergence of the 
energy-momentum tensor for gravitons occurs in de Sitter space. The reason is that in any RW spacetime the mode 
equation for gravitons in a particular gauge is identical to that for the massless minimally coupled scalar field [31]. 
Work is currently in progress to calculate the energy-momentum tensor for gravitons in de Sitter space in order to 
determine if such an instability exists. 
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