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A NEURAL NETWORK BASED APPROACH FOR TUNING OF SNS
FEEDBACK AND FEEDFORWARD CONTROLLERS *

Sung-il Kwon' and Amy Regan, LANL, Los Alamos, NM 87545, USA

Abstract

The primary controllers in the SNS low level RF system
are proportional-integral (PI) feedback controllers. To
obtain the best performance of the linac control systems,
approximately 91 individual PI controller gains should be
optimally tuned. Tuning is time consuming and requires
automation. In this paper, a neural network is used for the
controller gain tuning, A neural network can approximate
any continuous mapping through learning. In a sense, the
cavity loop PI controller is a continuous mapping of the
tracking error and its one-sample-delay inputs to the
controller output. Also, monotonic cavity output with
respect to its input makes knowing the detailed
parameters of the cavity unnecessary. Hence the PI
controller is a prime candidate for approximation through
a neural network. Using mean square error minimization
to train the neural network along with a continuous
mapping of appropriate weights, optimally tuned PI
controller gains can be determined. The same neural
network approximation property is also applied to
enhance the adaptive feedforward controller performance.
This is done by adjusting the feedforward controller
gains, forgetting factor, and learning ratio. Lastly, the
automation of the tuning procedure-data measurement,
neural network training, tuning and loading the controller
gain to the DSP is addressed,

1 INTRODUCTION

Neural networks are composed of massively connected
neurons [1]. With their structures resembling more or less
their biological counterparts, artificial neural networks are
representational and computational models composed of
interconnected simple processing elements called
artificial neurons. In processing informations, processing
elements works concurrently and collectively in parallel
and distributed fashion, Neural network research stemmed
from McCullen and Pitts” pioneering work [1] a half-
century ago. Since then, numerous neural networks have
been developed and extended their applications from
pattern recognition, optimization, to control, dynamic
system identification, prediction,

Neural networks have very close ties with
optimization. Many learning algorithms have been
developed based on optimization techniques such as least
mean square algorithm and steepest decent algorithm.
Neural networks learn from examples rather than having
to be programmed in a conventional sense. In these
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senses, neural networks resemble the adaptive
control/signal processing. When the system’s complexity
increase, the controller parameter tuning are burdensome
and time consuming job. In SNS, there are 81 SRF
cavities and each cavity has its own controller. For
simplicity and effectiveness, PID controller is selected as
the feedback controller. Each cavity has different RF
parameters and in order to achieve the satisfactory
feedback control, each controller has to be optimally
tuned. A classical tuning such as Ziegler-Nichols method
can be applied but for that, some data are to be measured
beforehand. Also, adaptive PID controller can be used
where the PID controller gains are adaptively tuned.

In this papet, a PID controller tuning method based on
neural network is investigated. The difference of neural
network tuning PID controller from adaptive PID
controller is that as the system’s complexity increases, the
computational complexity of the former does not increase
much. In order to verify the effectiveness and accelerate
the real implementation, MATLAB/SIMULINK model is
developed.

2 NEURAL NETWORK TUNING PID
CONTROLLER

The neural network tuning discrete time PID controller
configuration is shown in figure 1. The discrete time PID
controller is given by

u(® =u(t-1)+k,(e(t) —e(t = 1)) +ke(r)

+k,(e(t) —2e(t - 1)+ e(t - 2)) )

e(®) =r(t) - y(£) @

where ¢ is the sample number. The tuning algorithm of

the discrete time PID controller is obtained by minimizing
the cost function given by

E =—;'ez(t+ 1. 3)

For PID gain tuning, three layered backpropagation
neural network is considered. Input layer has three nodes
which correspond to error e(¢) and its delays e(z—1) and

e(t—2) Hidden layer has Ny nodes and the transfer

function of each node is Sigmoid function

1. , __ . .

f(x)= i 0+0 — and its derivative with respect to xis
O+e

F(x)= f(x)(1—~ f(x)). Output layer has 3 nodes, each
corresponds to. kp , k,, and k,, and the transfer function
of each node is Sigmoid function.
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Input Layer Nodes:  »,(f) = e(t —1) 4)

2
Hidden Layer Nodes: n,(f) = f (Zw GO () (5)
. =0

Output Layer Nodes: 7, (1) = f( 2— Wy, (D-n,(8)  (6)

j=0

i=012, j=0L.-,N,-1 k=012

Hence, based on the steepest descent algorithm, the
output layer weightings w, ;(¢) are updated as follows.

w, (t+1)= wk,j(t) +Aw, ,(t+1) @)
oF
AWk‘j(t +1) = —7]-5‘;;](—0--!' aAwk,j(t) ®)

where 77 defines the learning rate and ais the

momentum which improves the convergence speed and
helps the network from being trapped in a local minimum.
Similarly, the hidden layer weightings are updated. It can
be easily verified that

Aw, ,(t+1) =nd, (On, (1) + 0w, (1) )
_ ay(t+1) N ou(t)
G =e(t+ 1)--———-au( 5 n ({1 nk(t))-———ank ) (10)
Aw,, (t+1) =16,(O)n (1) + abw, (7) (11
2
8,0 =3 8w, (On, (1 —n,(8). (12)
k=0

In order to calculate J,(f), the system Jacobian is

necessary. One can implement neural network emulator or
system identifier to obtain the Jacobian or one can use the
sign of the Jacobian and adjust the step size # than to

implement the emulator or identifier. In the case of our
SNS LLRF system, the sign-of the Jacobian of the system,
the cascade of the klystron, cavity, and attenuator can be
easily figured out and hence, the second approach is
chosen,

r(t+l)  t e(t+1) u(t) y(t+1)
P

A

kp, kl. ky

Figure 1: Neural Network tuning PID Controller.

When a PI controller gains are necessary to be tuned, then
the same neural network tuner is applied. The discrete
time PI controller is given by

u(t) =u(t ~1)+k,(e(t) ~ e(t — 1)) + ke(?)
e(t)=r{t)~y(®

and the neural network which tunes the PI gains, k,

(13)

andk,, is expressed as

Input Layer Nodes:  #,(¢) = e(¢ —i) (14)
Hidden Layer Nodes: n () = f (Z]: w,(O-n (@)  (15)

i=0

Ny~1
Output Layer Nodes: n,(f) = f( iw,w ®-n,(0) (16)

/=0

i=01, j=01-+N,~1 k=0l

3 MODELING AND SIMULATION

The neural network tuning PID/PI controller based low
level RF control system is modelled with
MATLAB/SIMULINLK. Figure 2 shows the model.
Since the low level RF control system is developed in In-
phase (D) and Quadrature (Q) coordinates, for each
channel, neural network tuning PID controller is
developed respectively. The advantageous fact is that the
structure I and Q channels are symmetric, the same
structures of the tuning neural network is applied and
hence, the same step size 77, and the same momentum o

are used.

Since the neural networks are on-line, the neural
network tuning PID/PI controller has the property of the
adaptive control which has the potential of self-calibration
against the system parameter changes due to aging,
ambient temperature change, etc. Furthermore, it has the
potential of the learning feedforward control against the
beam loading transient since the backpropagation neural
network is the feedforward network.

Two types of learning approaches are investigated for
SNS pulsed RF system, The first learning approach is that
the learning is performed at every sample of data. The
second learning approach is that the learning is performed
once at each RF pulse. In case of the first learning
approach, the tuning PID/PI controller improves the
performance against the beam loading as the RF pulse
number increases. However, it needs computational
burden because the update should be completed within
one sampling time. One remedy is to decimate the data
sampling. In case of the second learning approach, it
improves the steady state performance of each RF pulse
as the RF pulse number increases. Its computational
burden is minimal because the average of cettain number
of samples in each RF pulse or a single sample in each RF
pulse is used for the learning. However, its performance
against the beam loading is worse than the first learning
approach even though the performance improvement is
expected.



