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A NEURAL NETWORK BASED APPROACH POR TUNING OF SNS 
FEEDBACK AND FEEDFORWARD CONTROLLERS * 
Sung-il Kwont and Amy Regan, LANL, Los Alarnos, NM 87545, USA 

Abstract 
The primary controllers in the SNS low level RF system 
are proportional-integral (PI) feedback controllers. To 
obtain the best performance of the linac control systems, 
approximately 91 individual PI controller gains should be 
optimally tuned. Tuning is time consuming and requires 
automation. In this paper, a neural network is used for the 
controller gain tuning. A neural network can approximate 
any continuous mapping through learning. In a sense, the 
cavity loop PI controller is a continuous mapping o i  the 
tracking error and its one-sample-delay inputs to the 
controller output. Also, monotonic cavity output with 
respect to its input makes knowing the detailed 
parameters o i  the cavity unnecessary. Hence the PI 
controller is a prime candidate for approximation through 
a neural network. Using mean square error minimization 
to train the neural network along with a continuous 
mapping of appropriate weights, optimally tuned PI 
controller gains can be determined. The same neural 
network approximation property is also applied to 
enhance the adaptive feedforward controller performance. 
This is done by adjusting the feedfonvard controller 
gains, forgetting factor, and learning ratio. Lastly, the 
automation of the tuning proceduredata measurement, 
neural network training, tuning and loading the controller 
gain to the DSP is addressed. 

1 INTRODUCTION 
Neural networks are composed of massively connected 

neurons [ 11. With their structures resembling more or less 
their biological counterparts, artificial neural networks are 
representational and computational models composed of 
interconnected simple processing elements called 
artificial neurons. In processing informations, processing 
elements works concurrently and collectively in parallel 
and distributed fashion. Neural network research stemmed 
from McCullen and Pitts' pioneering work [l] a half- 
century ago. Since then, numerous neural networks have 
been developed and extended their applications €om 
pattern recognition, optimization, to control, dynamic 
system identification, prediction. 

Neural networks have very close ties with 
optimization. Many learning algorithms have been 
developed based on optimization techniques such as least 
mean square algorithm and steepest decent algorithm. 
Neural networks learn from examples rather than having 
to be programmed in a conventional sense. In these 

senses, neural networks resemble the adaptive 
controlhignal processing. When the system's complexity 
increase, the controller parameter tuning are burdensome 
and time consuming job. In SNS, there are 81 SRF 
cavities and each cavity has its own controller. For 
simplicity and effectiveness, PID controller is selected as 
the feedback controller. Each cavity has different RF 
parameters and in order to achieve the satisfactory 
feedback control, each controller has to be optimally 
tuned. A classical tuning such as Ziegler-Nichols method 
can be applied but for that, some data are to be measured 
beforehand. Also, adaptive PID controller can be used 
where the PID controller gains are adaptively tuned. 

In this paper, a PID controller tuning method based on 
neural network is investigated. The difference of neural 
network tuning PID controller from adaptive PID 
controller is that as the system's complexity increases, the 
computational complexity of the former does not increase 
much. In order to verify the effectiveness and accelerate 
the real implementation, MATLABBIMULINK model is 
developed. 

2 NEURAL NETWORK TUNING PID 
CONTROLLER 

The neural network tuning discrete time PID controller 
configuration is shown in figure 1. The discrete time PID 
controller is given by 

u(t) = u(t - 1) + k, (e(t)  - e( t - 1)) + k,e(t) 

+kd(e( t )  - 2e(t - 1) + e(t - 2)) (1) 
= m - Y ( 4  (2) 

where t is the sample number. The tuning algorithm of 
the discrete time PID controller is obtained by minimizing 
the cost function given by 

(3) 
1 
2 

E =-e*( t+ 1). 

For PID gain tuning, three layered backpropagation 
neural network is considered. Input layer has three nodes 
which correspond to error e(t) and its delays e(t - 1) and 
e ( t - 2 )  Hidden layer has NII nodes and the transfer 
function of each node is Sigmoid function 

f(4 = ''O and its derivative with respect to x is  

f ' ( x )  = f ( x ) ( l -  f(x)) . Output layer has 3 nodes, each 
corresponds to k, , k, , and kd , and the transfer function 
of each node is Sigmoid function. 
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[2] W. McCulloch and W. Pitts, “A logical calculus of the 
ideas immanent in nervous activity,” Bulletin ofkfath. 
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Figure 2: Neural Network Tuning PID Control System. 
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Flgure 3: Cavity Field Amplitude (upper) and Cavity Field Figure4: Proportional gain(upper) and Integral gain 
Phase (Bottom). Note that as the RF pulse number increases, the 
performance is improved. 

(Bottom) of Neural Network Tuning PI Controller. 



Input Layer Nodes: n, ( t )  = e(t - i) (4) 
2, 

Hidden Layer Nodes: n,(t) = f ( L w J , , < t )  n,(t)) ( 5 )  
b o  
N -1 

Output Layer Nodes: n k ( t ) = f (  z W k , , ( t ) * n , ( t ) )  (6) 
J=O 

i=O,1,2, j=O,l,,..,N,-l, k=0,1,2. 

Hence, based on the steepest descent algorithm, the 
output layer weightings W k , , ( t )  are updated as follows. 

w k , j ( t  + '1 = Wk, j ( t )  + AWk,j( t  + 1> (7) 

where q defines the learning rate and a is the 
momentum which improves the convergence speed and 
helps the network from being trapped in a local minimum. 
Similarly, the hidden layer weightings are updated. It can 
be easily verified that 

(9) AWk,j ( t  i- l) = q a k  ( t ) n j  ( t>  + &Wk,j ( t )  

AW,,,(t + 1) = 11qOn,(t> + d W , , , ( t )  (11) 
2 

= ~ a k w k , j ( t > n j ( t > ( l  -n,(t>> * (12) 
k=O 

In order to calculate d k ( t ) ,  the system Jacobian is 
necessary. One can implement neural network emulator or 
system identifier to obtain the Jacobian or one can use the 
sign of the Jacobian and adjust the step size q than to 
implement the emulator or identifier. In the case of our 
SNS LLRF system, the sign of the Jacobian of the system, 
the cascade of the klystron, cavity, and attenuator can be 
easily figured out and hence, the second approach is 
chosen. 

Figure 1: Neural Network tuning PID Controller. 

u(t)  =u(t-1)+ k,(e(t)-e(t-l))+k,e(t) (13) 

and the neural network which tunes the PI gains, kp 
and k, , is expressed as 

eo> = r (0  - Y O )  

Input Layer Nodes: n,(t) = e(t - i )  (14) 
1 

Hidden Layer Nodes: n j ( t )  = f ( x w j , , ( t ) + n , ( t ) )  (15) 
i=o 

N -1 

Output Layer Nodes: n k ( t )  = f( E W k , j ( t )  *n,(t))  (16) 
P O  

i=O,l, j=O,l,...,N,-l, k=0,1. 

3 MODELING AND SIMULATION 
The neural network tuning PIDPI controller based low 

level RF control system is modelled with 
MATLAB/SIMULINLIC Figure 2 shows the model. 
Since the low level RF control system is developed in In- 
phase (I) and Quadrature (Q) coordinates, for each 
channel, neural network tuning PID controller is 
developed respectively. The advantageous hc t  is that the 
structure I and Q channels are symmetric, the same 
structures of the tuning neural network is applied and 
hence, the same step size q , and the same momentum a 
are used. 

Since the neural networks are on-line, the neural 
network tuning PIDPI controller has the property of the 
adaptive control which has the potential of self-calibration 
against the system parameter changes due to aging, 
ambient temperature change, etc. Furthermore, it has the 
potential of the learning feedfonvard control against the 
beam loading transient since the backpropagation neural 
network is the feedforward network. 

TWO types of learning approaches are investigated for 
SNS pulsed RF system. The first learning approach is that 
the learning is performed at every sample of data. The 
second learning approach is that the learning is performed 
once at each RF pulse. In case of the first learning 
approach, the tuning PID/PI controller improves the 
performance against the beam loading as the RF pulse 
number increases. However, it needs computational 
burden because the update should be completed within 
one sampling time. One remedy is to decimate the data 
sampling. In case of the second learning approach, it 
improves the steady state performance of each RF pulse 
as the RF pulse number increases. Its computational 
burden is minimal because the average of certain number 
of samples in each RF pulse or a single sample in each RF 
pulse is used for the learning. However, its performance 
against the beam loading is worse than the first learning 
approach even though the performance improvement is 
expected. 

When a PI controller gains are necessary to be tuned, then 
the same neural network tuner is applied. The discrete 
time PI controller is given by 


