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Abstract

The effect of composition on the elastic responses of alumina particle-filled epoxy composites is
examined using isotropic elastic response models relating the average stresses and strains in a
discretely reinforced composite material consisting of perfectly bonded and uniformly distributed
particles in a solid isotropic elastic matrix. Responses for small elastic deformations and large
hydrostatic and plane-strain compressions are considered. The response model for small elastic
deformations depends on known elastic properties of the matrix and particles, the volume
fraction of the particles, and two additional material properties that reflect the composition and
microstructure of the composite material. These two material properties, called strain
concentration coefficients, are characterized for eleven alumina-filled epoxy composites. It is
found that while the strain concentration coefficients depend strongly on the volume fraction of
alumina particles, no significant dependence on particle morphology and size is observed for the
compositions examined. Additionally, an analysis of the strain concentration coefficients reveals
a remarkably simple dependency on the alumina volume fraction. Responses for large
hydrostatic and plane-strain compressions are obtained by generalizing the equations developed
for small deformation, and letting the alumina volume fraction in the composite increase with
compression. The large compression plane-strain response model is shown to predict equilibrium

Hugoniot states in alumina-filled epoxy compositions remarkably well.
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1. Introduction

The composition of particle reinforced composite materials can be controlled to provide
materials with specific functional attributes. For example, suspending alumina particles in an
epoxy matrix produces composite materials exhibiting an increased elastic stiffness relative to
the matrix material. A fundamental understanding of the effects of composition and
microstructure on the elastic properties of these engineered materials is required for a
quantitative analysis of their use in applications. Plate impact experiments’? have been used to
examine the effect of composition, specified as the relative amount and type of alumina particles
suspended in the epoxy, on the stress generated during shock-wave compression. It is of interest
to be able to predict the stress produced in a specific composition for a given state of strain. For
example, the ability to predict the stress intensity of a steady shock-wave as a function of
composition would be of great utility in engineering applications involving impact. Currently,
there are only two response models'® that use the basic properties of alumina and epoxy to
predict the mechanical response of alumina-filled epoxy, and both models have only been
characterized for specific compositions. The purpose of this report is to describe some progress
in developing mechanical response models for alumina-filled epoxy that can be used across a
range of compositions.

The effect of composition on the mechanical response of alumina-filled epoxy is examined
for two situations: the response of the material to small deformations where a linear elastic
response is expected and the response of the material to large hydrostatic and plane-strain
compressions where nonlinear material response occurs. Measured response data'?*° for
compositions containing up to 48% by volume alumina will be used to develop and test the
response models. An outline of this study is described next.

The effect of composition and alumina particle type on the linear elastic response is
considered in Section 2. An elastic response model which gives the average stresses and strains
in the composite in terms of the volume concentration of the particles and the average stresses
and strains in the matrix and particle materials is developed. This model applies to composite
materials consisting of perfectly bonded and uniformly distributed particles in a solid isotropic
elastic matrix, and uses the elastic properties of the particles and matrix plus three additional
parameters, which reflect effects of composition, to characterize a material. Eleven specific

compositions formed from three different types of alumina particle are characterized in Section



3. It is shown that the volume fraction of alumina in the composition has the most significant
effect on the elastic response. The effect of particle morphology and size on the elastic response
is found to be small for the three particle types examined. Additionally, for a fixed particle type,
it is shown that the linear elastic response model for alumina-filled epoxy depends on the bulk
and shear moduli of the alumina and epoxy, the alumina volume fraction, and two compositional

parameters that are independent of the alumina volume fraction.

The elastic response of alumina-filled epoxy at large compression is nonlinear.*** A simple
model for response due to the large compression is developed in Section 4. In particular, a
nonlinear representation for the epoxy response is introduced and the volume fraction of the
alumina in the composition is allowed to increase with compression. The structure of the linear
elastic response model is used to define a structural stress for the composition. Motivated by the
observation that the stiffness of the alumina is much greater than that of the epoxy, an
equilibrium relation between the volume fraction of alumina and invariants of the structural
stress is postulated by extending some theoretical work on distended solids. The two parameters
needed to calculate the structural stress are determined by matching the bulk and shear modulus
of the linear elastic and large compression theories in the limit of small compression. It is found
that while the response model for large compression depends explicitly on the alumina volume
fraction the other parameters characterizing the model are independent of the alumina volume
fraction giving a model that can be applied to a range of compositions. The large compression
mechanical response model is applied to hydrostatic and plane-strain compression. Calculated
equilibrium Hugoniot states for steady plane-strain shock-waves predicted for a number of
compositions formed using a fixed particle type at various initial volume fractions are seen to

match measurements remarkably well.

A short summary of the results of this study is given in Section 5.



2. A Model for the Elastic Response for a Discretely Reinforced Composite

An elastic response model for discretely reinforced solids, developed by Hill,6 is used in this
study. The model is described below and developed in the context of a uniform isotropic
distribution of elastic reinforcing particles suspended in a uniform elastic matrix, and is believed
to be representative of the composite materials investigated in this report. Since the original
description® was set forth in a general context, the model and details needed for the present study

are reviewed below.

A. Model Development

The model expresses the average macroscopic elastic response of a discretely reinforced
composite material in terms of the volume fraction of the reinforcement particles and the average
elastic response of the reinforcement and matrix materials. Here it is assumed that the
reinforcement and matrix materials can be regarded as isotropic elastic materials and that the
reinforcement consists of isolated particles distributed uniformly throughout the matrix material.

The concept of a representative volume of material is fundamental to defining the
macroscopic fields and properties appropriate to the composite.6 A representative volume
contains enough of the matrix and reinforcement to be structurally typical of the composite.
When uniform surface tractions and displacements are applied to the surface of the
representative volume it is expected that meaningful values for the apparent elastic properties of
the composite, reflecting the averages of stresses and strains throughout the volume, can be
determined independent of the values of the applied traction and displacement. Consequently,
even though the local values of stress and strain may fluctuate rapidly within constituent
materials of the composite, well defined average values of stress and strain exist for the

composite and contributions from surface irregularities are negligible.

The matrix and reinforcement materials are assumed to be isotropic linear elastic solids with
the bulk modulus K and shear modulus G taken as the fundamental pair of elastic constants
characterizing the material. The elastic constants for the matrix material will be designated using
the subscript ‘1’ and those for the reinforcement material using the subscript *2’. Elastic
constants without a subscript will refer to the macroscopic averages for the composite. Cartesian

tensor notation is used with the subscripted quantities o; and ¢; used to represent the

components of the stress and strain tensors, respectively, in the rectangular coordinate system.



The stress and strain of the matrix material will be designated using the superscript ‘(1)’ and for
the reinforcement material by the superscript “(2)’.

The average value of a quantity describing the response of the composite material is defined as
the integral of that quantity over a region corresponding to a representative volume of the
composite divided by the volume of that region. The tilde symbol over a quantity is used to
indicate that quantity is an average over the representative volume. It is clear that the average

values of the stress and strain in a representative volume are

&;=c,6+c, 6% and & =c, & +c,&? (2.1)

where c, is the fraction of the representative volume containing the matrix material, c, is the

fraction of the representative volume containing the reinforcement material. It is also assumed

that ¢, and ¢, can be regarded as fixed for small elastic deformations.

The assumption of perfect bonding between the reinforcement particles and matrix implies
the sum of volume fractions of matrix and particles equals unity. Consequently, by
settingc, = ¢ it follows that

c,=1-9, (2.2)
allowing (2.1) to be written

6, =60 +¢ [&sz) - &(1)] and &, =& +¢ [5(2) - 5(1)} : (2.3)

ij ij ij ij
The relations between stress and strain in the matrix and reinforcement materials are
2 2

ol = [Kl —gel)gfg §;+2G. &) and o) = (KZ —EGZ]gﬁ? §;+2G, el (2.4)
Because the distribution of reinforcement particles in the representative volume of the composite
is uniform and isotropic, the stress-strain relations given by (2.4) also hold for the averages of the
stress and strain in each component of the composite giving

~ 2 o - - 2 o ~

&) = (Kl —gGljs(klk) 5;+2G,&Y and &\ = (Kz —ngjgﬁi) 5;+2G,&7.  (25)

Equations (2.3) and (2.5) provide relations between average field quantities in the composite
and each of its component materials. However, additional information relating the average stress

and strain describing the composite to corresponding quantities of the components is required
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before the elastic response of the composite can be specified in terms of the reinforcement
volume fraction and elastic properties of the matrix and reinforcement materials. Suppose that in
equilibrium the average strains in the matrix and particles are uniquely related to the average

strain for the representative volume according to the transformations

=AYz, and &P =AY, (2.6)

ij ij
The tensors Agjlk), and Aszk), reflect characteristics of the composite and will also depend on the

elastic properties of the component materials, volume concentration of the reinforcement phase,
and microstructural arrangement of reinforcement particles in the matrix. Substituting (2.6) into

the second of (2.3) provides a specific constraint between the components

of A% and AlZ) through the relation

(1_(9) Agjllgl +¢A€j2:§ik O (2.7)
The symbol ¢; is known as the Kronecker delta and has the properties that it vanishes whenever
I # ] and equals unity otherwise. Requiring that the average stresses and strains of the composite

remain isotropic requires that AE}QI and Agfk: be fourth-order isotropic tensors. Since &; =& ;, the

ji

simplest representations’ for Agjlk)l and Agfki allowed that satisfy the isotropy requirement are

2 2
A§j1k)|:(K1_571j5ij5k|+2715ik5j| and Agjzkz:(Kz_gyzjé‘ijgkl+2y2§ik5jl' (2.8)

The parameters «,, x,, 7,, and y, are called strain concentration coefficients and reflect

effects on the composite response due to differences in elastic properties of the constituent
materials, volume concentration of the reinforcement, and microstructural arrangement of the

reinforcement particles in the matrix. Substituting (2.8) into (2.6) gives

M

2 - - - 2 - -
i(il) =(K1_571j5kk d;+2y,&; and ‘9i(12) =(’f2 _572)51« Oy +2y,&;. (2.9)

The constraint of (2.7) yields

1 1
(1—(0)K1+¢)K2:§ and (1—(0)71+(py2:5. (2.10)
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Equations (2.10) show that only one of the parameters sets (x,,x,) and (y,,7,) is
independent. On selecting the parameter pair (x,,7,) as independent, the other pair (x,,y,) is
given by

K2=Kl+(1—31<1)/3g0 and }/2=71+(1—271)/2g0. (2.11)

It is useful to note the limiting behavior of the strain concentration factors as the volume fraction
of the reinforcement vanishes and the composite becomes entirely composed of the matrix
material. The average strain in the matrix and composite material must then be equal since there
is no reinforcement. Consequently, (2.10) gives 3x, >1and 2y, ->1as ¢ — 0. At the other

limit where ¢ — 1, the average strain in the reinforcement phase and composite must be identical
since the matrix material is absent. Consequently, (2.10) implies that 3x, —»1 and
2y, >1lasp—>1.

Equations (2.3), (2.5), (2.9), and (2.11) provide an equilibrium model relating the average

stress to the average strain in a discretely reinforced composite material.

B. Parameter Characterization

In order to use the model described above, the volume fraction, elastic properties of the
particle and matrix materials, and two strain concentration coefficients need to be known. It is
supposed that the reinforcement and matrix materials are well characterized. Consequently, the
densities and elastic properties of the particle and matrix materials are known.

Let p,and p, denote the densities of the matrix and reinforcement materials, respectively. If it

is assumed that there is no significant residual stress in the composite, the average

densities p, and p, of the matrix and reinforcement materials, respectively, can be taken as the

actual densities of the corresponding constituent materials used to form the composite. The

volume fraction of the particles can be determined from measurement of the average density, p,

of the composite material through the relation
0=(p=p) (5. 5:)- (212)
Specification of the two strain concentration coefficients, x,andy,, then completes the

parameter characterization for the composite material. As mentioned above, these two
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coefficients are expected to reflect the effects on the composite response due to differences in
elastic properties of the component materials, volume concentration of the reinforcement, and
microstructural arrangement of the reinforcement particles in the matrix. These two coefficients
may be determined from the effective elastic properties of the composite. It is possible that
composite materials comprised of isotropic elastic constituents may not necessarily be also
isotropic. For example, a composite material might be constructed with a regular cubic array of
reinforcement particles so that the macroscopic response of a representative volume would be
expected to have the symmetry of a cubic crystal. However, it is assumed here that the matrix
contains a random uniform isotropic distribution of reinforcement particles so that the expected
response of a representative volume of the composite is also isotropic. The relation between the

apparent stress and strain of a representative volume will then be
- 2 ~ ~
G =(K—§Gj€kk 0;+2G¢&;. (2.13)
Expressions for the effective elastic properties of the composite may be obtained by
substituting (2.5), with (2.9), into the first of (2.1) yielding
. 4 . ~
O ={3(C1K1 Ki+Cyx, KZ)_E(C17161+C27262)}5kk I +4(C17161+Cz 7262)5ij -(2.14)

Comparison of (2.13) and (2.14) yields the following correspondence between the effective
elastic properties of the composite and the parameters appearing in the elastic response model

K=3(c,x, K, +¢,x,K,), G=2(c,7,G,+¢,7,G,). (2.15)
Using the constraints of (2.2) and (2.10) in (2.15) gives
K=K,+3(1-¢)x,(K,-K,) and G=G,+2(1-¢)y,(G,-G,). (2.16)

The two independent strain concentration coefficients needed to complete characterization of the

response model can therefore be written

1 (K—Kz) ond 1 (G—Gz)
3(1-0) (K,-K,) ' 2(-0)(6,-6,)

(2.17)

Kl:

and determined from measured values for the elastic moduli of a particular composite.
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C. Strain Concentration Coefficient Estimates

The elastic response model for composites in the form (2.13) is widely used since it usually
convenient to measure the effective elastic properties used in (2.13) directly. However, many
situations arise in which it is desired to fabricate a composite material with specific effective
elastic properties and a reasonably accurate methodology for estimating the effective elastic
properties is then desired. Most practical methods for providing these estimates for isotropic

elastic materials are based on using (2.16) with various approximations for «, and y,.8 Several

of the common approximations for the strain concentration factors that find use in providing
estimates for the effective elastic properties of isotropic elastic composites will now be
described.

One common method often used to predict the effective elastic properties of a composite is
called the rule of mixtures. The method follows from the assumption that the average strains in

the reinforcement and matrix materials are the same as the average macroscopic strain applied to

the composite. When the average strains are identical, £\ = & = &, (2.9) is satisfied for all

volume fractions of reinforcement material by

;1 , 1
Kl = § and ]/l = E . (218)
The superscript ‘¢’ indicates that the values of x, and y, in (2.18) result from the assumption

of identical average strains. It is clear that this assumption also impliesx; =1/3 and y; =1/2.

Using (2.18) in (2.16) yields the rule of mixtures for predicting the effective elastic properties of

the composite
K’=(1-¢)K,+9K, and G°=(1-¢)G,+¢G,. (2.19)
An alternate method that is often used to predict the effective elastic properties of a composite
is called the inverse rule of mixtures and follows from the assumption that the average stresses in
the reinforcement and matrix materials are the same as the average macroscopic stress applied to

the composite. Assuming that 6% = 57 = &, , (2.5) and (2.9) can be combined to show, for all

ij 1
possible values of ¢ , that x, K, =x, K, and y, G, =»,G,. Using (2.11) with this result gives

1 1
d y7= (2.20)
3/ (1-9)+ (K, /K, )] nes

2[(1_¢)+¢(G1/Gz)} |

o _
K, =

14



The superscript ‘o * indicates that the values of x, and y, in (2.20) result from the assumption

of identical average stresses. Substituting (2.20) into (2.16) yields the inverse rule of mixtures for
predicting the effective elastic properties of composites

1 _ (9, ¢ 4 1_(-9) o (2.21)

K° K, K, G° G, G,
A useful approximation for the effective moduli of composites containing a dilute suspension
of particles can be obtained as follows. If the volume fraction of the particles is small, then a
linear transformation of the form (2.6) provides an approximate relation between the average
strain field characterizing the configuration of a particles and the average strain field of the

matrix phase according to

57 = ~(a-b)al s, +b . (2.22)

i
In the special case of a spherical isotropic elastic particle embedded in another isotropic elastic
material with an applied uniform strain far from the particle of égjl), it has been shown that the

strain in the particle is uniform and that®

5G, (3K, +4G
a=Xat4G g b 1(3K; +46,) | (2.23)
3K, +4G, G, (9K, +8G,)+6G, (K, +2G,)
Using (2.7) and the second of (2.3) gives
. 1 - .
& = {g(a —b)go}gk? 5 +{1+ (b —1)¢} &, (2.24)
The first of (2.9) and (2.24) are compatible provided that
1 1
3k, =————= and 2y, =c—————. 2.25
B [1+(a-1)¢] & [1+(b-1) 0] (2.25)
Substituting (2.25) into (2.16) gives the following estimates for the effective moduli
1-9)K K 1-9)G,+bpG
o (-0)Kirank, g o (120)Ci+beG, (2.26)

[1+(a-1) o] [1+(b-1)¢]
The superscript “D” indicates these estimates were obtained by assuming a dilute suspension of

particles in the matrix. In the case of spherical particles, (2.23) and (2.26) provide the following

estimates, accurate to first order in the volume fraction of the particles, for the effective bulk

15



modulus, compressibility ( l/K P, and shear modulus for the composite material containing a

diffuse distribution of particles:

(3K, +4G,)

D _ _ — _

K2 =Kyra(K; - Koo =K g 2K Ka)o

T S CACTLY (S @.21)
K K, (3+4G,/K,)| K, K,

5(3K, +4G,)(G,-G,)
@
[6G,(K,+2G,)+G, (9K, +8G, )]

G°=G,+b(G,-G,)p=G, 1+

The expressions for the effective compressibility and shear modulus given in (2.27) match the
results for a dilute suspension of spherical particles obtained earlier using a different derivation.™

The rule of mixtures and inverse rule of mixtures find application in special situations such as
layered composite structures. However, as pointed out by Hill,6 neither assumption is valid for
the types of composites considered here. The predicted values for the elastic properties using the
rule of mixtures will provide an upper bound on the actual values while values predicted using
the inverse rule of mixtures will provide a lower bound. These bounds on the elastic properties of

the composite, and corresponding values for x;, and y,, might be of some use when the elastic

properties of the particle and matrix materials are similar. But, when the elastic moduli of the
particle and matrix materials differ greatly, as is the case for the materials investigated here, the
upper and lower bounds on the elastic moduli are significantly different.

The elastic properties for a number of composite compositions containing one of three types
of alumina powder reinforcement suspended in a Z-hardened Epon 828 matrix material have
been measured.? The model parameters described above will be determined for each of these
compositions in the next section. It is seen that the model formulation above proves useful in
identifying systematic dependencies of the strain concentration coefficients on alumina volume

concentration and particle type for this family of composite materials.
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3. Characterization of Several Alumina-Filled Epoxy Compositions

Table 1 lists the alumina-filled epoxy compositions examined in the present study. These
materials were fabricated by suspending various amounts of one of three types of alumina
particle in a common epoxy formulation consisting of Epon 828 resin'* and Epi-Cure Z curing
agent™ mixed 5:1 by weight. The first column identifies the type of alumina particle used in the
composition. Five compositions use T64 alumina*® which is made from irregular shaped particles
ranging in size from approximately 2 to 30 um. There are four compositions using AA18
alumina® which consists of faceted but roughly spherical particles that have a nominal diameter
distribution of 18+5 pum. The final two compositions listed use AA5 alumina™* which is similar

to AA18 in shape, but has a nominal diameter distribution of 5+2 um.

Table 1. Alumina-filled epoxy compositions.

Alumina P C, Cs K G
Type (kg/m?) (m/s) (m/s) (GPa) (GPa)
T64° 1750 2738 1336 8.95 3.12
T64 2121 2987 1558 12.1 5.15
T64 2233 3033 1592 13.0 5.66
T64 2377 3197 1720 14.9 7.03
T64 2496 3314 1823 16.4 8.30

AA18° 1760 2677 1308 8.60 3.01
AA18 2242 3009 1593 12.7 5.69

AA18 2389 3132 1701 14.2 6.91

AA18 2525 3295 1825 16.2 8.41
AA5 ° 1765 2635 1276 8.42 2.87

AA5 2391 3034 1585 14.0 6.01

% T64 tabular alumina has irregularly shaped particles with dimensions ranging from
approximately 2 to 30 um.

b AA18 alumina has faceted roughly spherically shaped particles 18+5 um in diameter.
© AA5 alumina has faceted roughly spherically shaped particles 5+2 pum in diameter.
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T64 Alumina in Epoxy AA18 Alumina in Epoxy

Figure 1. Microscope images of T64 and AA18 alumina particles above the
corresponding images of polished surfaces of compositions, containing roughly
43% alumina by volume, fabricated from these two particle types.

Figure 1 shows microscope images of the T64 and AA18 alumina particles above images
of polished surfaces of composites fabricated containing roughly 43% by volume of the
corresponding alumina particle type.

Each composition listed in Table 1 was fabricated using the same mixing and curing steps.
Constituents were mixed after being heated to 71°C, then vacuum out-gassed before and after
being poured into heated cylindrical molds. Curing of all compositions used a schedule of 6 h at
54°C followed by 16 h at 93°C achieved using a 6 h ramp and final cooling over 5 h to room
temperature. Cylindrical billets nominally 64 mm in diameter by 130 mm long were fabricated
for each composition. A number of sample disks having diameter 50.8 mm and thickness ranging
from 2.0-20.0 mm thick were cut from the billets for characterization. The second column in
Table 1 gives the measured density obtained by measuring and weighing at least five samples of

each composition. The third and fourth columns list average values for the longitudinal and shear
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wave speeds for each composition. These wave speeds were determined from pulse-echo, time-
of-flight measurements using 5 MHz ultrasonic longitudinal and shear transducers coupled to
sample surfaces perpendicular to an axis defined by gravity for the cast materials. The final two

columns list the effective bulk and shear modulus calculated according to
K=p[ci—4c/3] and G=pct (3.1)

for each composition using the values in columns 2, 3, and 4.

A. Average Elastic Properties of the Epoxy Matrix and Alumina Reinforcement

Sample disks were also cut from billets of epoxy fabricated using the Epon 828 resin and Epi-
Cure Z curing agent mixed 5:1 by weight. These billets of unfilled epoxy were nominally 64 mm
in diameter and approximately 50 mm in length. The short length of these billets was needed to
reduce excess heating of the billet due to the exothermic cure of this epoxy system. An average
density of 1,203 kg/m® was determined for the unfilled epoxy by calculation using the measured
weight and dimensions of at least five samples. Longitudinal and shear wave speeds were
measured using the ultrasonic method described above and yielded an average longitudinal wave
speed of 2,645 m/s and average shear wave speed of 1,210 m/s based on measurements at five
locations on three samples. These measurements result in calculated bulk and shear moduli,
using (3.1), of 6.07 GPa and 1.76 GPa, respectively.

The characteristics of the different alumina powder used to fabricate the compositions
examined in this study could not be measured directly. The T64 alumina powder is fabricated by
crushing and sieving alumina ceramic sintered at high temperature while the AA18 and AA5
powder is formed by high temperature vapor deposition with the nominal average diameter of the
particle is controlled by the duration of deposition. Consequently, it was suspected that the
average density of the T64 alumina powder might differ from the average densities of the AA18
and AA5 powders. Because the masses of the constituents for each composition were measured,
estimates of the density of each alumina type and volume fraction can be established.

Let o and p , be the average densities of the epoxy matrix and the alumina powder respectively.

The mass fractions m of alumina for each composition can be calculated using the measured
weights of the constituents used in fabrication. If it is assumed that vacuum out-gassing
eliminates all void space, the following relation between densities of the epoxy and alumina
holds
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and can be used to calculate the average density of alumina powder in each composition.
Equation (2.12) can then be used to calculate the volume fraction of alumina powder in each

composition.

Equation (3.2) was used to provide estimates of the average density for the alumina powders
used in this study. The first three columns of Table 2 list the type of alumina powder and the
masses of the alumina powder and epoxy (Epon 828 resin plus Z-hardener) recorded during
fabrication of the billets for compositions with an alumina volume fraction greater than 30%.
The fourth column gives the mass fraction of alumina in the composition having the measured

density reported in column five.

Table 2. Mass fractions of alumina in compositions examined.

Alumina Epoxy m Yo,
Type Ma (9) Me (9) (kg/m’)
T64 1600.5 960.5 0.6250 2120
T64 1680.5 840.2 0.6667 2233
T64 1800.6 719.9 0.7144 2377
T64 1800.2 600.1 0.7500 2496
AA18 1680.1 840.0 0.6667 2242
AA18 1800.1 720.3 0.7142 2389
AA18 1800.3 600.2 0.7500 2525
AA5 1799.9 720.0 0.7143 2391

Using equation (3.2) to form a least squares fit to the values listed in Table 2 that is
constrained to pass through the limiting value of density for the pure epoxy, gives the values
3,899 and 3,960 kg/m® for the average densities of the T64 and AA18 alumina powders,
respectively. The calculated density of each T64 and AA18 sample varies less than +1% from the

corresponding average values determined from the least squares fit. An average powder density
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of 3,957 kg/m* was found for the two AA5 powder data points and, as expected, is close to the
average density found for the AA18 powder.

The elastic properties of the alumina particles are estimated since was impractical to perform
measurements due to the small size. The elastic properties for a—alumina were taken as
representative since it has a density’ of 3,969 kg/m® that is reasonable close to the values
determined here for the three types of alumina used in this study. Table 3 lists the average

density and elastic properties used for the matrix and alumina reinforcement materials.

Table 3. Epoxy and alumina properties.

P (o Cs K G
Material (kg/m?) (m/s) (m/s) (GPa) (GPa)
Epoxy ° 1203 2645 1210 6.07 1.76
Alumina® 3969 ; . 263 160

& Average density and sound speeds measured on samples prepared for this study.
b Density and elastic moduli from Munson, Boade, and Schuler.!

B. Strain Concentration Coefficients for T64 Compositions
Table 4 lists density, elastic moduli, reinforcement volume fraction, and strain concentration

coefficients for the T64 compositions. The reinforcement volume fraction was calculated using

Table 4. Strain concentration coefficients for T64 compositions.

p @ K G K 71
(kg/m®) (%) (GPa) (GPa)
1750 20.3 8.95 3.12 0.414 0.622
2121 33.9 12.1 5.15 0.494 0.742
2233 38.1 13.0 5.66 0.525 0.789
2377 43.4 14.9 7.03 0.570 0.856
2496 47.8 16.4 8.30 0.615 0.921
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(2.12) with the values of average density for the epoxy and alumina from Table 3 and where
(2.17) was used to calculate the strain concentration coefficients.

Figure 2 shows the effect of alumina volume fraction on the strain concentration coefficients
for the T64 compositions. Quadratic fits to the values of the strain concentration coefficients,

constrained to pass through the appropriate limiting values atp =0, giving

k1% = l[1+o.674¢+ 2.223¢% |

3

. (3.3)
7%= E[1+ 0.712¢ +2.124 97 |

are shown in Figure 2, and provide reasonable approximations to the coefficients for the T64

composition over the range of reinforcement volume fraction examined.
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Figure 2. Values of x; and y; versus alumina volume fraction calculated from
measured acoustic speeds and density for T64 compositions. The curves shown
are second order polynomial fits constrained to pass through appropriate values
for each coefficient at ¢ = 0.
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An approximation to the two strain concentration coefficients for the T64 compositions
involving a single parameter can be obtained by fitting the inverse of the strain concentration
coefficients to the functional form

i=3[1+ Ag] and i=2[1+ Bo], 3.4)
K, V1

suggested by (2.25), where the terms(a—1)and (b-1)in (2.25) are replaced with A and B,

respectively.
Figure 3 is a plot showing the inverses of the strain concentration coefficients determined for
the T64 compositions examined. A linear least squares fit, constrained to pass through the

appropriate limiting values atgp =0, to the inverse values of the strain concentration coefficients

as a function of the reinforcement volume fraction is also shown in Figure 3, and is seen to
provide a good fit to the data with A;,, =—0.9545 and B, =—-0.9564.
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Figure 3. Values of 1/x; and 1/y, versus alumina volume fraction calculated for
T64 compositions. The curves shown are linear fits constrained to pass through
appropriate values for each coefficient at ¢ = 0.
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C. Strain Concentration Coefficients for AA18 Compositions

Table 5 provides a listing of the reinforcement volume fraction and strain concentration
coefficients determined for the AA18 compositions examined. A plot of the inverses of these
strain concentration coefficients as a function of alumina volume fraction is shown in Figure 4. A
linear least squares fit, constrained to pass through the appropriate limiting values at ¢ =0, as a
function of the reinforcement volume fraction was again performed and is shown in Figure 4.

The least square fits to these points gives A,,,; =—0.9579 and B ,,,, =—-0.9574.

Table 5. Strain concentration coefficients for AA18 compositions.

P @ K G K 71

(kg/m3) (%) (GPa) (GPa)
1760 20.2 8.60 3.01 0.413 0.620
2242 37.6 12.7 5.69 0.524 0.786
2389 42.9 14.2 591 0.566 0.849
2525 47.8 16.2 8.41 0.616 0.921
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Figure 4. Values of 1/x, and 1/y, versus alumina volume fraction calculated for

AA18 compositions. The curves shown are linear fits constrained to pass
through appropriate values for each coefficient at ¢ = 0.
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D. Strain Concentration Factors for AA5 Compositions

Table 6 provides a listing of the reinforcement volume fraction and strain concentration
coefficients determined for the AA5 compositions examined and a plot of the inverses of these
strain concentration coefficients as a function of alumina volume fraction is shown in Figure 5. A

linear least squares fit, constrained to pass through the appropriate limiting values at ¢ =0, to

the inverse values of the strain concentration coefficients as a function of the reinforcement
volume fraction was again performed and is shown in Figure 5. The least square fits to these

points for AA5 compositions gives A,,, =-0.9527 and B,,, =—0.9589.

Table 6. Strain concentration coefficients for AA5 compositions.

P @ K G Ky 71
(kg/m®) (%) (GPa) (GPa)
1765 20.4 8.42 2.87 0.413 0.621
2391 43.0 14.0 6.01 0.567 0.854
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Figure 5. Values of 1/x; and 1/y, versus alumina volume fraction calculated for
AA5 compositions. The curves shown are linear fits constrained to pass through
appropriate values for each coefficient at ¢ = 0.
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E. Effect of Particle Type on Strain Concentration Coefficients
Table 7 lists the values of the parameters A and B determined using the least square fitting
procedure described above for each type of alumina particle. Examination of the values listed in

Table 7 indicate that A and B are nearly equal for the alumina particle types examined.

Table 7. Composition parameters for the alumina-filled epoxies examined.

Composition Alumina Type
Parameters T64 AA18 AAS5
A -0.9545 -0.9579 -0.9527
B -0.9564 -0.9574 -0.9589

Because of the near equality of values for A and B listed in Table 7 it is reasonable to
conclude that the reinforcement volume fraction is the most significant factor controlling the
effective elastic properties of the composite materials examined. Particle morphology and size do
not appear have any significant effect on the effective elastic properties of the composite

materials examined.

F. An Examination of the Analytic Approximations
It is informative to investigate the effectiveness of the three approximation methods for the

strain concentration coefficients of the composite described in the previous section. The rule of

mixtures gives &, =1/3andy, =1/2. The results above indicate that these values for the strain

concentration coefficients are only approached as the volume fraction of alumina particle
reinforcement vanishes. Consequently, the rule of mixtures does not appear to be viable in
estimating the effective elastic properties for epoxy reinforced with even small amounts of
alumina particles. The inverse rule of mixtures appears to provide a better method for estimating
the effective elastic properties. A comparison of the approximations for the strain concentration

coefficients, given by (2.20), provided using the inverse rule of mixtures and (3.4) gives

A’ = 5 -1~-0.9769 and B’ = S
K G

2

j—lz ~0.9890 . (3.5)

2

Here the superscript ‘o’ on A and B indicates predictions of these parameters using the inverse

rule of mixtures. These predictions for A and B are only slightly larger than the corresponding
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values listed in Table 7. The approximation for the strain concentration coefficients obtained
assuming a dilute suspension of particles in the epoxy matrix results in
AP —a_1= (KI/KZ)_l
1+(4G,/3K,)
1= (Gl/GZ)_l
1+[ (9K, +8G,)/6(K, +2G,) |(G,/G,)

~-0.9683
(3.6)

B = ~-0.9762.

Here the superscript ‘D’ on A and B indicates predictions of these parameters using the dilute
suspension assumption rule. These predictions for A and B are somewhat lower than those
obtained using the inverse rule of mixtures and again only slightly larger than the corresponding
values listed in Table 7. It is interesting to note that the inverse rule of mixtures and dilute
suspension approximation predict larger differences in the parameters A and B than found in the

analysis of actual measurements.

Figure 6 illustrates the dependence of the strain concentration coefficient y, on the

reinforcement volume fraction of alumina calculated using (3.3) with values of B from the
various estimates and the data fit, from Table 7, for the T64 compositions. Curves illustrating the
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......... rule of mixtures Y
09 o _____ inverse rule of mixtures /,7 y
1 - - — - dilute suspension model P
0.8 — T64 - discreatly reinforced composite model
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Figure 6. Dependence of y,on alumina reinforcement volume fraction using

values of B determined by the estimation methods discussed and the data fit for
compositions using T64 alumina.
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dependence of y, on reinforcement volume fraction for the values of B in Table 7 corresponding
the AA18 and AA5 compositions are not shown since they lie within a line width of the curve,
slightly below and above respectively, shown using the B value for T64 compositions.

Corresponding plots of the dependence of x; on reinforcement volume fraction are similar to

those shown in Figure 5 but even more tightly grouped.
Equations (2.16) and (3.4) can be used to calculate the effective bulk and shear moduli for the

composite material at a particular reinforcement volume fraction using the model parameters
listed in Tables 3 and 7. Figures 7 and 8 show the calculated dependence of the effective bulk
and shear moduli on reinforcement volume fraction using the model parameters obtained for the

T64, AA18, and AA5 compositions as well using estimates for A and B provided by the rule of
mixtures, inverse rule of mixtures, and dilute suspension model. Values of effective bulk and

shear modulus obtained from density and sound speed measurements on the various composite

samples listed in Table 1 are shown for comparison.
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Figure 7. Graphical illustrations of the predicted dependence of the effective
bulk modulus on reinforcement volume fraction for alumina filled epoxy.
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Figure 8. Graphical illustrations of the predicted dependence of the effective
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Examination of the Figures 7 and 8 indicate that none of the predictive methods for estimating
the parameters A and B provide reliable estimates for the effective elastic moduli over the range
of reinforcement volume fraction examined. Even though the values of A and B for the predictive
methods were only slightly larger than values deduced from experimental measurements, the
large discrepancy in elastic moduli for the epoxy and alumina greatly magnifies the small

differences in values of x, and y, when using (2.16).

The large values of elastic moduli for the alumina also magnify the uncertainty in calculating
values for «, and y, when using (2.17). Since the effective elastic moduli are much smaller than
the elastic moduli for the alumina reinforcement, the errors in the effective elastic moduli
reflecting uncertainties in the measured values of density and sound speeds for the composite
samples are significantly reduced. In particular, since the sample-to-sample variations in density,

longitudinal sound speed, and shear sound speed were +5 kg/m®, +19 m/s, and +9 m/s,

respectively, the uncertainty in the calculated values for the effective elastic moduli are on the

29



order of +£1 GPa. Consequently, while evident discrepancy between the predicted and measured
values for the effective elastic moduli of the compositions can be seen in Figures 7 and 8, the
predicted values for the effective moduli obtained by fitting the strain concentration coefficients
are much closer to the measurements than the predictions obtained using analytic approximations

for the range of alumina volume fraction investigated.
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4. The Response of Alumina-Filled Epoxy to Large Compression

It is of interest to examine connections between the linear elastic response model developed
above and response models applicable to situations involving large compression, such as are
produced by the passage of a shock-wave through the composite in plate impact experiments.™?
Hydrostatic and uniaxial plane-strain responses of alumina-filled epoxy to large compression are
investigated in this section. The response model described below has a similar structure to the
linear elastic response model characterized above, and results from the linear elastic response

model are used to characterize the large compression response models.

A. Preliminaries

The volume fraction of alumina in the composite was regarded as fixed in the linear elastic
response model. Because of the very large stiffness of the alumina particles relative to the epoxy
matrix, it is expected that large compression of the composite will result in a significant increase
in the volume fraction of alumina from its initial value in the uncompressed stress-free state.
Consequently, a response model valid for large compression will need to allow for changes in the
volume fraction of the alumina particles as the composite is compressed.

Consider a representative volume of the composite of fixed mass M under a uniform

compression and letM,and M, be the masses of the epoxy and alumina, respectively, in the

mixture. The mass fractions of epoxy and alumina in the composite are then given by

m, =M,;/M and m, =M, /M, respectively. In the absence of voids and chemical reactions these

two mass fractions remain constant for any deformation and sum to unity. Recalling the

definition of the volume fractions of epoxy and alumina gives

(1-p)=(1-m,)Z and p=m, 2. (4.1)

1 P2

Sincem, remains constant, we can write

o o
b =0) b g P 2D 42)

Pio (1_(0) P Pn P Po '
where the added subscript ‘0’ indicates the value of a quantity in the stress-free reference state.

Equation (4.2) provides relations between the average densities of the epoxy and alumina given
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For small

the average density of the composite and the volume fraction of alumina.

deformations we have
Lo viteld), L2rgrg? and 2D~1+6,. (4.3)
%) P> P
Consequently, (4.2) yields
-p)+(1-9)§ —0,)+ 0§
éﬁ)z[(% ¢) ( @) kk] and éﬁf)z[(¢ %) ® kk:l, (4.4)
(1) P,
which gives
(1- )8 + 20 6 ~ & (4.5)

Consequently, (4.2) is compatible with the linear elastic theory for small deformations.
It is convenient to use the alumina distention « , which is the inverse of the alumina volume

(4.6)

fraction, in the following discussion. We have
1 (102 _pl) > 1

a_ ~ ~
¢ (P-p)
The alumina distention decreases as the volume fraction increases. Clearly, the alumina
distension is an alternate representation of the alumina volume fraction for the composite.

B. Hydrostatic Compression
In the special case of hydrostatic compression the diagonal terms of the stress and strain
tensors are all equal and the off-diagonal terms vanish. The average stresses describing the

composite then take the form
5-11 = O~'22 = 6-33 = _F~>v 5'12 = 5-23 = 5'13 =0
=6 = ol =P, o=l =4l =0 @)
(2) _ _p(2), ~1(22) _ Otg) _ 5.1(5) -0.

~(2 ~(2 -
0-1(1) = O-gz) =03

Here P, PY, and P? are, respectively, the average pressures in the composite, epoxy, and
alumina. It follows from (2.1), (4.6), and (4.7) that these pressures are related to each other by
aP-PU]=pC B0, 4.8)

It is convenient to use specific volumes (v =1/p) in the following derivations. Equation

(4.2) becomes
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e (@la) = an(@la} e

Since the pressures in the epoxy and alumina will depend on the change in the average densities
from the pressure-free reference configuration, the following relations are used for the pressures

in the epoxy and the alumina:

|5(1) _ |5(1) 1}1) _ K, [1—(51/510)} . (4.10)
{1-8[1- (/) ]}
PP =P (5,) =K, [1-(0,/0y)] (4.11)

The pressure in the epoxy is allowed a nonlinear dependence on compression while the pressure
in the alumina remains linear in compression due to its large stiffness in comparison to epoxy.
Equations (4.2), (4.8), (4.9), and (4.10) need to be augmented by one additional relation to
form a response model for the hydrostatic compression of the composite. It does not seem
reasonable to expect the linear transformations between the volumetric strains in the composite

and component materials to hold for large compression. A related approach is used here by

defining an intermediate variable P* = P — P called the structural pressure, and assuming that

the structural pressure is a function of the alumina distention, i.e.,
PS=P%(a) where P=P°+pP". (4.12)
This equation is presumed to reflect equilibrium between the pressure in the composite and the
deformation as specified by the alumina distention. The strain concentration coefficients played a
similar role in the linear elastic theory where it was assumed that stress equilibrium controlled
the linear transformation between average strains in the composite and its components.
The specific instance in which (4.12) can be written as
a(a-1)P° =k(a-a,), (4.13)
wherek is a material constant having units of pressure, is examined. Use of (4.13) is motivated as
follows. Presume that the aggregate of alumina particles in the composite supports a linked
network that resists deformation with forces being transmitted between the particles through the
epoxy. In a porous solid, the term P* occurring in (4.12) is just the mean stress in the matrix and

(4.13) is a special form relating the average mean stress and distention of the solid matrix

material obtained from the linear elastic response of a hollow sphere™ loaded by a hydrostatic
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pressure on its outer surface while its inner surface remains free of stress. It is clear that (4.13)
would not be altered if a uniform pressure was added to the existing pressures at the inner and
outer surfaces and the solid material regarded as incompressible. Since the alumina is much
stiffer than the epoxy, it seems feasible to regard the suspension of alumina as an effective solid

matrix with the epoxy forming an effective pore space. Equation (4.13) then gives a relation

between the alumina distention and structural pressure P, , which plays the role of the effective

mean stress for the network of forces between the particles. The parameterk appearing in (4.13)

plays a role similar to that of x,in reflecting the effect of microstructure on the equilibrium
structural pressure as the distention changes from its initial value.
It is useful to examine the average isothermal bulk modulus, £, of the effective solid, defined

by the expression

gl

fi =9

, (4.14)

o
C

to help in characterizing the large compression response model. Using (4.14) with (4.12) and

(4.9) gives
= = _|(dR) B da
p=r U{(daj a(a—l)}(dz}) (4.15)

Combining (4.8) and (4.12) with the constraint of (4.9) yields
- A -5
(daj_ a(a-1)[ B, - 5] @.16)

do __u{a(a—l){li'%ra(ddz ﬂ - (a- )52}.

Substituting (4.16) into (4.15) then gives

I

B‘ﬂ”{aw{psm s

The reference state of the composite is characterized with & =¢,,P* =0, =K, B, =K

/ﬂﬁ 3]

(4.17)

and S, =K, , so that (4.17) yields
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{%@%—n(z%]a%—Klﬂg—KJ

K=K, + - . (4.18)
{ag(ao—l)(iiijatl——Kl—(ao—l)Kz}
Solving for the initial rate of change in P* with respect to the alumina distention gives
(ﬁj :(0‘0_1)K2_[Kl+(“o_l)K2}[(K_Kz)/(Kl_KZ)]' (4.18)
da ) oy (@ ~1){(@ 1) - [ (K= K, ) /(K, = K,) ]}

Equations (3.4) and (2.17) combine to yield

K-K 1- -1
(K=Ka) 31 gy =122 _ (=) (4.19)
(K, -K,) (1+Ag,) (a+A)
which can be substituted into (4.18) to provide
> 1+ A)K,-K
dR ) _(LrAK oK, (4.20)
da ) ay(a; —1) A
Consequently, the large compression model recovers the response predicted by the linear elastic
theory when
1+ A)K, - K
k:(+)A2 L (4.21)

Equation (4.21) connects the large compression response model to the linear elastic response
model by relating the parameters A and k .

The calculation of the hydrostat predicted using the large compression response model is now
considered. Let the volumetric compression &, be fixed. Assuming the volumetric compression
is reckoned as positive, the corresponding specific volume of the composite is

6=0,(1-4,). (4.21)

If it is assumed that the alumina distention is known, then (4.9), (4.10), and (4.11) give the

appropriate values of PYand P®for the composite. In order to determine «, the nonlinear
algebraic equation obtained by combining (4.8) and (4.13),

k(a-ap)-(a-1)| P (a)-P%(a)|=0, (4.22)

is solved using (4.21) with (4.9) to constrain the compressions so that (4.10) and (4.11) give the

average pressures in the epoxy and alumina corresponding a particular value of « .
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Figure 9 illustrates predictions for the dependence of the hydrostatic pressure on volume

strain for a composite with an initial alumina distentione, = 2.304, which corresponds to an
initial volume fraction ¢, =~ 0.434. The curve showing the lowest prediction for the hydrostatic

pressure results from using the linear elastic response model. The three curves giving higher
pressures result from using the large compression model developed with three different values of
S for the nonlinearity of the epoxy. The curve in Figure 9 labeled S =0 corresponds to an epoxy
response that is linear in volumetric compression of the epoxy. The curves in Figure 9 labeled
withS =1and 2 show the effect of the nonlinear response of the epoxy on the hydrostatic
pressure. Since only small differences in the alumina distention were found for the three
predictions using the large compression model, it is concluded that the nonlinearity in the

hydrostatic pressure is primarily due to the nonlinearity of the epoxy.
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Figure 9. Predicted hydrostatic response for alumina-filled epoxy with an initial
alumina volume fraction of 43.4% . Predictions are shown for the linear and
large compression models. Increasing values of S correspond to an increasing
nonlinear dependence of pressure on compression for the epoxy.
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C. Uniaxial Plane- Strain Compression

The special case of uniaxial plane-strain compression occurs in plate impact experiments used
to characterize the response of the composite under shock-wave compression.*** In this case, the
average motion of the composite can be regarded as one-dimensional and the only non-vanishing
component of the average strain tensor in the composite is the normal component on the surface
normal to the direction of shock-wave propagation. As a consequence, the components of
average shear stresses in the composite will vanish producing an average principal compressive
stress state (compressive stresses will be reckoned as positive in this discussion). The largest
average principal stress is the normal compressive stress acting on the plane defined by the
direction of shock-wave propagation. The other two average principal stresses are two equal
normal compressive stresses acting on planes perpendicular to the direction of shock-wave

propagation. If the direction of shock-wave propagation is along the x, —direction , these average
strains and stresses in the composite can be written

En=8.=1-(0/0,), &p=E3u=8,=83=2E,=0 (4.23)

Gy =6cy Gp=05=06,, Op,=0,=06,;=0 (4.24)

where &_ is the average compressive strain, & is the compressive stress, and &, is the lateral

confining stress.

;» and stress, §;,
~ 1

It is useful to work with the strain, & deviation tensors defined by

€= gij _ggkk 5ij (4.25)
~ =~ 1.
Sij = Ojj _gakk J; - (4.26)

For plane-strain compression &, =&, 6, = 6, +26,, and the average components of the strain

and stress deviation tensors are

_ 2¢& - - g - - -

€= 3C y € =6 = _?C' €, =Cp=635= 0 (4-27)
47 - 27 - -

S = ?1 Sy =S5 = _?’ S1p =53 =53 = 0 (4-28)

where 7= (6. -6,)/2.

The average linear elastic response of the composite can be written in terms of the

components of the stress and strain deviation tensors as
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50w =0w = K&y (4.29)

§ =2G§¢, (4.30)
where &,, is the average mean stress in the material. For plane-strain compression (4.29) and
(4.30) become

6y =Ké; (4.31)

F=Gé,. (4.32)

We note that &,, and 7 can be expressed in terms of invariants of the average stress tensor
and that &.is the first invariant of the average strain tensor. The two non-vanishing

components of the average stress can be written in terms of &,, and 7 giving
6.=6y +=7 (4.33)
G, =0y ——=T7. (4.34)

A response model giving equilibrium values for &, in terms of &, for large compressions
due plane shock-waves is sought. Equation (4.33) can be decomposed into the contributions
from the average normal stress in the epoxy and alumina as

a(6.-68)=68 -6 (4.35)
The structural normal stress is defined as
63 =6, -6, (4.36)
It is now postulated that the distention of alumina can be related to the invariants of the structural
stress in the composite, i.e.,
a=a(6y.7°). (4.37)
Since (4.37) should reduce to (4.13) when 7° is zero, the following form is assumed to hold for

the case of plane-strain compression

(a—ay) - a(a-l)K%} (%H (4.39)

The parameter k appearing in (4.38) has already been determined. The parameter g is selected

to give the same shear stiffness in the composite as the linear response theory in the limit of
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small deformation, hence parameters for the linear elastic and large compression response are

related by

o (1+ B)§2—Gl | “39)

The responses of the epoxy and alumina for large plane-strain compression are assumed to be

B, = 61, ((;__11)) [%j(vij and &, =0, (%j(u%] (4.40)

&(1) Kl [l B (51/’310 ):I

governed by

_ 4.41
1-s[1-(8,/5,) ]} e
G = K, [1-(8,/53,) ] (4.42)

O {Gl [l - (Yﬁl/ﬁlo )] o, ; il ;010 (4.43)
ZN'(Z) = Gz [1_ (62 /520)] (4.44)

where Y, is the yield stress for the epoxy and &, = 0, [1—(Y1/Gl)] is the average specific

volume in the epoxy needed to produce an average shear stress equal to the yield stress. Equation
(4.40) is the constraint on average specific volumes of the composite, epoxy, and alumina
resulting from the mass fraction of alumina and epoxy being constant. Equations (4.41) and
(4.42) are used to give the mean stress in the epoxy and alumina, respectively, and are taken to
be the same as the relations between hydrostatic pressure and volumetric strain since the
composite, epoxy, and alumina are assumed to be isotropic. Finally, the average shear stress
invariants in the epoxy and alumina are assumed proportional to the corresponding shear strain
invariant, and the epoxy is assumed to yield when the shear stress reaches a critical value Y, . It is
assumed the shear deformation of the alumina remains elastic for the levels of compression of
interest in this study.

Equations (4.38) through (4.44) specify the plane-strain large compression response model for

alumina-filled epoxy, and can now be used to predict the average stress 6, in a composite
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composition for given values of & and initial alumina distention «,. The procedure is similar to

the one described for the hydrostatic compression response with the value of « obtained from

)| @) (@] [ ) (a)

=0. (4.45)

Figure 10 illustrates the predicted average normal stresses in the composite for large plane-
strain compression for a composite having an initial distention ¢, =~ 2.33 (corresponding to
@, ~0.43). Composites formed by suspending T64 alumina in epoxy are expected to have
k ~—6.18 GPa and g ~—5.45GPa. Also, a yield stress of 0.2 GPa was assumed for the epoxy.
The average compressive normal stress components shown in Figure 10 correspond to a given
average compressive strain predicted by the large compression model. As can be seen, the
average compressive stress in the composite is between the average compressive stresses in the

epoxy and alumina. A small change in the slopes of the average normal stresses due to the small

yield strength of the epoxy occurs below an average compressive strain of 0.01.

Normal Compressive Stresses (GPa)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Average Compression in Composite

Figure 10. Average normal stresses predicted for large plane-strain compression
of an alumina-filled epoxy having an initial alumina volume fraction of 43% .
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Figure 11. Alumina distention predicted for the large plane-strain compression
of an alumina-filled epoxy with an initial alumina volume fraction of 43% .

Figure 11 shows the change in alumina distention as a function of average compressive strain
in the composite. A decrease in the alumina distention as the average compressive strain in the
composite increases is seen as expected. The volume fraction of alumina is seen to increase from
an initial value of ~ 43% to a value over ~ 48% when the compressive strain is ~ 0.12.

A comparison of the plane-strain compression response model predictions with measured
responses on samples of alumina-filled epoxy is shown in Figure 12 for several compositions
containing different initial volume fraction of T64 alumina. The measured responses correspond
to the normal stress equilibrium Hugoniot states generated in plate impact experiments on the
alumina-filled epoxy compositions. The normal stress predictions were calculated for initial
alumina volume fractions of 0.5, 20, 34, 38, 43, and 48% assuming the epoxy response was
characterized using the parameters reported above withS =1.78.

The open squares in Figure 12 correspond to equilibrium Hugoniot states determined for each
composition by impacting a sample of the composition with a plate of the same composition and
maintaining a nearly constant impact speed for each test. Examination of Figure 12 shows that

the stresses predicted by the model are reasonably close to the measured values. Numerous*?*
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Figure 12. Comparisons of the predicted average normal stress with
measurements for the large plane-strain compression for several alumina-filled
compositions.

equilibrium Hugoniot stress points for a wide range of compressions have been measured for the
composition containing ~ 43% alumina by volume. The stresses predicted by the model are in
excellent agreement with the stresses determined recently by Setchell et al.>* and appear to
provide a reasonable match to the stresses determined by Munson et al.* more than thirty years
ago. Measurements® of equilibrium stresses for compositions containing ~20% and ~ 34%
alumina are shown in Figure 12 using filled diamonds and triangles. Again it appears that the
model predictions are in reasonable agreement with the measurements. It appears that the model
stresses are higher than the measurements at compressions above 0.05. This discrepancy may be
due to slight differences between the alumina particles used in those experiments and the
alumina particles characterized in this study. The model predictions and the more recent data’

show better agreement for the single test condition examined for each composition. A prediction
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is also shown for a composition containing a trace amount of alumina. This curve is compared to
data obtained on the unfilled epoxy.® The stresses predicted by the model, while slightly lower,
are close to the measurements in this limit of model applicability.

The value of S used in the model predictions was selected to provide a good match between
stresses predicted by the model and measured values for the composition with an initial alumina
volume fraction of 43%. Munson and May® conducted plate impact experiments on the unfilled
epoxy and fit the equilibrium Hugoniot states for the epoxy to the Mie-Griineisen equation of
state using S =1.66. Drumheller® setS = 2 in a response model he developed for the composition
having an initial alumina volume fraction of 43%. It appears that it may be possible to improve
the match between predicted and measured equilibrium stresses by adjusting the parameters
appearing in the model. However the agreement obtained with the simple model developed

above is remarkable.
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5. Summary and Discussion

Mechanical response models for alumina-filled epoxy have been developed and characterized
for the composite material formed by suspending alumina particles in epoxy. Response models
were developed for small linear elastic deformations as well as large hydrostatic and plane-strain
compressions. The key results of this study were model formulations general enough to be used
across a range of compositions defined by the initial alumina volume fraction and the remarkable
agreement found when matching equilibrium Hugoniot stresses measured in plate impact
experiments with predictions of the large plane-strain compression model.

A general linear elastic response model was developed for an isotropic composite consisting
of uniformly distributed alumina particles bonded perfectly in an epoxy matrix. As a result of
characterizing eleven alumina-filled epoxy compositions, it was determined that the linear elastic
response for compositions formed by suspending various volume fractions of a single type of
alumina particle in epoxy could be specified using the initial volume fraction of the alumina and
six model parameters. Four of these model parameters are known elastic properties of the
alumina and epoxy used to fabricate the composite. The other two model parameters, called
strain concentration coefficients, reflect the interactions between the alumina particles and
epoxy. It was shown that these two additional model parameters could be readily determined for
a particular composition. Consequently, characterization of the linear elastic response model is
no more difficult than characterizing any linear elastic material provided properties of the
alumina and epoxy are known.

Analysis of the dependence of the strain concentration coefficients on the initial alumina
volume fraction, for the eleven compositions characterized, indicates that the two strain
concentration coefficients could be written in forms having a particularly simple dependence on
the volume fraction. Consequently, the linear elastic response model could be fully described by
the initial alumina volume fraction, two elastic moduli each for the alumina and epoxy, and two
fixed strain concentration parameters that described the dependence of the strain concentration
coefficients on the initial alumina volume fraction. This result has important implications in
characterizing alumina-filled epoxy compositions formed using different alumina particle and
epoxy types, and modeling the linear elastic response for compositions having known variations
in the initial alumina volume concentration. In the first case, if the elastic properties of the

alumina and epoxy are reasonably well known, measurement of the effective bulk and shear
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moduli for a particular composition will provide the strain concentration parameters needed to
completely specify a linear elastic response model across a range of compositions having a
variation in initial alumina volume fraction. In the second case, because the linear elastic
response model depends explicitly on the alumina volume fraction, situations in which there is
variation in the initial alumina volume fraction, due to processing uncertainty or alumina settling,
a framework exists to allow for the analysis of these situations with a higher level of confidence.

An analysis of the effect of alumina particle morphology and size on the strain concentration
parameters indicated only slight differences in the elastic response due to these compositional
properties. Since no significant difference in the strain concentration parameters was found for
the T64, AA5, and AA18 alumina particles examined in this study, it seems reasonable to
conclude effects of particle morphology and size on the equilibrium elastic response are much
less significant than the effect of initial alumina volume fraction. Additional studies would be
needed to determine the effect of varying the epoxy type, using other particle morphologies, and
particle sizes on the linear elastic response model, and the results described above provide a
useful foundation for planning additional studies on alumina-filled epoxy or related composites.

As an example of model use, the effect of initial alumina volume fraction on the apparent
bulk and shear moduli of the T64 alumina-filled epoxy was calculated. Predictions using the
parameters determined from material characterization and from various analytic estimations were
compared. It is clear that the large difference in stiffness between the alumina and epoxy limited
the usefulness of analytic estimation to very small values of the initial alumina volume fraction.
Consequently, estimates of the apparent bulk and shear moduli across a range of possible initial
alumina volume fraction would be much improved if the strain concentration parameters could
be determined for at least one particular composition of interest.

The extension of the response model to large compression proved to be quite successful in the
case of large plane-strain compression as demonstrated by the remarkable agreement between
model predictions and measurements of the equilibrium Hugoniot stresses from plate impact
experiments. Key to the success of this effort were the observations that, due to the large
differences in stiffness between the alumina and epoxy, the alumina volume fraction in the
composite would change with compression and the suspension of alumina in the epoxy would
respond in a fashion similar to the matrix material of a porous solid. These observations allowed

the large compression response model to be developed without explicit consideration of specific
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relations between average strain for the composite and the components of the composite. Any
extension of the model to more general large compression strain states would likely need to
generalize the model presented in this study.

The analysis of hydrostatic compression indicated that the nonlinear response of epoxy under
large compression was sufficient to account for most of the nonlinearity in the compression of
the composite. The increase in the volume fraction of the alumina was however still apparent.

The success of the large plane-strain compression response model in matching the
equilibrium Hugoniot stresses across a wide range of compositions is remarkable because only
the parameter defining the nonlinearity of the epoxy (S) was selected to improve the match
between the predictions and measurements. The other parameters appearing in the response
model were reasonably well established for the alumina and epoxy or specified by requiring that
the large compression model produced the same apparent bulk and shear moduli for a
composition as given by the linear elastic response model. The fact that the value for S selected
was not significantly different than that measured in plate impact experiments on the unfilled
epoxy provides additional credibility to the model.

It should be remarked that, even though the large compression response model performed
well in predicting the equilibrium Hugoniot stresses, additional development is required before
the model would be able to adequately predict the evolution of non-steady stress waves. Previous
studies™®* have established that wave propagation through alumina-filled epoxy is dispersive. In
fact, the study? on compositional effects on shock-compression of alumina-filled epoxy
demonstrated effects due to particle morphology and size as the dispersive wave-front
transitioned into a steady wave. The largest effect on the structure of the wave-front was seen to
be due to the initial volume fraction of alumina but there were discernable differences due to
particle morphology and size. It seems likely that the particle morphology and size effects
observed were due to the small size of the wave-front resulting in significant strain gradients in a
representative volume of material.

Previous response models™® have accounted for dispersion by allowing the stress to evolve
from an instantaneous value to an equilibrium value in response to the compressive strain.
Munson et al." used a Maxwell response model having different relaxation times when the
material was compressing or unloading. Drumheller® presented a model using a single relaxation

time for the epoxy but constrained the densities of the composite and alumina to change the
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material response on unloading. It seems reasonable that future development work on the
response model described above could accommodate features resulting in wave dispersion by
allowing the alumina distention to evolve using a Maxwell type model with the equilibrium
value being defined as described above. While unloading of the composite has not been
examined in detail here, it is clear that the model described will respond differently on unloading
from highly compressed states since the epoxy will unload elastically with an apparent stiffness

controlled by the level of compression.
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	    Equations (2.3) and (2.5) provide relations between average field quantities in the composite and each of its component materials. However, additional information relating the average stress and strain describing the composite to corresponding quantities of the components is required before the elastic response of the composite can be specified in terms of the reinforcement volume fraction and elastic properties of the matrix and reinforcement materials. Suppose that in equilibrium the average strains in the matrix and particles are uniquely related to the average strain for the representative volume according to the transformations



