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Mesoscopic Modeling of Multi-Physicochemical Transport Phenomena in 

2 Porous Media 

3 Qinjun Kang, Moran Wang, Partha P. Mukhetjee, and Peter C. Lichtner 

4 Computational Earth Science Group 

5 Los Alamos National Laboratory, Los Alamos, NM 87545 

6 Abstract 

7 We present our recent progress on mesoscopic modeling of multi-physicochemical 

8 transport phenomena in porous media based on the lattice Boltzmann method. Simulation 

9 examples include injection of C02 saturated brine into a limestone rock, two-phase behavior and 

10 flooding phenomena in polymer electrolyte fuel cells, and electroosmosis in homogeneously 

11 charged porous media. It is shown that the lattice Boltzmann method can account for multiple, 

12 coupled physicochemical processes in these systems and can shed some light on the underlying 

13 physics occuning at the fundamental scale. Therefore, it can be a potential powerful numerical 

14 tool to analyze multi-physicochemical processes in various energy, earth, and environmental 

15 systems. 

16 



17 1. Introduction 

18 Multi-physicochemical transport phenomena in porous media are ubiquitous, particularly 

19 in various energy, earth, and environment systems. One example is the disposal of supercriticaI 

20 CO2 in geologic fOlmations, the most promising near-tenn solution to the problem of reducing 

21 carbon emissions into the atmosphere [I]. Experimental analyses of the long-term fate of C~ 

22 after injection into the geologic formations are not possible with relatively short-term laboratory 

23 experiments. Therefore it is necessary to employ comprehensive numerical models that 

24 incorporate multiple physicochemical processes involving interactions between the injected CO2, 

2S the brine in the pore spaces, and the minerals lining the pores. Supercritical CO2, as a buoyant 

26 and slightly miscible fluid, once injected, displaces brine from the pore space in a complex 

27 pattern. At the interface with brine, CO2 dissolves into the brine to form carbonic acid that can 

28 react with and dissolve minerals eventually leading to mineral precipitation further along the 

29 flow path. Clearly, there are multiple physics processes involved, including hydrodynamics, 

30 Ihenuodynamics, chemical dynamics, and electrodynamics (because the surface of most natural 

31 media is charged). All these processes are ultimately governed by pore-scale interfacial 

32 phenomena, which occur at scales of microns. However, because of the wide disparity in scales 

33 ranging from pore to field, a continuum formulation based on spatial averages taken over length 

34 scales much larger than typical pore and mineral grain sizes is often utilized, implying the 

35 existence of a representative elemental volume (REV) [2]. As a result, spatial heterogeneities at 

36 smaller scales are unresolved and the aggregate effects ofilie porescale (mesoscopic scale) 

37 processes are taken into account through various effective constitutive parameters. One of tbe 

38 goals of peIforrning pore-scale simulations is to obtain values for these constitutive parameters 

39 through upscaling the pore-scale results. Other goals are to identify key parameters and 



40 physicocbemical processes that control macroscopic phenomena, and to validate continuum 

41 descriptions. 

42 Another example is fuel cells, and in particular polymer electrolyte fuel cells (PEFCs). In 

43 PEFCs, the catalyst layer (CL) is the host to several competing transport mechanisms involving 

44 charge (proton and electron), species (oxygen, nitrogen, water vapor), and liquid water transport. 

45 The multi-faceted functionality of a gas diffusion layer (ODL) includes reactant distribution, 

46 liquid water transport, electron transport) heat conduction and mechanical support to the 

47 membrane-electrode-assembly. Despite tremendous recent progress in enhancing the overall cell 

48 performance, a pivotal performance limitation in PEFCs is manifested in terms of mass transport 

49 loss originating from suboptimal liquid water transport and resulting flooding in the constituent 

50 components [3]. In recent years, several macroscopic computational models for multiple-

51 physicochemical transport processes in PEFCs [4-10) have been developed. These macroscopic 

52 models, again are based on the theory ofvolwne averaging and treat the catalyst layer and gas 

53 diffusion layer as macro-homogeneous porous layers. Due to their macroscopic nature, the 

54 current models fail to resolve the influence of the structural morphology of the CL and ODL on 

55 the underlying physics. Mesoscopic modeling is critical to understanding the overall structure-

56 wettability-transport interactions as well as the underlying multi-physicochemical processes in 

57 the CL and GDL, and hence is a useful tool for design and optimization of microstructures of 

58 electrodes for better performance and durability. 

59 In this paper, we review our recent work on mesoscopic modeling of multi· 

60 physicochemical processes in porous media, based on the lattice Boltzmann method CLBM), a 

61 relatively new numerical method for simulating fluid flows and modeling physics in fluids [1 1]. 

62 Originating from the classical statistical physics, LBM is a mesoscopic method based on 



63 simplified kinetic equations. In the LBM, the fluid is modeled as a collection of fictitious-

64 particles propagating and colliding over a discrete lattice domain. Mesoscopic continuity and 

65 momentum equations can be obtained from this propagation-collision dynamics through a rigors 

66 mathematical analysis. The particulate nature and local dynamics provide advantages for 

67 complex boundaries and parallel computation. In addition, the kinetic nature of the LBM makes 

68 it easy to account for new physics in the LBM framework, which is especially useful for 

69 modeling multi-physicochemical phenomena. In Section 2, the partial differential equations 

70 governing fluid flow, transport of reactive species and electric potential, as wel\ as mineral 

71 reactions in porous media will be given. In Section 3, the implementation of the LBM to solve 

72 these governing equations will be presented. Some simulation examples will be given in Section 

73 4 and concluding remarks in Section 5. 

74 2. Governing Equations 

75 2.1 Continuity and momelltum equations 

76 For isothermal incompressible fluid flow, the continuity and momentum equations can be 

77 written as [12] 

78 \7·u=O, (I) 

79 
au 2 

p-+ pu· \7u = -\7p + piR u+ F, at 
(2) 

80 where p represents the density of the nuid, t the time, u the velocity vector, p the pressure, v 

81 the kinetic viscosity, and F the body force density which may include all the effective body 

82 forces. 



83 2.2 Transport equations/or aqueous species and electrical potential 

84 For the ith ion species in the solute, the mass conservation equation describing transport 

85 and reaction can be written in the general fonn [13]: 

86 (3) 

87 where C, denotes the ionic concentration, J1 the species flux, A,. a radioactive decay constant, 

88 and R; the rate at which the ith species is produced or consumed by chemical reactions . The flux 

89 J I , consisting of contributions from advection, diffusion, and electrochemical migration terms, 

90 has the fonn [13] 

91 (4) 

92 where the first tenn on the right refers to electrochemical migration, the second term to aqueous 

93 diffusion, and the last term to advective transport. Here Zj, D j and Yi denote the ion algebraic 

94 valence, the diffusivity and the activity coefficient of the ith species, respectively; and e, k, and 

95 T denote the absolute charge of electron, the Boltzmann constant and the absolute temperature, 

96 respectively. The quantity \[' represents the local electrical potential caused by the ionic 

97 distribution which is governed by the Poisson equation 

98 (5) 

99 where &r is the local dimensionless fluid dielectric constant, &0 the permittivity of a vacuum, 

100 and Pe the net charge density. Assuming no radiation and constant activity coefficient and 

10 I substituting Eq. (5) into (3), we have 

102 



103 aCI + u · 'VC = D.'V2C + ez/Di 'V. (c.'V\f') . 
01 1 I 1 kT I 

(6) 

104 This is the Nernst-Planck equation [14], where F can be any kind of effective body force. In this 

105 contribution we onl y consider the static electrical force from an external electric field . The 

106 general form of electrical force in electrokinetic fluids can be expressed as: 

107 (7) 

108 where \Pal is the external electrical potential field . 

109 When the ionic convection is negligible and the electric potential is continuously 

110 derivable, Eq. (6) has a simple steady-state solution for dilute electrolyte solutions: 

ez;'fI 

III c.=C e Iff 
I 1,<0 (8) 

112 Substituting Eq. (8) into Eq. (5) yields the nonlinear PB equation [15] 

113 (9) 

114 2.3 Equations for mil.erai reactioll rates 

115 Heterogeneous reactions between aqueous species and minerals at the pore-mineral 

116 interface are given by [16] 

117 AD a~J = LVjsAJ, (s), (10) 
s 

118 where n denotes the unit nonna! perpendicular to the fluid-mineral interface pointing toward the 

119 fluid phase) D denotes the aqueous di ffusion coefficient assumed to be the same for all species 

120 for simplicity, and is (s) denotes the reaction fl ux of the sth mineral at its surface, taken as 

121 positive for precipitation and negative for dissolution. The total surface area A across which 

122 diffusion takes place equal to the sum of individual mineral surface areas As 



123 (11 ) 

124 3. Lattice Boltzmann Model Implementation 

125 3.1 Incompressible lattice Boltzmanll model for single phase flow 

126 10 order to eliminate compressible effects in the conventional LBM, here we use an 

127 incompressible LB model constructed by Guo et al. [17]. The pore-scale flow of a single aqueous 

128 fluid phase is simulated by the following evolution equation : 

129 r(x+e 0 t+o)= r(x t)_fa(X,')-fa
8EJ

(X,l) 
J a a I' I J a ) , (12) 

r 

130 In the above equation, 0/ is the time increment, fa the distribution function along the a 

131 direction in velocity space, fa eq the corresponding equilibrium distribution function, and 1: the 

132 dimensionless relaxation time. For the commonly used two-dimensional, nine-speed LB model 

133 (D2Q9), the discrete velocities ea have the following form: 

134 j 
(0,0) a=O, 

ea = (cos8a,sin8a)c,8a=(a-l)n/2 0.=1-4, 

.fi(cosBu,sin8a)c, 8a = (a-5)1l/2+1l/4 a=5-8. 

( 13) 

135 For the incompressible LB model, the equilibrium distribution is defined by Guo et al. 

136 [17]: 

137 

-4a-t;..+Sa(U)' 
pc 

f/q = A~+sa(uL 
pc 

y P2 +sa(u), 
pc 

138 where cr, A and 'Y are the parameters satisfying 

a=O, 

a= 1-4, (I 4) 

a = 5-8, 



139 

140 

141 and 

142 

/1.+7=0-

I 
A+2"/ =-

I 2 ' 
(15) 

(16) 

143 In these equations, c = 'OX/Oi, where ox is the space increment, and p and u are the 

144 pressure and velocity of the fluid, respectively. The corresponding weight coefficients are 

145 
{

4/9' a=O, 
(j) = 1/9 a=I-4 (J , , 

1/36, a = 5-8. 

( 17) 

146 Eq. (12) has been shown to recover Eqs. (1 J 2) [17], with the velocity and pressure gi ven 

147 by 

148 (18) 

149 and 

150 ( 19) 

151 respecti vel y. 

152 3.2 Lattice Boltzmalln modelfor two ph ase flo w 

153 The interaction-potential model, originally proposed by Shan and Chen [18J, and 

154 henceforth referred to as the S-C model, introduces k distribution functions for a fluid mixture 

155 comprising of k components. Each distribution function represents a fluid component and 

156 satisfies the evolution equation. The non-locaJ interaction between particles at neighboring laHice 



157 si tes is included in the kinetics through a set of potentials. The LB equation for the kth 

158 component can be written as: 

159 (20) 

160 where J/ (x, t) is the number density distribution function for the kth component in the ith 

161 veloci ty direction at position x and time t, and 0, is the time increment. In the tenn on the right-

162 hand side, 'Ok is the relaxation time of the kth component in lattice unit, and ;;*(eq)(x,t) is the 

163 corresponding equilibrium distribution function. 

164 The phase separation between different fluid phases, the wettability of a particular fluid 

165 phase to the solid, and the body force, are taken into account by modifying the velocity used to 

166 calculate the equilibrium distribution function. An extra component-specific velocity due to 

167 interparticle interaction is added on top of a common velocity for each component. Interparticle 

168 interaction is realized through the total force, F k, acting on the kth component, including 

169 fluid/fluid interaction, fluid/solid interaction, and external force. More details can be found in 

170 [19,20] . 

171 The continuity and momentum equations can be obtained for the fluid mixture as a single 

172 fluid using Chapman-Enskog expansion procedure in the nearly incompressible limit: 

173 

op + V' . (pu) = 0 
ot 
p[ ~; + (u· V')u] = -V'p + V'. [pv(V'u + uV')] + pg 

(21 ) 

174 where the total density and velocity of the fluid mixture are given, respectively, by: 

175 (22) 



176 with a non-ideal gas equation of slate given by [21]: 

177 3.3 Lattice BoltzmalllJ model for transport of reactive solutes 

178 [n a previous article, Kang et al. [22] have derived the following LB equation for the total 

179 primary species concentrations for chemical systems with reactions written in canonical 

180 form: 

181 (23) 

182 

183 where Nc is the number of primary species, \fI j is the lotal concentration of the j th primary 

184 species, Gal is its distribution funct.ion along the a direction, G;~ is the corresponding equilibrium 

185 distribution function, eo are velocity vectors, 0/ is the time increment, and'l"aq is tbe dimensionless 

186 relaxation time. 

187 It has been shown that the above equation can recover the following pore-scale 

188 advection-diffusion equation for \f j [23]: 

189 (24) 

190 This equation is the same as Eq. (6) except that here the electrochemical migration is 

191 neglected. Assuming the homogeneous reactions are in instantaneous equilibrium, we have the 

192 following mass action equation [24,25]: 

193 (25) 



194 where vJI are the stoichiometric coefficients, Ki is the equilibrium constant of the ith 

195 homogeneous reaction, y, is the activity coefficient 0 f the ith secondary species, and CJ and C, 

196 are solute concentrations for primary and secondary species, respectively. They are related to by 

197 (26) 

198 where NR is the number of independent homogeneous reactions, or, equivalently, secondary 

199 speCles. 

200 More details on the heterogeneous reactions between aqueous species and minerals at the 

20 I pore-mineral interface described by Eq. (10), and on the update of solid phase can be found in 

202 [22,26] 

203 3.4 Lattice Poisson Method 

204 To solve the Poisson equation with strong nonlinearity, Eq. (9), we adopt the lattice 

205 Poisson method (LPM) developed previously [27, 28], which tracks the electrical potential 

206 distribution transporting on the discrete lattices. By expanding Eq. (9) into the time-dependent 

207 fonn 

209 . hi" ( Zi
e J . h . ' . ) Wlt g"u = - ~zieni.oo exp --If representmg t e negatlve nght hand slde (RHS tenn of 

GGo I kbT 

210 the original Eq. (9), we get the discrete evolution equation for the electrical potential distribution 



212 where g;q is the equilibrium distribution of the electric potentia) evolution variable. The time 

213 step for the electrical potential evolution is 

214 
8 5: _ x 

UfO --, 
.'" c' 

(28) 

215 where c' is a pseudo sound speed in the potential field. After evol ving on the discrete lattices, 

216 the mesoscopic electrical potential can be calculated using 

217 '1/ = I. (ga + O.50,.g g rh$O)a) . (29) 
a 

218 Although the electrical potential evolution equations are in an unsteady fonn, only the 

219 steady state result is realistic, because the electromagnetic susceptibility has not been considered. 

220 Although the lattice evolution method for nonlinear Poisson equation is not as efficient as the 

221 multi-grid solutions due to its long wavelength limit, it has the advantages of suitability for 

222 geometrical complexity and parallel computing. 

223 4. Simulation Examples 

224 4.1 Injection oleO,} illto a limestone rock 

225 We first present some modeling results on the injection of a fluid saturated with 170 bars 

226 C02 (g) into a limestone rock at the pore scale. The pore structure was derived from a digitized 

227 image of a limestone rock thin section with 640x480 pixels (figure 1). We reduced the original 

228 resolution to save computational time (figure 2). The chemical system of Na +_Ca2
+ _Mg2+_H+_ 

229 SO/--CI'-C02 with the reaction of calcite to fonn dolomite and gypsum is considered. Secondary 

232 NaHC03(aq), NaOH(aq). Initial fluid composition is pH 7.75 and 2.69 m NaCI brine, 



233 equilibrium with minerals calcite, dolomite and gypsum at 25°C. Initial rock composition is 

234 calcite. Secondary minerals include dolomite and gypsum. For boundary conditions, a constant 

235 pressure gradient is imposed across the domain for flow. When flow reaches steady state, a fluid 

236 with a pH of 3.87 and in equilibrium with 179 bars CCh(g) and minerals dolomite and gypsum is 

237 introduced at the inlet. Zero gradient boundary conditions are imposed at the outlet. Two 

238 different cases are considered with different mineral reaction rates to show their effects on 

239 solution concentration, mineral deposition and change in geometry. 

240 Resulting geometries at time= 15625 seconds for two different mineral reaction rate 

241 constants are plotted in figure 3. Damkohler is 7.375 for calcite and gypsum and 0.7375 for 

242 dolomite for the faster mineral reactions and 7.375x I 0-2 for calcite and gypsum and 7.375x I 0.3 

243 for dolomite for slower reactions. Concentration distribution of total Ca2
+, Mi+, and SO/, pH, 

244 and reaction rates for calcite, dolomite, and gypsum for the slower reactions are plotted in figure 

245 4. As can been seen from the figures, as the reaction rate constants decrease, the deposition of 

246 dolomite becomes more uniform surrounding the dissolving calcite grains. Only a small amount 

247 of gypsum forms on top of dolomite. At some point in the simulation, the major pores for flow 

248 become blocked halting further fluid flow through the medium. The pH is uniform over the 

249 entire pore space. All reaction rates have finite values at the mineral surface in the whole 

250 domain, outlining the solid geometry. The reaction rate is negative for calcite and positive for 

251 dolomite and gypsum, confirming that calcite is dissolving while dolomite and gypsum are 

252 precipitating. 

253 4.2 Two-pllase behavior alld jlood;IIg phenomena in polymer electrolyte fuel cells 

254 In tbis Section, we present some results for two-phase flow through the porous CL and 

255 the fibrous GDL in a PEFC. Details can be found in [29]. Figure 5 displays the steady state 



256 invading liquid water fronts corresponding to increasing capillary pressures from the primary 

257 drainage simulation in the reconstructed CL microstructure characterized by slightly 

258 hydrophobic wetting characteristics with a static contact angle of 100", At lower capillary 

259 pressures, the liquid water saturation front exhibits finger Like pattern, similar 10 the 

260 displacement pattern observed typically in the capillary fingering regime, The displacing l.iquid 

261 water phase penen-ates into the body of the resident wetting phase (i,e. air) in the shape of fingers 

262 owing to the surface tension driven capillary force . However, at high saturation levels, the 

263 invading non-wetting phase tends to exhibit a somewhat flat advancing front. This observation, 

264 as highlighted in figure 5(b), indicates that with increasing capillary pressure, even at very low 

265 capillary number (Ca), several penetrating saturation fronts tend to merge and form a stable 

266 front. The invasion pattern transitions from the capillary fingering regime to the stable 

267 displacement regime and potentially lies in the transition zone in between, In an operating fuel 

268 cell, the resulting liquid water displacement pattern pel1aining to the underlying pore-

269 morphology and wetting characteristics would playa vital role i.n the transport of the liquid water 

270 and hence the overall flooding behavior. 

271 Figure 6 shows the liquid water distribution as well as the invasion pattern from the 

272 primary drainage simulation with increasing capillary pressure in the initially air-saturated 

273 reconstructed carbon paper GDL characterized by hydrophobic wetting characteristics with a 

274 static contact angle of 140°. The reconstructed GDL structure used in the two-phase simulation 

275 consists of I OOx 1 OOx 100 lattice points in order to manage the computational overhead to a 

276 reasonable level. Physically, this scenario corresponds to the transport of liquid water generated 

277 from the electrochemical reaction in a hydrophobic CL into the otherwise air-occupied GDL in 

278 an operating fuel cell. At the initially very low capillary pressure, the invading front overcomes 



279 the barrier pressure only at some preferential locations depending upon the pore size along with 

280 the emergence of droplets owing to strong hydrophobicity. As the capillary pressure increases, 

281 several liquid water fronts start to penetrate into the air occupied domain. Further increase in 

282 capillary pressure exhibits growth of droplets at two invasion fronts, followed by the coalescence 

283 of the drops and collapsing into a single front. This newly fonned front then invades into the less 

284 tortuous in-plane direction. Additionally, emergence of tiny droplets and subsequent growth can 

285 be observed in the constricted pores in the vicinity of the inlet region primarily due to strong wall 

286 adhesion forces from interactions with highly hydrophobic fibers with the increasing capillary 

287 pressure. One of the several invading fronts finally reaches the air reservoir, physically the 

288 GDLlchannel interface, at a preferential location corresponding to the capillary pressure and is 

289 also referred to as the bubble point. It is important to note that the mesoscopic LB simulations 

290 provide fundamental insight into the pore-scale liquid water transport through different GDL 

291 structures and would likely enable novel GDL design with better water removal and flooding 

292 mitigation. 

293 4.3 Electroosmosis in homogeneously charged micro- and llano-scale porolls media 

294 In this section, we briefly present some simulation results on electroosmotic flows 

295 (EOFs) in charged micro porous media using the lattice Poisson-Boltzmann method (LPBM), 

296 with geometry effects, solution and surface charge effects considered. More details can be found 

297 in [28]. We focus on a cubic system of which each side is 1 micron long. A 60x60x60 unifonn 

298 grid is used. We change microstructure geometries of porous media by varying the porosity c 

299 from 0.1 to 0.9. The average characteristic length of particles varies from 20 to 150 nrn. Figure 7 

300 shows Schematics of the generated porous structures for porosity 0.3 and 0.6. The bulk ionic 

301 concentration n~ varies from 10-6 to 10-3 M and the surface zeta potential from 0 to -100 m V. 



302 The other properties and parameters used in this work are: the fluid density p =999.9 kglm3
, the 

303 dielectric constant GrCO =6.95x 1 0·\0 C2IJ m, the dynamic viscosity f' =0.889 mPa s, the 

304 temperature T=273 K and the external electrical field strength E=lxIO,j Vim. 

305 First, the geometry effects on the electroosmotic permeability in micro porous media are 

306 investigated by changing volume fraction and particle size (or number density) of the solid 

307 phase. We define the electroosrnotic permeability, K c ' as 

308 
U 

K~ = E' 

-

(30) 

309 where II is the averaged velocity of EOF along the direction of the driving electrical field E. 

310 The coefficients of electroosmotic permeability (Ke) for different porosities (£) of porous media 

311 are shown in figure 8. The bulk molar concentration c"" =10-4 M, and ~ = -50 mV. The 

312 electroosmotic permeability increases with the porosity monotonically. The increasing rate rises 

313 with the porosity as well which is very low when tbe porosity is smaller than 0.5 and becomes 

314 sharply high when the porosity is larger than 0.7. The predicted electroosmotic penneability is in 

315 the order of 10.9 m2/s V, which is consistent with the existing expelimental measurements. 

316 Figure') shows the predicted e1ectroosmotic permeability versus the bulk ionic 

317 concentration of the electrolyte solution. We used 8' =0.38. The e1ectroosmotic penneabiJity Kc 

318 increase monotonically with the bulk ionic concentration c'" as c"" varies from 10.6 to 10-3 M. 

319 This result can be explained by the undeveloped electrical potential distributions in narrow 

320 channels, whose similar results can be found in Fig. 2 of Ref. [30] and Fig.! &2 of Ref. [31 J. 

321 When c"" is lower than 10-4 M, the electroosmotic pernleability is nearly proportional to the bulk 

322 ionic concentration. When Coo is higher, the increasing rate becomes a little smaller. 



323 Zeta potential on solid surfaces of porous media affects EOF permeability directly. 

324 Simple proportional relationships have been obtained between the electroosmotic permeability 

325 and the zeta potential for electrical transports in soils and in polymer composites recently based 

326 on the boundary-layer theory. Here we analyze such effects using our numerical methods. 

327 Figure 10 shows the calculated electroosmotic permeability versus the zeta potential on 

328 solid surfaces of porous media. All surfaces are homogeneously charged with a same value of 

329 S . The other parameters used are: Coo =10-4 M, Cd =0.1 and £ =0.38. The zeta potential s 

330 changes from 0 to 100 m V. It shows that the proportionally linear relationship between 

33 I electroosmotic permeability and zeta potential is accurate only when S is very small «30 m V). 

332 The permeability increases much sharper when the zeta potential S is larger than 40 m V and 

333 then smoother when the zeta potential S is larger than 90 mY. 

334 5. Conclusions 

335 We have presented our recent work on mesoscopic modeling of multi-physicochemical 

336 processes in porous media, based on the LBM. For the problem of injecting CO2 saturated brine 

337 into a limestone rock, it is shown that the LBM is able to provide detailed information on fluid 

338 velocity, solute concentration, mineral composition, and reaction rates, as well as the evolution 

339 of the porous media geometry, and therefore can shed some light on the fundamental physics 

340 occurring at the pore scale for reactive transport involved in geologic C02 sequestration. For 

341 two-phase behavior and flooding phenomena in PEFCs, the LBM is a powerful tool to study the 

342 influence of the pore structure and surface wettability on liquid water transport and interfacial 

343 dynamics in the PEFC catalyst layer and gas diffusion layer. Particularly, the two-phase regime 

344 transition phenomenon in the capillary dominated transport in the CL and the influence of the 

345 mixed wetting characteristics on the flooding dynamics in the GDL are demonstrated. For 



346 electroosmotic flows in charged porous media, the strongly nontinear governing equations of 

347 electroosmosis in three-dimensional porous media are solved using the LPBM. The effects of 

348 pore structure, bulk ionic concentration, and the surface charge on electroosmotic permeability 

349 are carefully investigated. It is concluded that the LBM is a powerful numerical tool to simulate 

350 multi-physicochemical processes in porous media at the pore-scale. 
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Figure I Photograpbic image of a limestone rock thin section (640x480 pixels), 



Figure 2 Digitized image with reduced resolution. 
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Figure 3 Resulting geometries at time= 15625 seconds for two different mineral reaction rate 

co[]stants: a) large reaction rate constants; b) small reaction rate constants. 
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figure 4 Distribution of solute concentrations, pH value, and reaction rates at time=15625 

seconds for small reaction rate constants. 
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Figure 5 Advancing liquid water front with increasing capillary pressure through the initially air­

saturated reconstructed CL microstructure from the primary drainage simulation. 
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Figure 6 Advancing liquid water front with increasing capillary pressure through the initially air­

saturated reconstructed GOL microstructure from tbe primary drainage simulation. 
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Figure 7 Schematics of tbe generated porous structures on 60x60x60 grid systems. The white is 

solid particles and the dark is fluid: a) porosity=O.6; b) porosity=O.3. 
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Figure 8 Pred.icted electroosmotic permeabilities for various porosities of porous media at 

c", =10-4 M, (= -50 mV, E=}x 104 VIm. 
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Figure 9 The eieclroosmotic permeability changing with the bulk ionic concentration for £" =0.38, 

(= -50 mV, and E=lx104 VIm. 
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Figure [0 The electroosmotic permeability versus the zeta potential for c =0.38, Ceo =\ 0-4 M, and 

£=[)([04 VIm. 


