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Computational Earth Science Group

Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

We present our recent progress on mesoscopic modeling of multi-physicochemical
transport phenomena in porous media based on the lattice Boltzmann method. Simulation
examples include injection of CO, saturated brine into a limestone rock, two-phase behavior and
flooding phenomena in polymer electrolyte fuel cells, and electroosmosis in hornogeneously
charged porous media. It is shown that the lattice Boltzmann method can account for multiple,
coupled physicochemical processes in these systems and can shed some light on the underlying
physics occurting at the fundamental scale. Therefore, it can be a potential powerful numerical
tool to analyze multi-physicochemical processes in various energy, earth, and environmental

systems.
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1. Introduction

Multi-physicochemical transport phenomena in porous media are ubiquitous, particularly
in various energy, earth, and environment systems. One example is the disposal of supercritical
CO, in geologic formations, the most promising near-term solution to the problem of reducing
carbon emissions into the atmosphere [1]. Experimental analyses of the long-term fate of CO;
after injection into the geologic formations are not possible with relatively short-term laboratory
experiments. Therefore it is necessary to employ comprehensive numerical models that
incorporate multiple physicochemical processes involving interactions between the injected CO,,
the brine in the pore spaces, and the minerals lining the pores. Supercntical CO,, as a buoyant
and slightly miscible fluid, once injected, displaces brine from the pore space in a complex
paitern. At the interface with brine, CO; dissolves into the brine to form carbonic acid that can
react with and dissolve minerals eventually leading to mineral precipitation further along the
flow path. Clearly, there are multiple physics processes involved, including hydrodynamics,
thermodynamics, chemical dynamics, and electrodynamics (because the surface of most natural
media is charged). All these processes are ultimately governed by pore-scale interfacial
phenomena, which occur at scales of microns. However, because of the wide dispanty in scales
ranging from pore to field, a continuum formulation based on spatial averages taken over length
scales much larger than typical pore and mineral grain sizes is often utilized, implying the
existence of a representative elemental volume (REV) [2]. As a result, spatial heterogeneities at
smaller scales are unresolved and the aggregate effects of the porescale (mesoscopic scale)
processes are taken into account through various effective constitutive parameters. One of the
goals of performing pore-scale simulations is to obtain values for these constitutive parameters

through upscaling the pore-scale results. Other goals are to identify key parameters and
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physicochemical processes that control macroscopic phenomena, and to validate continuum
descriptions.

Another example is fuel cells, and in particular polymer electrolyte fuel cells (PEFCs). In
PEFCs, the catalyst layer (CL) is the host to several competing transport mechanisms involving
charge (proton and electron), species (oxygen, nitrogen, water vapor), and liquid water transport.
The multi-faceted functionality of a gas diffusion layer (GDL) includes reactant distribution,
liquid water transport, electron transport, heat conduction and mechanical support to the
membrane-electrode-assembly. Despite tremendous recent progress in enhancing the overall cell
performance, a pivotal performance limitation in PEFCs is manifested in terms of mass transport
loss originating from suboptimal liquid water transport and resulting flooding in the constituent
components [3]. In recent years, several macroscopic computational models for multiple-
physicochemical transport processes in PEFCs [4-10] have been developed. These macroscopic
models, again are based on the theory of volume averaging and treat the catalyst layer and gas
diffusion layer as macro-homogeneous porous layers. Due to their macroscopic nature, the
current models fail to resolve the influence of the structural morphology of the CL and GDL on
the underlying physics. Mesoscopic modeling is critical to understanding the overall structure-
wettability-transport interactions as well as the underlying multi-physicochemical processes in
the CL and GDL, and hence is a useful tool for design and optimization of microstructures of
electrodes for better performance and durability.

In this paper, we review our recent work on mesoscopic modeling of multi-
physicochemical processes in porous media, based on the lattice Boltzmann method (LBM), a
relatively new numerical method for simulating fluid flows and modeling physics in fluids [11].

Originating from the classical statistical physics, LBM is a mesoscopic method based on
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simplified kinetic equations. In the LBM, the fluid is modeled as a collection of fictitious-
particles propagating and colliding over a discrete lattice domain. Mesoscopic continuity and
momentum equations can be obtained from this propagation-collision dynamics through a ngors
mathematical analysis. The particulate nature and local dynamics provide advantages for
complex boundaries and parallel computation. In addition, the kinetic nature of the LBM makes
it easy to account for new physics in the LBM framework, which is especially useful for
modeling multi-physicochemical phenomena. In Section 2, the partial differential equations
governing fluid flow, transport of reactive species and electric potential, as well as mineral
reactions in porous media will be given. In Section 3, the implementation of the LBM to solve
these governing equations will be presented. Some simulation examples will be given in Section

4 and concluding remarks in Section 5.
2. Governing Equations
2.1 Continuity and momentum equations

For isothermal incompressible fluid flow, the continuity and momentum equations can be

written as [12]

V.u=0, )
paa—:'+pu—Vu=—Vp+va2u+F, )

where p represents the density of the fluid, ¢ the time, u the velocity vector, p the pressure, v

the kinetic viscosity, and F the body force density which may include all the effective body

forces.
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2.2 Transport equations for aqueous species and electrical potential

For the ith ion species in the solute, the mass conservation equation describing transport
and reaction can be written in the general form [13]:

%+V-JI+&C,.=R,, (3)
{

where C, denotes the ionic concentration, J, the species flux, 4, a radioactive decay constant,
and R, the rate at which the ith species is produced or consumed by chemical reactions. The flux
J,, consisting of contributions from advection, diffusion, and electrochemical migration terms,

has the form [13]

D,
J =- ""‘:C'T* C VY -D,(VC,+CVIny)+Cpu, (4)

where the first term on the right refers to electrochemical migration, the second term to aqueous

diffusion, and the Jast term to advective transport. Here z,, D, and y, denote the ion algebraic

valence, the diffusivity and the activity coefficient of the ith species, respectively; and e, k, and
T denote the absolute charge of electron, the Boltzmann constant and the absolute temperature,
respectively. The quantity W represents the local electrical potential caused by the ionic

distribution which is governed by the Poisson equation

V(£,6V¥)=—p,=—Y ez,C,, &)

where ¢, is the local dimensionless fluid dielectric constant, &, the permittivity of a vacuum,
and p, the net charge density. Assuming no radiation and constant activity coefficient and

substituting Eq. (5) into (3), we have
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ac, 3 ez,D.
—L4u-VC, =DVC. +—1=L9.(CVY).
a[ u ) i i kT ( ! ) (6)

This is the Nemnst-Planck equation [14], where F can be any kind of effective body force. In this
contribution we only consider the static electrical force from an external electric field. The
general form of electrical force in electrokinetic fluids can be expressed as:

FE =_)Oevqje.a ' (7)

where ¥, is the external electrical potential field.

erd
When the ionic convection is negligible and the electric potential is continuously

derivable, Eq. (6) has a simple steady-state solution for dilute electrolyte solutions:

g ., (8)

Substituting Eq. (8) into Eq. (5) yields the nonlinear PB equation [15]

oLt ool -2%)

66'0 I

2.3 Equations for mineral reaction rates

Heterogeneous reactions between aqueous species and minerals at the pore-mineral

interface are given by [16]

ZV,, 7 ( (10)

where n denotes the unit normal perpendicular to the fluid-mineral interface pointing toward the

fluid phase, D denotes the aqueous diffusion coefficient assumed to be the same for all species
for simplicity, and /, (5) denotes the reaction flux of the sth mineral at its surface, taken as

positive for precipitation and negative for dissolution. The total surface area A4 across which

diffusion takes place equal to the sum of individual mineral surface areas A
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A= 4 (11)

3. Lattice Boltzmann Model Implementation
3.1 Incompvressible lattice Boltzmann model for single phase flow

In order to eliminate compressible effects in the conventional LBM, here we use an
incompressible LB model constructed by Guo et al. [17]. The pore-scale flow of a single aqueous

fluid phase is simulated by the following evolution equation:

[i(x+e,8,6+8)= [ (x,n-LaZD=L D (12)
T

In the above equation, &, is the time increment, f, the distribution function along the «

direction in velocity space, f,“the corresponding equilibriur distribution function, and 7 the

dimensionless relaxation time. For the commonly used two-dimensional, nine-speed LB model

(D2Q9), the discrete velocities e, have the following form:

(0,0) a=0,
e = (cos@,,sin8,)c, 6, =(a-1)z/2 a=1-4, (13)
ﬁ(cos&a,siné‘a)c, 0,=(a-5)z/2+7[4 a=5-8.

For the incompressible LB model, the equilibrium distribution is defined by Guo et al.

[17):
—40‘;‘3—2+sa(u), a=0,
fa""’=<ﬂ;%+sa(u), a=1-4, (14)
‘yﬁyﬂa(u), a=5-8,

where o, A and y are the parameters satisfying
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A+y=0
1 (15)
A+2y=—,
d 2
and
e -u (e -u) 3u’
s,(u)=w, |3—2—+9—= - :
- (1) [ = » 262] (16)

[n these equations, ¢ = 8x/81, where dx is the space increment, and p and u are the

pressure and velocity of the fluid, respectively. The corresponding weight coefficients are

4/9, o =0,
w,=<1/9, a=1-4, (17
1/36, & =5-8.

Eq. (12) has been shown to recover Egs. (1, 2) [17], with the velocity and pressure given

by
g
u=>Ye,f,, (18)

and

P_S1S s
p 40[21; ‘o(u)} (19)

respectively.
3.2 Lattice Boltunann model for two phase flow

The interaction-potential model, originally proposed by Shan and Chen [18], and
henceforth referred to as the S-C model, introduces 4 distribution functions for a fluid mixture
comprising of k corsponents. Each distribution function represents a fluid component and

satisfies the evolution equation. The non-local interaction between particles at neighboring lattice



157  sites is included in the kinetics through a set of potentials. The LB equation for the Ath

[58 component can be written as:

AL (20)

Ty

159 SE(x+e,5,t+6,)- fK(x,t) =

160  where f*(x,f) is the number density distribution function for the &th component in the ith
161  velocity direction at position x and time ¢, and &, is the time increment. In the term on the right-

162  hand side, z, is the relaxation time of the k&th component in lattice unit, and £;*“”(x,t) is the

163  corresponding equilibrium distribution function.

164 The phase separation between different fluid phases, the wettability of a particular fluid
(65 phase to the solid, and the body force, are taken into account by modifying the velocity used to
166 calculate the equilibrium distribution function. An extra component-specific velocity due to

167 interparticle interactton is added on top of a common velocity for each component. Interparticle
168 interaction is realized through the total force, Fy, acting on the kth component, including

169  fluid/fluid interaction, fluid/solid interaction, and external force. More details can be found in
170 [19, 20].

171 The continuity and momentum equations can be obtained for the fluid mixture as a single

172 fluid using Chapman-Enskog expansion procedure in the nearly incompressible limit:

219 (pu)=0
173 (21)

p[g—:‘+ (u- V)u} ==Vp+ V- [pv(Vu+uV)]+ pg

174  where the total density and velocity of the fluid mixture are given, respectively, by:

P=kak

175 |
pu=7y peau, +EZ* F,

(22)
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with a non-ideal gas equation of state given by [21]:
3.3 Lattice Boltunann model for transport of reactive solutes

In a previous article, Kang et al. [22] have derived the following LB equation for the total
primary species concentrations for chemical systems with reactions written in canonical

form:

G, (x,0)=-G/ (¥;,u)

aj

G, (x+e,6,,t+8,)=G,(x,1)~ (= ey NE) (23)

r.m

where N¢ is the number of primary species, ‘¥, is the total concentration of the j th primary
species, Gy is its distribution function along the a direction, G} is the corresponding equilibrium
distribution function, e, are velocity vectors, 4, is the time increment, and z,, is the dimensionless

relaxation time.
It has been shown that the above equation can recover the following pore-scale

advection-diffusion equation for ‘¥, [23]:

i{—ﬁ(n‘v)\{g =v-(ovv,). (24)

This equation is the same as Eq. (6) except that here the electrochemical migration is
neglected. Assuming the homogeneous reactions are in instantaneous equilibnum, we have the

following mass action equation [24, 25]:

N, v,
¢ =0k 1(rc)" (25)

J=



194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

where v, are the stoichiometric coefficients, K| is the equilibrium constant of the ith

homogeneous reaction, y, is the activity coefficient of the ith secondary species, and C,and C,

are solute concentrations for primary and secondary species, respectively. They are related to by
N,
¥,=C,+Yv,C, (26)
i=l

where N, is the number of independent homogeneous reactions, or, equivalently, secondary
species.

More details on the heterogeneous reactions between aqueous species and minerals at the
pore-mineral interface described by Eq. (10), and on the update of solid phase can be found in

(22, 26]
3.4 Lattice Poisson Method

To solve the Poisson equation with strong nonlinearity, Eq. (9), we adopt the lattice
Poisson method (LPM) developed previously [27, 28], which tracks the electrical potential
distribution transporting on the discrete lattices. By expanding Eq. (9) into the time-dependent

form

0
'a_;:' = VlW * g,p,_,-(r,’r”s!)

: | : . ‘ .
with g, = —-—Z z,en; , exp (—%wj representing the negative right hand side (RHS) term of

o i b

the original Eq. (9), we get the discrete evolution equation for the electrical potential distribution

1 0.5
8, (r+Ar,t+5, ) g, (r,0)= —T—[g,, (r,0)- g7 (r,f):|+ ¢ _f_)(sr,ga’)agdu’ 27)
2 £
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where g.’is the equilibrium distribution of the electric potential evolution variable. The time

step for the electrical potential evolution is
b = (28)

where ¢' is a pseudo sound speed in the potential field. After evolving on the discrete lattices,

the mesoscopic electrical potential can be calculated using

V/ = Z(ga + O‘SQ.gg/k.fma) - (29)

Although the electrical potential evolution equations are in an unsteady form, only the
steady state result is realistic, because the electromagnetic susceptibility has not been considered.
Although the lattice evolution method for nonlinear Poisson equation is not as efficient as the
multi-grid solutions due to its long wavelength limit, it has the advantages of suitability for

geometrical complexity and parallel computing.
4. Simulation Examples
4.1 Injection of CO; into a limestone rock

We first present some modeling results on the injection of a fluid saturated with 170 bars
CO»(g) into a limestone rock at the pore scale. The pore structure was derived from a digitized
image of a limestone rock thin section with 640x480 pixels (figure 1). We reduced the original
resolution to save computational time (figure 2). The chemical system of Na‘-Ca®*-Mg?*-H*-
SO4¥-CI'-CO, with the reaction of calcite to form dolomite and gypsum is considered. Secondary
species included in the simulation are: OH', HSOy", HySO4(aq), COs™, HCO5, CaCOx(aq),
CaHCO;", CaOH', CaSO4(aq), MgCOs(aq), MgHCO4 ", MgS04(aq), MgOH", NaCl(aq),

NaHCO;(aq), NaOH(aq). Initial fluid composition is pH 7.75 and 2.69 m NaCl brine,
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equilibrium with minerals calcite, dolomite and gypsum at 25 °C. Initial rock composition is
calcite. Secondary minerals include dolomite and gypsum. For boundary conditions, a constant
pressure gradient is imposed across the domain for flow. When flow reaches steady state, a fluid
with a pH of 3.87 and in equilibrium with 179 bars CO,(g) and minerals dolomite and gypsum is
introduced at the inlet. Zero gradient boundary conditions are imposed at the outlet. Two
different cases are considered with different mineral reaction rates to show their effects on
solution concentration, mineral deposition and change in geometry.

Resulting geometries at time=15625 seconds for two different mineral reaction rate
constants are plotted in figure 3. Damkohler is 7.375 for calcite and gypsum and 0.7375 for
dolomite for the faster mineral reactions and 7.375%107 for calcite and gypsum and 7.375x107
for dolomite for slower reactions. Concentration distribution of total Ca2+, Mg2+, and 5042', pH,
and reaction rates for calcite, dolomite, and gypsum for the slower reactions are plotted in figure
4. As can been seen from the figures, as the reaction rate constants decrease, the deposition of
dolomite becomes more uniform surrounding the dissolving calcite grains. Only a small amount
of gypsum forms on top of dolomite. At some point in the simulation, the major pores for flow
become blocked halting further fluid flow through the medium. The pH is uniform over the
entire pore space. All reaction rates have finite values at the mineral surface in the whole
domain, outlining the solid geometry. The reaction rate is negative for calcite and positive for
dolomite and gypsum, confirming that calcite is dissolving while dolomite and gypsum are

precipitating.
4.2 Two-phase behavior and flooding phenomena in polymer electrolyte fuel cells

In this Section, we present some results for two-phase flow through the porous CL and

the fibrous GDL in a PEFC. Details can be found in [29]. Figure 5 displays the steady state
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invading liquid water fronts corresponding to increasing capillary pressures from the primary
drainage simulation in the reconstructed CL microstructure characterized by slightly
hydrophobic wetting characteristics with a static contact angle of 100", At lower capillary
pressures, the liquid water saturation front exhibits finger like pattern, similar to the
displacement pattern observed typically in the capillary fingering regime. The displacing liquid
water phase penetrates into the body of the resident wetting phase (i.e. air) in the shape of fingers
owing to the surface tension driven capillary force. However, at high saturation levels, the
invading non-wetting phase tends to exhibit a somewhat flat advancing front. This observation,
as highlighted in figure S(b), indicates that with increasing capillary pressure, even at very low
capillary number (Ca), several penetrating saturation fronts tend to merge and form a stable
front. The invasion pattern transitions from the capillary fingering regime to the stable
displacement regime and potentially lies in the transition zone in between. In an operating fuel
cell, the resulting liquid water displacement pattern pettaining to the underlying pore-
morphology and wetting characteristics would play a vital role in the transport of the liquid water
and hence the overall flooding behavior.

Figure 6 shows the liquid water distribution as well as the invasion pattern from the
primary drainage simulation with increasing capillary pressure in the initially air-saturated
reconstructed carbon paper GDL characterized by hydrophobic wetting characteristics with a
static contact angle of 140°. The reconstructed GDL structure used in the two-phase simulation
consists of 100x100x 100 lattice points in order to manage the computational overhead to a
reasonable level. Physically, this scenario corresponds to the transport of liquid water generated
from the electrochemical reaction in a hydrophobic CL into the otherwise air-occupied GDL in

an operating fuel cell. At the initially very low capillary pressure, the invading front overcomes
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the barrier pressure only at some preferential locations depending upon the pore size along with
the emergence of droplets owing to strong hydrophobicity. As the capillary pressure increases,
several liquid water fronts start to penetrate into the air occupied domain. Further increase in
capillary pressure exhibits growth of droplets at two invasion fronts, followed by the coalescence
of the drops and collapsing into a single front. This newly formed front then invades into the less
tortuous in-plane direction. Additionally, emergence of tiny droplets and subsequent growth can
be observed in the constricted pores in the vicinity of the inlet region primarily due to strong wall
adhesion forces from interactions with highly hydrophobic fibers with the increasing capillary
pressure. One of the several invading fronts finally reaches the air reservoir, physically the
GDL/channel interface, at a preferential location corresponding to the capillary pressure and is
also referred to as the bubble point. It is important to note that the mesoscopic LB simulations
provide fundamental insight into the pore-scale liquid water transport through different GDL
structures and would likely enable novel GDL design with better water removal and flooding
mitigation.

4.3 Electroosmosis in homogeneously charged micro- and nano-scale porous media

In this section, we briefly present some simulation results on electroosmotic flows
(EOFs) in charged micro porous media using the lattice Poisson-Boltzmann method (LPBM),
with geometry effects, solution and surface charge effects considered. More details can be found
in [28]. We focus on a cubic system of which each side is | micron long. A 60x60x60 uniform
grid is used. We change microstructure geometries of porous media by varying the porosity &
from 0.1 to 0.9. The average characteristic length of particles varies from 20 to 150 nm. Figure 7
shows Schematics of the generated porous structures for porosity 0.3 and 0.6. The bulk ionic

concentration n,, varies from 10 to 10 M and the surface zeta potential from 0 to -100 mV.
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The other properties and parameters used in this work are: the fluid density p=999.9 kg/m’, the

dielectric constant £,£,=6.95x1 0" C¥J m, the dynamic viscosity H#=0.889 mPa s, the

temperature 7 =273 K and the external electrical field strength E=1x10" V/m.
First, the geometry effects on the electroosmotic permeability in micro porous media are
investigated by changing volume fraction and particle size (or number density) of the solid

phase. We define the electroosmotic permeability, «_, as

u

— 30
= (30)

where 1 is the averaged velocity of EOF along the direction of the driving electrical field E.

The coefficients of electroosmotic permeability ( «, ) for different porosities (£ ) of porous media
are shown in figure 8. The bulk molar concentration ¢, =10 M, and ¢ =-50 mV. The

electroosmotic permeability increases with the porosity monotonically. The increasing rate rises

with the porosity as well which is very low when the porosity is smaller than 0.5 and becomes

sharply high when the porosity is larger than 0.7. The predicted electroosmotic permeability is in

the order of 10”° m?*/s V, which is consistent with the existing experimental measurements.
Figure 9 shows the predicted electroosmotic permeability versus the bulk ionic

concentration of the electrolyte solution. We used £ =0.38. The electroosmotic permeability .
increase monotonically with the bulk ionic concentration ¢, as ¢, varies from 10° to 107 M.

This result can be explained by the undeveloped electrical potential distributions in narrow
channels, whose similar results can be found in Fig. 2 of Ref. (30] and Fig.1&2 of Ref. [31].

When ¢, is lower than 10™ M, the electroosmotic permeability is nearly proportional to the bulk

ionic concentration. When c_ is higher, the increasing rate becomes a little smaller.
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Zeta potential on solid surfaces of porous media affects EOF permeability directly.
Simple proportional relationships have been obtained between the electroosmotic permeability
and the zeta potential for electrical transports in soils and in polymer composites recently based
on the boundary-layer theory. Here we analyze such effects using our numerical methods.

Figure 10 shows the calculated electroosmotic permeability versus the zeta potential on

solid surfaces of porous media. All surfaces are homogeneously charged with a same value of

¢ . The other parameters used are: ¢, =10 M, ¢,=0.1 and £=0.38. The zeta potential ¢

changes from 0 to 100 mV. It shows that the proportionally linear relationship between

electroosmotic permeability and zeta potential is accurate only when ¢ is very small (<30 mV).
The permeability increases much sharper when the zeta potential { is Jarger than 40 mV and

then smoother when the zeta potential £ is larger than 90 mV.

5. Conclusions

We have presented our recent work on mesoscopic modeling of multi-physicochemical
processes in porous media, based on the LBM. For the problem of injecting CO; saturated brine
into a limestone rock, it is shown that the LBM is able to provide detailed information on fluid
velocity, solute concentration, mineral composition, and reaction rates, as well as the evolution
of the porous media geometry, and therefore can shed some light on the fundamental physics
occurring at the pore scale for reactive transport involved in geologic CO, sequestration. For
two-phase behavior and flooding phenomena in PEFCs, the LBM is a powerful tool to study the
influence of the pore structure and surface wettability on liquid water transport and interfacial
dynamics in the PEFC catalyst layer and gas diffusion layer. Particularly, the two-phase regime
transition phenomenon in the capillary dominated transport in the CL and the influence of the

mixed wetting charactenistics on the flooding dynamics in the GDL are demonstrated. For
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electroosmotic flows in charged porous media, the strongly nonlinear governing equations of
electroosmosis in three-dimensional porous media are solved using the LPBM. The effects of
pore structure, butk ionic concentration, and the surface charge on electroosmotic permeability
are carefully investigated. It is concluded that the LBM is a powerful numerical tool to simulate

multi-physicochemical processes in porous media at the pore-scale.
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Figure | Photographic image of a limestone rock thin scction (640x480 pixels).



Figure 2 Digitized image with reduced resolution.



Figure 3 Resulting geometries at time=15625 seconds for two different mineral reaction rate
constants: a) large reaction ratc constants; b) small reaction rate constants.



Figure 4 Distribution of solute concentrations, pH value, and reaction rates at time=15625
seconds for small reaction rate constants.
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Figure 5 Advaocing liquid water front with increasing capillary pressure through the initially air-
saturated reconstructed CL microstructure from the primary drainage simulation.
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Figure 6 Advancing liquid water front with increasing capillary pressure through the ipitially air-
saturated reconstructed GDL microstructure from the primary drainage simulation.



Figure 7 Schematics of the generated porous structures on 60x60x60 grid systems. The white is
solid particles and the dark is fluid: a) porosity=0.6; b) porosity=0.3.
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Figure 8 Predicted electroosmotic permeabilities for various porosities of porous media at

c,=10"M, £ =-50mV, E=1x10" V/m.
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Figure 9 The electroosmotic permeability changing with the bulk ionic concentration for £=0.38,
£=-50mV, and £=1x10" V/m.



Figure 10 The clectroosmotic permeability versus the zeta potential for £=0.38, ¢, =10 M, and
E=1x10° V/m.



