

OPTIMIZATION AND SINGLE-SHOT CHARACTERIZATION OF ULTRASHORT THz PULSES FROM A LASER WAKEFIELD ACCELERATOR*

G. R. Plateau^{†‡}, N. H. Matlis, J. van Tilborg, C. G. R. Geddes,
Cs. Tóth, C. B. Schroeder and W. P. Leemans[§],
LBNL, Berkeley, CA 94720, USA

Abstract

We present spatiotemporal characterization of μJ -class ultrashort THz pulses generated from a laser wakefield accelerator (LWFA). Accelerated electrons [1], resulting from the interaction of a high-intensity laser pulse with a plasma, emit high-intensity THz pulses as coherent transition radiation [2]. Such high peak-power THz pulses, suitable for high-field (MV/cm) pump-probe experiments [3], also provide a non-invasive bunch-length diagnostic [4] and thus feedback for the accelerator. The characterization of the THz pulses includes energy measurement using a Golay cell, 2D sign-resolved electro-optic measurement and single-shot spatiotemporal electric-field distribution retrieval using a new technique, coined temporal electric-field cross-Correlation (TEX). All three techniques corroborate THz pulses of $\sim 5 \mu\text{J}$, with peak fields of 100's of kV/cm and $\sim 0.4 \text{ ps rms}$ duration.

INTRODUCTION

Terahertz waves or T-rays, associated with the far-infrared region of the electromagnetic spectrum, have gained interest as a source in recent years due to promising applications in imaging, the spectroscopy and communications. T-rays have also been proven [4] to be uniquely suited for temporal characterization of electron bunches produced by a laser wakefield accelerator (LWFA). As the bunch propagates through the plasma-vacuum interface, it produces coherent transition radiation (CTR) in the 0.3 – 6 THz range [5, 6]. Theoretical analysis [2] of the generation of CTR by the electron bunch reveals a strong dependence of the THz peak power on the bunch charge, plasma size, bunch length and electron energy. Since each electron in the bunch emits independently, the radiation only interferes constructively if the bunch is shorter than the emitted wavelength. The bunch length ($< 50 \text{ fs}$) thus sets the cut-off frequency of the THz spectrum (typically a few THz), providing a practical way to measure the bunch duration. The power spectrum of the THz is determined by Fourier transformation of the temporal waveform. In this paper, three different techniques are used to character-

ize the THz pulses: pulse energy integration using a Golay cell; spatially-resolved and sign-sensitive electro-optic (EO) sampling, in which the delay is scanned to recover the temporal electric-field structure; and a new single-shot technique named temporal electric-field cross-correlation (TEX) based on frequency-domain interferometry.

OPTIMIZATION AND ENERGY MEASUREMENT

In the LOASIS facility at the Lawrence Berkeley National Laboratory, an 800-nm laser pulse ($\geq 40 \text{ fs}$, up to 0.5 J) is focused ($w_0 \simeq 6 \mu\text{m}$, $> 10^{19} \text{ W.cm}^{-2}$) into Helium or Hydrogen gas ($n_e \sim 4 \times 10^{19} \text{ cm}^{-3}$) from a supersonic nozzle [7, 8]. The laser pulse drives a plasma density wave which traps ($\sim 1 \text{ nC}$ of charge) and accelerates (10's of MeV) electron bunches which produce CTR (THz) pulses at the plasma-vacuum interface. T-rays are collected and refocused outside the vacuum chamber, by two off-axis parabolas, where diagnostics are performed.

The main LWFA parameters determining the amount of THz radiation generated are the bunch duration, the plasma size, and both the charge and energy of the electron bunch. As the plasma size is difficult to vary, we concentrate on maximizing the charge and energy of the electron bunch by optimizing the temporal intensity profile of the driver beam (pre-pulse control), hence the interaction between laser and plasma. In addition, the correlation between LWFA performance and THz emission is explored by scanning the compression and the power of the driver beam.

Pre-pulse control for the laser is based on the cross-polarized wave (XPW) technique [9]. A nonlinear crystal, such as BaF₂, is placed between two crossed polarizers. The driver beam undergoes a polarization rotation due to the intensity-induced cubic anisotropy in the crystal. Therefore, only the main pulse is transmitted with high efficiency through the second polarizer. The smaller pre-pulses and pedestal do not induce enough anisotropy and hence are suppressed. This technique can achieve laser pulse contrast up to 10^{-11} [10]. Before and after the implementation, contrast measurements using a commercial third-order cross-correlator show a gain of 3 – 4 orders of magnitude. Experiments showed a dramatic increase in the production of charge, THz (a factor ~ 4), and a dramatic decrease in shot-to-shot fluctuations, from 100% to 10%.

* Work supported by DoE and DARPA

† Corresponding author: grplateau@lbl.gov

‡ also at École Polytechnique, Palaiseau 91128, France

§ also at University of Nevada, Reno, NV 89557

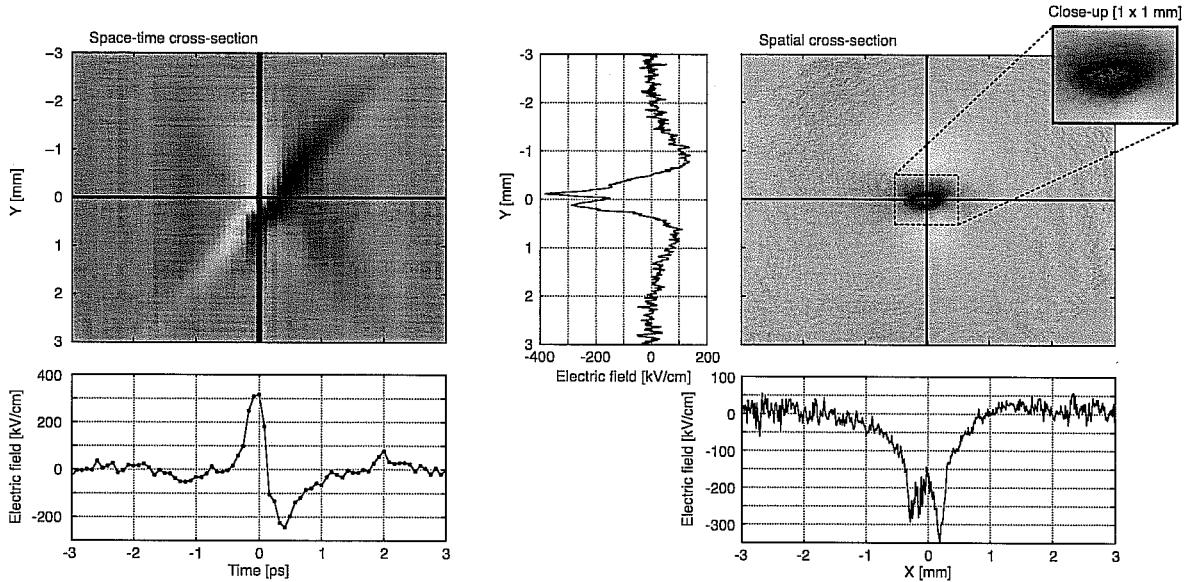


Figure 1: Space-time cross section (*left*) of the THz pulse electric fields reconstructed from a delay scan using 2D sign-resolved EO sampling. Spatial cross-section (*right*) showing inversion (close-up).

To measure the THz pulses energy, we used a Golay cell. A calibration was done at the FELIX facility in the Netherlands [11] and showed that the full-scale detection limit is $0.85 \mu\text{J}$. At the focus of the THz beam, the collected energy was sufficient to strongly saturate the Golay cell. Thus, to recover the energy a narrow (0.9 mm) slit aperture was scanned across the THz beam at a plane 3.8 cm upstream of focus. The resulting distribution of energy density was then integrated to yield the energy in the whole beam, which was $5.1 \mu\text{J}$.

The Golay cell was also used to characterize the dependence of the THz pulse energy on the laser compression and power. As expected, THz generation is maximum at peak compression and at maximum power. More interesting is the change in power-law dependence of THz energy on the charge of the electron bunch. For pulse compression, THz energy is proportional to charge to the power 1.38, whereas for pulse energy it is to the power 2.33.

2D SIGN-RESOLVED ELECTRO-OPTIC SAMPLING

The spatiotemporal profile of the THz pulses was measured using spatially-resolved electro-optic sampling. The technique relies on the interaction of a THz pulse with a short (~ 50 fs) diagnostic laser pulse in an EO crystal. The collimated, linearly polarized probe beam overlaps with the focused T-rays inside the active crystal (GaP $\langle 110 \rangle$). The high amplitude, low frequency field of the T-rays acts as an electrical bias on the crystal, inducing local birefringence. The probe pulse thus experiences a polarization rotation proportional to the THz electric field, which is translated

to an amplitude modulation by using a second polarizer, termed “analyzer”. By introducing a quarter-wave plate (QWP) before the analyzer, polarization rotation by the THz can either add to or subtract from the base level of rotation provided by the QWP. Positive and negative THz fields are thus distinguished as an increase or decrease, respectively, of the transmission through the analyzer.

The maximum measurable field strength is set by the field required to rotate the polarization by $\pi/2$. For these experiments, the upper limit (200 μm thick GaP crystal) is $\sim 260 \text{ kV/cm}$. Since the probe pulse duration is much shorter than the THz pulse, temporal structure of the THz electric field is simply retrieved by scanning the arrival time of the probe pulse. The sequence of images collected are used to reconstruct a space-time cross-section of the THz pulse electric field (Fig. 1). For phase retardation greater than $\pi/2$ an inversion of the transmission is observed. In the experiments described here, the inversion was determined to occur at approximately $\sim 200 \text{ kV/cm}$, in reasonable agreement with the theoretical value, providing a benchmark for the field strength measurement. Accounting for the inversion, the corrected peak electric field is $\sim 300 \text{ kV/cm}$ and the pulse duration $\sim 0.4 \text{ ps rms}$.

The space-time cross-section in Fig. 1 shows strong spatiotemporal coupling, which manifests itself as a time-dependent beam diameter and wavefront. This spatiotemporal coupling is attributed to both double Fresnel diffraction of the T-rays on the collection optics (OAP) and to the few-cycle nature of these pulses [12]. Theoretical model and simulations are currently in progress.

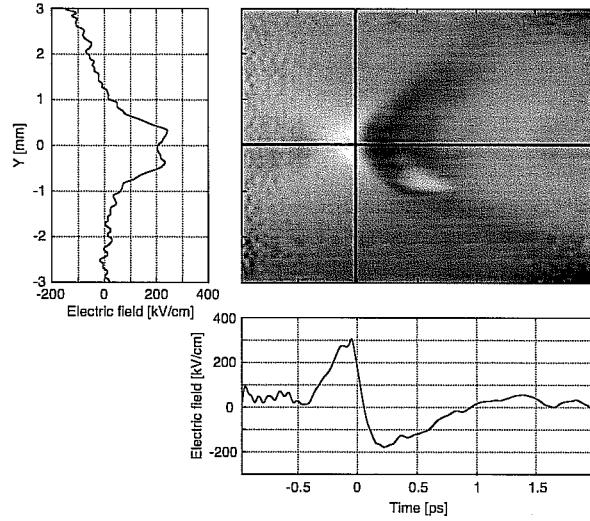


Figure 2: Space-time cross section obtained in a single-shot by Temporal Electric-field Cross-correlation (TEX).

TEMPORAL ELECTRIC-FIELD CROSS-CORRELATION

Real-time optimization and characterization of the T-rays generated by a laser wakefield accelerator requires techniques capable of measuring the temporal electric profile of these THz pulses on a single-shot basis. The retrieval of a space-time cross-section using 2D sign-resolved EO sampling is time-consuming and susceptible to shot-to-shot fluctuations. Although several techniques exist to capture THz waveforms in a single-shot [6, 13], we have developed a new one which overcomes the temporal resolution limitations of “spectral encoding” [14], and avoids the difficulties associated with a secondary nonlinear process (*e.g.* second-harmonic generation), while combining the advantages of both.

This new technique [15] is a variation of the single-shot temporal cross-correlation technique [6]. A chirped pulse (few picoseconds long) overlaps the THz pulse in a EO crystal and experiences both amplitude and phase modulation, providing two simultaneous retrievals of the full temporal electric-field distribution. Because the accumulated phase shift scales linearly with the electric-field, the phase modulation provides a benchmark for the “over-rotation” occurring in the amplitude modulation. Preliminary results (Fig. 2) corroborate all the observations described in the previous section, *i.e.* pulse duration, peak electric-field and spatiotemporal coupling at the T-rays focus.

CONCLUSION

We have demonstrated generation of 0.4 ps *rms* THz pulses with $> 5 \mu\text{J}$ of energy, $\sim 0.3 \text{ MV/cm}$ peak electric-fields. We showed that these few-cycle T-rays experience a strong spatiotemporal coupling which impacts its properties and, therefore, the interpretation of the LWFA charac-

teristics. Finally, we have also demonstrated the ability to characterize in a single-shot both amplitude and phase of the THz pulses, providing shot-to-shot information on the electron bunch duration.

REFERENCES

- [1] W. P. Leemans *et al.*, *Nature Phys.* 2, 696 (2006)
- [2] C. B. Scroeder *et al.*, *Phys. Rev. E* 69, 016501 (2004)
- [3] M. Hoffmann *et al.*, *Phys. Rev. B* 79, 161201 (2009)
- [4] J. van Tilborg *et al.*, *Phys. Rev. Lett.* 96, 014801 (2006)
- [5] W. P. Leemans *et al.*, *Phys. Rev. Lett.* 91, 7, 074802 (2003)
- [6] J. van Tilborg *et al.*, *Opt. Lett.* 32, 3, 313 (2007)
- [7] C. G. R. Geddes *et al.*, *Phys. Rev. Lett.* 100, 215004 (2008)
- [8] G. R. Plateau *et al.*, *in preparation* (2009)
- [9] A. Jullien *et al.*, *Opt. Lett.* 30, 920 (2005)
- [10] V. Chvykov *et al.*, *Opt. Lett.* 31, 1456 (2006)
- [11] E. Chiadroni *et al.*, FOM Rijnhuizen, Tech. report (2005)
- [12] Z. Jiang *et al.*, *Opt. Exp.* 5, 11, 243 (1999)
- [13] S. P. Jamison *et al.*, *Opt. Lett.* 28, 18, 1710 (2003)
- [14] Z. Jiang *et al.*, *Appl. Phys. Lett.* 72, 16, 1945 (1998)
- [15] N. H. Matlis *et al.*, *in preparation* (2009)

ACKNOWLEDGMENTS

This work was supported by the Director, Office of Science, of the US Department of Energy under contract No. DE-AC02-05CH11231.