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Modeling the Viscoplastic Micromechanical Response of Two-Phase Materials using
Fast Fourier Transforms
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* Department of Materials Science and Engineering, Carnegie Mellon University,
Pittsburgh, PA 15213, US.A.
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Abstract

A viscoplastic approach using the Fast Fourier Transform (FFT) method for
obtaining local mechanical response is utilized to study microstructure-property
relationships in composite materials. Specifically, three-dimensional, two-phase digital
materials containing isotropically coarsened particles surrounded by a matrix phase,
generated through a Kinetic Monte Carlo Potts model for Ostwald ripening, are used as
instantiations in order to calculate the stress and strain rate fields under uniaxial tension.
The effects of the morphology of the matrix phase, the volume fraction and the contiguity
of particles, and the polycrystallinity of matrix phase, on the stress and strain rate fields
under uniaxial tension are examined. It is found that the first moments of the stress and
strain rate fields have a different dependence on the particle volume fraction and the
particle contiguity from their second moments. The average stresses and average strain
rates of both phases and of the overall composite have rather simple relationships with
the particle volume fraction whereas their standard deviations vary strongly, especially
when the particle volume fraction is high, and the contiguity of particles has a noticeable
effect on the mechanical response. It is also found that the shape of stress distribution in
the BCC hard particle phase evolves as the volume fraction of particles in the composite
varies, such that it agrees with the stress field in the BCC polycrystal as the volume of
particles approaches unity. Finally, it is observed that the stress and strain rate fields in
the microstructures with a polycrystalline matrix are less sensitive to changes in volume
fraction and contiguity of particles.

Keywords: Micromechanical Modeling; Composite materials; Stress and strain rate
fields; Viscoplasticity; Microstructure-property relationship

1. Introduction
It is well known in Materials Science that the properties of materials are a

function of their microstructural parameters. In studying microstructure-property
relationships, it is crucial to map the microstructural parameters obtained from materials
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characterization to the desired materials property. Conventionally, materials
characterization is based on data obtained from two-dimensional plane sections because
of the opacity of most crystalline materials. However, many problems related to the
properties of materials are three-dimensional in nature (Becker and Panchanadeeswaran,
1995; Lin et al., 1995; Patton et al., 1998; Shan and Gokhale, 2001; Suresh, 1998)
because most materials of technological relevance have a polycrystalline or multi-phase
structure with significant complexity in the spatial arrangement of their microstructural
units. Even though stereology (Underwood, 1970) can be used to deduce the three-
dimensional microstructure from conventional two-dimensional characterization, its
statistical approach inevitably requires various spatial and morphological assumptions
about the structural units. For example, even though the contiguity of particles can be
easily measured in two-dimensional sections, it is hard to deduce three-dimensional
particle contiguity from those two-dimensional observations without significant
assumptions about particle shapes and spatial distribution.

In order to estimate three-dimensional microstructural features of materials
directly, one can use the serial-sectioning methods (Morawiec and Saylor, 1999; Rollett
et al., 2007; Rowenhorst et al., 2006a; Rowenhorst et al., 2006b; Saylor et al., 2002;
Saylor et al., 2004; Tewari and Gokhale, 2001; Uchic et al., 2006). While this approach
gives actual data on various microstructural parameters, one might need to reconstruct a
number of samples of materials in order to use them as input for three-dimensional
microstructure-property relationship studies, depending on the microstructural scale. In
addition, in order to assess the effect of the individual microstructural parameters on the
desired property, the samples must be prepared before the reconstruction process such
that a specific microstructural feature is well controlled while the others remain constant.
Naturally, this is difficult to perform and inefficient.

Alternatively, numerical simulations can be used for studying microstructure-
property relationships. Especially for composite materials, unit cell models, solved
numerically by means of the finite element method, have been used to calculate elastic
and/or plastic behaviors of two-phase composites in either two- or three-dimensions
(Chawla et al, 2006; Chawla and Chawla, 2006; Llorca et al., 1991; Shen et al., 1994).
However, in those approaches, the geometry of the particles is, again, assumed to be
simple and the representative unit cell is not able to capture the real microstructural
complexities, which makes it impossible to compare the results directly to the
experimental observations. Also, the model is not capable of explaining the long-range
effect of the morphology of the matrix on the mechanical response of the materials.

In order to overcome these limitations, a microstructure-based modeling using
serial sectioning method has been employed to investigate the deformation behavior of
particle-reinforced composites (Chawla et al, 2006a; Chawla et al, 2006b; Chawla and
Chawla, 2006). In these studies, the predictions of stress-strain relations under uniaxial
tension from various types of microstructures (three-dimensional microstructures from
serial sectioning, unit cell models with spherical, ellipsoidal or rectangular prismatic
particles, and three-dimensional microstructures with spherical or ellipsoidal multi-
particles) were compared to the result from experiments. It was found that the result
from three-dimensional microstructure-based finite element model using serial sectioning
method matches well with the experimental findings in terms of stress-strain curve since
the shape and spatial distribution of the second phase particles in the reconstructed
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microstructures are not arbitrarily assumed and modified. One interesting result,
however, was that the plastic strain distribution from two-dimensional finite-element
modeling is different from that in the two-dimensional section of the three-dimensional
reconstructed microstructure-based one (Chawla et al., 2004; Chawla and Chawla, 2006)
such that the regions in the matrix where the particles are sparsely spaced in the sections
of the three-dimensional microstructure do not always experience the high plastic strain
while it seemed to be always true in the two-dimensional modeling. Unfortunately, in
many numerical simulation studies on two/three-dimensional particle-reinforced
composites, including the works mentioned so far, the first moments of the effective
mechanical fields (stress vs. elastic/plastic strain behavior) has been extensively analyzed
with or without the consideration of microstructural effect on the mechanical fields (for
example, see Batra and Love, 2006; Liu and Hu, 2005; Mercier and Moinari, 2009;
Pierard et al., 2007; Vena et al., 2008). Also, to our best knowledge, there are few
numerical studies on the mechanical response of the three-dimensional composite
materials in terms of both the first and second moment analysis as a function of the
microstructural parameters such as the volume fraction, the average size and the
contiguity of particles, spatial orientations of two phases and the polycrystallinity of the
matrix phase.

Given the facts and issues mentioned above, one way to meet the above
challenges might be as follows: 1) develop numerical methods to generate hypothetical
digital composite microstructures of whose representativity can be validated by
comparison with the available experimental data; 2) measure the three-dimensional
microstructural parameters of those hypothetical composite microstructures; and 3) use
them as input for property simulation. Having measured the microstructural parameters
from a representative three-dimensional digital microstructure, a property simulation
model can be used to evaluate which combination of the microstructural parameters
results in the desired mechanical state of the material for a given external load. In this
work, we examine the stress and strain rate distributions in hypothetical composite
microstructures under uniaxial tension, while varying certain microstructural parameters.
To do this, we use a Fast Fourier Transform (FFT)-based algorithm (Lebensohn, 2001,
Lebensohn et al., 2008; Lebensohn et al., 2009; Michel et al., 2000; Moulinec and
Suquet, 1994; Moulinec and Suquet, 1998). This novel fast numerical method was
originally proposed by Suquet and co-workers (Michel et al., 2000; Moulinec and Suquet,
1994; Moulinec and Suquet, 1998) to calculate the mechanical properties of two-
dimensional materials based on pixellated microstructural data. While these authors first
developed the method to calculate the mechanical behavior of two-phase isotropic
composites, Lebensohn and co-authors (2001, 2008, 2009) applied their scheme to obtain
the local response of the anisotropic polycrystals in the context of viscoplasticity. The
FFT-based formulation provides an exact full-field solution of the governing equations
and is used here to calculate the viscoplastic response of composite structures. The
method, however, is limited to simulation cells with periodic boundary conditions. Here,
we narrow the scope of our study to digitally generated two-phase composite materials,
having an ensemble of isotropically coarsened particles wetted by a matrix phase (Lee et
al., 2007) and apply uniaxial tension to them to explore their local response in terms of
stress and strain rate fields.
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Full-field solutions for stress and strain rate fields under uniaxial tension are
calculated for two-phase anisotropic composite microstructures derived from Potts model
simulations (Lee et al., 2007). The local heterogeneity is due to both particles and matrix
phase being anisotropic with their stress-strain behavior given by the rate-sensitivity
approach to crystal plasticity. The actual material that motivated this investigation is a
liquid-phase sintered W-Ni-Fe, which has nearly pure W particles in a Ni-Fe based
matrix, which also has some W dissolved in it (Fang and Patterson, 1993; Park et al.,
1989; Tewari and Gokhale, 2001). Accordingly, isotropically coarsened particles in the
simulated microstructures are assigned properties compatible with the harder body-
centered cubic (BCC) structure with random orientations while the matrix phase is
assigned properties associated with the softer face-centered cubic (FCC) structure.

The plan of the paper is as follows. In Section 2, we briefly review the numerical
procedure for generating digital composite materials and define the microstructural
parameters of interest. In Section 3, we discuss the FFT viscoplasticiy model as applied
to composite materials. In Section 4, we investigate the relationship between the
microstructural parameters and the predicted stress and strain rate fields. Finally, in
Section 5, we close with some concluding remarks.

2. Preparation of input digital composite materials for property simulation
2.1. Generation of three-dimensional digital composites using Monte Carlo Potts model

A complete description of the simulations of Ostwald ripening (Lifshitz and
Slyozov, 1961; Ostwald, 1900) used to generate three-dimensional digital composite
microstructures containing an ensemble of isotropically coarsened particles with size
variation, surrounded by a fully wetting matrix phase has been described in detail
elsewhere (Lee et al., 2007). Accordingly, here we only highlight a few essential results
of that work, in which it was reported that: 1) a fully-wetting condition by matrix phase is
verified by observing the compact shape of the individual particles and the percolating
spatial distribution of the matrix phase; 2) the final particle size distribution as a function
of both volume fraction of particles and initial particle size distribution is in good
agreement with typical ones found in experiments and it attains a statistical steady-state;
and 3) the associated kinetics are consistent with theories of Ostwald ripening (Lifshitz
and Slyozov, 1961; Ostwald, 1900).

During coarsening simulation, the matrix phase is defined as a collection of
voxels with a same “spin” number, in order to represent the surrounding liquid medium
through which the solid voxels can diffuse, making the ensemble of particles evolve. In
that context, the matrix phase can be treated as a single crystal. In reality, however, the
matrix phase after liquid phase sintering is polycrystalline at room temperature. Based on
our ability to generate ensembles of isotropically coarsened particles that are
representative of those in real composite systems from Ostwald ripening, we also
generated a polycrystalline matrix in each microstructure. For simplicity, the Monte
Carlo isotropic grain growth model (Anderson et al., 1985; Anderson et al., 1989;
Srolovitz et al., 1983) was adopted to generate a polycrystalline matrix while the particles
from coarsening simulation remain intact. Fig. 1 shows the particles ((a) and (b)) from
coarsening simulation, the corresponding single crystal matrix ((c) and (d)), and
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Fig. 1. (a) Particles from the coarsening simulation with volume fraction of ~ 0.2; (b) volume
fraction of ~ 0.6 and the corresponding morphologies of the single crystal matrix, (c) and (d); and
polycrystal matrix, (€) and (f). The particles and matrix grains are gray-scaled according to an
arbitrary numbering scheme; the banding in color is only an artifact of the spatially progressive
numbering.
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polycrystalline matrix ((e) and (f)), for the particle volume fractions of ~ 0.2 and ~ 0.6. It
is evident that the matrix has a percolating morphology due to the complete wetting
condition imposed during coarsening simulation. Note also that, as the particle volume
fraction increases, the grain shape in the matrix changes from a nearly equiaxed shape
(Fig.1(e)) to an elongated one with branches between particles (Fig.1(f)).

2.2. Microstructural parameters

2.2.1. Volume fraction of particles (V)

While the composition of composite materials is typically expressed in the
literature in weight-percent, for numerical simulations it is more directly expressed in
terms of volume fraction. Also, the volume fraction of each phase is considered to be one
of the crucial factors for determining equilibrium shapes and mechanical properties of
sintered materials (German, 1998; Kim, 2004; Ratke and Voorhees, 2002). The volume
fraction of particles, V), in the digital composite microstructure is defined as
Vp = Np "!N.*am.’ ’ (l)
where N, and N, are the number of voxels of particles and the total number of voxels in
the simulation domain.

2.2.2. Contiguity of particles (Cp)

If the volume fraction of particles during the coarsening process is high, it is
inevitable that particles in the system will contact each other, causing their shapes to be
distorted from spheres (Lee et al., 2007; Park et al., 1989; Rowenhorst et al., 2006).
Suppose we have two systems with the same number of particles and a similar particle
size distribution, but with different volume fractions of particles. Then, it is intuitively
reasonable to predict that the system with a higher volume fraction of particles has a
greater chance that the particles are in contact with each other. Therefore, as the volume
fraction of particles increases, we can expect that particle morphologies change both
locally and globally such that the particles tend to form flat facets at the boundary regions
and that they tend to develop a percolating skeletal structure within the system. Since
morphological change of composite materials can strongly affect their properties, the
degree of contact between particles in composite materials is an important
microstructural parameter in predicting their properties.

In fact, the contiguity of particles in liquid phase sintered materials has been well
recognized as an important factor influencing the properties of materials such as
hardness, fracture toughness and strength in tungsten carbides (WC) in cobalt (Co) binder
(Kim, 2004), thermal and electrical conductivity (Jernot and Chermant, 1982; Matsushita
etal., 1977), and ductility (Churn and German, 1984) of liquid phase sintered materials.
In particular, observation of the fracture surfaces of tungsten heavy alloys (W-Ni-Fe)
revealed that the direct contact regions between tungsten particles were weaker than the
other interphase bonding regions and, hence, at low strain-rate, cracks propagated along
the contacting regions between tungsten particles (Churn and German, 1984).

The degree of contact between particles in composite materials can be measured
by defining the contiguity of particles. The contiguity of particles, C,, is defined as the
ratio of the boundary area between particles, 4poundary, to the total surface area of the
particles, Asurmee (German, 1985; Gurland, 1966; Kim, 2004). Then, the contiguity of
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particles is defined as the average fraction of particle/particle boundary area per particle
in the system with values ranging from 0 to 1.

Cp = ZA."mumfary fAijbrr & (2)
In a simulated two-phase, composite microstructure, the contiguity of particles can be

calculated as

Cp = N.‘m:mda:y ;ch,rbce 2 (3)
where Npoundary 1S the number of voxels at a particle/particle interface and Nyuyace is the
total number of surface voxels for all particles.

3. Property simulation method

The FFT-based formulation for viscoplastic polycrystals used in this work for
property simulation is conceived for periodic unit cells, provides an "exact" solution
(within the limitation imposed by the unavoidable discretization of the problem) of the
governing equations. The viscoplastic FFT-based formulation consists in finding a
strain-rate field, associated with a kinematically-admissible velocity field, which
minimizes the average work-rate, under the compatibility and equilibrium constraints.
The method relies on the fact that the local mechanical response of a periodic
heterogeneous medium can be calculated as a convolution integral between the Green
function of a linear reference homogeneous medium and a polarization (heterogeneity)
field. Since convolution integrals reduce to a simple product in Fourier space, the FFT
algorithm can be used to transform the Green function and the polarization field into
Fourier space and, in turn, to get the mechanical fields by anti-transforming the product
of this two quantities back to real space. Given that the actual polarization depends
precisely on the a priori unknown mechanical fields, an iterative scheme should be
implemented to obtain, upon convergence, a compatible strain-rate field and an
equilibrated stress field. The FFT-based formulation has been thoroughly presented
several times elsewhere (Lebensohn, 2001; Lebensohn et al., 2008; Lebensohn et al.,
2009; Michel et al., 2000; Moulinec and Suquet, 1994; Moulinec and Suquet, 1998), and,
in particular, the specialization to viscoplastic polycrystals can be found in Lebensohn
and coworkers’ works (2001, 2008, 2009). Therefore, in what follows we are giving just
some key expressions of the method. The interest reader is referred to previous works, for
further details.

The periodic unit cell representing the two-phase polycrystalline composite is
discretized by means of a regular grid {x"}, which in turn determines a corresponding
grid of the same dimensions in Fourier space {cf" } An average strain-rate Eij is

imposed to the unit cell and the response to this mechanical solicitation, in terms of stress
and strain-rate fields, has to be determined. The local constitutive equation that relates

the deviatoric stress o, (x) and the strain-rate & {x)=1 (v,' S(x)+v ,-,‘(x)) (v,(x): velocity

field) at any given point x of the two-phase:"paiycrystallinc composite is assumed to be
given by the crystal plasticity rate-sensitivity equation:

m’(x): o’ (xj ’

(%)

é;(x)?-?f,:im;(x) L . sgn(m’(x):o" (x)) (4)

— A

. \ .
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where mj and 7’ are, respectively, the Schmid tensor and the threshold stress of slip
system (s) n is the rate-sensitivity exponent, ;Y is reference shear-rate and N, the

number of slip systems potentially active in the single crystal. The parameters z°, n and
N, depend on the phase to which the material point belongs, and m; also depends on the

particular crystallographic orientation associated to that point.

With p(x) being the hydrostatic pressure field, the Cauchy stress field can be
written as:

— \'__
u(x) Lqi{ _;[X)+ 40;) (X) p(x) (5)

where the poIarlzation field ¢, (x) given by:

(D;;(x) o-y (x) Lt_:h" 5 j’(x) (6)

where L’ is the stiffness of a linear reference medium. Combining Eq. (6) with the
equilibrium and the incompressibity conditions gives:

L':;Hvk.f,-' (X)+ Dy (X)— p.‘(x)= 0
v, (x)=0

The system of differential equations (7), with periodic boundary conditions across
the unit cell boundary, can be solved by means of the Green function method. If G, is
the periodic Green functions associated with the velocity field, the solution of system (7)
for this field is a convolution integral between the corresponding Green function and the
polarization field. Taking derivatives and symmetrizing, the strain-rate field is given by:

@)

_ é;’(x) B Fr {5 @) ©}® 8)

where l";i’,’“ =sym(G, , )and FT" indicates inverse Fourier transform. The tensors

G,j(f) and l",‘;{f’ (&) are only functions of L° and can be readily obtained for every point
belonging to {é" } (for details, see Lebensohn et al., 2008). Having current guess values

of the strain-rate field in the regular grid {x" } and computing the corresponding stress
field from the local constitutive relation (Eq. 4) allow us to obtain a guess for the
polarization field in direct space ?, (x"] (Eq. 6), from which, by application of FFT,

P, (c_f“) can be readily calculated. An improved guess for the strain-rate field in {x*}

can be then obtained with Eq. (8), etc. The actual iterative procedure used in the
viscoplastic present case requires the application augmented Lagrangians algorithm
(Michel et al., 2000) that guarantees that the converged stress and strain-rate fields fulfill
equilibrium and compatibility, respectively (see works by Lebensohn et al. (2008) and
Michel et al. (2000) for details).

At this point, it is necessary to mention some additional assumptions made for the
property simulations that follow. As previously mentioned, the input microstructures
from coarsening simulations have voxelized data with periodic boundary conditions. So,
we can use directly the resulting digital composite microstructures as input for the
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property simulation. In all subsequent property simulations, stress and strain rate fields
are calculated for uniaxial tension. The following conditions are consistently imposed: 1)
the number of Fourier grid points coincide with the number of voxels of the input
microstructures; 2) each particle is a single BCC crystal with a randomly chosen
orientation, so that the ensemble of the BCC particles has a nearly random texture; 3) the
matrix is considered to be a solid consisting of either a single FCC crystal (case of
microstructures shown in Figs. 1(c) and 1(d)) with an orientation (in Bunge angles) given
by (41, @, ¢;) = (0°, 0°, 0°) (known as the “cube” orientation), or an FCC polycrystal
with a random texture (case of Figs. 1(e) and 1(f)); 4) the threshold resolved shear stress
(i.e. 7" in Eq. 4) of the BCC phase associated with the 12 {110}<111> and the 12
{112}<111> potentially active slip systems is set to be 1.0 in arbitrary units (a.u.); and 5)
the yield stress that BCC particle phase would have if it would fill the entire unit cell is
set to be twice the yield stress of the FCC matrix phase (amounting to introduce a
contrast factor X=2 between the phases). Under this condition, the threshold stress of the
12 {111}<110> slip systems in FCC crystal is found to be 0.554 in a.u. This threshold
stress is also used when the matrix is polycrystalline in order to assess the effect of
polycrystallinity of matrix on the overall mechanical response of the material.

As an illustration of the property simulation methodology, consider a simulation
on a 128x128x128 system from the coarsening simulation with 128x128x128 Fourier
grid points. One cross-section of the microstructure and the corresponding stress and
strain rate field sections are shown in Fig. 2. Note that the highest strain rate values are
found in the matrix phase, following 45° paths, which are soft shear planes in the FCC
crystal with the cube orientation. Hot spots in strain rate are located either along
boundaries or at interstices between particles. In general, for the assumed phase contrast,
the stress is concentrated in the particle phase while the matrix phase experiences heavy
deformations. In the following sections, we will show that the stress and strain rate
distributions are strongly affected by the microstructural parameters.

(c)
. 6.0
5.0
| 40
30
2.0
1.0'
| 0.0

Fig. 2. Cross-sections through a representative 3D simulation showing (a) the input
microstructure with particles gray-scaled arbitrarily (and the matrix omitted); (b) stress field, and
(c) strain rate field (in a.u.). The arrows indicate the direction of applied uniaxial tension. Note
that the stress and strain rate fields are inhomogeneous, both because of the imposition of the
contrast factor between two phases (factor of two in flow stress) and the local heterogeneity of the
microstructure.
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4. Results
4.1. Effect of Morphology of Phases on Stress and Strain Rate Fields

4.1.1. Coarsened vs. "Disordered” Microstructures

In order to examine the effect of the morphology of the microstructure on the
distributions of stress and strain rate under uniaxial tension, two different microstructures
were prepared as shown in Fig. 3. Fig. 3(a) shows a microstructure from the Monte Carlo
coarsening simulation with a prescribed solid volume fraction of ~ 0.6 (the exact volume
fraction of solid voxels after the cleaning process was 0.5982) while Fig. 3(b) shows a
“disordered” polycrystal (a single phase polycrystal obtained from the Monte Carlo
isotropic grain growth simulation), within which grains are randomly selected (hence, the
designation as “disordered”) and assigned to be the matrix phase (soft FCC crystal with
the “cube” orientation) so that the volume fraction of the remaining hard BCC grains is
approximately 0.6 (the exact volume fraction of the BCC grains left is 0.5988). Also, in
order to minimize the effect of the variation of other microstructural features on the
simulation results, the microstructures were selected such that the numbers of hard BCC
particles in both microstructures (hence, the average volume of those particles) were
similar (see Table 1) and they were assigned the same set of random orientations. In both
Figs. 3(a) and 3(b), the matrix was omitted for a better visualization of the difference in
overall morphologies of two microstructures. Note that the “disordered” polycrystalline
microstructure, Fig. 3(b), has a higher contiguity of particles, due to the flat boundaries
between grains, than the coarsened microstructure, Fig. 3(a), while the matrix phase in
the coarsened microstructure is fully percolating throughout the system (see also Figs.
1(c) and 1(d)) as opposed to the “disordered” microstructure where matrix phase actually
forms isolated second phase regions and the particle phase is almost fully percolating as
clusters.

After simulations were performed on both microstructures shown in Fig. 3, the
average macroscopic stress &, ..., of the composite microstructure and the relative

activity y in both particle phase and matrix phase were calculated using the following
equations.

N
B = [Zo.””}w 2NMm 9

=1 £V

Toom, = [ l.a&“fJ»'[Z:Hf‘ J (10)

where N is the total number of the Fourier grid points, P is the number of Fourier grid

. points assigned to the particle phase, o/ is the von Mises stress at the ith Fourier point

and "ﬁ”f.is the von Mises strain rate at the corresponding Fourier point. Since the total
number of the voxels in either microstructure is equal to the total number of Fourier
points N, then P and (N-P) are proportional to the volumes of the particles and the matrix,
respectively. The relative activity y can be interpreted as the ratio of the strain rate
carried by each phase, relative to the total strain rate.

10



—
oW o oW W=

OO AU MU U U ULS BB B s B WWRWWWWWWWWWRMRNNMNMNRNONRPODRNNNE R RE 2R e
UEWNHOVLDAOAUNEWNHOULDJOUAWNHOUD 10N BWLUNRLFOODIOWUSWNEFODWD-1GW.s W -

Fig. 3. Two contrasting microstructures used for instantiation of the simulations: (2) a
microstructure from the coarsening simulation with particle volume fraction of ~ 0.6; (b) a
modified single-phase polycrystal (“disordered” microstructure) wherein about 40 vol% of grains
have the properties of the matrix phase. Figs. (c) and (d) are the corresponding stress fields, and
(e) and (f) are the strain rate fields from the simulation of uniaxial tension in the coarsened and
modified polycrystal microstructures, respectively. Note the drastic difference in morphologies
of two microstructures and its effect on stress and strain rate fields. The arrows indicate the
direction of applied uniaxial tension.
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While the difference in the macroscopic average stresses for the two
microstructures is small, i.e. &,,.,, of the “disordered” polycrystalline microstructure is
larger by about 9% compared to that of the coarsened microstructure (1.893 for the
coarsened microstructure and 2.061 for the “disordered” microstructure), the relative
strain rate activities of the two phases in the different microstructures are quite different.
While ¥marrix of the “disordered” microstructure is 0.433, ¥mamix of the coarsened
microstructure is 0.595 (37% increase), which means that the matrix phase in the
coarsened microstructure takes up a larger fraction of the total strain rate in the system.
This is due to the particular morphology of the coarsened microstructure. As mentioned
before, the matrix phase in the coarsened microstructure is percolating throughout the
system and hence develops thin channels between the particles (fully-wetting condition).
The results from these simulations are also summarized in Table 1.

4.1.2. Variation in Relative Activity with Particle Volume Fraction

Let us now examine how the mechanical responses of the above two
microstructures vary with the volume fraction of particles. For that, we generated two
types of microstructures (coarsened and “disordered”) with volume fraction of particles
in the range of ~0.6, ~0.7 and ~0.8. For each volume fraction, the number (hence, the
average volume) of particles in both types of microstructures is similar (see Table 2) and
the particles are assigned with the same set of random orientations. Like before, the soft
FCC matrix has the single “cube” orientation for both types. Fig. 4 shows the variation
of the relative activity y of each phase as a function of volume fraction of particles.
Thick and thin solid lines are the ideal relative activities of particle phase and matrix
phase, respectively, if the material is assumed to have phase contrast X=1 (i.e., if, in
average, the two phases have no distinction in terms of mechanical response). Also, one
can construct the same ideal lines for each phase when X=2 (thick and thin dashed lines),
assuming that the matrix phase takes exactly twice the strain rate than the particles. For
both microstructures, the matrix phase takes up more strain rate than the particle phase
per unit volume while the matrix in the coarsened microstructure experiences a larger
concentration of strain rate than in the “disordered” microstructure. Note that the relative
activity of the matrix phase in the coarsened microstructure (solid triangles) tends to
exceeds the estimate for X=2 (thin dashed line) as the particle volume fraction decreases
while that in the “disordered” microstructure (open triangles) experiences much smaller
strain rates, close the ideal case for X=1 (thin solid line). Again, due to the fully-wetting
condition during the coarsening simulation, the percolating matrix in the coarsened
microstructure develops thin channels between the particles, which makes it
accommodate more deformation than the localized matrix phase in the “disordered”
microstructure. As expected, in all cases, the relative activity of each phase converges to
one point as the volume fraction of particles approaches unity.

4.2. Microstructures from the Monte Carlo Potts Coarsening Model
This section analyzes the stress and strain rate fields developed in the
microstructures obtained from the Monte Carlo coarsening simulations when uniaxial

tension is applied. First, the effect of the volume fraction of particles on the distributions
of the stress and strain rate is examined. Second, the effect of other microstructural
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Fig. 4. Comparison of the variation of the relative activity of each phase as a function of volume
fraction of particles in both coarsened microstructure and modified polycrystal. Note a significant
offset in the relative activity for each phase between the “disordered” and the coarsened
microstructures. Also, the results are compared to two ideal cases when the contrast factor X = 1
and 2 (solid and dashed lines, respectively). Note the drastic effect of morphology of the matrix
phase on the relative activity of each phase such that the matrix phase in the coarsened
microstructure (solid triangles) takes up more strain than the ideal case for X=2 (thin dashed line)
as the particle volume fraction decreases while that in the “disordered” microstructure (open
triangles) experiences much smaller deformation close the ideal case for X=1 (thick solid line).

parameters on the mechanical response is explored by comparing the results from
property simulations using input microstructures with different number and contiguities
of particles, while the volume fraction of particles remains fixed. Third, the evolution of
the stress distribution in the hard BCC particles is examined as a function of the particle
volume fraction. Finally, the effect of the polycrystallinity of matrix on the stress and
strain rate distributions is studied by comparing the results with those from
microstructures where the matrix was a single crystal with the “cube” orientation.

In the following sections, the average stress and strain rate in both phases and in
the entire composite microstructure are calculated using the following equations.

oM = [i o™ }KN y (D = {iﬁﬂaﬂ‘;w}ﬁf (12)

Eﬁaﬂr:nc!e = Z O.::M’] / P ; &mk [Z ﬂ‘MJ / P \ | ) (1 3)
= [Zér”}fw P) (14)

g

o, = [Za””] /(N~- P)

k=1

c 'y
= .\\k ~

4.2.1. Effect of Volume Fraction of Particles on Stress and Strain Rate Fields in
Coarsened Microstructures

In this section, we consider the effect of varying the volume fraction while
holding all other variables constant. All microstructures were generated by simulation of

13
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coarsening as described in section 2.1 (for example, Fig. 1 shows two microstructures
with different volume fractions of particles). The particle volume fractions were varied
between 0.2 and 0.8. For each volume fraction, four to six microstructures were selected
from the same coarsening simulation at different times in order to evaluate the variation
with average particle size, number of particles and contiguity of particles, while holding
volume fraction constant. For each selected microstructure, three different random
orientation sets were used for property simulation and the results were averaged. The
results of this section correspond to a “cube”-oriented single crystal matrix phase.

Fig. 5 shows the average stress and strain rate plotted against the volume fraction
of particles (for a simulation domain size of 128x128x128). Also shown are dashed lines
that represent the linear fits to the data for both phases. The values at particle volume
fractions of 1.0 and 0.0 (black solid dots) were obtained from simulations on a BCC
polycrystal with a random texture and a FCC single crystal with the “cube” orientation,
respectively, with the other simulation parameters unchanged. Since we chose four to six
different microstructures for each volume category, the spread of the data for each phase
corresponding to a specific volume fraction can be understood as the variation in the
average properties due to the different number of particles, contiguity of particles and etc.
Note that the average properties for both phases exhibit an almost linear dependence on
the particle volume fraction with small variance over the most of the range, except for
volume fractions near 0.0 or 1.0, suggesting that different instantiations of the coarsened
microstructures lead to negligible variation in average stress and strain rate. Also, note
that the average stress of the overall composite is within the bounds predicted from the
simple rules of mixtures, Guixure=0pVpt 0wV m and Gixiure=0pOml (CpV it omVy). 0p and o3
are the average stresses for the particle phase and the matrix phase obtained from
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Fig. 5. (a) Average stress and (b) average strain rate as a function of volume fraction for each
phase and for overall microstructure computed for uniaxial tension. The average strain rate is
imposed as a boundary condition so the variation in the two phases with volume fraction is as
expected from partitioning of the strain rate between the two phases. The values at particle
volume fractions of 1.0 and 0.0 (black solid dots) are obtained from simulations on a polycrystal
with BCC grains with a random texture and a FCC single crystal with the cube orientation,
respectively. Note that different instantiations at each volume fraction lead to only minor
variations in the outcome, which is most evident at high fractions in the matrix phase. Also, note
that average stress in composite is within the bounds predicted by the simple rules of mixtures.
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simulations on a random BCC polycrystal and a “cube”-oriented FCC single crystal as
explained before (0,=2.587 and 6;,=1.229, respectively, as black solid dots in the figure).
Omixure 15 the effective stress of the overall microstructure, and ¥, and V,, are the volume
fraction of the particles and the matrix such that V,+V,,=1.0.

4.2.2. Effect of Morphological Change with Constant Particle Volume Fraction on Stress
and Strain Rate Fields in Coarsened Microstructures

During a coarsening simulation, the microstructure evolves such that the number
of particles decreases, the average size of particles increases and the contiguity of
particles decreases. The morphological changes of these individual microstructural
features occurring during coarsening are inevitable and are dependent on each other due
to the mass conservation condition imposed in the coarsening simulation (Lee et al.,
2007). Having said that, it is of interest to examine the effect of morphological changes
in the microstructures with the same particle volume fraction from a single coarsening
simulation run. In fact, one piece of evidence for such effect can be qualitatively
observed from Fig. 5, where there is a spread in the stress and strain rate for each phase at
each particle volume fraction (especially, 0.7 and 0.8). This motivates a more detailed
examination of these morphological changes in order to quantify the sensitivity of the
mechanical response to microstructural variations other than volume fraction. As the first
step towards this goal, two different microstructures (128x128x128) from a single
coarsening simulation, both with a particle volume fraction of ~0.7, were chosen such
that one of them has high contiguity of particles and the other a low one. The two
microstructures are shown in Fig. 6.

Fig. 6. Microstructures from a single coarsening simulation run with the particle volume fraction
of about 0.7 having (a) high contiguity and (b) low contiguity of particles.

Note that the microstructure with high contiguity (0.5960, Fig. 6(a)) has a larger
number of particles and smaller average particle size than the one with low contiguity
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(0.2443, Fig. 6(b)). The macroscopic responses of the two microstructures are
summarized in Table 3. Note that the relative activity of the matrix phase in the
microstructure with low contiguity increases slightly (~7.0%), which results from the
more percolating nature of the matrix in the microstructure than the one with high particle
contiguity, such that particles carry more of the load. As is evident from Fig. 5, however,
the macroscopic average stress and average strain rate in both microstructures are very
similar, which implies that the macroscopic average mechanical response is most strongly
dependent on the volume fraction of each phase in the microstructure, compared to the
other microstructural parameters.

However, this does not guarantee that local responses of the microstructures to the
applied external force are the same. To extract local information on stress and strain rate
of each phase in the microstructure, one needs to examine the standard deviations of the
local stress and strain rate for each phase. Fig. 7 shows the cross sections of the two
microstructures with high particle contiguity, Fig. 7(a), and low particle contiguity, Fig.
7(b), and the corresponding stress fields, Figs. 7(c) and 7(d). The results of the stress
analysis are summarized in Table 4. As previously mentioned, the macroscopic average
stresses of the two microstructures are nearly the same. Note that the average stress is
insensitive to differences in contiguity of particles. In contrast, the standard deviation in
stress of the matrix phase in the microstructure with low particle contiguity is much
larger, by ~24%, compared to the one with high particle contiguity, which suggests that
the stress field in the matrix for the low contiguity case has a wider distribution of stress
values than the high contiguity case. Nevertheless, the change in the shape of the stress
distribution in the matrix is negligible because the change in the standard deviation in
stress in the matrix phase with the change in particle contiguity is small relative to the
corresponding average stress.

The results of the strain rate field and its standard deviation for each phase in both
microstructures are quite different from those for the stress analysis. The strain rate
fields of the two microstructures are also presented in Figs. 7(e) and 7(f), and the results
of the corresponding strain rate analysis are summarized in Table 5. The figures suggest,
qualitatively, that there are more hot spots in strain rate in the low contiguity
microstructure. While the average strain rate and its standard deviation for the particle
phase are insensitive to changes in the contiguity between particles, the average strain
rate for the matrix phase are by ~8.4% larger in the microstructure with low contiguity of
particles. This tendency is especially obvious for the standard deviation of strain rate in
the matrix phase in the low particle contiguity microstructure (37.0% increase).

This trend is reasonable because, as the contiguity of particles decreases during
coarsening, more complete wetting of particles by the matrix phase occurs. In other
words, coarsening results in a percolating network of well-developed thin matrix
channels at particle/particle boundary regions, giving longer paths in space along which
the matrix phase can stretch out, which results in a higher average strain rate in the matrix
phase for the microstructure with the low particle contiguity and more hot spots in the
matrix phase. However, some cold spots are still present locally in the microstructure,
when compared to the matrix phase in the high contiguity microstructure, which exhibits
a larger standard deviation in strain rate. These cold spots are where the matrix is
isolated in space, and it is also evident from Fig. 3 and Table | that the isolated matrix
grains in the modified polycrystal have lower relative activity than those in the coarsened
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microstructure. Figs. 7(e) and 7(f) show this trend qualitatively in the maps of strain rate
in the cross sections of the microstructure.

(a)

(c)

(e)

Fig. 7. Cross sections of microstructures having (a) high particle contiguity and (b) low particle
contiguity in Fig. 6 under uniaxial tension and the corresponding stress fields ((c) and (d)), and
strain rate fields ((e) and (f)).
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In Fig. 8, the stress and strain rate distributions in both phases of the
microstructures with different particle contiguities in Fig. 7 are presented: stress
distribution in the particles, Fig. 8(a), stress distribution in the matrix, Fig. 8(b), strain
rate distribution in the particles, Fig. 8(c), and strain rate distribution in the matrix, Fig.
8(d). At first glance, the distributions appear to be very similar between the high
contiguity and low contiguity cases. Indeed, for the stress distributions, the average
stress and its standard deviation in the two phases for both cases remain very similar as
previously noted in Table 4. Even though the standard deviation in stress of the matrix
phase increases significantly in percentage terms as the particle contiguity decreases, the
difference is negligible when compared to its average value. Therefore, the stress is
insensitive to variations in particle contiguity at both macroscopic scale and in terms of
local behavior. However, the strain rate distributions in the two phases for both cases
reveal something interesting. In particular, the matrix phase in the coarsened
microstructure with low contiguity has a wider distribution of strain rate with a lower
maximum peak than that with high contiguity, Fig. 8(d), whereas the increase in the
corresponding average strain rate is relatively small (8.4%, Table 5). This is also evident
in Table 5 as the drastic increase in the standard deviation of the strain rate in the matrix
phase in the coarsened microstructure with low particle contiguity (37% increase from
high to low contiguity). Fig. 9 shows the differences in the frequencies between the two
coarsened microstructures (as number fractions) for stress and strain rate in the two
phases. The frequency difference is calculated as fhigh comiguiry = fiow_coniguiry fOr €ach bin.
The stress distribution slightly shifts to the right for the particles with a higher contiguity,
Fig. 8(a), while that of the corresponding the matrix phase slightly moves to smaller
values, Fig. 8(b). This is reasonable because the particles with smaller average size will
have higher particle contiguity and take up more stress for fixed particle volume fraction.
Fig. 9 also shows that positive values of the frequency difference at larger stress values
are found for the particles whereas the stress distribution of the matrix phase is narrower
in the higher particle contiguity case. Also, note the negative values of the frequency
difference at large strain rates in the matrix phase, which reveals the drastic increase in
standard deviation of strain rate for the matrix phase in the microstructure with low
particle contiguity.

To see the trend more clearly, the same property simulations were performed on
the microstructures that were chosen from the same coarsening simulation run with
particle volume fractions of ~0.6, ~0.7 and ~0.8. The input microstructures were chosen
such that the corresponding contiguity of particles varies approximately from ~0.3 to
~0.6 for each volume category. In each phase for all volume categories, only a slight
variation is observed in average stress and its standard deviation as a function of the
particle contiguity as previously observed. However, the average strain rate and its
standard deviation in matrix phase are found to be a strong function of the particle
contiguity. The results from the property simulations for the particle volume fraction of
~().8 are summarized in Fig. 10 as an example. Note that the standard deviation of strain
rate in the matrix phase is very sensitive to the contiguity of particles and decreases
linearly as the particle contiguity increases.
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Fig. 8. Stress and strain rate distributions in both particle ((2) and (c)) and matrix ((b) and (d))
phases of the coarsened microstructures with high particle contiguity (solid bars) and with low
particle contiguity (open bars) in Fig. 7. Note that strain rate distribution of the matrix phase in
the coarsened microstructure with low particle contiguity has a wider shape, compared to high
contiguity case.
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Fig. 9. Differences in the frequencies for stress and strain rate of the two phases in both coarsened
microstructures with different particle contiguities are presented, defined as flign coniguiy -

Jiow comiguiry fOT €ach bin. Note the negative values of the frequency difference in strain rate of the
matrix phase over the bins with large values, which highlights the substantial increase in standard
deviation of strain rate for the matrix phase in the microstructure with low particle contiguity.
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Fig. 10. Average strain rate and its standard deviation of both particles and matrix phase in the
microstructures from coarsening simulation with particle volume fraction of ~ 0.8 as a function of
contiguity of particles. Note that the standard deviation of strain rate decreases strongly in a
linear fashion in the matrix with increasing particle contiguity.

4.2.3. Effect of Morphological Change on the Stress Distribution in Particles

In the previous section, we observed that the stress distribution of the particle
phase in the composites under uniaxial tension is weakly dependent on contiguity. This
interesting trend prompted an examination of the dependence of the stress distribution of
the particles on their volume fraction. Fig. 11 shows the variation in the stress
distribution of the hard BCC particle phase under uniaxial tension as a function of the
particle volume fraction. Also, two more cases are considered and compared to the
results from the composite microstructures: 1) FFT plasticity simulation on a polycrystal
under uniaxial tension, having ~2,500 BCC grains with random texture, with several
different viscoplasticity exponents » = 10, 20, 30 and 40; and 2) rate-insensitive Taylor
factor calculation for 64° random orientations with BCC structure under uniaxial
deformation. The latter calculation was performed with the commercial OIM™ software
package. For composite and BCC polycrystal cases, the microstructures with different
particle volume fractions were chosen such that the number of particles was similar
(~2,000) and, hence, the average size and the contiguity of particles increases as the
particle volume fraction increases. Since a threshold resolved shear stress of 1.0 was
used for all slip systems of BCC particles during simulations and assuming that the local
Taylor factor in the BCC particles/grains from simulations is equal to local von Mises
equivalent stress divided by the threshold stress, it is sensible to compare the stress
distribution in the particles from simulations to that of Taylor factors of isolated BCC
voxels in order to see the effect of the morphology of microstructures and the particle
volume fraction on the stress distribution in the particles. The main result is a drastic but
smooth transition of the stress distribution in the BCC particles with increasing particle
volume fraction. At high volume fractions, the distribution tends to be towards that
calculated for the BCC polycrystal. As the particle volume fraction increases, the
average stress of the particles increases as noticed before, which results in the shift of the
distribution curve to the right. At the microstructural scale, as the particle contiguity
increases with increasing volume fraction, particles in soft orientations are no longer
shielded by the softer matrix phase and load is transmitted to particles in harder
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Fig. 11. Variation in the stress distribution of the hard BCC particles in the composite under
uniaxial tension as a function of the particle volume fraction (vf), compared to two more cases; 1)
FFT plasticity simulation on a polycrystal under uniaxial tension, having BCC grains with
random texture, with varying the viscoplasticity exponent n = 10, 20, 30 and 40; and 2) Taylor
factor calculation for 64° isolated voxels with BCC structure under uniaxial deformation, having
random orientation. Note that the drastic but smooth transition of the stress distribution in the
BCC particles with increasing particle volume fraction such that it agrees with the simulated
stress distributions in the polycrystal with BCC grains as particle volume fraction approached
unity. Also, note that, as » increases, the stress distribution tends to develop the maximum peak
at high stress regime, which tends toward the Taylor factor distribution of isolated voxels.

orientations (i.e., at higher stresses). This provides a simple explanation for the changes
in skewness from left to right as the particle volume fraction increases.

However, the distribution of Taylor factors from the 64° isolated BCC voxels is
quite different from that of the FFT simulation on the same voxels in a 64x64x64
simulation domain. This is because of the effect from the neighbors on the stress and
strain rate state for each voxel during the FFT simulation. Note that, as » increases, the
results from the BCC gaolycrystal case evolve toward to match the distribution of Taylor
factors when those 64 voxels are isolated with no neighboring interactions, such that the
frequencies over the bins with both large and small stress values become higher while
those over the intermediate bins get lower.

4.2.4. Single Crystal versus Polycrystal Matrix

Up to this point, the matrix phase has been treated as an FCC single crystal having
a single orientation (“cube” orientation). In reality, however, the matrix phase solidifies
after liquid phase sintering and is polycrystalline, as previously mentioned. In this
section, we examine the effect of polycrystallinity of matrix on the stress and strain rate
fields under uniaxial tension.

The change in the relative activity of each phase in the coarsened microstructures
with a randomly oriented polycrystalline matrix is presented in Fig. 12, where the results
are compared to those for the “cube”-oriented single crystal matrix. Since the “cube”
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orientation is a soft orientation in uniaxial tension, it is reasonable that the relative
activity in the polycrystal matrix is smaller than that in the single crystal matrix. Given
the uniform strain boundary condition used for all property simulations, this decrease
must be compensated by increase in the relative activity in particles. A decrease in the
relative activity of the polycrystal matrix from that of a single crystal matrix is observed
consistently across the range of particle volume fractions.
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Fig. 12. The comparison of the relative activity of each phase as a function of volume fraction of
particles in coarsened microstructures with either a single crystal matrix having the cube
orientation or a polycrystal matrix having random orientation. Note a consistent decrease in the
relative activity of the polycrystal matrix from that of the single crystal matrix.

Fig. 13 shows the stress and strain rate fields for both the single crystal matrix
case, Figs. 13(a) and (c), and the polycrystal matrix case, Figs. 13(b) and (d),
respectively, with particle volume fractions of ~0.6. The geometry of the microstructures
is the same for the two cases and so the configuration of particles and matrix is the same.
The only difference between two microstructures is that the one has a single crystal
matrix whereas the other one has a polycrystalline matrix. Note that the gray-scaled
color of the stress field is whiter for the polycrystalline matrix case, which corresponds to
a higher macroscopic average stress. Note also that individual particles have different
stress values for the two different matrices; this is also true for the matrix. The strain rate
field for the polycrystalline matrix case, Fig. 13(d), has fewer hot spots and more diffuse
gray-scaled color than the corresponding field in the single crystal matrix, Fig. 13(c).
This suggests that the distribution of strain rate is more homogenous in the
polycrystalline case.

Figs. 14 and 15 show the first and second moments for the stress and strain rate
fields, comparing the polycrystal matrix case with the single crystal matrix case. For the
composite as a whole, the average stress is substantially higher in the polycrystal matrix
case whereas the standard deviation in stress is lower for all volume fractions except V=
0.2. The average strain rate is a boundary condition for the composite as a whole but its
standard deviation is appreciably smaller in the polycrystal matrix compared to the single
crystal matrix. Considering the matrix by itself, both the average stress and the standard
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Fig. 13. Stress and strain rate fields in the microstructures with the particle volume fraction of ~
0.6. (a) and (c) are stress and strain rated fields from the simulation on the microstructures with a
single crystal matrix with the cube orientation, respectively, and (b) and (d) are stress and strain
rated fields from the microstructures with a polycrystal matrix with random orientation,
respectively. Note that more stress is transferred to the particles due to the polycrystallinity of the
matrix phase, and that the more homogeneous distribution of strain rate in the microstructures is
developed with a polycrystalline matrix than in that with the single crystal matrix.

deviation are appreciably higher in the polycrystal matrix. The average stress in the
particles and its standard deviation are also higher in the particles, although the
differences between the two matrices vanish at high particle volume fractions.

It is apparent that the heterogeneous polycrystalline matrix mor effectively
transmits stress between particles, compared to single crystal case. Keeping with the
relative activity analysis, Fig. 12, a polycrystalline matrix provides a harder, more
heterogeneous matrix, such that it absorbs a smaller fraction of the imposed strain rate
(smaller average strain rate with smaller standard deviation for the polycrystalline
matrix). This is similar to the trend in the stress analysis in particles as a function of
contiguity of particles (Table 1 for the “disordered” microstructure case and Table 4 for
coarsening case), where the average stress in the particles increases as the contiguity of
particles increases, albeit only by a small amount. Again, one can easily see that such
particles that have different gray-scaled colors for stress between the two cases (Fig. 13).
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the microstructures from coarsening simulation as a function of volume fraction of particles. The
microstructures have the same set of particles and either a single crystal matrix with the cube
orientation or a polycrystal matrix with random orientations.

5. Concluding Remarks

Simulations of the viscoplastic response under uniaxial tension using the Fast
Fourier Transform (FFT) algorithm has been used to describe the fundamental
mechanical behavior of metal-metal composite materials. The digital microstructures
were generated using the Monte Carlo simulation of coarsening (Ostwald ripening) (Lee
etal, 1007). Specifically, stress and strain rate fields were obtained in these composite
materials with nearly equiaxed BCC particles in an FCC matrix. Digital composite
materials were devised with a wide range of spatial distributions of particles and hence
the different morphologies of the matrix phase.

Stress is mainly concentrated in the hard particle phase while the soft matrix
phase takes up more of the strain rate because of the higher threshold resolved shear
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stress imposed for the particles. The macroscopic response in terms of the average stress
and average strain rate obeys the simple rule of mixtures. However, the variation in
standard deviation in the strain rate is less simple, especially at high particle volume
fractions, where the contiguity of particles has a noticeable effect on the mechanical
response. This leads to the conclusion that the first moments of the stress and strain rate
are relatively insensitive to the microstructure under these conditions whereas the second
moments of the distributions are strongly dependent on the microstructure.

The particle volume fraction and the contiguity of particles appear to be the most
important microstructural factors that affect the mechanical behavior, in that average
stresses and strain rates, and their standard deviations for each phase and overall
microstructure increase with both increasing particle volume fraction and with decreasing
contiguity of particles (Chawla et al., 2004; Chawla and Chawla, 2006; Chawla et al.,
2006b; Ganesh and Chawla, 2005; Kim, 2004; ). At a fixed volume fraction, the
mechanical response of composite materials, in terms of average stress and strain rate
under uniaxial tension, is a strong function of the microstructure type. In particular, more
strain rate is taken up by the percolating, wetting matrix phase in the coarsened
microstructures than by locally isolated matrix grains in “disordered” polycrystalline
microstructures. By contrast, the particles in the “disordered” microstructures sustain
more stress than in the coarsened microstructure because of the higher particle contiguity
in this type of microstructure.

As particle volume fraction approaches unity, the stress distribution in the BCC
particles tends towards the simulated stress distributions expected in a BCC polycrystal.
The average stress of the particles increases (shift of the distribution curve to the right)
and particles start to lose the shielding from the softer matrix phase, which shifts the
skewness of the stress distribution from left to right. However, even at the highest
volume fractions, the distribution is noticeably different from the distribution of Taylor
factors from the 64° isolated BCC voxels because of the effect from the neighbors on the
stress and strain rate state for each voxel during the FFT simulation. As the
viscoplasticity exponent, », increases, the results from the FFT simulations on the BCC
polycrystal tend towards the distribution of Taylor factors for the same set of orientations
under the Taylor assumption of uniform strain (no interactions between neighboring
grains).

The effect of polycrystallinity of the matrix phase on the mechanical response has
also been examined. Compared to a single crystal matrix, a polycrystalline matrix results
in: 1) higher stresses both macroscopically and in both phases; 2) an increase in the
average stress and its standard deviation in the matrix phase; and 3) a decrease in the
sensitivity to volume fraction (less variation in stress). In terms of strain rate, 1) more
strain is accommodated in particles while less strain rate is taken up by matrix; 2) the
average strain rate and its standard deviation decrease in the matrix phase; and 3) the
sensitivity to volume fraction decreases (less variation in strain rate). In general, it can be
concluded that microstructures with a polycrystalline matrix are less sensitive to changes
in volume fraction, contiguity of particles, and microstructure type. This trend may be,
however, not only a consequence of the polycrystallinity of the matrix in the
microstructure, but also because of the change in texture of the matrix. Therefore, it is
also of interest to examine the effect of texture of the matrix on the mechanical response
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of the microstructure under uniaxial tension. This will be explored in a future
publication.

Based on the full field information obtained, it becomes feasible to optimize
microstructures for a certain preferred mechanical performance. For example, if the
desired behavior is a more uniform strain rate in both phases, while minimizing the
difference in average strain rates in the two phases, one can select the corresponding
microstructure with a given particle volume fraction using Fig. 10. In other words, by
varying the microstructural design of the material, a desired distribution of strain rate
under uniaxial tension can be obtained. The material may be more resistant to failure in
the form of local crack propagation or creep, for example. This is expected to be relevant
to the optimization of microstructure in W-Ni-Fe heavy alloys (Churn and German,
1984), which motivated this investigation.

Even though the simulated microstructures show the characteristics expected from
Ostwald ripening in liquid phase sintering, more microstructural characterizations such as
two-point correlation functions (Rollett et al., 2007), particle shape analysis using a
moment analysis (MacSleyne et al., 2008) and spatial distribution of particles using the
k™ nearest neighbor analysis (Tong et al, 1999) should be performed on the simulated
microstructures. The results could be compared with those from analysis of the real
materials samples in order to verify the quality of the simulated microstructures. The
analysis of the three-dimensional contiguity of particles during coarsening simulations
with a fixed solid volume fraction showed a scale-variant characteristic such that, as the
system coarsens, the contiguity of particles decreases. However, it was previously
reported in the two-dimensional experimental study on WC-Co composites (Kim et al.,
2008) that the contiguity of WC particles is scale-invariant with a given particle volume
fraction. In other words, the microstructures attain a self-similarity in terms of the WC
particle contiguity when measured in two-dimensional cross-sections. Note however that
the WC particles in the system are highly faceted, in contrast to the approximately
equiaxed particles considered in this work. These issues will be explored in the future.
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Table 1. Results from the property simulation on both the coarsened microstructure
(Fig. 3(a)) and the “disordered” microstructure (Fig. 3(b)). Note that the difference in
morphologies of two microstructures has a drastic influence on relative activities of
the two phases.

Coarsened Microstructure Disordered Microstructure
Particle Matrix Particle Matrix
# Particles 2029 - 2041
Avg. Vol. Particles 618.32 (in voxel) 702.27 (in voxel)
Particle Contiguity 0.2164 0.7987
Volume Fraction 0.5982 0.4018 0.5988 0.4012
Macroscopic Stress : :
of thie composite 1.893 (inau.) 2.061 (ina.u.)
Relative Activity 0.405 0.595 0.567 0.433

Table 2. The total number, the average volume and the contiguity of particles in both
microstructures used as input for property simulations in terms of the volume fraction
of particles. Note that “disordered” polycrystals have a much higher particle
contiguity than the coarsened microstructures with fixed particle volume fraction and
similar average volume of particles.

Coarsened Microstructure Disordered Polycrystal
Particle Volume Fraction 086 07 08 0.6 0.7 08
# Particles 4058 4010 2406 4068 4418 2683
Avg. Vol. Particles 618.32 730.70 1393.43 698.61 704.80 13415
Particle Contiguity 0.2164 0.3786 0.5017 0.7955 0.8426 0.8805

Table 3. Results from the property simulation on both the coarsened microstructures
with the same particle volume fraction (~0.7) but having different total number and
contiguity of particles.

Microstructure with High Microstructure with Low
Particle Contiguity (0.5960) Particle Contiguity (0.2443)
Particle Matrix Particle Matrix
# Particles 4998 1002
Volume Fraction 0.6974 0.3026 0.6988 0.3012
Macroscopic Stress
2.061 (inau) 2.039 (ina.u)

of the composite

Relative Activity 0.544 0.456 0.512 0.488



Table 4. Results of stress fields from the property simulation on both coarsened
microstructures in Fig. 6 with the same particle volume fraction (~0.7) but different
particle contiguities.

Microstructure with High Microstructure with Low
Particle Contiguity (0.5960) Particle Contiguity (0.2443)
. Average Stress (in a. u.)
Macroscopic 2.061 2.039 (-1.1%)
Particles 2.407 2.367 (-1.7%)
Matrix 1.262 1.278 (+1.3%)

Standard Deviation in Stress (in a. u.)

Macroscopic 0.611 0.584 (-4.4%)
Particles 0.366 0.354 (-3.3%)
Matrix 0.092 0.114 (+23.9%)

Table 5. Results of strain rate fields from the property simulation on both coarsened
microstructures with the same particle volume fraction (~0.7, Fig. 6) but having
different contiguity of particles.

Microstructure with High Microstructure with Low
Particle Contiguity (0.5960) Particle Contiguity (0.2443)
Average Strain Rate (in a, u.)
Macroscopic 1.117 1.127 (+0.9%)
Particles 0.871 0.825 (-5.3%)
Matrix 1.685 1.826 (+8.4%)

Standard Deviation in Strain Rate (in a. u.)
Macroscopic 0.615 0.754 (-22.6%)
Particles 0.378 0.375 (-0.8%)
Matrix 0.679 0.930 (+37.0%)



