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Modeling the Viscoplastic Micromechanical Response of Two-Phase Materials using 
Fast Fourier Transforms 

S.-B. Lee a,l, R. A. Lebensohn b, and A. D. Rollett a,1 

a Department a/Materials SCience and Engineering, Carnegie Mellon University, 
Pittsburgh, PA J 52 13, U.S.A . 
b Materials Science and Technology Division, Los Alamos National Laboratory, 
Los Alamos, NM 87845, USA 

Abstract 

A viscoplastic approach using the Fast Fourier Transform (FFT) method for 
obtaining local mechanical response is utilized to study microstructure-property 
relationships in composite materials. Specifically, three-dimensional, two-phase digital 
materials containing isotropically coarsened particles surrounded by a matrix phase, 
generated through a Kinetic Monte Carlo Potts model for Ostwald ripening, are used as 
instantiations in order to calculate the stress and strain rate fields under uniaxial tension . 
The effects of the morphology of the matrix phase, the volume fraction and the contiguity 
of particles, and the polycrystallinity of matrix phase, on the stress and strain rate fields 
under uniaxial tension are examined. It is found that the first moments of the stress and 
strain rate fields have a different dependence on the particle volume fraction and the 
particle contiguity from their second moments. The average stresses and average strain 
rates of both phases and of the overall composite have rather simple relationships with 
the particle volume fraction whereas their standard deviations vary strongly, especially 
when the particle volume fraction is high, and the contiguity of particles has a noticeable 
effect on the mechanical response. It is also found that the shape of stress distribution in 
the BCC hard particle phase evolves as the volume fraction of particles in the composite 
varies, such that it agrees with the stress field in the BCC polycrystal as the volume of 
particles approaches unity. Finally, it is observed that the stress and strain rate fields in 
the microstructures with a polycrystalline matrix are less sensitive to changes in volume 
fraction and contiguity of particles. 

Keywords: Micromechanical Modeling; Composite materials; Stress and strain rate 
fields; Viscoplasticity; Microstructure-property relationship 

1. Introduction 

It is well known in Materials Science that the properties of materials are a 
function of their microstructural parameters. In studying microstructure-property 
relationships, it is crucial to map the microstructural parameters obtained from materials 
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characterization to the desired materials property. Conventionally, materials 
characterization is based on data obtained from two-dimensional plane sections because 
of the opacity of most crystalline materials. However, many problems related to the 
properties of materials are three-dimensional in nature (Becker and Panchanadeeswaran, 
1995; Lin et aI., 1995; Patton et aI., 1998; Shan and Gokhale, 200 I; Suresh, 1998) 
because most materials of technological relevance have a polycrystalline or multi-phase 
structure with significant complexity in the spatial arrangement of their microstructural 
units. Even though stereology (Underwood, 1970) can be used to deduce the three­
dimensional microstructure from conventional two-dimensional characterization, its 
statistical approach inevitably requires various spatial and morphological assumptions 
about the structural units. For example, even though the contiguity of particles can be 
easily measured in two-dimensional sections, it is hard to deduce three-dimensional 
particle contiguity from those two-dimensional observations without significant 
assumptions about particle shapes and spatial distribution. 

In order to estimate three-dimensional microstructural features of materials 
directly, one can use the serial-sectioning methods (Morawiec and Saylor, 1999; Rollett 
et aI. , 2007; Rowenhorst et aI., 2006a; Rowenhorst et aI., 2006b; Saylor et aI. , 2002; 
Saylor et aI. , 2004; Tewari and Gokhale, 200 I; Uchic et aI., 2006) . While this approach 
gives actual data on various microstructural parameters, one might need to reconstruct a 
number of samples of materials in order to use them as input for three-dimensional 
microstructure-property relationship studies, depending on the microstructural scale. In 
addition, in order to assess the effect of the individual microstructural parameters on the 
desired property, the samples must be prepared before the reconstruction process such 
that a specific microstructural feature is well controlled while the others remain constant. 
Naturally, this is difficult to perform and inefficient. 

Alternatively, numerical simulations can be used for studying microstructure­
property relationships. Especially for composite materials, unit celI models, solved 
numerically by means of the finite element method , have been used to calculate elastic 
and/or plastic behaviors of two-phase composites in either two- or three-dimensions 
(Chawla et aI, 2006; Chawla and Chawla, 2006; L10rca et aI., 1991 ; Shen et aI., 1994). 
However, in those approaches, the geometry of the particles is, again, assumed to be 
simple and the representative unit cell is not able to capture the real microstructural 
complexities, which makes it impossible to compare the results directly to the 
experimental observations. Also, the model is not capable of explaining the long-range 
effect ofthe morphology of the matrix on the mechanical response of the materials. 

In order to overcome these limitations, a microstructure-based modeling using 
serial sectioning method has been employed to investigate the deformation behavior of 
particle-reinforced composites (Chawla et aI, 2006a; Chawla et aI, 2006b; Chawla and 
Chawla,2006). In these studies, the predictions of stress-strain relations under uniaxial 
tension from various types of microstructures (three-dimensional microstructures from 
serial sectioning, unit cell models with spherical, ellipsoidal or rectangular prismatic 
particles, and three-dimensional microstructures with spherical or ellipsoidal multi­
particles) were compared to the result from experiments. It was found that the result 
from three-dimensional microstructure-based finite element model using serial sectioning 
method matches weIl with the experimental findings in terms of stress-strain curve since 
the shape and spatial distribution of the second phase particles in the reconstructed 
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microstructures are not arbitrarily assumed and modified. One interesting result, 
however, was that the plastic strain distribution from two-dimensional finite-element 
modeling is different from that in the two-dimensional section of the three-dimensional 
reconstructed microstructure-based one (Chawla et aI., 2004; Chawla and Chawla, 2006) 
such that the regions in the matrix where the particles are sparsely spaced in the sections 
of the three-dimensional microstructure do not always experience the high plastic strain 
while it seemed to be always true in the two-dimensional modeling. Unfortunately, in 
many numerical simulation studies on two/three-dimensional particle-reinforced 
composites, including the works mentioned so far, the first moments of the effective 
mechanical fields (stress vs. elastic/plastic strain behavior) has been extensively analyzed 
with or without the consideration of microstructural effect on the mechanical fields (for 
example, see Batra and Love, 2006; Liu and Hu, 2005; Mercier and Moinari, 2009; 
Pierard et aI., 2007; Vena et aI., 2008). Also, to our best knowledge, there are few 
numerical studies on the mechanical response ofthe three-dimensional composite 
materials in terms of both the first and second moment analysis as a function of the 
microstructural parameters such as the volume fraction, the average size and the 
contiguity of particles, spatial orientations of two phases and the polycrystallinity of the 
matrix phase. 

Given the facts and issues mentioned above, one way to meet the above 
challenges might be as follows: 1) develop numerical methods to generate hypothetical 
digital composite microstructures of whose representativity can be validated by 
comparison with the available experimental data; 2) measure the three-dimensional 
microstructural parameters of those hypothetical composite microstructures; and 3) use 
them as input for property simulation. Having measured the microstructural parameters 
from a representative three-dimensional digital microstructure, a property simulation 
model can be used to evaluate which combination of the microstructural parameters 
results in the desired mechanical state of the material for a given external load. In this 
work, we examine the stress and strain rate distributions in hypothetical composite 
microstructures under uniaxial tension, while varying certain microstructural parameters. 
To do this, we use a Fast Fourier Transform (FFT)-based algorithm (Lebensohn, 2001; 
Lebensohn et aI., 2008; Lebensohn et aI., 2009; Michel et aI., 2000; Moulinec and 
Suquet, 1994; Moulinec and Suquet, 1998). This novel fast numerical method was 
originally proposed by Suquet and co-workers (Michel et aI., 2000; Moulinec and Suquet, 
1994; Moulinec and Suquet, 1998) to calculate the mechanical properties of two­
dimensional materials based on pixellated microstructural data. While these authors first 
developed the method to calculate the mechanical behavior of two-phase isotropic 
composites, Lebensohn and co-authors (2001, 2008,2009) applied their scheme to obtain 
the local response of the anisotropic polycrystals in the context of visco plasticity. The 
FFT-based formulation provides an exact full-field solution of the governing equations 
and is used here to calculate the viscoplastic response of composite structures. The 
method, however, is limited to simulation cells with periodic boundary conditions. Here, 
we narrow the scope of our study to digitally generated two-phase composite materials, 
having an ensemble of isotropically coarsened particles wetted by a matrix phase (Lee et 
aI., 2007) and apply uniaxial tension to them to explore their local response in terms of 
stress and strain rate fields. 
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Full-field solutions for stress and strain rate fields under uniaxial tension are 
calculated for two-phase anisotropic composite microstructures derived from Potts model 
simulations (Lee et aI., 2007). The local heterogeneity is due to both particles and matrix 
phase being anisotropic with their stress-strain behavior given by the rate-sensitivity 
approach to crystal plasticity. The actual material that motivated this investigation is a 
liquid-phase sintered W-Ni-Fe, which has nearly pure W particles in a Ni-Fe based 
matrix, which also has some W dissolved in it (Fang and Patterson, 1993; Park et aI., 
1989; Tewari and Gokhale, 2001). Accordingly, isotropically coarsened particles in the 
simulated microstructures are assigned properties compatible with the harder body­
centered cubic (BCC) structure with random orientations while the matrix phase is 
assigned properties associated with the softer face-centered cubic (FCC) structure. 

The plan of the paper is as follows. In Section 2, we briefly review the numerical 
procedure for generating digital composite materials and define the microstructural 
parameters of interest. In Section 3, we discuss the FFT viscoplasticiy model as applied 
to composite materials. In Section 4, we investigate the relationship between the 
microstructural parameters and the predicted stress and strain rate fields. Finally, in 
Section 5, we close with some concluding remarks. 

2. Preparation of input digital composite materials for property simulation 

2.1. Generation o/three-dimensional digital composites using Monte Carlo Polts model 

A complete description of the simulations of Ostwald ripening (Lifshitz and 
Slyozov, 1961; Ostwald, 1900) used to generate three-dimensional digital composite 
microstructures containing an ensemble of isotropically coarsened particles with size 
variation, surrounded by a fully wetting matrix phase has been described in detail 
elsewhere (Lee et aI., 2007). Accordingly, here we only highlight a few essential results 
of that work, in which it was reported that: 1) a fully-wetting condition by matrix phase is 
verified by observing the compact shape ofthe individual particles and the percolating 
spatial distribution of the matrix phase; 2) the final particle size distribution as a function 
of both volume fraction of particles and initial particle size distribution is in good 
agreement with typical ones found in experiments and it attains a statistical steady-state; 
and 3) the associated kinetics are consistent with theories of Ostwald ripening (Lifshitz 
and Slyozov, 1961; Ostwald, 1900). 

During coarsening simulation, the matrix phase is defined as a collection of 
voxels with a same "spin" number, in order to represent the surrounding liquid medium 
through which the solid voxels can diffuse, making the ensemble of particles evolve . In 
that context, the matrix phase can be treated as a single crystal. In reality, however, the 
matrix phase after liquid phase sintering is polycrystalline at room temperature. Based on 
our ability to generate ensembles of isotropically coarsened particles that are 
representative of those in real composite systems from Ostwald ripening, we also 
generated a polycrystalline matrix in each microstructure. For simplicity, the Monte 
Carlo isotropic grain growth model (Anderson et aI., 1985; Anderson et aI., 1989; 
Srolovitz et aI. , 1983) was adopted to generate a polycrystalline matrix while the particles 
from coarsening simulation remain intact. Fig. 1 shows the particles «a) and (b)) from 
coarsening simulation, the corresponding single crystal matrix «c) and (d)), and 
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(a) (b) 

(c) (d) 

(e) (f) 

Fig.!. (a) Particles from the coarsening simulation with volume fraction of - 0.2; (b) volume 
fraction of - 0.6 and the corresponding morphologies of the single crystal matrix, (c) and (d); and 
polycrystal matrix, (e) and (t). The particles and matrix grains are gray-scaled according to an 
arbitrary numbering scheme; the banding in color is only an artifact of the spatially progressive 
numbering. 
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polycrystalline matrix «e) and (f)), for the particle volume fractions of ~ 0.2 and ~ 0.6. It 
is evident that the matrix has a percolating morphology due to the complete wetting 
condition imposed during coarsening simulation. Note also that, as the particle volume 
fraction increases, the grain shape in the matrix changes from a nearly equiaxed shape 
(Fig. 1 (e)) to an elongated one with branches between particles (Fig. 1 (f)) . 

2.2. Microstructural parameters 

2.2.1. Volume fraction ofparticles (Vp) 
While the composition of composite materials is typically expressed in the 

literature in weight-percent, for numerical simulations it is more directly expressed in 
terms of volume fraction. Also, the volume fraction of each phase is considered to be one 
ofthe crucial factors for determining equilibrium shapes and mechanical properties of 
sintered materials (German, 1998; Kim, 2004; Ratke and Voorhees, 2002). The volume 
fraction of particles, Vp, in the digital composite microstructure is defined as 

Vp = Np / N,o'a' , (1) 
where Np and Nlolal are the number ofvoxels of particles and the total number ofvoxels in 
the simulation domain. 

2.2.2. Contiguity of particles (Cp) 

If the volume fraction of particles during the coarsening process is high, it is 
inevitable that particles in the system will contact each other, causing their shapes to be 
distorted from spheres (Lee et aI. , 2007; Park et aI., 1989; Rowenhorst et aI., 2006). 
Suppose we have two systems with the same number of particles and a similar particle 
size distribution, but with different volume fractions of particles. Then, it is intuitively 
reasonable to predict that the system with a higher volume fraction of particles has a 
greater chance that the particles are in contact with each other. Therefore, as the volume 
fraction of particles increases, we can expect that particle morphologies change both 
locally and globally such that the particles tend to form flat facets at the boundary regions 
and that they tend to develop a percolating skeletal structure within the system. Since 
morphological change of composite materials can strongly affect their properties, the 
degree of contact between particles in composite materials is an important 
microstructural parameter in predicting their properties. 

In fact, the contiguity of particles in liquid phase sintered materials has been well 
recognized as an important factor influencing the properties of materials such as 
hardness, fracture toughness and strength in tungsten carbides (WC) in cobalt (Co) binder 
(Kim, 2004), thermal and electrical conductivity (lernot and Chermant, 1982; Matsushita 
et aI., 1977), and ductility (Churn and German, 1984) of liquid phase sintered materials. 
In particular, observation of the fracture surfaces of tungsten heavy alloys (W-Ni-Fe) 
revealed that the direct contact regions between tungsten particles were weaker than the 
other interphase bonding regions and, hence, at low strain-rate, cracks propagated along 
the contacting regions between tungsten particles (Churn and German, 1984). 

The degree of contact between particles in composite materials can be measured 
by defining the contiguity of particles. The contiguity of particles, Cp, is defined as the 
ratio ofthe boundary area between particles, Abo,mdary, to the total surface area of the 
particles, Asllrjace (German, 1985; Gurland, 1966; Kim, 2004). Then, the contiguity of 
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particles is defined as the average fraction of particle/particle boundary area per particle 
in the system with values ranging from 0 to 1. 

Cp = 2Aboundary /Asuljace ' (2) 

In a simulated two-phase, composite microstructure, the contiguity of particles can be 
calculated as 

Cp = N bollndGlY / N suiface , (3) 

where Nboundary is the number ofvoxels at a particle/particle interface and Nsurjace is the 
total number of surface voxels for all particles. 

3. Property simulation method 

The FFT-based formulation for viscoplastic polycrystals used in this work for 
property simulation is conceived for periodic unit cells, provides an "exact" solution 
(within the limitation imposed by the unavoidable discretization of the problem) of the 
governing equations. The viscoplastic FFT-based formulation consists in finding a 
strain-rate field, associated with a kinematically-admissible velocity field, which 
minimizes the average work-rate, under the compatibility and equilibrium constraints. 
The method relies on the fact that the local mechanical response of a periodic 
heterogeneous medium can be calculated as a convolution integral between the Green 
function of a linear reference homogeneous medium and a polarization (heterogeneity) 
field. Since convolution integrals reduce to a simple product in Fourier space, the FFT 
algorithm can be used to transform the Green function and the polarization field into 
Fourier space and, in turn, to get the mechanical fields by anti-transforming the product 
of this two quantities back to real space. Given that the actual polarization depends 
precisely on the a priori unknown mechanical fields, an iterative scheme should be 
implemented to obtain, upon convergence, a compatible strain-rate field and an 
equilibrated stress field. The FFT-based formulation has been thoroughly presented 
several times elsewhere (Lebensohn, 2001; Lebensohn et ai., 2008; Lebensohn et ai., 
2009; Michel et ai. , 2000; Moulinec and Suquet, 1994; Moulinec and Suquet, 1998), and, 
in particular, the specialization to viscoplastic polycrystals can be found in Lebensohn 
and coworkers' works (2001, 2008, 2009). Therefore, in what follows we are giving just 
some key expressions of the method. The interest reader is referred to previous works, for 
further details. 

The periodic unit cell representing the two-phase polycrystalline composite is 

discretized by means of a regular grid {Xd}, which in turn determines a corresponding 

grid of the same dimensions in Fourier space {~d}. An average strain-rate Eij is 

imposed to the unit cell and the response to this mechanical solicitation, in terms of stress 
and strain-rate fields, has to be determined. The local constitutive equation that relates 

the deviatoric stress o-~(x) and the strain-r~e~Xx)=~~i,j (X)+Vj,i(X)) (vi(x) : velocity 

field) at any given point x of the two-phase p~ycrystalline composite is assumed to be 
given by the crystal plasticity rate-sensitivity equation: 

(4) 
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where m~ and IS are, respectively, the Schmid ten.sor and the threshold stress of slip 

system (s); n is the rate-sensitivity exponent,Q9iM ference shear-rate and Ns the 

number of slip systems potentially active in the single crystal. The parameters I", nand 
Ns depend on the phase to which the material point belongs, and m~ also depends on the 

particular crystallographic orientation associated to that point. 

With p(x) being the hydrostatic pressure field, the Cauchy stress field can be 

written as: c 
c..\.Jt. 

O'y{x) = L~ & x) + (jJij(x) - p(x )b'ij (5) 

where the polarization field (jJij (x) given by: 

(jJ,/X) = O'~ (x)- L~~(X) (6) 

where LO is the stiffness of a linear reference medium. Combining Eq. (6) with the 
equilibrium and the incompressibity conditions gives: 

L~k/vk,lj(x)+ (jJij,;(x)- P,/(X) = 0 

vkix) = 0 
(7) 

The system of differential equations (7), with periodic boundary conditions across 
the unit cell bou ndary, can be solved by means of the Green function method. If GAm is 
the periodic Green functions associated with the velocity field, the solution of system (7) 
for this field is a convolution integral between the corresponding Green function and the 
polarization field. Taking derivatives and symmetrizing, the strain-rate field is given by: 

, E.., A 

ij FT' {r~i~(~)~k/(~) } (x) (8) 

where r;~ = .sym(Gik•J/ ) and FT' indicates inverse Fourier transform. The tensors 

Gij(~) and f;~;(~) are only functions of LO and can be readily obtained for every point 

belonging to {~d} (for details, see Lebensohn et aI., 2008). Having current guess values 

of the strain-rate field in the regular grid {Xd} and computing the corresponding stress 

field from the local constitutive relation (Eq. 4) allow us to obtain a guess for the 

polarization field in direct space (jJij(x d
) (Eq. 6), from which, by application ofFFT, 

~ij (~d) can be readily calcu lated. An improved guess for the strain-rate field in {Xd} 
can be then obtained with Eq. (8), etc. The actual iterative procedure used in the 
viscoplastic present case requires the application augmented Lagrangians algorithm 
(Michel et aI., 2000) that guarantees that the converged stress and strain-rate fields fulfill 
equilibrium and compatibility, respectively (see works by Lebensohn et at. (2008) and 
Michel et al. (2000) for details), 

At this point, it is necessary to mention some additional assumptions made for the 
property simulations that follow. As previously mentioned, the input microstructures 
from coarsening simulations have voxelized data with periodic boundary conditions. So, 
we can use directly the resulting digital composite microstructures as input for the 
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property simulation. In all subsequent property simulations, stress and strain rate fields 
are calculated for uniaxial tension. The following conditions are consistently imposed: 1) 
the number of Fourier grid points coincide with the number ofvoxels of the input 
microstructures; 2) each particle is a single Bee crystal with a randomly chosen 
orientation, so that the ensemble of the Bee particles has a nearly random texture; 3) the 
matrix is considered to be a solid consisting of either a single FCC crystal (case of 
microstructures shown in Figs. 1 (c) and led»~ with an orientation (in Bunge angles) given 
by (¢" d>, th) = (0°, 00

, 00
) (known as the "cube" orientation), or an FCC polycrystal 

with a random texture (case of Figs. 1 (e) and 1 (f); 4) the threshold resolved shear stress 
(i.e. r' in Eq. 4) ofthe Bee phase associated with the 12 {l10} <111> and the 12 
{112} <Ill> potentially active slip systems is set to be 1.0 in arbitrary units (a.u .); and 5) 
the yield stress that Bee particle phase would have if it would fiB the entire unit cell is 
set to be twice the yield stress of the FCC matrix phase (amounting to introduce a 
contrast factor X=2 between the phases). Under this condition, the threshold stress of the 
12 {Ill} <11 0> slip systems in FCC crystal is found to be 0.554 in a.u. This threshold 
stress is also used when the matrix is polycrystalline in order to assess the effect of 
polycrystallinity of matrix on the overall mechanical response of the material. 

As an illustration of the property simulation methodology, consider a simulation 
on a 128x 128x 128 system from the coarsening simulation with 128x 128x 128 Fourier 
grid points. Qne cross-section of the microstructure and the corresponding stress and 
strain rate field sections are shown in Fig. 2. Note that the highest strain rate values are 
found in the matrix phase, following 45° paths, which are soft shear planes in the FCC 
crystal with the cube orientation. Hot spots in strain rate are located either along 
boundaries or at interstices between particles. In general, for the assumed phase contrast, 
the stress is concentrated in the particle phase while the matrix phase experiences heavy 
deformations. In the following sections, we will show that the stress and strain rate 
distributions are strongly affected by the microstructural parameters. 

Fig. 2. Cross-sections through a representative 3D simulation showing (a) the input 
microstructure with particles gray-scaled arbitrarily (and the matrix omitted); (b) stress field , and 
(c) strain rate field (in a.u.). The arrows indicate the direction of applied uniaxial tension. Note 
that the stress and strain rate fields are inhomogeneous, both because of the imposition of the 
contrast factor between two phases (factor of two in flow stress) and the local heterogeneity of the 
microstructure. 
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4. Results 

4.1. Effect of Morphology of Phases on Stress and Strain Rate Fields 

4.1.1. Coarsenedvs. "Disordered" Microstructures 
In order to examine the effect of the morphology of the microstructure on the 

distributions of stress and strain rate under uniaxial tension, two different microstructures 
were prepared as shown in Fig. 3. Fig. 3(a) shows a microstructure from the Monte Carlo 
coarsening simulation with a prescribed solid volume fraction of - 0.6 (the exact volume 
fraction of solid voxels after the cleaning process was 0.5982) while Fig. 3(b) shows a 
"disordered" polycrystal (a single phase polycrystal obtained from the Monte Carlo 
isotropic grain growth simulation), within which grains are randomly selected (hence, the 
designation as "disordered") and assigned to be the matrix phase (soft FCC crystal with 
the "cube" orientation) so that the volume fraction of the remaining hard BCC grains is 
approximately 0.6 (the exact volume fraction of the BCC grains left is 0.5988). Also, in 
order to minimize the effect of the variation of other microstructural features on the 
simulation results, the microstructures were selected such that the numbers of hard BCC 
particles in both microstructures (hence, the average volume of those particles) were 
similar (see Table 1) and they were assigned the same set of random orientations. In both 
Figs . 3(a) and 3(b), the matrix was omitted for a better visualization of the difference in 
overall morphologies of two microstructures. Note that the "disordered" polycrystalline 
microstructure, Fig. 3(b), has a higher contiguity of particles, due to the flat boundaries 
between grains, than the coarsened microstructure, Fig. 3(a), while the matrix phase in 
the coarsened microstructure is fully percolating throughout the system (see also Figs . 
l(c) and l(d)) as opposed to the "disordered" microstructure where matrix phase actually 
forms isolated second phase regions and the particle phase is almost fully percolating as 
clusters. 

After simulations were performed on both microstructures shown in Fig. 3, the 
average macroscopic stress (j~~ro of the composite microstructure and the relative 

activity X in both particle phase and matrix phase were calculated using the following 
equations. 

(9) 

% parlic le (10) 

Xmo1rix == (11) 

where N is the total number of the Fourier grid points, P is the number of Fourier grid 
points assigned to the particle phase, (J'~M is the von Mises stress at the ith Fourier point 

an 'M • s the von Mises strain rate at the corresponding Fourier point. Since the total 

number of the voxels in either microstructure is equal to the total number of Fourier 
points N, then P and (N-P) are proportional to the volumes of the particles and the matrix, 
respectively. The relative activity X can be interpreted as the ratio of the strain rate 
carried by each phase, relative to the total strain rate. 
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Fig. 3. Two contrasting microstructures used for instantiation of the simulations: (a) a 
microstructure from the coarsening simulation with particle volume fraction of ~ 0.6; (b) a 
modified single-phase polycrystal ("disordered" microstructure) wherein about 40 vol% of grains 
have the properties of the matrix phase. Figs. (c) and (d) are the corresponding stress fields, and 
(e) and (f) are the strain rate fields from the simulation of uniaxial tension in the coarsened and 
modified polycrystal microstructures, respectively. Note the drastic difference in morphologies 
of two microstructures and its effect on stress and strain rate fields . The arrows indicate the 
direction of applied uniaxial tension. 
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While the difference in the macroscopic average stresses for the two 
microstructures is small, i.e. amacro of the "disordered" polycrystalline microstructure is 
larger by about 9% compared to that of the coarsened microstructure (1.893 for the 
coarsened microstructure and 2.061 for the "disordered" microstructure), the relative 
strain rate activities of the two phases in the different microstructures are quite different. 
While Xmatrix of the "disordered" microstructure is 0.433, Xmatrix of the coarsened 
microstructure is 0.595 (37% increase), which means that the matrix phase in the 
coarsened microstructure takes up a larger fraction ofthe total strain rate in the system. 
This is due to the particular morphology of the coarsened microstructure. As mentioned 
before, the matrix phase in the coarsened microstructure is percolating throughout the 
system and hence develops thin channels between the particles (fully-wetting condition). 
The results from these simulations are also summarized in Table 1. 

4.1.2. Variation in Relative Activity with Particle Volume Fraction 
Let us now examine how the mechanical responses of the above two 

microstructures vary with the volume fraction of particles. For that, we generated two 
types of microstructures (coarsened and "disordered") with volume fraction of particles 
in the range of -0.6, -0.7 and -0.8. For each volume fraction, the number (hence, the 
average volume) of particles in both types of microstructures is similar (see Table 2) and 
the particles are assigned with the same set of random orientations. Like before, the soft 
FCC matrix has the single "cube" orientation for both types. Fig. 4 shows the variation 
of the relative activity X of each phase as a function of volume fraction of particles. 
Thick and thin solid lines are the ideal relative activities of particle phase and matrix 
phase, respectively, if the material is assumed to have phase contrastX=1 (i.e., if, in 
average, the two phases have no distinction in terms of mechanical response) . Also, one 
can construct the same ideal lines for each phase when X=2 (thick and thin dashed lines), 
assuming that the matrix phase takes exactly twice the strain rate than the particles. For 
both microstructures, the matrix phase takes up more strain rate than the particle phase 
per unit volume while the matrix in the coarsened microstructure experiences a larger 
concentration of strain rate than in the "disordered" microstructure. Note that the relative 
activity of the matrix phase in the coarsened microstructure (solid triangles) tends to 
exceeds the estimate for X=2 (thin dashed line) as the particle volume fraction decreases 
while that in the "disordered" microstructure (open triangles) experiences much smaller 
strain rates, close the ideal case for X=1 (thin solid line). Again, due to the fully-wetting 
condition during the coarsening simulation, the percolating matrix in the coarsened 
microstructure develops thin channels between the particles, which makes it 
accommodate more deformation than the localized matrix phase in the "disordered" 
microstructure. As expected, in all cases, the relative activity of each phase converges to 
one point as the volume fraction of particles approaches unity. 

4.2. Microstructuresfrom the Monte Carlo Potts Coarsening Model 

This section analyzes the stress and strain rate fields developed in the 
microstructures obtained from the Monte Carlo coarsening simulations when uniaxial 
tension is applied. First, the effect of the volume fraction of particles on the distributions 
of the stress and strain rate is examined. Second, the effect of other microstructural 
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Fig. 4. Comparison of the variation of the relative activity of each phase as a function of volume 
fraction of particles in both coarsened microstructure and modified polycrystal. Note a significant 
offset in the relative activity for each phase between the "disordered" and the coarsened 
microstructures. Also, the results are compared to two ideal cases when the contrast factor X = I 
and 2 (solid and dashed lines, respectively). Note the drastic effect of morphology of the matrix 
phase on the relative activity of each phase such that the matrix phase in the coarsened 
microstructure (solid triangles) takes up more strain than the ideal case for X=2 (thin dashed line) 
as the particle volume fraction decreases while that in the "disordered" microstructure (open 
triangles) experiences much smaller deformation close the ideal case for X= I (thick solid line). 

parameters on the mechanical response is explored by comparing the results from 
property simulations using input microstructures with different number and contiguities 
of particles, while the volume fraction of particles remains fixed. Third, the evolution of 
the stress distribution in the hard Bee particles is examined as a function of the particle 
volume fraction. Finally, the effect of the polycrystallinity of matrix on the stress and 
strain rate distributions is studied by comparing the results with those from 
microstructures where the matrix was a single crystal with the "cube" orientation. 

In the following sections, the average stress and strain rate in both phases and in 
the entire composite microstructure are calculated using the following equations. 

CJ=," : (~ff,"]1N ; e~'. : l:. ~ J IN E:'.:"" 

CJ;::"", : (t,,,~} p ; e~~: (t, ~ / p Er 

(
N-P ] f' (N-P II E.. ~ 

cr!:,iX = E CYr:' / (N - P) ; ~~IX E~) / (N - P) 

e'NLL~ 
4.2.1. Effect of Volume Fraction of Particles on Stress and Strain Rate Fields in 
Coarsened Microstructures 

(12) 

(13) 

(14) 

In this section, we consider the effect of varying the volume fraction while 
holding all other variables constant. All microstructures were generated by simulation of 
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coarsening as described in section 2.1 (for example, Fig. 1 shows two microstructures 
with different volume fractions of particles). The particle volume fractions were varied 
between 0.2 and 0.8. For each volume fraction, four to six microstructures were selected 
from the same coarsening simulation at different times in order to evaluate the variation 
with average particle size, number of particles and contiguity of particles, while holding 
volume fraction constant. For each selected microstructure, three different random 
orientation sets were used for property simulation and the results were averaged. The 
results of this section correspond to a "cube"-oriented single crystal matrix phase. 

Fig. 5 shows the average stress and strain rate plotted against the volume fraction 
of particles (for a simulation domain size of 128xI28xI28). Also shown are dashed lines 
that represent the linear fits to the data for both phases. The values at particle volume 
fractions of 1.0 and 0.0 (black solid dots) were obtained from simulations on a Bee 
polycrystal with a random texture and a Fee single crystal with the "cube" orientation, 
respectively, with the other simulation parameters unchanged. Since we chose four to six 
different microstructures for each volume category, the spread of the data for each phase 
corresponding to a specific volume fraction can be understood as the variation in the 
average properties due to the different number of particles, contiguity of particles and etc. 
Note that the average properties for both phases exhibit an almost linear dependence on 
the particle volume fraction with small varian~e over the most of the range, except for 
volume fractions near 0.0 or 1.0, suggesting that different instantiations of the coarsened 
microstructures lead to negligible variation in average stress and strain rate. Also, note 
that the average stress of the overall composite is within the bounds predicted from the 

simple rules of mixtures, O"mixlure=O"pVp+O"mVm and O"mixlure=O"pO"ml(O"pVm+O"mVp). O"p and O"m 

are the average stresses for the particle phase and the matrix phase obtained from 

2.8 .(a) 

1.2 

~----~--~----~~~ 
0.0 0.2 Q.4 0.6 o.a '1.0 

Volume Fraction of Particles Volume Fraction of Particles 

Fig. 5. (a) Average stress and (b) average strain rate as a function of volume fraction for each 
phase and for overall microstructure computed for uniaxial tension. The average strain rate is 
imposed as a boundary condition so the variation in the two phases with volume fraction is as 
expected from partitioning of the strain rate between the two phases. The values at particle 
volume fractions of 1.0 and 0.0 (black solid dots) are obtained from simulations on a polycrystal 
with Bee grains with a random texture and a FCC single crystal with the cube orientation, 
respectively. Note that different instantiations at each volume fraction lead to only minor 
variations in the outcome, willch is most evident at high fractions in the matrix phase. Also, note 
that average stress in composite is within the bounds predicted by the simple rules of mixtures. 
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simulations on a random Bee polycrystal and a "cube"-oriented Fee single crystal as 
explained before ({}p=2 .587 and O"m=1.229, respectively, as black solid dots in the figure). 
O"mixture is the effective stress of the overall microstructure, and Vp and Vm are the volume 
fraction of the particles and the matrix such that Vp+Vm=l.O. 

4.2.2. Effect of Morphological Change with Constant Particle Volume Fraction on Stress 
and Strain Rate Fields in Coarsened Microstructures 

During a coarsening simulation, the microstructure evolves such that the number 
of particles decreases, the average size of particles increases and the contiguity of 
particles decreases. The morphological changes of these individual microstructural 
features occurring during coarsening are inevitable and are dependent on each other due 
to the mass conservation condition imposed in the coarsening simulation (Lee et aI., 
2007). Having said that, it is of interest to examine the effect of morphological changes 
in the microstructures with the same particle volume fraction from a single coarsening 
simulation run. In fact, one piece of evidence for such effect can be qualitatively 
observed from Fig. 5, where there is a spread in the stress and strain rate for each phase at 
each particle volume fraction (especially, 0.7 and 0.8) . This motivates a more detailed 
examination of these morphological changes in order to quantify the sensitivity ofthe 
mechanical response to microstructural variations other than volume fraction. As the first 
step towards this goal, two different microstructures (l28x128x 128) from a single 
coarsening simulation, both with a particle volume fraction of ~0.7, were chosen such 
that one of them has high contiguity of particles and the other a low one. The two 
microstructures are shown in Fig. 6. 

(a) (b) 

Fig. 6. Microstructures from a single coarsening simulation run with the particle volume fraction 
of about 0.7 having (a) high contiguity and (b) low contiguity of particles. 

Note that the microstructure with high contiguity (0.5960, Fig. 6(a)) has a larger 
number of particles and smaller average particle size than the one with low contiguity 
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(0.2443, Fig. 6(b )). The macroscopic responses of the two microstructures are 
summarized in Table 3. Note that the relative activity of the matrix phase in the 
microstructure with low contiguity increases slightly (-7.0%), which results from the 
more percolating nature of the matrix in the microstructure than the one with high particle 
contiguity, such that particles carry more of the load. As is evident from Fig. 5, however, 
the macroscopic average stress and average strain rate in both microstructures are very 
similar, which implies that the macroscopic average mechanical response is most strongly 
dependent on the volume fraction of each phase in the microstructure, compared to the 
other microstructural parameters. 

However, this does not guarantee that local responses of the microstructures to the 
applied external force are the same. To extract local information on stress and strain rate 
of each phase in the microstructure, one needs to examine the standard deviations of the 
local stress and strain rate for each phase. Fig. 7 shows the cross sections ofthe two 
microstructures with high particle contiguity, Fig. 7(a), and low particle contiguity, Fig. 
7(b), and the corresponding stress fields, Figs. 7( c) and 7( d). The results of the stress 
analysis are summarized in Table 4. As previously mentioned, the macroscopic average 
stresses of the two microstructures are nearly the same. Note that the average stress is 
insensitive to differences in contiguity of particles. In contrast, the standard deviation in 
stress of the matrix phase in the microstructure with low particle contiguity is much 
larger, by -24%, compared to the one with high particle contiguity, which suggests that 
the stress field in the matrix for the low contiguity case has a wider distribution of stress 
values than the high contiguity case. Nevertheless, the change in the shape of the stress 
distribution in the matrix is negligible because the change in the standard deviation in 
stress in the matrix phase with the change in particle contiguity is small relative to the 
corresponding average stress. 

The results of the strain rate field and its standard deviation for each phase in both 
microstructures are quite different from those for the stress analysis. The strain rate 
fields of the two microstructures are also presented in Figs. 7( e) and 7(f), and the results 
ofthe corresponding strain rate analysis are summarized in Table 5. The figures suggest, 
qualitatively, that there are more hot spots in strain rate in the low contiguity 
microstructure. While the average strain rate and its standard deviation for the particle 
phase are insensitive to changes in the contiguity between particles, the average strain 
rate for the matrix phase are by -8.4% larger in the microstructure with low contiguity of 
particles. This tendency is especially obvious for the standard deviation of strain rate in 
the matrix phase in the low particle contiguity microstructure (37.0% increase). 

This trend is reasonable because, as the contiguity of particles decreases during 
coarsening, more complete wetting of particles by the matrix phase occurs. In other 
words, coarsening results in a percolating network of well-developed thin matrix 
channels at particle/particle boundary regions, giving longer paths in space along which 
the matrix phase can stretch out, which results in a higher average strain rate in the matrix 
phase for the microstructure with the low particle contiguity and more hot spots in the 
matrix phase. However, some cold spots are still present locally in the microstructure, 
when compared to the matrix phase in the high contiguity microstructure, which exhibits 
a larger standard deviation in strain rate. These cold spots are where the matrix is 
isolated in space, and it is also evident from Fig. 3 and Table 1 that the isolated matrix 
grains in the modified polycrystal have lower relative activity than those in the coarsened 
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microstructure. Figs. 7(e) and 7(f) show this trend qualitatively in the maps of strain rate 
in the cross sections of the microstructure. 

(al (b) 
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Fig. 7. Cross sections of microstructures having (a) high particle contiguity and (b) low particle 
contiguity in Fig. 6 under uniaxial tension and the corresponding stress fields ((c) and (d)), and 
strain rate fields ((e) and (f)). 
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In Fig. 8, the stress and strain rate distributions in both phases of the 
microstructures with different particle contiguities in Fig. 7 are presented: stress 
distribution in the particles, Fig. 8(a), stress distribution in the matrix, Fig. 8(b), strain 
rate distribution in the particles, Fig. 8( c), and strain rate distribution in the matrix, Fig. 
8(d). At first glance, the distributions appear to be very similar between the high 
contiguity and low contiguity cases. Indeed, for the stress distributions, the average 
stress and its standard deviation in the two phases for both cases remain very similar as 
previously noted in Table 4. Even though the standard deviation in stress of the matrix 
phase increases significantly in percentage terms as the particle contiguity decreases, the 
difference is negligible when compared to its average value. Therefore, the stress is 
insensitive to variations in particle contiguity at both macroscopic scale and in terms of 
local behavior. However, the strain rate distributions in the two phases for both cases 
reveal something interesting. In particular, the matrix phase in the coarsened 
microstructure with low contiguity has a wider distribution of strain rate with a lower 
maximum peak than that with high contiguity, Fig. 8(d), whereas the increase in the 
corresponding average strain rate is relatively small (8.4%, Table 5). This is also evident 
in Table 5 as the drastic increase in the standard deviation of the strain rate in the matrix 
phase in the coarsened microstructure with low particle contiguity (37% increase from 
high to low contiguity). Fig. 9 shows the differences in the frequencies between the two 
coarsened microstructures (as number fractions) for stress and strain rate in the two 
phases. The frequency difference is calculated as fiigh_collligUity - fiow _contiguity for each bin. 
The stress distribution slightly shifts to the right for the particles with a higher contiguity, 
Fig. 8(a), while that of the corresponding the matrix phase slightly moves to smaller 
values, Fig. 8(b). This is reasonable because the particles with smaller average size will 
have higher particle contiguity and take up more stress for fixed particle volume fraction. 
Fig. 9 also shows that positive values of the frequency difference at larger stress values 
are found for the particles whereas the stress distribution of the matrix phase is narrower 
in the higher particle contiguity case. Also, note the negative values ofthe frequency 
difference at large strain rates in the matrix phase, which reveals the drastic increase in 
standard deviation of strain rate for the matrix phase in the microstructure with low 
particle contiguity. 

To see the trend more clearly, the same property simulations were performed on 
the microstructures that were chosen from the same coarsening simulation run with 
particle volume fractions of ~0 .6, -0.7 and - 0.8. The input microstructures were chosen 
such that the corresponding contiguity of particles varies approximately from ~0.3 to 
-0.6 for each volume category. In each phase for all volume categories, only a slight 
variation is observed in average stress and its standard deviation as a function ofthe 
particle contiguity as previously observed. However, the average strain rate and its 
standard deviation in matrix phase are found to be a strong function of the particle 
contiguity. The results from the property simulations for the particle volume fraction of 
- 0.8 are summarized in Fig. 10 as an example. Note that the standard deviation of strain 
rate in the matrix phase is very sensitive to the contiguity of particles and decreases 
linearly as the particle contiguity increases. 
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microstructures from coarsening simulation with particle volume fraction of ~ 0.8 as a function of 
contiguity of particles. Note that the standard deviation of strain rate decreases strongly in a 
linear fashion in the matrix with increasing particle contiguity. 

4.2.3. Effect of Morphological Change on the Stress Distribution in Particles 
In the previous section, we observed that the stress distribution of the particle 

phase in the composites under uniaxial tension is weakly dependent on contiguity. This 
interesting trend prompted an examination of the dependence of the stress distribution of 
the particles on their volume fraction. Fig. 11 shows the variation in the stress 
distribution of the hard Bee particle phase under uniaxial tension as a function of the 
particle volume fraction . Also, two more cases are considered and compared to the 
results from the composite microstructures: 1) FFT plasticity simulation on a polycrystal 
under uniaxial tension, having ~2,500 Bee grains with random texture, with several 
different viscopJasticity exponents n = 10, 20, 30 and 40; and 2) rate-insensitive Taylor 
factor calculation for 643 random orientations with Bee structure under uniaxial 
deformation. The latter calculation was performed with the commercial OIM™ software 
package. For composite and Bee polycrystal cases, the microstructures with different 
particle volume fractions were chosen such that the number of particles was similar 
(~2,OOO) and, hence, the average size and the contiguity of particles increases as the 
particle volume fraction increases. Since a threshold resolved shear stress of 1.0 was 
used for all slip systems of Bee particles during simulations and assuming that the local 
Taylor factor in the Bee particles/grains from simulations is equal to local von Mises 
equivalent stress divided by the threshold stress, it is sensible to compare the stress 
distribution in the particles from simulations to that of Taylor factors of isolated Bee 
voxels in order to see the effect of the morphology of microstructures and the particle 
volume fraction on the stress distribution in the particles. The main result is a drastic but 
smooth transition of the stress distribution in the Bee particles with increasing particle 
volume fraction. At high volume fractions, the distribution tends to be towards that 
calculated for the Bee polycrystal. As the particle volume fraction increases, the 
average stress of the particles increases as noticed before, which results in the shift of the 
distribution curve to the right. At the microstructural scale, as the particle contiguity 
increases with increasing volume fraction, particles in soft orientations are no longer 
shielded by the softer matrix phase and load is transmitted to particles in harder 
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Fig. II. Variation in the stress distribution of the hard Bee particles in the composite under 
uniaxial tension as a function of the particle volume fraction (vf), compared to two more cases; I) 
FFT plasticity simulation on a polycrystal under uniaxial tension, having Bee grains with 
random texture, with varying the viscoplasticity exponent n = 10,20,30 and 40; and 2) Taylor 
factor calculation for 643 isolated voxels with Bee structure under uniaxial deformation, having 
random orientation. Note that the drastic but smooth transition of the stress distribution in the 
Bee particles with increasing particle volume fraction such that it agrees with the simulated 
stress distributions in the polycrystal with Bee grains as particle volume fraction approached 
unity. Also, note that, as n increases, the stress distribution tends to develop the maximum peak 
at high stress regime, which tends toward the Taylor factor distribution of isolated voxels. 

orientations (Le., at higher stresses). This provides a simple explanation for the changes 
in skewness from left to right as the particle volume fraction increases. 

However, the distribution of Taylor factors from the 643 isolated Bee voxels is 
quite different from that ofthe FFT simulation on the same voxels in a 64x64x64 
simulation domain. This is because of the effect from the neighbors on the stress and 
strain rate state for each voxel during the FFT simulation. Note that, as n increases, the 
results from the Bee polycrystal case evolve toward to match the distribution of Taylor 
factors when those 64 voxels are isolated with no neighboring interactions, such that the 
frequencies over the bins with both large and small stress values become higher while 
those over the intermediate bins get lower. 

4.2.4. Single Crystal versus Polycrystal Matrix 
Up to this point, the matrix phase has been treated as an FCC single crystal having 

a single orientation ("cube" orientation). In reality, however, the matrix phase solidifies 
after liquid phase sintering and is polycrystalline, as previously mentioned. In this 
section, we examine the effect of polycrystallinity of matrix on the stress and strain rate 
fields under uniaxial tension. 

The change in the relative activity of each phase in the coarsened microstructures 
with a randomly oriented polycrystalline matrix is presented in Fig. 12, where the results 
are compared to those for the "cube"-oriented single crystal matrix. Since the "cube" 
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orientation is a soft orientation in uniaxial tension, it is reasonable that the relative 
activity in the polycrystal matrix is smatter than that in the single crystal matrix. Given 
the uniform strain boundary condition used for all property simulations, this decrease 
must be compensated by increase in the relative activity in particles. A decrease in the 
relative activity of the po lycrystal matrix from that of a single crystal matrix is observed 
consistently across the range of particle volume fractions. 
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Fig. 12. The comparison of the relative activity of each phase as a function of volume fraction of 
particles in coarsened microstructures with either a single crystal matrix having the cube 
orientation or a polycrystal matrix having random orientation. Note a consistent decrease in the 
relative activity of the poJycrystal matrix from that of the single crystal matrix. 

Fig. 13 shows the stress and strain rate fields for both the single crystal matrix 
case, Figs. 13(a) and (c), and the polycrystal matrix case, Figs. 13(b) and (d), 
respectively, with particle volume fractions of ~O . 6 . The geometry ofthe microstructures 
is the same for the two cases and so the configuration of particles and matrix is the same. 
The only difference between two microstructures is that the one has a single crystal 
matrix whereas the other one has a polycrystalline matrix. Note that the gray-scaled 
color of the stress field is whiter for the polycrystalline matrix case, which corresponds to 
a higher macroscopic average stress. Note also that individual particles have different 
stress values for the two different matrices; this is also true for the matrix. The strain rate 
field for the polycrystalline matrix case, Fig. 13(d), has fewer hot spots and more diffuse 
gray-scaled color than the corresponding field in the single crystal matrix, Fig. 13(c). 
This suggests that the distribution of strain rate is more homogenous in the 
polycrystalline case. 

Figs. 14 and 15 show the first and second moments for the stress and strain rate 
fields, comparing the polycrystal matrix case with the single crystal matrix case . For the 
composite as a whole, the average stress is substantially higher in the polycrystal matrix 
case whereas the standard deviation in stress is lower for all volume fractions except Vr 
0.2. The average strain rate is a boundary condition for the composite as a whole but its 
standard deviation is appreciably smaller in the polycrystal matrix compared to the single 
crystal matrix. Considering the matrix by itself, both the average stress and the standard 
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Fig. 13 . Stress and strain rate fields in the microstructures with the particle volume fraction of ~ 
0.6. (a) and (c) are stress and strain rated fields from the simulation on the microstructures with a 
single crystal matrix with the cube orientation, respectively, and (b) and (d) are stress and strain 
rated fields from the microstructures with a poly crystal matrix with random orientation, 
respectively. Note that more stress is transferred to the particles due to the polycrystallinity of the 
matrix phase, and that the more homogeneous distribution of strain rate in the microstructures is 
developed with a polycrystalline matrix than in that with the single crystal matrix. 

deviation are appreciably higher in the polycrystal matrix. The average stress in the 
particles and its standard deviation are also higher in the particles, although the 
differences between the two matrices vanish at high particle volume fractions. 

It is apparent that the heterogeneous polycrystalline matrix mor effectively 
transmits stress between particles, compared to single crystal case. Keeping with the 
relative activity analysis, Fig. 12, a polycrystalline matrix provides a harder, more 
heterogeneous matrix, such that it absorbs a smaller fraction of the imposed strain rate 
(smaller average strain rate with smaller standard deviation for the polycrystalline 
matrix). This is similar to the trend in the stress analysis in particles as a function of 
contiguity of particles (Table 1 for the "disordered" microstructure case and Table 4 for 
coarsening case), where the average stress in the particles increases as the contiguity of 
particles increases, albeit only by a small amount. Again, one can easily see that such 
particles that have different gray-scaled colors for stress between the two cases (Fig. 13). 
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Fig. 14. (a) Average stress and (b) its standard deviation of both particles and matrix phase in the 
microstructures from coarsening simulation as a function of volume fraction of particles. The 
microstructures have the same set of particles and either a single crystal matrix with the cube 
orientation or a po!ycrystal matrix with random orientations. 
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Fig. 15. (a) Average strain rate and (b) its standard deviation of both particles and matrix phase in 
the microstructures from coarsening simulation as a function of volume fraction of particles. The 
microstructures have the same set of particles and either a single crystal matrix with the cube 
orientation or a polycrystal matrix with random orientations. 

5. Concluding Remarks 

Simulations of the viscoplastic response under uniaxial tension using the Fast 
Fourier Transform (FFT) algorithm has been used to describe the fundamental 
mechanical behavior of metal-metal composite materials. The digital microstructures 
were generated using the Monte Carlo simulation of coarsening (Ostwald ripening) (Lee 
et aI., 1007). Specifically, stress and strain rate fields were obtained in these composite 
materials with nearly equiaxed BCC particles in an FCC matrix . Digital composite 
materials were devised with a wide range of spatial distributions of particles and hence 
the different morphologies of the matrix phase. 

Stress is mainly concentrated in the hard particle phase while the soft matrix 
phase takes up more of the strain rate because of the higher threshold resolved shear 
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stress imposed for the particles. The macroscopic response in terms of the average stress 
and average strain rate obeys the simple rule of mixtures. However, the variation in 
standard deviation in the strain rate is less simple, especially at high particle volume 
fractions, where the contiguity of particles has a noticeable effect on the mechanical 
response. This leads to the conclusion that the first moments of the stress and strain rate 
are relatively insensitive to the microstructure under these conditions whereas the second 
moments of the distributions are strongly dependent on the microstructure. 

The particle volume fraction and the contiguity of particles appear to be the most 
important microstructural factors that affect the mechanical behavior, in that average 
stresses and strain rates, and their standard deviations for each phase and overall 
microstructure increase with both increasing particle volume fraction and with decreasing 
contiguity of particles (Chawla et aI., 2004; Chawla and Chawla, 2006; Chawla et a!., 
2006b; Ganesh and Chawla, 2005; Kim, 2004;). At a fixed volume fraction, the 
mechanical response of composite materials, in terms of average stress and strain rate 
under uniaxial tension, is a strong function of the microstructure type. In particular, more 
strain rate is taken up by the percolating, wetting matrix phase in the coarsened 
microstructures than by locally isolated matrix grains in "disordered" polycrystalline 
microstructures. By contrast, the particles in the "disordered" microstructures sustain 
more stress than in the coarsened microstructure because of the higher particle contiguity 
in this type of microstructure. 

As particle volume fraction approaches unity, the stress distribution in the BCC 
particles tends towards the simulated stress distributions expected in a BCC polycrystal. 
The average stress of the particles increases (shift of the distribution curve to the right) 
and particles start to lose the shielding from the softer matrix phase, which shifts the 
skewness of the stress distribution from left to right. However, even at the highest 
volume fractions, the distribution is noticeably different from the distribution of Taylor 
factors from the 643 isolated BCC voxels because of the effect from the neighbors on the 
stress and strain rate state for each voxel during the FFT simulation. As the 
viscoplasticity exponent, n, increases, the results from the FFT simulations on the BCC 
polycrystal tend towards the distribution of Taylor factors for the same set of orientations 
under the Taylor assumption of uniform strain (no interactions between neighboring 
grains). 

The effect of poly crystallinity of the matrix phase on the mechanical response has 
also been examined. Compared to a single crystal matrix, a polycrystalline matrix results 
in: 1) higher stresses both macroscopically and in both phases; 2) an increase in the 
average stress and its standard deviation in the matrix phase; and 3) a decrease in the 
sensitivity to volume fraction (less variation in stress). In terms of strain rate, 1) more 
strain is accommodated in particles while less strain rate is taken up by matrix; 2) the 
average strain rate and its standard deviation decrease in the matrix phase; and 3) the 
sensitivity to volume fraction decreases (less variation in strain rate). In general, it can be 
concluded that microstructures with a polycrystalIine matrix are less sensitive to changes 
in volume fraction, contiguity of particles, and microstructure type. This trend may be, 
however, not only a consequence of the polycrystallinity of the matrix in the 
microstructure, but also because of the change in texture of the matrix. Therefore, it is 
also of interest to examine the effect of texture of the matrix on the mechanical response 
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of the microstructure under uniaxial tension. This will be explored in a future 
publication. 

Based on the full field information obtained, it becomes feasible to optimize 
microstructures for a certain preferred mechanical performance. For example, if the 
desired behavior is a more uniform strain rate in both phases, while minimizing the 
difference in average strain rates in the two phases, one can select the corresponding 
microstructure with a given particle volume fraction using Fig. 10. In other words, by 
varying the microstructural design of the material, a desired distribution of strain rate 
under uniaxial tension can be obtained. The material may be more resistant to failure in 
the form of local crack propagation or creep, for example. This is expected to be relevant 
to the optimization of microstructure in W -Ni-Fe heavy alloys (Churn and German, 
1984), which motivated this investigation. 

Even though the simulated microstructures show the characteristics expected from 
Ostwald ripening in liquid phase sintering, more microstructural characterizations such as 
two-point correlation functions (Rollett et aI., 2007), particle shape analysis using a 
moment analysis (MacSleyne et aI., 2008) and spatial distribution of particles using the 
kth nearest neighbor analysis (Tong et aI, 1999) should be performed on the simulated 
microstructures. The results could be compared with those from analysis of the real 
materials samples in order to verify the quality of the simulated microstructures. The 
analysis of the three-dimensional contiguity of particles during coarsening simulations 
with a fixed solid volume fraction showed a scale-variant characteristic such that, as the 
system coarsens, the contiguity of particles decreases. However, it was previously 
reported in the two-dimensional experimental study on WC-Co composites (Kim et aI., 
2008) that the contiguity of WC particles is scale-invariant with a given particle volume 
fraction. In other words, the microstructures attain a self-similarity in terms ofthe WC 
particle contiguity when measured in two-dimensional cross-sections. Note however that 
the WC particles in the system are highly faceted, in contrast to the approximately 
equiaxed particles considered in this work. These issues will be explored in the future. 
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Table 1. Results from the property simulation on both the coarsened microstructure 
(Fig. 3(a)) and the "disordered" microstructure (Fig. 3(b)). Note that the difference in 
morphologies of two microstructures has a drastic influence on relative activities of 
the two phases. 

Coarsened Microstructure Disordered Microstructure 

Particle Matrix Particle Matrix 

# Particles 2029 2041 

Avg. Vol. Particles 618.32 (in voxel) 702.27 (in voxel) 

Particle Contiguity 0.2164 0.7987 

Volume Fraction 0.5982 0.4018 0.5988 0.4012 

Macroscopic Stress 
1.893 (in a.u.) 2061 (in a.u.) 

of the com posite 

Relative Activity 0.405 0.595 0.567 0.433 

Table 2. The total number, the average volume and the contiguity of particles in both 
microstructures used as input for property simulations in terms of the volume fraction 
of particles . Note that "disordered" polycrystals have a much higher particle 
contiguity than the coarsened microstructures with fixed particle volume fraction and 
similar average volume of particles. 

Coarsened Microstructure Disordered Polycrystal 

Particle Volume Fraction 0.6 0.7 0.8 0.6 0.7 0.8 

# Particles 4058 4010 2406 4068 4418 2683 

Avg. Vol. Particles 618.32 730.70 1393.43 698.61 704.80 1341.5 

Particle Contiguity 0.2164 0.3786 0.5017 0.7955 0.8426 0.8805 

Table 3. Results from the property simulation on both the coarsened microstructures 
with the same particle volume fraction (~O.7) but having different total number and 
contiguity of particles. 

Microstructure with High Microstructure with Low 

Particle Contiguity (0.5960) Particle Contiguity (0.2443) 

Particle Matrix Particle Matrix 

# Particles 4998 1002 

Volume Fraction 0.6974 0.3026 0.6988 0.3012 

Macroscopic Stress 
2.061 (in a.u.) 

ofthe composite 
2.039 (in a.u.) 

Relative Activity 0.544 0.456 0.512 0.488 



• 

Table 4. Results of stress fields from the property simulation on both coarsened 
microstructures in Fig. 6 with the same particle volume fraction (~0 . 7) but different 
particle contiguities. 

Macroscopic 

Particles 

Matrix 

Macroscopic 

Particles 

Matrix 

Microstructure with High 

Particle Contiguity (0.5960) 

Microstructure with Low 

Particle Contiguity (0.2443) 

Average Stress (in a. u.) 

2.061 

2407 

1.262 

2.039 (-1.1%) 

2.367 (-1.7%) 

1.278 (+1.3%) 

Standard Deviation in Stress (in a. u.) 

0.611 

0.366 

0.092 

0.584 (-44%) 

0.354 (-3.3%) 

0.114 (+23.9%) 

Table 5. Results of strain rate fields from the property simulation on both coarsened 
microstructures with the same particle volume fraction (-0.7, Fig. 6) but having 
different contiguity of particles. 

Macroscopic 

Particles 

Matrix 

Macroscopic 

Particles 

Matrix 

Microstructure with High 

Particle Contiguity (0.5960) 

Microstructure with Low 

Particle Contiguity (0.2443) 

Average Strain Rate (in a. u.) 

1.117 

0.871 

1.685 

1.127 (+0.9%) 

0.825 (-53%) 

1.826 (+84%) 

Standard Deviation in Strain Rate (in a. u.) 

0.615 

0.378 

0.679 

0.754 (-22.6%) 

0.375 (-0.8%) 

0.930 (+37.0%) 


