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Abstract

An upper bound on the ergodic capacity of MIMO channels was introduced recently
in [1]. This upper bound amounts to the maximization on the simplex of some multilinear
polynomial p(A1, ..., An) with non-negative coefficients. In general, such maximizations prob-
lems are NP-HARD. But if say, the functional log(p) is concave on the simplex and can be
efficiently evaluated, then the maximization can also be done efficiently. Such log-concavity
was conjectured in [1]. We give in this paper self-contained proof of the conjecture, based
on the theory of H-Stable polynomials.

1 The conjecture

Let B be M x M matrix. Recall the definition of the permanent :

Per(B)= Y ][] A(G,o0(9).

0ESy 1<i<M

The following Conjecture was posed in [1].

Conjecture 1.1: Let A be M x N,M < N matrix with non-negative entries. We denote as

Ag a submatrix
As ={A@G,)):1<i<mjeSc{1,., N}

Define the following multi-linear polynomial with non-negative coefficients

Fa(M, 0 An) = 3 Per(As) [T X (1)

|S|=M,5C{1,....N} JES

Then the functional log(F4) is concave on RY = {(A\1,...,An) : Aj>20,1<j< N} I

We present in this paper a proof of Conjecture(1.1). Actually we prove that the polynomial
F4 is either zero or H-Stable.
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2 H-Stable polynomials

To make this note self-contained, we present in this section proofs of a few necessary results.
The reader may consult [5] and [3] for the further reading and references.

We denote as Hom,(m,n) a convex closed cone of homogeneous polynomials with non-
negative coefficients of degree n in m variables and with non-negative coefficients; as R a
convex closed cone of non-negative vectors in R™ and as RT', a convex open cone of positive
vectors in R™.

Definition 2.1: A homogeneous polynomial p € Hom (m,n) is called H-Stable if
[p(21, ey 2m)| > 0; Re(z;) > 0,1 < i < m;

is called H-SStable if |p(z), ..., zm)| > 0 provided that
Re(z;) 20,1 <i<mand 0 < ¥jcmem Re(zi).
[

Example 2.2: Consider a bivariate homogeneous polynomial p € Hom(2,n), p(z1,22) =
(z2)"P(%), where P is some univariate polynomial. Then p is H-Stable iff the roots of P are
non-positive real numbers. This assertion is just a rephrasing of the next set equality:

GC— {-fl : Re(z1), Re(29) >0} = {z € R:z < 0}.
22
In other words

Pit)=a J] (t+a):ai>20,1<i<kja>0.

1<i<k<n

Which gives the following expression for the bivariate homogeneous polynomial p:

plz1,23) = az}~* Il (a1 +az)
1<i<k<n

Fact 2.3: Let p € Hom,(m,n) be H-Stable. Then log(p) is concave on R}

Proof: Consider two vectors X,Y € R such that their sum X +Y € RY' has all positive
coordinates. It is sufficient to prove that the bivariate homogeneous polynomial ¢ € Hom(2,n)

q(t,s) = p(tX + sY),

is log-concave on R%. Clearly, the polynomial g is H-Stable. Therefore, using Example(2.2),
we get that

log(q(t,s)) = log(a) + (n— k)log(s) + Y log(t+ais):a; >0,1<i<k;a>0.

1<i<k<n

The log-concavity of ¢ follows now from the concavity of the logarithm on [0,00). 1
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Remark 2.4: Since the1 polynomial p is homogeneous of degree n hence, by the standard
argument, the function p» is concave on R as well. lI

Fact 2.5: Let p € Homy(m,n) be H-Stable and z; > 0,1 < i < m then the following
inequality holds

Ip(z1 + Y1, ..o, Tm + Ym)| 2 P(21, ..., Tm) (2)

Proof: Consider without loss of generality the positive case z; > 0,1 < 7 < m. Then there
exists a positive real number p > 0 such that y; + pz; > 0,1 < i < m. It follows from
Example(2.2) that for all complex numbers z € C

p(zz1 + (1 + p21), s Tm + 2(Ym + PTm) = P21, Zm) [] (z+@);ei >0,1<i<m.
1<i<n

Thus

p(le + Y1,.0y 2Tm =+ ym) o= p(xl='-'|xm) H (Z + aj — .u')
1<i<n

We get, using the homogeniuty of the polynomial p, that

P(E1 + i1,y T + 1Y) = P@11en@m) [] (1 +i(a5 = ).

1<j<n
As [T];<;<n(1 +i(a; — p))| > 1 this proves that the inequality (2) holds. i

Corollary 2.6: A nonzero polynomial p € Hom.,(m,n) is H-Stable if and only the inequlity
(2) holds.

Corollary 2.7: Let p; € Homy(m,n) be a sequence of H-Stable polynomials and p =
lim; o0 pi- Then p is either zero or H-Stable.

Some readers might recognize Corollary (2.7) as a particular case of A. Hurwitz’s theorem on
limits of sequences of nowhere zero analytical functions. Our proof below is elementary.

Proof: Suppose that p is not zero. Since p € Homy(m,n) hence p(z1,...,%p) > 0if z; > 0:
1 < j < m. As the polynomials p; are H-Stable therefore [p;(Z)| > |p; (Re(Z))| : Re(Z) €
R™.. Taking the limits we get that [p(Z)| > [p(Re(Z))| > 0 : Re(Z) € RT,, which means
that p is H-Stable. 1

We need the following simple yet crucial result.

Proposition 2.8: Let p € Hom.(m,n) be H-Stable. Then the polynomial p(;y € Hom, (m—
1,n— 1),
( )= z—p(0,x )
T oy L) =1 LA B
P(l) 24 m ) IP 2 m

is either zero or H-Stable.
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Proof: Fix complex numbers z;,2 < ¢ < m and define the following univariate polynomial
R(t) = p(t, z2, ..., Zm)-

It follows that R'(0) = p(y)(22,---, zm). We consider two cases.

First case: the polynomial p € Hom,(m,n) is H-SStable. In this case the polynomial p(;) €
Hom,(m—1,n—1) is H-SStable as well. Indeed, in this case if the real parts Re(z;) > 0,2 <
i <mand Y} ycicm RE(2zi) > 0 then all the roots vy, ...,v,-1 of the univariate polynomial R
have strictly negative real parts:

Rit)=h J] (t-w),0#heC.

2<i<n-1

Therefore

P)(22, s Zm) = R'(0) = h(=1)""*( H vi)( Z ()™ #0

as the real part

Re( ) (w)y™hH= > }TZSIT?)>O'

2<i<n—1 2<i<n—1

Second case: the polynomial p € Hom,(m,n) is H-Stable but not H-SStable. We need to
approximate p by a sequence of H-SStable polynomials. Here is one natural approach: let A
be any m x m matrix with positive entries. Define the following polynomials:

Pr+ea(Z) = p((I +€A)Z),Z € C™.

Clearly, the for all € > 0 the polynomials pyy .4 € Hom,(m,n) and are H-SStable.
It follows that polynomials a-i—lp;HA(O, T9,...,Tm) are H-SStable as well. Note that

.0
lim B—IIPHCA(O,ZL v Zm) = P(1) (22, s Zm)-

Using Corollary(2.7) we get that the polynomial p(;) is either H-Stable or zero. I

3 Proof of the conjecture

Proof: We will need a few auxillary polynomials:

P(z1, . Zai 01, ) = [ 4+ D0 AL 5)m). (3)

1<GEN 1<i<m

Clearly, the polynomial P € Hom (M + N, N) is H-Stable if the entries of the matrix A are
non-negative. Applying Proposition(2.8) inductively, we get that the following polynomial

6)‘”

R(M\, .y AN) = 0z1...0Zm

P(X = 0: M\, AN) (4)
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is either zero or H-Stable as well. It is easy to see that

R(A1, .., AN) = > Per(As) [ A, (5)

IS|=M,SC{1,...,N} j€S

where § = {1,..., N} — S is the compliment of the set .S.
Now everything is ready for the punch line: the multilinear homogeneous polynomial,
defined in (1),

Fa(r, s dn) = (I MR s ) 7). (6)

1<i<N

Recall that the real part Re(z7!) = ‘%I(f-l for all non-zero complex numbers z € C. Therefore,
if the real parts Re();) > 0,1 < i < n then the same is true for the inverses:

Re((M)™) >0,1<i<m.

This proves that the polynomial Fy is either zero or H-Stable. The log-concavity follows from
Fact(2.3). 1

4 Conclusion

The reader should not be deceived by the simplicity of our proof: very similar arguments are
behind the breakthrough results in [5], 4], [6]. The reader is advised to read very nice exposition
in [3].

Conjecture (1.1) is actually a very profound question. Had it been asked and properly answered
in 1960-70s, then the theory of permanents (and of related things like mixed discriminants and
mixed volumes [6]) could have been very different now.

Though the “permanental” part in [1] is fairly standard(the authors essentially rediscovered so
called Godsil-Gutnan Formula [8]) it is quite amazing how naturally the permanent enters the
story. Switching the expectation and the logarithm can be eventful indeed.

The log-concavity comes up really handily in the optimizational context of [1]. The thing is
that maximization on the simplex of 37, <1<;<n 0(¢, j)ziz; is NP-COMPLETE even when
b(i,j) € {0,1},1 <1< j<N.

Our proof is yet another example on when the best answer to a question posed in the real
numbers domain lies in the complex numbers domain. Yet, we don’t exlude a possibility of a
direct “monstrous” proof.
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