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Abstract 

An upper bound on the ergodic capacity of MIMO channels was introduced recently 
in [1]. This upper bound amounts to the maximization on the simplex of some multilinear 
p olynomial p(Al, ... , An) with non-negative coefficients. In general, such maximizations prob­
lems are NP-HARD . But if say, the functionallog(p) is concave on the simplex and can be 
efficiently evaluated, then the maximization can also be done efficiently. Such log-concavity 
was conjectured in [1 ]. We give in this paper self-contained proof of the conjecture, based 
on the theory of H-Stable polynomials. 

1 The conjecture 

Let B be M x M matrix. Recall the definition of the permanent : 

Per(B) = L II A(i,o-(i)) . 
(IESM l :5.i:5.M 

The following Conjecture was posed in [1 J. 

Conjecture 1.1: Let A be M x N , M < N matrix with non-negative entries. We denote as 
As a submatrix 

As = {A(i,j) : 1 :S i :S m;j ESC {l , ... , N}. 

Define the following multi-linear polynomial with non-negative coefficients 

FA(Al , ... , AN) = L Per(As) II Aj. (1) 
ISI =M,SC{l, .. ,N} jES 

Then the functionallog(FA ) is concave on R':. = {(AI , ... , AN) : Aj ~ 0, 1 :S j :S N}. I 

We present in this paper a proof of Conjecture(1.1) . Actually we prove that the polynomial 
FA is either zero or H-Stable. 

·gurvits(Hanl.gov. Los Alamos National Laboratory, Los Alamos, NM. 

1 



2 H-Stable polynomials 

To make this note self-contained, we present in this section proofs of a few necessary results. 
The r'eader may consult IS} and 13} fOT the further reading and refer-ences. 

We denote as H om+ (m, n) a convex closed cone of homogeneous polynomials with non­
negative coefficients of degree n in m variables and with non-negative coefficients; as R~ a 
convex closed cone of non-negative vectors in Rm and as R~+ a convex open cone of positive 
vectors in Rm. 

Definition 2.1: A homogeneous polynomial p E Hom+(m,n) is called H-Stable if 

is called H-SStable if Ip(zJ, ... , zm) I > 0 provided that 
Re(zi) 2': 0, 1 :s i :s m and 0 < Ll::;m::;m Re(zi). 
I 

Example 2.2: Consider a bivariate homogeneous polynomial p E Hom+(2,n), p(Zl,Z2) = 
(Z2)n P(~), where P is some univariate polynomial. Then p is H-Stable iff the roots of Pare 
non-positive real numbers. This assertion is just a rephrasing of the next set equality: 

Zl 
C - {- : Rp.(zJ),Re(z2) > O} = {x E R : x:S O}. 

Z2 

In other words 
P(t) = a IT (t + ai) : a'i 2': 0, 1 :s 'i :s k; a > O. 

l::;i::;k::;n 

Which gives the following expression for the bivariate homogeneous polynomial p: 

( ) n-k p Zl, Z2 = aZ2 

I 

Fact 2.3: Let p E Hom+(m,n) be H-Stable. Then log(p) is concave on R~. 

Proof: Consider two vectors X, Y E R~ such that their sum X + Y E R~ has all positive 
coordinates. It is sufficient to prove that the bivariate homogeneous polynomial q E H om+ (2, n) 

q(t, s) = p(tX + sY), 

is log-concave on R~. Clearly, the polynomial q is H-Stable. Therefore, using Example(2.2), 
we get that 

log(q(t , s)) = log(a) + (n - k) log(s) + L log(t + ais) : ai 2': 0,1 :s i :s k; a> O. 
1 ::;i::;k::;n 

The log-concavity of q follows now from the concavity of the logarithm on [0,00). I 
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Remark 2.4: Since the polynomial P is homogeneous of degree n hence, by the standard 
1 

argument, the function pn is concave on R~t as well. I 

Fact 2.5: Let P E H om+ (m, n) be H-Stable and Xi ~ 0,1 ::; i < m then the following 
inequality holds 

(2) 

Proof: Consider without loss of generality the positive case Xi > 0, 1 ::; i ::; m. Then there 
exists a positive real number ;.t > 0 such that Yi + ;.tXi > 0, 1 ::; i ::; m. It follows from 
Example(2.2) that for all complex numbers Z E C 

P(ZXl + (Yl + ;.tx d, ... , Xm + z(Ym + ;.txm ) = p(Xl, ... , xm) II (z + ai); ai > 0,1 ::; i ::; m. 
l :'Oi:'On 

Thus 
p(ZXl+Yl, ... ,ZXm +Ym)=P(Xl, ... ,Xm ) II (z+ai-;.t) 

l :'Oi:'On 

We get, using the homogeniuty of the polynomial P, that 

p(Xl + iYl, ... , Xm + iYm) = p(xJ , ... , xm) II (1 + i(aj - ;.t)). 
1 :'OJ:'On 

As I Ill :'Oj:'On( l + i(aj - ;.t))1 ~ 1 this proves that the inequality (2) holds. I 

Corollary 2.6: A nonzero polynomial p E H om+ (m, n) is H-Stable if and only the inequlity 

(2) holds. 

Corollary 2.7: Let Pi E H om+ (m, n) be a sequence of H-Stable polynomials and P 

limi-->ooPi. Then P is either zero or H-Stable . 

Some readers might recognize Corollary (2.1) as a particular case of A . Hurwitz 's theorem on 
limits of sequences of nowhere zero analytical functions . Our proof below is elementary. 

Proof: Suppose that P is not zero. Since P E Hom+(m , n) hence P(Xl,··· ,xm ) > 0 if Xj > 0: 
1 ::; j ::; m. As the polynomials Pi are H-Stable therefore IPi( Z) 1 ~ IPi (Re(Z)) I : Re(Z) E 
R':;\. Taking the limits we get that Ip(Z)1 ~ Ip(Re( Z)) I > 0 : R e(Z) E R~~\, which means 

that P is H-Stable. I 

We need the following simple yet crucial result. 

Proposition 2.8: Let P E H om+(m, n) be H-Stable. Then the polynomial P(1) E Hom+(m-

1,n -1), 

is either zero or H-Stable. 
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Proof: Fix complex numbers Zi, 2 SiS m and define the following univariate polynomial 

R(t) = p(t , Z2, ... , zm). 

It follows that R'(O) = P(1)( Z2 , ... , z m). We consider two cases. 
First case: the polynomial P E Hom+(m,n) is H-SStable. In this case the polynomial P(l) E 

Hom+(m-l,n-l) is H-SStable as well. Indeed, in this case if the real parts Re(zi) ~ 0,2 S 
iSm and L.2'5,.i '5,.m RE(Zi) > ° then all the roots VI, . . . , Vn-l of the univariate polynomial R 

have strictly negative real parts: 

R(t) = h IT (t - Vi)' ° =I h E C. 
2'5,. i'5,.n-l 

Therefore 

2'5,.i'5,.n-l 

as the real part 

Re( 2:= (Vi) -1) = 2:= Re( ~i) > 0. 
2'5,. i '5,. n-l 2'5,. i'5,.n-l IVil 

Second case: the polynomial P E H om+(m, n) is H-Stable but not H-SStable. We lleed to 
approximate P by a sequence of H-SStable polynomials. Here is one natural approach: let A 
be any m x m matrix with positive entries. Define the following polynomials: 

Clearly, the for all E > ° the polynomials PJ+fA E H om+(m, n) and are H-SStable . 
It follows that polynomials -J-PJ+fA (0 , X2, ... , xm) are H-SStable as well. Note that 

aXl 

Using CorolJary(2.7) we get that the polynomial P(I) is either H-Stable or zero. I 

3 Proof of the conjecture 

Proof: We will need a few auxiliary polynomials: 

P( Xl , ... ,X/i1;)'l, .. . , AN)= IT (Aj+ L A(i,j)Xi). 
l'5,.j '5,. N l'5,.i'5,.m 

(3) 

Clearly, the polynomial P E H om+ (M + iV, iV) is H-Stable 1£ the entries of the matrix A are 
non-negative. Applying Proposition(2 .8) inductively, we get that the following polynomial 

(4) 
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is either zero or H-Stable as well. It is easy to see that 

R(>'l, .. . , AN) = L Per(As) II Aj, (5) 
ISI=M,SC{l, .. ,N} jES 

where S = {l, ... , N} - S is the compliment of the set S. 
Now everything is ready for the punch line: the multilinear homogeneous polynomial, 
defined in (1) , 

FA(Al, .. . , AN) = ( II Ai)R((Al)-l, ... , (AN)-l). 
l:<;i :<; N 

(6) 

Recall that the real part Re(z-l) = tf;) for all non-zero complex numbers z E C. Therefore, 

if the real parts Re(Ai) > 0,1 :::; i :::; n then the same is true for the inverses: 

This proves that the polynomial FA is either zero or H-Stable . The log-concavity follows from 
Fact(2.3). I 

4 Conclusion 

The reader should not be deceived by the simplicity of our proof: very similar arguments are 
behind the breakthrough results in [5], [4], [6]. The reader is advised to read very nice exposition 
in [3]. 
Conjecture (l.1) is actually a very profound question. Had it been asked and properly answered 
in 1960-70s, then the theory of permanents (and of related things like mixed discriminants and 
mixed volumes [6]) could have been very different now. 
Though the "permanental" part in [1] is fairly standard(the authors essentially rediscovered so 
called Godsil-Gutman Formula [8]) it is quite amazing how naturally the permanent enters the 
story. Switching the expectation and the logarithm can be eventful indeed. 
The log-concavity comes up really handily in the optimizational context of [1] . The thing is 
that maximization on the simplex of 2:1:<;1 :<; j:<;N b(i,j)XiXj is NP-COMPLETE even when 
b(i,j) E {O,l},l :::; 1:::; j:::; N. 
Our proof is yet another example on when the best answer to a question posed in the real 
numbers domain lies in the complex numbers domain. Yet, we don't exlude a possibility of a 
direct "monstrous" proof. 
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