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1. Technical Progress for Current Year 
Efforts during the past year have contributed to the continued development of the ITAPS 
interfaces and services as well as specific efforts to support ITAPS applications.  

The ITAPS interface efforts have two components. The first is working with the ITAPS 
team on improving the ITAPS software infrastructure and level of compliance of our 
implementations of ITAPS interfaces (iMesh, iMeshP, iRel and iGeom). The second is 
being involved with the discussions on the design of the iField fields interface.  

Efforts to move the ITAPS technologies to petascale computers has identified a number 
of key technical developments that are required to effectively execute the ITAPS 
interfaces and services. Research to address these parallel method developments has been 
a major emphasis of the RPI’s team efforts over the past year. 

The development of parallel unstructured mesh methods has considered the need to scale 
unstructured mesh solves to massively parallel computers. These efforts, summarized in 
section 2.1 show that with the addition of the ITAPS procedures described in sections 2.2 
and 2.3 we are able to obtain excellent strong scaling with our unstructured mesh CFD 
code on up to 294,912 cores of IBM Blue Gene/P which is the highest core count 
machine available. The ITAPS developments that have contributed to the scaling and 
performance of PHASTA include an iterative migration algorithm to improve the 
combined region and vertex balance of the mesh partition, which increases scalability, 
and mesh data reordering, which improves computational performance. The other 
developments are associated with the further development of the ITAPS parallel 
unstructured mesh adaptation procedures. Specific developments include: 

• Parallel boundary layer mesh adaptation integrated with parallel anisotropic mesh 
adaptation (section 2.4.1). 

• A new more scalable message packing library (section 2.4.2). 

• Support of periodic boundary conditions (section 2.4.3). 

We have continued to work closely with both the accelerator applications for COMPASS 
and fusion application for CEMM. For COMPASS, efforts have focused on providing 
specific unstructured mesh adaptation tools to deal with curved elements and mesh 
adaptation. For CEEM, we are working to provide the structures and methods needed for 
the M3D-C1 to go to full three dimensional configurations. 



2. Parallel Methods for Unstructured Meshes Developments 

2.1 PHASTA CFD Code Scaling to Petascale Machines 

As indicated in the previous progress report, one aspect of getting unstructured meshing 
techniques to the petascale is demonstrating the ability of PDE discretization and solution 
systems to scale well on massively parallel computers. This year we continued our work 
on scaling the PHASTA open source CFD code to near petascale machines. PHASTA 
(Parallel Hierarchic Adaptive Stabilized Transient Analysis) is an implicit stabilized 
finite element code that solves its matrix systems using appropriate pre-conditioned 
iterative solvers on partitioned meshes. PHASTA employs an implicit time integration 
method that requires the solution of the full set of equations in each step. The linear 
algebra solver used is based on GMRES, which needs only matrix vector products and 
can operate on the partitioned mesh. With this combination of methods, the 
interprocessor communications needed are of two types:  

• Organized, substantial, and regular communication between partitions that touch each 
other in terms of elements on multiple processors that share common boundary mesh 
entities.  

• For each iteration within the linear solve (typically O(10) iterations per time step), 
there is a required ALL-REDUCE communication.  

The combination of stabilized 
finite elements and iterative 
solvers in PHASTA allows it to 
be used with adaptively defined 
anisotropic unstructured meshes 
such as shown in Figure 1 that 
includes anisotropic prismatic 
boundary layers and anisotropic 
tet elements [11,12,13, 15,17]. 

Last year we reported scaling 
results on 1024 to 16,384 
processors of an IBM Blue 
Gene/L. This year we have 
continued to extend the ability 
of PHASTA to scale on even 
larger core count machines and, 
with the help of methods described in the next section, have extended the results to 
machines with more than an order of magnitude more compute cores. Strong scaling 
results to all 163,840 cores of the Argonne Intrepid IBM Blue Gene/P were reported in 
reference [14]. This paper was a 2009 Gordon Bell Finalist. More recent results, yet to be 
published, have shown excellent strong scaling to 294,912 cores of IBM Blue Gene/P and 
98,304 cores of Cray XT5 (see Table 1) [12,14,17,18,20]. 

Figure 1. Example anisotropic adaptive mesh for 
an abdominal aorta aneurysm. 



 
Table 1. PHASTA scaling results on near petaflop machines.   

2.2 Algorithms to Improve Mesh Partitions for Petascale Machines 

As the initial PHASTA scaling studies moved to larger core counts some loss of strong 
scaling was observed. An examination of the two key steps of elements matrix 
formulations and global systems solve indicated that second step of system solve was the 
primary source of the loss of scalability. The key source for this problems relates to the 
fact that the workload associated with that step is a function of the number of vertices in 
the mesh and that even though the graph partitioners used maintained excellent balance 
of the number of elements on a part, the imbalance of the number of vertices per part for 
many of those cases was often 20% or more, leading to an imbalance of the work load. 
Since the overall partition provided by the graph partitioners is generally a good overall 
partition, a more local algorithm that employs additional adjacency information that is 
available through the ITAPS iMesh and iMeshP interfaces has been developed to perform 
local modifications of the partitions to reduce vertex imbalance while minimizing 
increases in element imbalance. 

The partition improvement procedure referred to as Local Iterative Inter-Part Boundary 
Modification (LIIPBMod) [20] locally migrates small numbers of mesh elements from 
parts with relatively more vertices to neighboring parts that are relatively lightly loaded. 
On the heavily loaded part, the mesh vertices on the part boundary are traversed and the 
ones bounding a small number of elements are identified. If the neighboring part is 
lightly loaded, the whole “cavity” (all the adjacent elements to a selected vertex) is 
migrated to the neighboring part. Figure 2 demonstrates the basic application of this 
process for selected vertices. The top row shows mesh vertices selected to be migrated 
and the local mesh before migration while the bottom row shows the mesh after the 
connected elements have been migrated.  

The iterative application of this operation has been found to be effective for reducing the 
vertex imbalance while having only a small influence on increasing element imbalance. It 
is also found that this algorithm improved the partition boundary communication 
requirements by decreasing the ratio of vertices on a part boundary to the total number of 
vertices on the part. Another advantage of the procedure is it typically is much faster that 
a general full repartitioning of the mesh. Table 2 compares the element and vertex 
imbalance ratios for a 42 million element partitioned mesh before and after using the 
LIIPBMod algorithm along with the time usage of the ParMETIS partitioner and 



LIIPBMod algorithm. The number of iterations LIIPBMod needed to improve the vertex 
imbalance for each partition is included in the table as well.   

 
Figure 2. Migration of elements to move vertices from left to right. 

 
Table 2. Comparison of element and vertex imbalance ratios before and after using 

LIIPBMod algorithm on a 42M element mesh along with the time usage (including mesh 
migration) of the ParMETIS PartKWay partitioner and LIIPBMod algorithm. 

In the second example [20], LIIPBMod is applied on the partitions produced by Zoltan 
PHG partition on the abdominal aorta aneurysm geometry shown in Figure 1 with a 1.07 
billion element mesh. The same parameters are used as in the previous test (i.e., tol vtx = 
1.05 and maxiter = 10). The tests are performed on Kraken at NICS, using 2048 
processing cores (4096 cores are used for the case of “4k to 160k”). Table 3 compares the 
element and vertex imbalance ratios before and after LIIPBMod. It also contains the time 
usage of Zoltan PHG and LIIPBMod, again this includes the time usage of mesh entity 
migration. LIIPBmod reduces the vertex imbalance for all seven cases (from 4,096 to 
131,072 parts) as well as the “4k to 160k” partition down to 5% (5th column in Table 
5.4) with modest impact on element balance and it reduces the vertex imbalance 
dramatically for the partitions with a high number of parts (e.g., from 21.17% to 4.99%), 
which is important for time critical simulations. Time usage of LIIPBMod (7th column of 
Table 5.4) is small compared to that of hypergraph-based partitioner, and is negligible 
compared to the finite element analysis. As discussed in reference [20], the partitioned 
meshes produced after the application of LIIPBMod did improve the scalability of the 
PHASTA, particularly on very large core count with strong scaling improving from 



around 0.8 to approaching 0.9. Although such an improvement may not sound extensive, 
it does correspond to millions of CPU hours off the full simulation of billion element 
meshes run of vary large core counts. 

 

 
Table 3. Comparison of element and vertex imbalance ratios before and after using 

LIIPBMod algorithm on a 1.07B element mesh. Time usage is also provided along with 
the number of iterations used in LIIPBMod algorithm. 

Its should be noted that in a recently developed version of the Zoltan partitioning 
procedures are faster and produce better combined vertex and element balance than the 
version used in the example of Table 3. We are currently applying LIIPBMod to the 
meshes resulting from the application of the newest procedures and the initial results 
indicate that improvements continue to be obtained and that the combination of the 
newest Zoltan partitioner and LIIPBMod are producing the best results to date. This will 
be reported on in up-coming documentation. 

2.3 Data Reordering to Improve Parallel Performance 

The effective use of the processor memory hierarchy is an important issue in computing 
performance. To improve the use of the processor memory hierarchy, specifically overall 
cache utilization, for the systems formation and solution steps on unstructured meshes a 
part level mesh topological traversal algorithm was defined that reordered both mesh 
vertices and regions [19]. This reordering increases the spatial locality of data and 
improves overall cache utilization during on processor systems formation and solution.  

At the heart of the algorithm is the use of the mesh adjacency information to order the 
data. See reference 19 for a complete description of the algorithm. Note that the 
algorithm is easy to implement with iMesh compliant tools since iMesh supports the full 
range of mesh entity adjacencies. With the partition-based solver being used [13,17,19] it 
is only on-part data ordering that is of importance to improving cache utilization. In the 
current application only linear elements are used, thus the only mesh entities that must be 
ordered are the mesh vertices and regions [19]. Since the algorithm developed is based on 
the traversal of mesh adjacency information across the mesh vertices, edges, faces and 
regions [19], it is easy to include the ordering of any of the mesh entities. The inclusion 
of the ordering of mesh edges and faces would be needed in the case of high order p-
version finite elements. The parallel execution of the data ordering is trivial since it is 
embarrassingly parallel. Note that during the process of forming element matrices and the 
on-part assembly of the part level system for the linear element cases, the coordinated 



ordering of both mesh regions and vertices is important, while in the system solution 
phase it is only vertex ordering that is important.  

The procedure has been tested on adaptively created unstructured meshes [19]. In one 
example, the effect of the data reordering is studied for different phases of an implicit 
analysis including element-data blocking, element-level computations, sparse-matrix 
filling and equation solution. The computations are performed on various supercomputers 
including IBM Blue Gene (BG/L and BG/P), Cray XT (XT3 and XT5) and Sun 
Constellation Cluster. It is observed that reordering improves the on core performance by 
up to 24% on Blue Gene/L and up to 40% on Cray XT5. The CrayPat hardware 
performance tool was used to measure the number of cache misses across each level of 
the memory hierarchy. It is determined that the measured decrease in L1, L2 and L3 
cache misses when data reordering is used, closely accounts for the observed decrease in 
the overall execution time [19]. 

2.4 Improvements to Parallel Mesh Representations and Adaptation 

2.4.1 Parallel Boundary Layer Meshing 

The boundary layer mesh adaptation process is initiated on a mesh that already carries a 
pre-defined mesh with layered elements on no-slip walls. Subsequent mesh adaptation 
steps preserve the layer structure normal to the walls while at the same time attaining 
desired element sizes in different directions as indicated by the a posteriori mesh size 
field information. 

For the parallel development of boundary 
layer adaptation, the concept of entity 
groups is used. An entity group is a group 
of mesh entities that have to stay together 
and satisfy certain rules. The inherent 
structure in the boundary layer mesh allows 
them being decomposed as a product of a 
layer surface (2D) and thickness (1D) 
mesh, as shown in Figure 3. Thus, the stack 
of consistent 3D elements forming the 
boundary layer fits the definition of an 
entity group from the mesh standpoint. 

Dealing with partitioned mesh, interface elements (interior volume element on top of a 
boundary layer stack) can be separated from their boundary layers. At the same time, 
edges shared between the top boundary layer element and interface element are part of 
the boundary layer. Thus, boundary layer edges must be properly unified across the 
boundaries to make sure that the communication across the partition boundary is 
consistent.  

To preserve the structure along the normals, mesh adaptation for layered part of the mesh 
is divided into two steps: surface adaptation and thickness adjustment. The local mesh 
modification operations of edge split, collapse and swap are utilized to perform the 
surface mesh adaptation while node movement is applied to adjust the layer thicknesses. 

Figure 3. Decomposition of a boundary 
layer mesh. 



Current development of boundary layer adaptation functionality using entity groups 
concept includes refinement (serial and parallel), coarsening (serial) and swapping 
(serial). Figure 4 depicts an example of parallel refinement of the mesh having boundary 
layers.  

 
 

Figure 4. Parallel refinement of a boundary layer mesh with the planar shock size field. 

  

2.4.2 Neighborhood Aware Message Packing Library 

The Inter-Processor Communication Manager (IPComMan) [10] is a general-purpose 
communication package built on top of MPI that aims to reduce data exchange costs by 
exploiting communications of a local neighborhood for each processor. The 
neighborhood is the subset of processors exchanging messages with each other during a 
specific communication round, which in a number of applications is bounded by a 
constant, typically under 40, independent of the total number of processors. The basic 
idea of the library is to keep the message-passing within subdomains when possible and 
greatly reduce the number of collective calls needed. 

The library takes care of the message flow with a subset of MPI functions. IPComMan 
takes advantage of non-blocking message-passing functions, allowing it to post send or 
receive requests in between computation steps, and automatically manages their 
completion and delivery. The library provides several useful features i) automatic 
message packing, ii) management of sends and receives with non-blocking MPI 
functions, iii) asynchronous behavior unless the other is specified, and iv) support of 
dynamically changing neighborhood during communication steps. 

IPComMan takes care of memory allocation for both sending and receiving buffers, and 
manages the ones that can be reused without additional allocation. The library stores 
messages going to the same processor in contiguous memory. Thus, when sending or 
receiving a package, no additional memory copying is needed. 

The user may specify whether the size of each message is constant or arbitrary during a 
specific communication step. The fixed message size is taken by the library and used 
while extracting the messages. The arbitrary message size is put together with every 
message to correctly unpack the message upon arrival. 

Initial mesh Adapted mesh 



Each processor has its own neighborhood, which is different from that of its neighbor(s). 
While initializing a communication library object, each processor specifies the neighbors 
it is going to communicate with. From that point, the library is concentrated on delivering 
messages between processor and its neighbors only, not touching other processors of the 
domain, when possible. There are no collective calls during each communication round. 

There could be situations when it is not possible to a priori define all the neighbors for 
processors, i.e., new neighbors may be encountered during a communication step. For 
example, mesh modification operations may alter the neighborhood of specific 
processors. Consider the communication pattern presented in Figure 5. Processor P0 has 
in its neighborhood processors P1 and P2. P3 has P2 as the only neighbor, but after it has 
sent all the messages to P2 it finds out that there are some messages to be sent to P0. P3 
includes P0 in its list of neighbors and begins to send packages to it. An increment of 
time before, say P0 finished sending to and receiving all the messages from P1 and P2, 
extracted them and proceeded to the next communication step. In that case packages from 
P3 to P0 are lost, which will result in incorrect program behavior. 

 
Figure 5. Communication paradigm with the neighborhood being changed. 

As new neighbors needing to communicate will be unaware of each other, one collective 
call at the end of communication round is performed to verify whether the global number 
of sends and receives match. In case they do not match, the library continues to receive 
the messages identifying the new neighbors, since all the packages from existent 
neighbors are already received. 

Dynamic and irregular computation often results in an unpredictable number of messages 
communicated among the processors. Using IPComMan, there is no need to verify and 
send the number of packages to be received at the end of sending phase. The last message 
sent from the processor to a neighbor contains the number of buffers expected to be 
received by the neighbor. 

To measure the performance of mesh migration, an essential part of parallel adaptive 
unstructured mesh procedures, IPComMan was compared with the Autopack 
communication utility. Initial results on IBM Blue Gene/L show that IPComMan’s ability 
to localize communication to neighborhoods to be independent of the total number of 
processors and its use of non-blocking functions allows it to continuously reduce the 
communication time as the number of processors increases. Even though the differences 
in communication times between Autopack and IPComMan are not substantial at 128 
processors, IPComMan is from 3 to 7 times faster in the 4096 processor case. 

Although the total communication time for IPComMan is reduced, the scaling for the 
process does fall with increased processor count. It is important to note though that the 



mesh adaptation process that involves mesh migration procedures is not well balanced in 
terms of the communication load per part. However, additional efforts on the scalability 
are desired. This includes several aspects of managing sends and receives during the 
communication phase while interacting with the computation part, and keeping efficient 
use of the buffer memory. The options are being considered to eliminate collective calls 
with the neighborhood concept in IPComMan, although additional analysis is required to 
see if these approaches lead to the reduction of the communication time. 

2.4.3 Periodic Boundary Conditions in FMDB 

When solving partial differential equations using numerical methods there are many 
problems of interest where it is possible to reduce the domain to a repeated unit subject to 
periodic boundary conditions where the solution repeats itself on the periodic boundaries. 
The most effective means to represent periodic boundary conditions when using mesh 
based numerical methods is to have identical meshes on the periodic boundaries to be 
matched since they then support the simple equating of the solution variables associated 
with the appropriate matched mesh entities. 

The definition of a matched mesh on a set of periodic boundaries is one where the mesh 
entities on the matched domain boundaries are topologically identical and geometrically 
differ by only the geometric transformation needed to have the matched boundary entities 
occupy the same place in space.  

The specification of periodic boundaries is support by the high-level topological model 
description used of the problem domain. With this the fully automatic mesh generator 
used is capable of generating a matched mesh. Given that, we needed to modify the 
ITAPS parallel mesh adaptation services and underlying mesh representation to maintain 
information on the matched mesh entities and to ensure that mesh adaptation operations 
are properly applied to the mesh entities connected to matched mesh entities to maintain a 
valid mesh that remains matched on the matched boundaries.  

The extensions to the FMDB mesh representation included adding information on which 
mesh entities are matched given the periodic boundary conditions specified on the 
geometric model level and an initial mesh that was matched. This information is carried 
within a STL container in the mesh entity structure (matched entity container). Once a 
matched entity is modified during the process, its matched entity (entities) will be 
notified and modified accordingly.  

Since matched mesh entities are connected by the sharing of common degrees-of-
freedom (dof), the procedures that construct the graph used by the Zoltan partitioners 
needed to be sure the additional graph edges were added for that dof connected mesh 
entities that are not otherwise (geometrically of based topology) connected.  

The parallel mesh adaptation procedures also needed to be modified to ensure that as 
mesh modifications were applied to mesh entities on a periodic boundary the same 
operations were applied to the match mesh entities on the matched boundary. Of course, 
such operations will require mesh modifications be executed on the mesh entities that the 
matched mesh entity bound. The mesh modification operations on both sides of the 
periodic boundary must be coordinated to ensure the resulting mesh remains matched and 
valid. 



3. Applications Developments 

3.1 Accelerator Modeling with COMPASS 

During the current year there were two areas of emphasis in our efforts with COMPASS. 
The first is the development of an explicit nodal repositioning algorithm to improve the 
shapes of curved elements. The second is working toward having the full set of curved 
mesh components operate on parallel computers.  

3.1.1 Explicit High-order Nodal Repositioning for Curved Elements 

The overall objective is to improve the shape quality of high-order meshes through 
various local mesh modifications. In order to achieve this goal, the explicit high-order 
nodal repositioning procedure is under development. 

For curved elements we apply Bezier polynomials to represent the geometric shape [7]. 
The Convex Hull Property of the Bezier polynomial indicated that the determinant of 
Jacobian of the curved element is bounded by the coefficients computed by the control 
points of the curved element. This information has been used in our previous work (see 
[7] and references cited within) to determine the invalid elements and to decide which 
mesh entities need to be modified to create a valid mesh. The current effort uses the same 
information to work toward improving the shape of the elements to further improve the 
conditioning of the resulting system.  

A key issue to address in developing such a procedure is to determine an appropriate 
measure of curved element shape. There is a well established set of equivalent shape 
measures from straight sided elements, to be referred to as Qs. However, they have no 
consideration of the influence of element curving. The common shape measure of 
element curving, Qc, is the ratio of the minimum to maximum Jacobian which only 
measures deviation from a straight-sided element and is equal to the best value of 1.0 for 
any straight sided element, including one that is nearly invalid.  Since each measure 
individually deals with a component of the element shape, it was found that the product 
of a normalized version of the two provides a useful single shape measure for curved 
elements to be referred to as Q= Qs * Qc. 

The input of element shape improvement algorithm is a list of mesh regions (elements) 
whose shape quality Q is below the desired threshold value Qmin. For each region in the 
list the straight sided, Qs, and curved shape, Qc, quality measurements are computed and a 
set of local mesh modification procedures applied to improve Q to be greater than Qmin, if 
possible. The mesh modification operations, including the explicit nodal positioning 
procedure that was added, make use of the component shape measures and properties of 
Bezier polynomials in determining the most appropriate operations to apply.  

The explicit nodal positioning procedure repositions either corner or the edge nodes to 
improve the element by determining the nodes most useful to move and applying a line 
search to move the selected node to maximize the shape improvement due to moving that 
node. The computation of Qc provides the information which mesh entities contribute to 
the minimum det(J). By increasing the minimum det(J), the curved shape contribution of 
the element can be effectively improved. The procedure first considers the four region 
vertices, corner nodes by selecting the one with minimum det(J ) associated with it.  



The approach taken to reposition these nodes is to first determine a good direction of 
motion and then to move the node in that direction to gain the best improvement. Based 
on previous work on explicit node positioning, the direction selected is normal to the face 
opposite the current node. Given that direction, the node is moved in the direction where 
the shape measure improves until either the shape stops improving, or the shape of some 
element connected to that node degrades to be equal to the shape of the element being 
improved. A Golden search is used to converge on that point. 

Figure 6 shows a one cavity accelerator test case. The initial curved mesh created by 
CUBIT had a number of invalid elements with a worst shape of -4.24. A negative number 
indicates an invalid element caused by a negative Jacobian. The mesh modification 
procedures alone were able to create all valid elements with a worst element shape of 
0.00045. After explicit nodal reposition the worst shape element was improved to 0.0030. 
Additional investigation is underway to define more complete node positioning 
procedures. 

 
Figure 6. One cavity accelerator test case. 

 

3.1.2 Full Set of Curved Mesh Components Operating on Parallel Computers  

Currently the work flow of executing a high-order finite element simulation on complex 
CAD domains involves a set of steps using a number of tools that operate using a number 
of conventions. To be able to support the full adaptive simulation process on the parallel 
computer two developments are needed. They include creation of parallel versions of the 
curved mesh improvement and curved mesh adaptation tools developed by the RPI 
ITAPS team and elimination of some data flow inconsistencies in the process of creating 
the initial mesh and assigning the simulation attributes.  

In the current work flow CUBIT is used to create the initial mesh of the ACIS solid 
model of the domain and is also used to support the specification of the analysis attributes 
of loads, material properties and boundary conditions. From there the RPI developed 
ITAPS tools are used to both make the initial meshes valid with improved curved shape 
elements, and to adapt the meshes. The mesh and attribute information must then be input 
to the finite element analysis procedure. A problem that arises is that CUBIT creates its 
own version of the solid model topology and the analysis attributes are associated with 
that model. However, the curved mesh correction/improvement tool and mesh adaptation 
interact directly with the ACIS model and its topology. Thus to support the full set of 
mesh modification operations and properly associate the analysis attribute with the mesh, 
a mapping between the model topologies is needed. Two approaches are being developed 
to support that process.  



In the first approach the CUBIT developers have provided an extension that for each 
ACIS model topological model entity that indicates which cubit model entity it 
represents. In those cases where there is a one-to-one correspondence between entities 
this allows the easy construction of a map between the entities. We are currently 
debugging the tool being developed to construct and use this map and the first fully 
manifold model case has passed the test.  

A problem with the first approach is when CUBIT functions are applied that will split 
model topological entities such that an ACIS model entity may be represented by 
multiple CUBIT model entities not all information is maintained. Thus the second 
approach that will be considered will be to use the ANL developed iGeom interface, 
CGMA, which can interact more directly with the CUBIT model. There are some 
interaction and mapping complexities involved with this process that will need to be 
resolved before we can implement this potentially more powerful approach.  

3.2 Fusion Modeling with CEMM 

The RPI ITAPS team is supporting the CEMM SciDAC activities on the simulation of 
the Magneto-HydroDynamics (MHD) of plasmas [6]. In addition to supporting new 
features developed by PPPL in the M3D-C1 code (new type of boundary condition, use 
of curved mesh elements, …), we are working with CEMM and TOPS on extension of 
the jointly developed M3D-C1  to the fully 3D case. Key areas of develop include: 
• Parallel mesh database management. The mesh topology being supported includes 

both straight-sided linear and higher order curved mesh elements. 
• Anisotropic mesh adaptation based on the computation of the Hessian matrix. 
• Parallel Algebraic data container management such as vectors and matrices. 
• Linking of PPPL-SCOREC algebraic system to linear algebraic solver packages such 

as Petsc and SuperLu. 

Prior to the ongoing extension of the M3D-C1 code, 2D MHD equations were solved on 
a unique 2D plane. Design of the code to support the 3D resolution of MHD equations 
has been focused on supporting the automatic creation of copies of a pattern 2D plane 
along the toroidal direction (Figure 6) and appropriate methods to support the efficient 
parallel communication of the sets of information defined on each plane. To this end, we 
are developing components as follows: 
• Creation of a new software component to support the management of the planes. Each 

plane and the set of information (vectors, matrices, geometry, mesh) attached to that 
plane are managed by an abstract model that is in charge of coordinating 
communications between the planes.  

• Extension of the parallel mesh database management: Triangle meshes are used to 
discretize each 2D plane. Extension of FMDB has been implemented in order to 
automatically generate a 3D parallel mesh (wedges) that connects the triangles 
located on each plane. 

• Extension of the parallel algebraic data container management: Methods and 
functions to support storage and queries of the data contained in the defined vectors 
and matrices have been added. 



 

 

 

 

 

 

 

 

Figure 6. Configuration used to solve 3D MHD equations.  
A 2D pattern plane is populated along the toroidal direction. 

4. Plans for the Coming Year 
During the coming year the RPI ITAPS team will continue to work with the rest of the 
ITAPS team on the ITAPS interfaces including starting the iFields interface once we 
jointly complete its design. 

We will continue to work on our improving the ability of the parallel ITAPS tools to 
operate on petascale computers (and beyond). Efforts on partition improvements are 
being coordinated with the Zoltan developers (including interactions with CSCAPES). 
Substantial efforts are planned for the improvement of the ITAPS mesh adaptation 
service both in terms of the scalability of the mesh adaptation algorithms and message 
packing tool IPComMan.  

Efforts will continue with supporting parallel adaptive mesh control methods for 
COMPASS with the goal of supporting their integration with the SLAC solvers on 
massively parallel computers and working closely with CEMM developers on the fully 
3D implementation of a parallel M3D-C1. These efforts will also be coordinated with the 
TOPS center that will be providing the core non-linear equation solving components. 
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