
Identification Number: DE-FC02-06ER25769
Project Title: Interoperable Technologies for Advanced Petascale
Simulations (ITAPS)

Institutional Faculty PI’s: Mark S. Shephard and Kenneth E. Jansen

Institution: Rensselaer Polytechnic Institute

Date of Report: February 5, 2010

Report Period Covered: December 2008-December 2009

1. Technical Progress for Current Year
Efforts during the past year have contributed to the continued development of the ITAPS
interfaces and services as well as specific efforts to support ITAPS applications.

The ITAPS interface efforts have two components. The first is working with the ITAPS
team on improving the ITAPS software infrastructure and level of compliance of our
implementations of ITAPS interfaces (iMesh, iMeshP, iRel and iGeom). The second is
being involved with the discussions on the design of the iField fields interface.

Efforts to move the ITAPS technologies to petascale computers has identified a number
of key technical developments that are required to effectively execute the ITAPS
interfaces and services. Research to address these parallel method developments has been
a major emphasis of the RPI’s team efforts over the past year.

The development of parallel unstructured mesh methods has considered the need to scale
unstructured mesh solves to massively parallel computers. These efforts, summarized in
section 2.1 show that with the addition of the ITAPS procedures described in sections 2.2
and 2.3 we are able to obtain excellent strong scaling with our unstructured mesh CFD
code on up to 294,912 cores of IBM Blue Gene/P which is the highest core count
machine available. The ITAPS developments that have contributed to the scaling and
performance of PHASTA include an iterative migration algorithm to improve the
combined region and vertex balance of the mesh partition, which increases scalability,
and mesh data reordering, which improves computational performance. The other
developments are associated with the further development of the ITAPS parallel
unstructured mesh adaptation procedures. Specific developments include:

• Parallel boundary layer mesh adaptation integrated with parallel anisotropic mesh
adaptation (section 2.4.1).

• A new more scalable message packing library (section 2.4.2).

• Support of periodic boundary conditions (section 2.4.3).

We have continued to work closely with both the accelerator applications for COMPASS
and fusion application for CEMM. For COMPASS, efforts have focused on providing
specific unstructured mesh adaptation tools to deal with curved elements and mesh
adaptation. For CEEM, we are working to provide the structures and methods needed for
the M3D-C1 to go to full three dimensional configurations.

2. Parallel Methods for Unstructured Meshes Developments

2.1 PHASTA CFD Code Scaling to Petascale Machines

As indicated in the previous progress report, one aspect of getting unstructured meshing
techniques to the petascale is demonstrating the ability of PDE discretization and solution
systems to scale well on massively parallel computers. This year we continued our work
on scaling the PHASTA open source CFD code to near petascale machines. PHASTA
(Parallel Hierarchic Adaptive Stabilized Transient Analysis) is an implicit stabilized
finite element code that solves its matrix systems using appropriate pre-conditioned
iterative solvers on partitioned meshes. PHASTA employs an implicit time integration
method that requires the solution of the full set of equations in each step. The linear
algebra solver used is based on GMRES, which needs only matrix vector products and
can operate on the partitioned mesh. With this combination of methods, the
interprocessor communications needed are of two types:

• Organized, substantial, and regular communication between partitions that touch each
other in terms of elements on multiple processors that share common boundary mesh
entities.

• For each iteration within the linear solve (typically O(10) iterations per time step),
there is a required ALL-REDUCE communication.

The combination of stabilized
finite elements and iterative
solvers in PHASTA allows it to
be used with adaptively defined
anisotropic unstructured meshes
such as shown in Figure 1 that
includes anisotropic prismatic
boundary layers and anisotropic
tet elements [11,12,13, 15,17].

Last year we reported scaling
results on 1024 to 16,384
processors of an IBM Blue
Gene/L. This year we have
continued to extend the ability
of PHASTA to scale on even
larger core count machines and,
with the help of methods described in the next section, have extended the results to
machines with more than an order of magnitude more compute cores. Strong scaling
results to all 163,840 cores of the Argonne Intrepid IBM Blue Gene/P were reported in
reference [14]. This paper was a 2009 Gordon Bell Finalist. More recent results, yet to be
published, have shown excellent strong scaling to 294,912 cores of IBM Blue Gene/P and
98,304 cores of Cray XT5 (see Table 1) [12,14,17,18,20].

Figure 1. Example anisotropic adaptive mesh for
an abdominal aorta aneurysm.

Table 1. PHASTA scaling results on near petaflop machines.

2.2 Algorithms to Improve Mesh Partitions for Petascale Machines

As the initial PHASTA scaling studies moved to larger core counts some loss of strong
scaling was observed. An examination of the two key steps of elements matrix
formulations and global systems solve indicated that second step of system solve was the
primary source of the loss of scalability. The key source for this problems relates to the
fact that the workload associated with that step is a function of the number of vertices in
the mesh and that even though the graph partitioners used maintained excellent balance
of the number of elements on a part, the imbalance of the number of vertices per part for
many of those cases was often 20% or more, leading to an imbalance of the work load.
Since the overall partition provided by the graph partitioners is generally a good overall
partition, a more local algorithm that employs additional adjacency information that is
available through the ITAPS iMesh and iMeshP interfaces has been developed to perform
local modifications of the partitions to reduce vertex imbalance while minimizing
increases in element imbalance.

The partition improvement procedure referred to as Local Iterative Inter-Part Boundary
Modification (LIIPBMod) [20] locally migrates small numbers of mesh elements from
parts with relatively more vertices to neighboring parts that are relatively lightly loaded.
On the heavily loaded part, the mesh vertices on the part boundary are traversed and the
ones bounding a small number of elements are identified. If the neighboring part is
lightly loaded, the whole “cavity” (all the adjacent elements to a selected vertex) is
migrated to the neighboring part. Figure 2 demonstrates the basic application of this
process for selected vertices. The top row shows mesh vertices selected to be migrated
and the local mesh before migration while the bottom row shows the mesh after the
connected elements have been migrated.

The iterative application of this operation has been found to be effective for reducing the
vertex imbalance while having only a small influence on increasing element imbalance. It
is also found that this algorithm improved the partition boundary communication
requirements by decreasing the ratio of vertices on a part boundary to the total number of
vertices on the part. Another advantage of the procedure is it typically is much faster that
a general full repartitioning of the mesh. Table 2 compares the element and vertex
imbalance ratios for a 42 million element partitioned mesh before and after using the
LIIPBMod algorithm along with the time usage of the ParMETIS partitioner and

LIIPBMod algorithm. The number of iterations LIIPBMod needed to improve the vertex
imbalance for each partition is included in the table as well.

Figure 2. Migration of elements to move vertices from left to right.

Table 2. Comparison of element and vertex imbalance ratios before and after using

LIIPBMod algorithm on a 42M element mesh along with the time usage (including mesh
migration) of the ParMETIS PartKWay partitioner and LIIPBMod algorithm.

In the second example [20], LIIPBMod is applied on the partitions produced by Zoltan
PHG partition on the abdominal aorta aneurysm geometry shown in Figure 1 with a 1.07
billion element mesh. The same parameters are used as in the previous test (i.e., tol vtx =
1.05 and maxiter = 10). The tests are performed on Kraken at NICS, using 2048
processing cores (4096 cores are used for the case of “4k to 160k”). Table 3 compares the
element and vertex imbalance ratios before and after LIIPBMod. It also contains the time
usage of Zoltan PHG and LIIPBMod, again this includes the time usage of mesh entity
migration. LIIPBmod reduces the vertex imbalance for all seven cases (from 4,096 to
131,072 parts) as well as the “4k to 160k” partition down to 5% (5th column in Table
5.4) with modest impact on element balance and it reduces the vertex imbalance
dramatically for the partitions with a high number of parts (e.g., from 21.17% to 4.99%),
which is important for time critical simulations. Time usage of LIIPBMod (7th column of
Table 5.4) is small compared to that of hypergraph-based partitioner, and is negligible
compared to the finite element analysis. As discussed in reference [20], the partitioned
meshes produced after the application of LIIPBMod did improve the scalability of the
PHASTA, particularly on very large core count with strong scaling improving from

around 0.8 to approaching 0.9. Although such an improvement may not sound extensive,
it does correspond to millions of CPU hours off the full simulation of billion element
meshes run of vary large core counts.

Table 3. Comparison of element and vertex imbalance ratios before and after using

LIIPBMod algorithm on a 1.07B element mesh. Time usage is also provided along with
the number of iterations used in LIIPBMod algorithm.

Its should be noted that in a recently developed version of the Zoltan partitioning
procedures are faster and produce better combined vertex and element balance than the
version used in the example of Table 3. We are currently applying LIIPBMod to the
meshes resulting from the application of the newest procedures and the initial results
indicate that improvements continue to be obtained and that the combination of the
newest Zoltan partitioner and LIIPBMod are producing the best results to date. This will
be reported on in up-coming documentation.

2.3 Data Reordering to Improve Parallel Performance

The effective use of the processor memory hierarchy is an important issue in computing
performance. To improve the use of the processor memory hierarchy, specifically overall
cache utilization, for the systems formation and solution steps on unstructured meshes a
part level mesh topological traversal algorithm was defined that reordered both mesh
vertices and regions [19]. This reordering increases the spatial locality of data and
improves overall cache utilization during on processor systems formation and solution.

At the heart of the algorithm is the use of the mesh adjacency information to order the
data. See reference 19 for a complete description of the algorithm. Note that the
algorithm is easy to implement with iMesh compliant tools since iMesh supports the full
range of mesh entity adjacencies. With the partition-based solver being used [13,17,19] it
is only on-part data ordering that is of importance to improving cache utilization. In the
current application only linear elements are used, thus the only mesh entities that must be
ordered are the mesh vertices and regions [19]. Since the algorithm developed is based on
the traversal of mesh adjacency information across the mesh vertices, edges, faces and
regions [19], it is easy to include the ordering of any of the mesh entities. The inclusion
of the ordering of mesh edges and faces would be needed in the case of high order p-
version finite elements. The parallel execution of the data ordering is trivial since it is
embarrassingly parallel. Note that during the process of forming element matrices and the
on-part assembly of the part level system for the linear element cases, the coordinated

ordering of both mesh regions and vertices is important, while in the system solution
phase it is only vertex ordering that is important.

The procedure has been tested on adaptively created unstructured meshes [19]. In one
example, the effect of the data reordering is studied for different phases of an implicit
analysis including element-data blocking, element-level computations, sparse-matrix
filling and equation solution. The computations are performed on various supercomputers
including IBM Blue Gene (BG/L and BG/P), Cray XT (XT3 and XT5) and Sun
Constellation Cluster. It is observed that reordering improves the on core performance by
up to 24% on Blue Gene/L and up to 40% on Cray XT5. The CrayPat hardware
performance tool was used to measure the number of cache misses across each level of
the memory hierarchy. It is determined that the measured decrease in L1, L2 and L3
cache misses when data reordering is used, closely accounts for the observed decrease in
the overall execution time [19].

2.4 Improvements to Parallel Mesh Representations and Adaptation

2.4.1 Parallel Boundary Layer Meshing

The boundary layer mesh adaptation process is initiated on a mesh that already carries a
pre-defined mesh with layered elements on no-slip walls. Subsequent mesh adaptation
steps preserve the layer structure normal to the walls while at the same time attaining
desired element sizes in different directions as indicated by the a posteriori mesh size
field information.

For the parallel development of boundary
layer adaptation, the concept of entity
groups is used. An entity group is a group
of mesh entities that have to stay together
and satisfy certain rules. The inherent
structure in the boundary layer mesh allows
them being decomposed as a product of a
layer surface (2D) and thickness (1D)
mesh, as shown in Figure 3. Thus, the stack
of consistent 3D elements forming the
boundary layer fits the definition of an
entity group from the mesh standpoint.

Dealing with partitioned mesh, interface elements (interior volume element on top of a
boundary layer stack) can be separated from their boundary layers. At the same time,
edges shared between the top boundary layer element and interface element are part of
the boundary layer. Thus, boundary layer edges must be properly unified across the
boundaries to make sure that the communication across the partition boundary is
consistent.

To preserve the structure along the normals, mesh adaptation for layered part of the mesh
is divided into two steps: surface adaptation and thickness adjustment. The local mesh
modification operations of edge split, collapse and swap are utilized to perform the
surface mesh adaptation while node movement is applied to adjust the layer thicknesses.

Figure 3. Decomposition of a boundary
layer mesh.

Current development of boundary layer adaptation functionality using entity groups
concept includes refinement (serial and parallel), coarsening (serial) and swapping
(serial). Figure 4 depicts an example of parallel refinement of the mesh having boundary
layers.

Figure 4. Parallel refinement of a boundary layer mesh with the planar shock size field.

2.4.2 Neighborhood Aware Message Packing Library

The Inter-Processor Communication Manager (IPComMan) [10] is a general-purpose
communication package built on top of MPI that aims to reduce data exchange costs by
exploiting communications of a local neighborhood for each processor. The
neighborhood is the subset of processors exchanging messages with each other during a
specific communication round, which in a number of applications is bounded by a
constant, typically under 40, independent of the total number of processors. The basic
idea of the library is to keep the message-passing within subdomains when possible and
greatly reduce the number of collective calls needed.

The library takes care of the message flow with a subset of MPI functions. IPComMan
takes advantage of non-blocking message-passing functions, allowing it to post send or
receive requests in between computation steps, and automatically manages their
completion and delivery. The library provides several useful features i) automatic
message packing, ii) management of sends and receives with non-blocking MPI
functions, iii) asynchronous behavior unless the other is specified, and iv) support of
dynamically changing neighborhood during communication steps.

IPComMan takes care of memory allocation for both sending and receiving buffers, and
manages the ones that can be reused without additional allocation. The library stores
messages going to the same processor in contiguous memory. Thus, when sending or
receiving a package, no additional memory copying is needed.

The user may specify whether the size of each message is constant or arbitrary during a
specific communication step. The fixed message size is taken by the library and used
while extracting the messages. The arbitrary message size is put together with every
message to correctly unpack the message upon arrival.

Initial mesh Adapted mesh

Each processor has its own neighborhood, which is different from that of its neighbor(s).
While initializing a communication library object, each processor specifies the neighbors
it is going to communicate with. From that point, the library is concentrated on delivering
messages between processor and its neighbors only, not touching other processors of the
domain, when possible. There are no collective calls during each communication round.

There could be situations when it is not possible to a priori define all the neighbors for
processors, i.e., new neighbors may be encountered during a communication step. For
example, mesh modification operations may alter the neighborhood of specific
processors. Consider the communication pattern presented in Figure 5. Processor P0 has
in its neighborhood processors P1 and P2. P3 has P2 as the only neighbor, but after it has
sent all the messages to P2 it finds out that there are some messages to be sent to P0. P3
includes P0 in its list of neighbors and begins to send packages to it. An increment of
time before, say P0 finished sending to and receiving all the messages from P1 and P2,
extracted them and proceeded to the next communication step. In that case packages from
P3 to P0 are lost, which will result in incorrect program behavior.

Figure 5. Communication paradigm with the neighborhood being changed.

As new neighbors needing to communicate will be unaware of each other, one collective
call at the end of communication round is performed to verify whether the global number
of sends and receives match. In case they do not match, the library continues to receive
the messages identifying the new neighbors, since all the packages from existent
neighbors are already received.

Dynamic and irregular computation often results in an unpredictable number of messages
communicated among the processors. Using IPComMan, there is no need to verify and
send the number of packages to be received at the end of sending phase. The last message
sent from the processor to a neighbor contains the number of buffers expected to be
received by the neighbor.

To measure the performance of mesh migration, an essential part of parallel adaptive
unstructured mesh procedures, IPComMan was compared with the Autopack
communication utility. Initial results on IBM Blue Gene/L show that IPComMan’s ability
to localize communication to neighborhoods to be independent of the total number of
processors and its use of non-blocking functions allows it to continuously reduce the
communication time as the number of processors increases. Even though the differences
in communication times between Autopack and IPComMan are not substantial at 128
processors, IPComMan is from 3 to 7 times faster in the 4096 processor case.

Although the total communication time for IPComMan is reduced, the scaling for the
process does fall with increased processor count. It is important to note though that the

mesh adaptation process that involves mesh migration procedures is not well balanced in
terms of the communication load per part. However, additional efforts on the scalability
are desired. This includes several aspects of managing sends and receives during the
communication phase while interacting with the computation part, and keeping efficient
use of the buffer memory. The options are being considered to eliminate collective calls
with the neighborhood concept in IPComMan, although additional analysis is required to
see if these approaches lead to the reduction of the communication time.

2.4.3 Periodic Boundary Conditions in FMDB

When solving partial differential equations using numerical methods there are many
problems of interest where it is possible to reduce the domain to a repeated unit subject to
periodic boundary conditions where the solution repeats itself on the periodic boundaries.
The most effective means to represent periodic boundary conditions when using mesh
based numerical methods is to have identical meshes on the periodic boundaries to be
matched since they then support the simple equating of the solution variables associated
with the appropriate matched mesh entities.

The definition of a matched mesh on a set of periodic boundaries is one where the mesh
entities on the matched domain boundaries are topologically identical and geometrically
differ by only the geometric transformation needed to have the matched boundary entities
occupy the same place in space.

The specification of periodic boundaries is support by the high-level topological model
description used of the problem domain. With this the fully automatic mesh generator
used is capable of generating a matched mesh. Given that, we needed to modify the
ITAPS parallel mesh adaptation services and underlying mesh representation to maintain
information on the matched mesh entities and to ensure that mesh adaptation operations
are properly applied to the mesh entities connected to matched mesh entities to maintain a
valid mesh that remains matched on the matched boundaries.

The extensions to the FMDB mesh representation included adding information on which
mesh entities are matched given the periodic boundary conditions specified on the
geometric model level and an initial mesh that was matched. This information is carried
within a STL container in the mesh entity structure (matched entity container). Once a
matched entity is modified during the process, its matched entity (entities) will be
notified and modified accordingly.

Since matched mesh entities are connected by the sharing of common degrees-of-
freedom (dof), the procedures that construct the graph used by the Zoltan partitioners
needed to be sure the additional graph edges were added for that dof connected mesh
entities that are not otherwise (geometrically of based topology) connected.

The parallel mesh adaptation procedures also needed to be modified to ensure that as
mesh modifications were applied to mesh entities on a periodic boundary the same
operations were applied to the match mesh entities on the matched boundary. Of course,
such operations will require mesh modifications be executed on the mesh entities that the
matched mesh entity bound. The mesh modification operations on both sides of the
periodic boundary must be coordinated to ensure the resulting mesh remains matched and
valid.

3. Applications Developments

3.1 Accelerator Modeling with COMPASS

During the current year there were two areas of emphasis in our efforts with COMPASS.
The first is the development of an explicit nodal repositioning algorithm to improve the
shapes of curved elements. The second is working toward having the full set of curved
mesh components operate on parallel computers.

3.1.1 Explicit High-order Nodal Repositioning for Curved Elements

The overall objective is to improve the shape quality of high-order meshes through
various local mesh modifications. In order to achieve this goal, the explicit high-order
nodal repositioning procedure is under development.

For curved elements we apply Bezier polynomials to represent the geometric shape [7].
The Convex Hull Property of the Bezier polynomial indicated that the determinant of
Jacobian of the curved element is bounded by the coefficients computed by the control
points of the curved element. This information has been used in our previous work (see
[7] and references cited within) to determine the invalid elements and to decide which
mesh entities need to be modified to create a valid mesh. The current effort uses the same
information to work toward improving the shape of the elements to further improve the
conditioning of the resulting system.

A key issue to address in developing such a procedure is to determine an appropriate
measure of curved element shape. There is a well established set of equivalent shape
measures from straight sided elements, to be referred to as Qs. However, they have no
consideration of the influence of element curving. The common shape measure of
element curving, Qc, is the ratio of the minimum to maximum Jacobian which only
measures deviation from a straight-sided element and is equal to the best value of 1.0 for
any straight sided element, including one that is nearly invalid. Since each measure
individually deals with a component of the element shape, it was found that the product
of a normalized version of the two provides a useful single shape measure for curved
elements to be referred to as Q= Qs * Qc.

The input of element shape improvement algorithm is a list of mesh regions (elements)
whose shape quality Q is below the desired threshold value Qmin. For each region in the
list the straight sided, Qs, and curved shape, Qc, quality measurements are computed and a
set of local mesh modification procedures applied to improve Q to be greater than Qmin, if
possible. The mesh modification operations, including the explicit nodal positioning
procedure that was added, make use of the component shape measures and properties of
Bezier polynomials in determining the most appropriate operations to apply.

The explicit nodal positioning procedure repositions either corner or the edge nodes to
improve the element by determining the nodes most useful to move and applying a line
search to move the selected node to maximize the shape improvement due to moving that
node. The computation of Qc provides the information which mesh entities contribute to
the minimum det(J). By increasing the minimum det(J), the curved shape contribution of
the element can be effectively improved. The procedure first considers the four region
vertices, corner nodes by selecting the one with minimum det(J) associated with it.

The approach taken to reposition these nodes is to first determine a good direction of
motion and then to move the node in that direction to gain the best improvement. Based
on previous work on explicit node positioning, the direction selected is normal to the face
opposite the current node. Given that direction, the node is moved in the direction where
the shape measure improves until either the shape stops improving, or the shape of some
element connected to that node degrades to be equal to the shape of the element being
improved. A Golden search is used to converge on that point.

Figure 6 shows a one cavity accelerator test case. The initial curved mesh created by
CUBIT had a number of invalid elements with a worst shape of -4.24. A negative number
indicates an invalid element caused by a negative Jacobian. The mesh modification
procedures alone were able to create all valid elements with a worst element shape of
0.00045. After explicit nodal reposition the worst shape element was improved to 0.0030.
Additional investigation is underway to define more complete node positioning
procedures.

Figure 6. One cavity accelerator test case.

3.1.2 Full Set of Curved Mesh Components Operating on Parallel Computers

Currently the work flow of executing a high-order finite element simulation on complex
CAD domains involves a set of steps using a number of tools that operate using a number
of conventions. To be able to support the full adaptive simulation process on the parallel
computer two developments are needed. They include creation of parallel versions of the
curved mesh improvement and curved mesh adaptation tools developed by the RPI
ITAPS team and elimination of some data flow inconsistencies in the process of creating
the initial mesh and assigning the simulation attributes.

In the current work flow CUBIT is used to create the initial mesh of the ACIS solid
model of the domain and is also used to support the specification of the analysis attributes
of loads, material properties and boundary conditions. From there the RPI developed
ITAPS tools are used to both make the initial meshes valid with improved curved shape
elements, and to adapt the meshes. The mesh and attribute information must then be input
to the finite element analysis procedure. A problem that arises is that CUBIT creates its
own version of the solid model topology and the analysis attributes are associated with
that model. However, the curved mesh correction/improvement tool and mesh adaptation
interact directly with the ACIS model and its topology. Thus to support the full set of
mesh modification operations and properly associate the analysis attribute with the mesh,
a mapping between the model topologies is needed. Two approaches are being developed
to support that process.

In the first approach the CUBIT developers have provided an extension that for each
ACIS model topological model entity that indicates which cubit model entity it
represents. In those cases where there is a one-to-one correspondence between entities
this allows the easy construction of a map between the entities. We are currently
debugging the tool being developed to construct and use this map and the first fully
manifold model case has passed the test.

A problem with the first approach is when CUBIT functions are applied that will split
model topological entities such that an ACIS model entity may be represented by
multiple CUBIT model entities not all information is maintained. Thus the second
approach that will be considered will be to use the ANL developed iGeom interface,
CGMA, which can interact more directly with the CUBIT model. There are some
interaction and mapping complexities involved with this process that will need to be
resolved before we can implement this potentially more powerful approach.

3.2 Fusion Modeling with CEMM

The RPI ITAPS team is supporting the CEMM SciDAC activities on the simulation of
the Magneto-HydroDynamics (MHD) of plasmas [6]. In addition to supporting new
features developed by PPPL in the M3D-C1 code (new type of boundary condition, use
of curved mesh elements, …), we are working with CEMM and TOPS on extension of
the jointly developed M3D-C1 to the fully 3D case. Key areas of develop include:
• Parallel mesh database management. The mesh topology being supported includes

both straight-sided linear and higher order curved mesh elements.
• Anisotropic mesh adaptation based on the computation of the Hessian matrix.
• Parallel Algebraic data container management such as vectors and matrices.
• Linking of PPPL-SCOREC algebraic system to linear algebraic solver packages such

as Petsc and SuperLu.

Prior to the ongoing extension of the M3D-C1 code, 2D MHD equations were solved on
a unique 2D plane. Design of the code to support the 3D resolution of MHD equations
has been focused on supporting the automatic creation of copies of a pattern 2D plane
along the toroidal direction (Figure 6) and appropriate methods to support the efficient
parallel communication of the sets of information defined on each plane. To this end, we
are developing components as follows:
• Creation of a new software component to support the management of the planes. Each

plane and the set of information (vectors, matrices, geometry, mesh) attached to that
plane are managed by an abstract model that is in charge of coordinating
communications between the planes.

• Extension of the parallel mesh database management: Triangle meshes are used to
discretize each 2D plane. Extension of FMDB has been implemented in order to
automatically generate a 3D parallel mesh (wedges) that connects the triangles
located on each plane.

• Extension of the parallel algebraic data container management: Methods and
functions to support storage and queries of the data contained in the defined vectors
and matrices have been added.

Figure 6. Configuration used to solve 3D MHD equations.
A 2D pattern plane is populated along the toroidal direction.

4. Plans for the Coming Year
During the coming year the RPI ITAPS team will continue to work with the rest of the
ITAPS team on the ITAPS interfaces including starting the iFields interface once we
jointly complete its design.

We will continue to work on our improving the ability of the parallel ITAPS tools to
operate on petascale computers (and beyond). Efforts on partition improvements are
being coordinated with the Zoltan developers (including interactions with CSCAPES).
Substantial efforts are planned for the improvement of the ITAPS mesh adaptation
service both in terms of the scalability of the mesh adaptation algorithms and message
packing tool IPComMan.

Efforts will continue with supporting parallel adaptive mesh control methods for
COMPASS with the goal of supporting their integration with the SLAC solvers on
massively parallel computers and working closely with CEMM developers on the fully
3D implementation of a parallel M3D-C1. These efforts will also be coordinated with the
TOPS center that will be providing the core non-linear equation solving components.

5. Publications for the Last Year
[1] F. Delalondre, C. Smith, M.S. Shephard, “Collaborative Software Infrastructure for

Adaptive Multiple Model Simulation”, Comp. Meth. Appl. Mech. Engng., accepted
2009.

[2] F. Delalondre, C. Smith, and M.S. Shephard, Int. Conf. on Adaptive Modeling and
Simulation, ADMOS 2009, CIMNE, Barcelona, 2009

[3] Fabien Delalondre, Cameron Smith, Mark S. Shephard, “Collaborative Software
Infrastructure for Adaptive Multiple Model Simulation”, Proc. US National
Congress on Computational Mechanics, Columbus, Ohio, July 16-19, 2009
(Abstract).

[4] K. Devine, L. Diachin, J. Kraftcheck, K. E. Jansen, V. Leung, X. Luo, M. Miller, C.
Ollivier-Gooch, A. Ovcharenko, O. Sahni, M.S. Shephard, T. Tautges, T. Xie, M.

2D plane

Connection
between 2D planes

Zhou, “Interoperable Mesh Components For Large-Scale, Distributed-Memory
Simulations”, Journal of Physics: Conference Series, 180, 012011, 11 pages, 2009.

[5] A.Y. Galimov, O.Sahni, R.T. Lahey, Jr., M.S. Shephard, D.A. Drew, K.E. Jansen,
“Parallel Adaptive Simulation of a Plunging Liquid Jet”, Acta Mathematica
Scientia, submitted 2009.

[6] S. C. Jardin, J. Breslau, J. Chen, S. Gerhardt, N. Ferraro, X. Luo, K. Jansen, M.
Shephard, “Initial application of the M3D-C1 code to the study of non-ideal modes
in NSTX”, APS, Nov. 2009 (Abstract).

[7] X.-J. Luo, M.S. Shephard, L.-Q. Lee and C. Ng, “Moving Curved Mesh Adaption
for Higher Order Finite Element Simulations”, Engineering with Computers,
accepted, 2009.

[8] X. Luo, T. Stylianopoulos, V.H. Barocas and M.S. Shephard, “Multiscale
computation for soft tissues with complex geometries”, Engineering with
Computers, 25(1):87-96, 2009.

[9] C. Ollivier-Gooch, L.F. Diachin, M.S. Shephard, T. Tautges, J. Kraftcheck, V.
Leung, X.-J. Luo and M. Miller, “An Interoperable, Data-Structure-Neutral
Component for Mesh Query and Manipulation”, Transactions on Mathematical
Software, accepted, 2009

[10] Ovcharenko, A., Shephard, M.S., Sahni, O, Jansen. K.E. and Carothers, C.D.,
“Subdomain Communication to Increase Scalability in Large-Scale Scientific
Applications”, ICS’09, June 8–12, 2009, ACM, York Town Heights, NY, USA
(Abstract).

[11] O. Sahni, X.J. Luo, K.E. Jansen, M.S. Shephard, “Curved Boundary Layer Meshing
for Adaptive Viscous Flow Simulations”, Finite Elements in Analysis and Design,
46:132-139, 2010.

[12] O. Sahni, C.D. Carothers, M.S. Shephard and K.E. Jansen, “Strong Scaling Analysis
of a Parallel, Unstructured, Implicit Solver and the Influence of the Operating
System Interference”, Scientific Programming, 17:261-274, 2009.

[13] O. Sahni, K.E. Jansen, C.A. Taylor and M.S. Shephard,“Automated Adaptive
Cardiovascular Flow Simulations” Engineering with Computers, 25(1):25-36, 2009.

[14] O. Sahni, M. Zhou, M.S. Shephard and K.E. Jansen, “Scalable Implicit Finite
Element Solver for Massively Parallel Processing with Demonstration to 160K
cores”, Proceedings of the SC09, Gordon Bell Finalist, 2009.

[15] Onkar Sahni, Michael Amitay, Mark S. Shephard and Kenneth E. Jansen,
“Investigation of Active Control of 3D Flows using Adaptive Simulations”, Proc.
US National Congress on Computational Mechanics, Columbus, Ohio, July 16-19,
2009, (Abstract)

[16] M.S. Shephard, M.A. Nuggehally, B. FranzDale, C.R. Picu, J. Fish, O. Klaas, J.
Tourtellott and M.W. Beall, “Component Software for Multiscale Simulation”,
Bridging the Scales in Science and Engineering, Oxford University Press, pp. 393-
421, 2009.

[17] Mark S. Shephard, Kenneth E. Jansen Onkar Sahni, Xiao-Juan Luo, Min Zhou,
Aleksandr Ovcharenko, and Ting Xie, “Recent Advances and Experiences in

Adaptive Mesh Generation and Control for Large Scale Simulations”, Proc. US
National Congress on Computational Mechanics, Columbus, Ohio, July 16-19,
2009, (Abstract).

[18] M. Zhou, O. Sahni, H. J. Kim, C.A. Figueroa, CA. Taylor, M.S. Shephard, and K.E.
Jansen, “Cardiovascular Flow Simulation at Extreme Scale, Computational
Mechanics, accepted 2009.

[19] M. Zhou, O. Sahni, M.S. Shephard, C.D. Carothers and K.E. Jansen, “Adjacency
based reordering algorithm for acceleration of finite element computations”,
submitted Scientific Programming, 2009.

[20] M. Zhou, O. Sahni, M.S. Shephard, K.D. Devine and K.E. Jansen, “Controlling
unstructured mesh partitions for massively parallel simulations”, SIAM J. Sci.
Comp., submitted 2009.

6. Project Personnel
The following individuals are involved with the Rensselaer component of the ITAPS
project:

• Kenneth E. Jansen, Rensselaer Principal Investigator
• Xiaojuan Luo, Senior Research Associate
• Alexander Ovcharenko, Graduate Student
• Onkar Sahni, Senior Research Associate
• Mark S. Shephard, Rensselaer Project Director
• Ting Xie, Graduate Student
• Min Zhou, Graduate Student, Post Doctoral Research Associate

