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Abstract 70 

Eddy covariance flux towers provide continuous measurements of net ecosystem 71 

carbon exchange (NEE) at half-hourly or hourly time steps. The use of these flux 72 

measurements has improved our understanding of the net exchange of carbon dioxide between 73 

terrestrial ecosystems and the atmosphere for a wide range of climate and biome types. There 74 

is growing interest in scaling up these measurements to regional or continental scales. Here we 75 

used remote sensing data from the Moderate Resolution Imaging Spectrometer (MODIS) 76 

instrument on board the NASA’s Terra satellite to extrapolate NEE measured at AmeriFlux 77 

sites to the continental scale. We first combined MODIS data and NEE measurements for 78 

representative U.S. ecosystems including forests, grasslands, shrublands, savannas, and 79 

croplands to develop a predictive NEE model using a regression tree approach. All explanatory 80 

variables of the model were derived from MODIS data. The regression tree model was trained 81 

and validated using AmeriFlux NEE measurements over the period 2000-2004 and 2005-2006, 82 

respectively. We then applied the model to the continental scale and estimated NEE for each 1 83 

km × 1 km cell for the conterminous U.S. for each 8-day period in 2005 using spatially explicit 84 

MODIS data. We found that the model predicted NEE reasonably well at the continental scale, 85 

and generally captured the spatiotemporal patterns of NEE for the conterminous U.S. Our 86 

study demonstrated that our approach is powerful for scaling up eddy flux NEE measurements 87 

to the continental scale and producing spatially explicit NEE estimates. This approach could 88 

provide an independent dataset from simulations with biogeochemical models and inverse 89 

modeling approaches for examining the spatiotemporal patterns of NEE and constraining 90 

regional, continental, or global terrestrial carbon sink or source activities.  91 

 92 
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1. Introduction 93 

Net ecosystem carbon exchange (NEE), the net effect of photosynthetic uptake and 94 

release of carbon dioxide (CO2) by respiration from autotrophs (plants) and heterotrophs (e.g., 95 

microbial decomposition), represents the net exchange of carbon dioxide (CO2) between 96 

terrestrial ecosystems and the atmosphere [Law et al., 2006]. The quantification of NEE for 97 

regions, continents, and the globe can improve our understanding of the feedbacks between the 98 

terrestrial biosphere and the atmosphere in the context of global change, and facilitate climate 99 

policy-making. Therefore, the estimation of NEE over large areas has important scientific and 100 

political implications.  101 

To date, numerous techniques have been used to estimate NEE [Baldocchi et al., 2001]. 102 

For example, atmospheric inverse models have been used to provide aggregated information 103 

on carbon balances over large areas [e.g., Gurney et al., 2002]. The accuracy of those estimates 104 

is limited by the sparseness of the CO2 observation network, their biased placement in the 105 

marine boundary layer, and the accuracy of the atmospheric transport models [Tans et al., 106 

1990; Denning et al., 1996; Fan et al., 1998]. Moreover, this approach does not provide 107 

information about which ecosystems are contributing to the sinks/sources or the processes 108 

involved [Janssens et al., 2003]. During the last three decades, researchers have also been using 109 

global biogeochemical models such as BIOME-BGC [Running and Hunt, 1993], CASA [Potter 110 

et al., 1993; Field et al., 1995], CENTURY [Parton et al., 1993], and Terrestrial Ecosystem 111 

Model [TEM; Zhuang et al., 2003; Xiao et al., 2008] to quantify NEE over large areas. These 112 

models are dependent on site-level parameterizations, and the accuracy of model simulations at 113 

regional scales is therefore limited. In addition, besides atmospheric CO2 and climate 114 

variability, other factors such as land use/land cover change [McGuire et al., 2001], 115 
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disturbances [Zhuang et al., 2002; Law et al., 2004], and management practices [Xiao and 116 

Moody, 2004a; Magnani et al., 2007] significantly affect NEE. It is a challenge for these 117 

biogeochemical models to consider all these factors due to model limitations and/or lack of 118 

data.   119 

At the site level, eddy covariance flux towers provide continuous measurements of 120 

ecosystem-level exchanges of carbon, water, energy, and momentum at half-hourly or hourly 121 

time steps [Baldocchi et al., 2001]. At present, over 400 eddy covariance flux towers are 122 

operating on a long-term and continuous basis over the globe [FLUXNET, 2008]. This global 123 

network of flux towers, called FLUXNET, encompass a large range of climate and biome types 124 

[Baldocchi et al., 2001]. These flux towers provide the most extensive, reliable, and longest 125 

measurements of ecosystem carbon fluxes. However, these measurements only represent the 126 

fluxes at the scale of the tower footprint [Running et al., 1999], up to several square kilometers 127 

[Schmid, 1994]. The quantification of the terrestrial carbon sinks/sources for regions, 128 

continents, and the globe often require spatially explicit estimates of NEE. The way of using 129 

these flux data to quantify the terrestrial carbon fluxes at large scales is an intriguing question. 130 

Some efforts have been made to scale up NEE measured at eddy covariance flux 131 

towers. For example, Mahadevan et al. [2008] developed the vegetation photosynthesis and 132 

respiration model (VPRM) for estimating NEE at hourly time steps. This model uses eddy 133 

covariance flux data to calibrate and validate the VPRM model. Similar to process-based 134 

biogeochemical models, this empirical model is also based on site-level parameterizations. 135 

Satellite remote sensing is a potentially valuable tool for scaling up NEE measurements to 136 

continental and global scales [Running et al., 1999]. Yamaji et al. [2007] linked satellite data to 137 

flux tower NEE data at the tower level. Wylie et al. [2007] estimated NEE for grasslands in the 138 
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northern Great Plains using satellite data and flux tower NEE measurements. Despite these 139 

efforts, to our knowledge, no study has scaled up flux tower NEE measurements to the 140 

continental scale.  141 

Here we combined MODIS (Moderate Resolution Imaging Spectroradiometer) and 142 

eddy covariance flux data to scale up flux tower NEE measurements to the continental scale. 143 

First, we developed a predictive NEE model based on site-level MODIS and AmeriFlux data. 144 

Second, we validated the performance of the model with independent AmeriFlux data. Third, 145 

we applied the model to estimate NEE for each 1 km × 1 km cell across the conterminous U.S. 146 

for each 8-day period in 2005 using spatially explicit MODIS data. Finally, we examined the 147 

spatiotemporal patterns of NEE for representative U.S. ecosystems. This undertaking 148 

represents the first study of its kind and is the first step towards continental-scale 149 

extrapolations of flux tower NEE measurements across the conterminous U. S.  150 

2. Methods 151 

2.1. Regression tree 152 

Regression tree algorithms predict class membership by recursively partitioning a 153 

dataset into more homogeneous subsets. The partitioning process splits each parent node into 154 

two child nodes, and each child node is treated as a potential parent node [Breiman et al., 155 

1984]. The regression tree algorithm produces rule-based models containing one or more rules, 156 

each of which is a set of conditions associated with a linear submodel. Regression tree models 157 

can account for a nonlinear relationship between predictive and target variables and allow both 158 

continuous and discrete variables as input variables [Yang et al., 2003]. Regression tree 159 

methods are proven not only more effective than simple techniques including multivariate 160 
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linear regression, but also easier to understand than neural networks [Huang and Townshend, 161 

2003].  162 

We used the regression tree algorithm implemented in the commercial software called 163 

Cubist. Cubist is a powerful tool for generating rule-based predictive models. The predictive 164 

accuracy of a rule-based model can be improved by combining it with an instance-165 

based/nearest-neighbor model that predicts the target value of a new case using the average 166 

predicted values of the n most similar cases. The use of the composite model can improve the 167 

predictive accuracy relative to the rule-based model alone. Cubist can also generate committee 168 

models made up of several rule-based models, and each member of the committee model 169 

predicts the target value for a case and the member’s predictions are averaged to give a final 170 

prediction.  171 

Cubist uses three statistical measures to measure the quality of the constructed 172 

regression tree model, including average error, relative error, and product-moment correlation 173 

coefficient. The average error is calculated as [Yang et al., 2003]: 174 

     ∑
=

−=

N

i

ii yy
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AE
1

ˆ
1

                                                       (1) 175 

where AE is the average error of a tree model, N is the number of samples used to establish the 176 

tree, iy  and iŷ  are the actual and predicted values of the response variable. The relative error 177 

is calculated as [Yang et al., 2003]: 178 
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)(

µAE

TAE
RE =                                                                  (2) 179 

where RE is the relative error of a tree model, AE(T) is the average error of the tree model, and 180 

AE(µ) is the average error that would result from always predicting the mean value.  181 
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Cubist has been used to estimate percent land cover [Huang and Townshend, 2003], 182 

impervious area [Yang et al., 2003], forest biomass [Salajanu et al., 2005], and ecosystem 183 

carbon fluxes [Wylie et al., 2007]. Piecewise regression models were selected as the most 184 

appropriate approach for scaling the flux tower data to ecoregions [Wylie et al., 2007]. We 185 

chose Cubist to construct a predictive NEE model based on AmeriFlux NEE measurements 186 

and satellite data, and then applied the model to estimate NEE at the continental scale. All the 187 

three statistical measures provided by Cubist were used to evaluate the performance of the tree 188 

model.  189 

2.2. Explanatory variable selection 190 

NEE, the small difference between two large carbon fluxes of photosynthesis and 191 

respiration [Law et al., 1999], is influenced by a variety of meteorological, physiological, 192 

atmospheric, and edaphic variables. At the leaf level, photosynthesis or gross primary 193 

productivity (GPP) is influenced by several factors, including solar radiation, air temperature, 194 

soil moisture, nitrogen availability, and leaf area index (LAI). Ecosystem respiration (Re) 195 

includes autotrophic (Ra) and heterotrophic respiration (Rh). Ra is mainly influenced by air 196 

temperature and vegetation carbon, whereas Rh is influenced by soil organic carbon pools as 197 

well as surface soil temperature and soil moisture [Tian et al., 1999]. Changes in atmospheric 198 

CO2 concentrations, air temperature, and precipitation also influence Rh through effects on 199 

GPP and Ra that affect the pool size of soil organic matter through changes in litterfall input 200 

[Tian et al, 1999]. At the stand or regional level, NEE is also affected by fractional vegetation 201 

cover [DeFries et al., 2002].  202 

Many of these factors influencing NEE can be measured or approximated by satellite 203 

remote sensing. Optical remote sensing systems measure the surface reflectance, the fraction of 204 
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solar energy that is reflected by the Earth’s surface. For a given wavelength, different 205 

vegetation types and/or plant species may have different reflectance [Schmidt and Skidmore, 206 

2003]. The reflectance of the same vegetation type also varies depending on wavelength 207 

region, biophysical properties (e.g., biomass, leaf area, and stand age), soil moisture 208 

conditions, and sun-object-sensor geometry [Ranson et al., 1985; Penuelas et al., 1993]. 209 

Therefore, reflectance values from multiple spectral bands can provide useful information for 210 

estimating NEE. Moreover, surface reflectance can be used to develop vegetation indices and 211 

biophysical parameters that may account for factors influencing NEE, such as the normalized 212 

difference vegetation index (NDVI), the enhanced vegetation index (EVI), the land surface 213 

temperature (LST), the normalized difference water index (NDWI), the fraction of 214 

photosynthetically active radiation absorbed by vegetation canopies (fPAR), and LAI.  215 

The NDVI captures the contrast between the visible-red and near-infrared reflectance 216 

of vegetation canopies. It is defined as: 217 

  
rednir

rednirNDVI
ρρ

ρρ

+

−
=                                                                    (3) 218 

where redρ  and nirρ  are the visible-red and near-infrared reflectance, respectively. NDVI is 219 

closely correlated to the fraction of photosynthetically active radiation (fPAR) absorbed by 220 

vegetation canopies [Asrar et al., 1984; Xiao & Moody, 2004b]. NDVI is also related to 221 

vegetation biomass [Myneni et al., 2001] and fractional vegetation cover [Xiao and Moody, 222 

2005]. However, NDVI has several limitations, including saturation in a multilayer closed 223 

canopy and sensitivity to both atmospheric aerosols and soil background [Huete et al., 2002; 224 

Xiao and Moody, 2005]. To account for these limitations of NDVI, Huete et al. [1997] 225 

developed the improved vegetation index, EVI: 226 
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where nirρ , redρ , and blueρ  are the spectral reflectance at the near-infrared, red, and blue 228 

wavelengths, respectively.  229 

The LST derived from MODIS is a measure of the soil temperature at the surface. The 230 

MODIS LST agreed with in situ measured LST within 1 K in the range 263-322 K [Wan et al., 231 

2002]. LST is likely a good indicator of Re as both Ra and RH are significantly affected by 232 

air/surface temperature. Rahman et al. [2005] demonstrated that satellite-derived LST was 233 

strongly correlated with Re.  234 

As the short infrared (SWIR) spectral band is sensitive to vegetation water content and 235 

soil moisture, a combination of NIR and SWIR bands have been used to derive water-sensitive 236 

vegetation indices [Ceccato et al., 2002]. Gao [1996] developed the NDWI from satellite data 237 

to measure vegetation liquid water:  238 

                
swirnir

swirnirNDWI
ρρ

ρρ

+

−
=                                                               (5) 239 

where swirρ is the reflectance at the shortwave infrared (SWIR) spectral band. The NDWI was 240 

shown to be strongly correlated with leaf water content (equivalent water thickness (EWT), g 241 

H2O/m
2
) [Jackson et al., 2004] and soil moisture [Fensholt and Sandholt, 2003] over time. It 242 

was incorporated into the vegetation photosynthesis model (VPM) as a water scalar for 243 

estimating GPP [Xiao et al., 2005].  244 

Satellite data can also provide estimates for LAI and fPAR. These two variables 245 

characterize vegetation canopy functioning and energy absorption capacity [Myneni et al., 246 

2002], and are key parameters in most ecosystem productivity and biogeochemical models 247 

[Sellers et al., 1997]. These two variables are closely associated with GPP.  248 
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We therefore selected surface reflectance, EVI, LST, NDWI, fPAR, and LAI as 249 

explanatory variables. All these variables were derived from MODIS data.  250 

2.3. Data 251 

We obtained the following three types of data, including NEE data from eddy 252 

covariance flux towers, explanatory variables derived from MODIS data, and a land cover map 253 

derived from MODIS data.  254 

2.3.1 AmeriFlux data 255 

As a part of the FLUXNET, the AmeriFlux network coordinates regional analysis of 256 

observations from eddy covariance flux towers across North America, Central America, and 257 

South America [AmeriFlux, 2007]. We obtained the Level 4 NEE product for 42 AmeriFlux 258 

sites for the period 2000-2006 from the AmeriFlux website (http://public.ornl.gov/ameriflux/) 259 

(Table 1). These sites involve a variety of vegetation types, including forests, shrublands, 260 

savannas, grasslands, and croplands (Table 1), and are distributed across the conterminous U.S. 261 

(Figure 1). We therefore believed that these sites are representative of the U.S. terrestrial 262 

ecosystems.  263 

The Level 4 product consists of two types of NEE data, including standardized 264 

(NEE_st) and original (NEE_or) NEE [AmeriFlux, 2007]. NEE_st was calculated using the 265 

storage obtained from the discrete approach (single point on the top of the tower) with the 266 

same approach for all the sites, whereas NEE_or was calculated using the storage sent by the 267 

PI that can be obtained with the discrete approach or using the profile system. The average data 268 

coverage during a year is only 65% due to system failures or data rejection, and therefore 269 

robust and consistent gap filling methods are required to provide complete data sets [Falge et 270 

al., 2001]. Both NEE_st and NEE_or were filled using the Marginal Distribution Sampling 271 
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(MDS) method [Reichstein et al., 2005] and the Artificial Neural Network (ANN) method 272 

[Papale and Valentini, 2003]. The ANN method was generally, if only slightly, superior to the 273 

MDS method [Moffat et al., 2007]. Therefore, we used the NEE data filled using the ANN 274 

method. For each site, if the percentage of the remaining missing values for NEE_st was lower 275 

than that for NEE_or, we selected NEE_or; otherwise, we used NEE_st.  276 

The Level 4 product consists of NEE data with four different time steps, including half-277 

hourly, daily, weekly (8-day), and monthly. We used 8-day NEE data (g C m
-2

 day
-1

) to mach 278 

the compositing intervals of MODIS data.  279 

2.3.2. MODIS data 280 

MODIS is a key instrument on board the NASA’s Terra and Aqua satellites. The Terra 281 

MODIS and Aqua MODIS are viewing the entire Earth’s surface every one to two days, 282 

acquiring data in 36 spectral bands and with the spatial resolution of 250m, 500m, and 1km. A 283 

variety of MODIS data products are currently available at the USGS-NASA Distributed Active 284 

Archive Center. We used the following four MODIS data products, including surface 285 

reflectance [MOD09A1; Vermote and Vermeulen, 1999], daytime and nighttime LST 286 

[MOD11A2; Wan et al., 2002], EVI [MOD13A1; Huete et al., 2002], and LAI/fPAR 287 

[MOD15A2; Myneni et al., 2002]. Surface reflectance data consist of reflectance values of 288 

seven spectral bands: blue (459-479 nm), green (545-565 nm), red (620-670 nm), near infrared 289 

(841-875 nm, 1230-1250 nm), shortwave infrared (1628-1652 nm, 2105-2155 nm). Surface 290 

reflectance and EVI are at spatial resolution of 500m, while LAI, fPAR, and LAI are at spatial 291 

resolution of 1km. Surface reflectance, fPAR, and LAI are at temporal resolution of 8 days, 292 

while EVI is at temporal resolution of 16 days.  293 
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For each AmeriFlux site, we obtained the MODIS ASCII subsets (Collection 4) 294 

consisting of 7 km × 7 km regions centered on the flux tower from the Oak Ridge National 295 

Laboratory’s Distributed Active Archive Center [ORNL DAAC, 2006]. The objective of the 296 

MODIS ASCII Subset project is to provide data in support of validation of models or remote 297 

sensing products for selected FLUXNET or field sites. We extracted average values for the 298 

central 3 × 3 km area within the 7 × 7 km cutouts to better represent the flux tower footprint 299 

[Schmid, 2002; Rahman et al., 2005]. For each variable, we determined the quality of the value 300 

of each pixel within the area using the quality assurance (QA) flags included in the product. At 301 

each time step, we averaged the values of each variable using the pixels with good quality 302 

within the area to represent the values at the flux site. If none of the values within the 3 × 3 km 303 

area was of good quality, we treated the period as missing. Each 16-day EVI value was split 304 

into two 8-day values to correspond with the compositing interval of other MODIS data 305 

products. 306 

For the continental-scale estimation of NEE, we obtained continental-scale MODIS 307 

data including surface reflectance, EVI, daytime and nighttime LST, and fPAR and LAI from 308 

Earth Observing System (EOS) Data Gateway. For each variable and for each 8- or 16-day 309 

period, a total of 22 tiles were needed to cover the conterminous U. S., and these tiles were 310 

mosaiced to generate a continental-scale image. For each variable, we determined the quality 311 

of the value of each pixel using the QA flags, and replaced the values with bad quality using a 312 

linear interpolation approach [Zhao et al., 2005]. The NDWI was calculated from band 2 (near-313 

infrared, 841-876nm) and band 6 (shortwave infrared, 1628-1652) of the surface reflectance 314 

product (MOD09A1) according to equation (5). Each 16-day EVI composite was split into two 315 

8-day composites to correspond with the compositing interval of other MODIS data products. 316 



 15 

2.3.3. Land cover 317 

To construct the predictive NEE model, we obtained the land cover type for each 318 

AmeriFlux site based on the site descriptions (Table 1). Here we used the International 319 

Geosphere-Biosphere Programme (IGBP) land-cover classification system (Belward and 320 

Loveland, 1996). Although the 42 AmeriFlux sites that we used cover a variety of vegetation 321 

types of this classification system, some vegetation types of the classification system have only 322 

one or two sites or even none. We therefore reclassified the vegetation types of this system to 323 

seven broader classes (Table 2). Specifically, evergreen needleleaf forests and evergreen 324 

broadleaf forests were merged to evergreen forests, deciduous needleleaf forests and deciduous 325 

broadleaf forests to deciduous forests, closed shrublands and open shrublands to shrublands, 326 

and woody savannas and savannas to savannas.   327 

To estimate NEE for each 1 km × 1 km cell at the continental scale, we obtained the 328 

land cover type for each cell from the MODIS land cover map with the University of Maryland 329 

(UMD) classification system [Friedl et al., 2002]. The UMD system is similar to the IGBP 330 

classification system, but the UMD system does not include the following two vegetation 331 

classes including permanent wetlands and cropland/natural vegetation mosaics. Similarly, we 332 

reclassified the vegetation types of the MODIS land cover map to the seven broader classes 333 

(Table 2). The resulting reclassified land-cover map is shown in Figure 1.  334 

2.4. Model development  335 

We developed the predictive NEE model using Cubist based on the site-level MODIS 336 

and AmeriFlux NEE data. Our explanatory variables included surface reflectance (7 bands), 337 

daytime and nighttime LST, EVI, fPAR, and LAI, and our target variable was NEE. We 338 

temporally split the site-level data set of AmeriFlux and MODIS data into a training set (2000-339 
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2004) and a test set (2005-present). If a site only had NEE observations for the period 2000-340 

2004, the site was only included in the training set; if a site only had NEE observations for the 341 

period 2005-2006, the site was only included in the test set; otherwise, the site was included in 342 

both training and test sets. For example, the Fort Peck site (MT) had NEE data from the entire 343 

study period, and we used data from 2000 to 2004 for training, and data from 2005 to 2006 for 344 

validation; the Harvard Forest EMS Tower site had data available for 2000-2004, and we used 345 

all the data for training; the Fermi National Accelerator Laboratory Agricultural site had data 346 

for 2005 and 2006 only, and we used all the data for validation (Figure 2). The training and test 347 

sets included 40 and 34 AmeriFlux sites, respectively. We had a total of 4596 cases for the 348 

training set, and 2257 cases for the test set.  349 

We used Cubist to construct a rule-based model by combining it with an instance-based 350 

model and committee models. We trained the model with the training set (2000-2004), and 351 

tested the model with the test set (2005-2006). In addition to the full model including all the 352 

explanatory variables, we also developed a series of models by dropping one or more variables 353 

at a time using Cubist. We then evaluated the performance of each model using average error, 354 

relative error, correlation coefficient, scatterplots of predicted versus observed NEE, and 355 

seasonal variations between the predicted and observed NEE. Finally, we chose the best model 356 

to estimate NEE at the continental scale.  357 

2.5. Continental-scale estimation of NEE 358 

The AmeriFlux network is representative of the conterminous U.S. ecoregions 359 

[Hargrove et al., 2003], while the 42 sites used in this study included most of the active flux 360 

sites in the network (Figure 1). Moreover, these sites cover a variety of vegetation types and 361 

are spatially distributed across the conterminous U.S. We therefore believed that the predictive 362 
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NEE model constructed from the 42 sites can be extrapolated to the conterminous U.S. We 363 

applied the predictive NEE model to estimate NEE for each 1 km × 1 km cell for the 364 

conterminous U.S. for each 8-day period in 2005 using spatially explicit MODIS data. We then 365 

examined the spatiotemporal patterns of our NEE estimates for representative U.S. ecosystems.  366 

3. Results and discussion 367 

3.1. Model development 368 

We found that the best model contained the following explanatory variables, including 369 

surface reflectance bands 1-6, EVI, daytime and nighttime LST, and NDWI (relative error = 370 

0.64, average error = 0.986, r = 0.73). This model achieved slightly higher performance than 371 

the full model (relative error = 0.66, average error = 1.01, r = 0.72). The best model estimated 372 

NEE reasonably well (Figure 3) considering that we used multiple years of data from a number 373 

of sites involving a variety of vegetation types across the conterminous U.S. The model 374 

slightly underestimated positive NEE values, and overestimated negative NEE values. In 375 

absolute magnitudes, the model slightly underestimated both carbon release and sequestration 376 

rates.  377 

The analysis of residuals (Figure 4) indicated that the residuals were not randomly 378 

distributed. In absolute magnitudes, low NEE values were generally associated with low 379 

prediction errors, whereas high NEE values were associated with high prediction errors. This 380 

indicated that the explanatory variables included in the model could not completely explain the 381 

variance of NEE. It is likely because that the independent variables we used may not 382 

sufficiently account for the sizes of vegetation and soil organic carbon pools, and therefore 383 

lowered the prediction performance of the model.  384 
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  We calculated the average error and relative error across all AmeriFlux sites for each 8-385 

day period, and then plotted these two types of error against time (Figure 5). The average error 386 

showed a strong seasonality. In absolute magnitudes, winter had low average errors (about 0.6 387 

g C m
-2

 day
-1

), whereas warm season errors often exceeded 1 g C m
-2

 day
-1

. This also suggests 388 

the relatively large uncertainties associated with NEE estimates, further indicating that NEE is 389 

difficult to estimate. The relative error, however, exhibited less seasonality, indicating that the 390 

relative error was less variable throughout the year than the average error. 391 

We also compared our NEE estimates against observed NEE for each AmeriFlux site 392 

(Figure 6). The NEE estimates captured most features of observed NEE seasonality and 393 

interannual variability for the period 2005-2006. For some specific sites, episodes of under- or 394 

over-prediction occurred. The model could not well capture exceptionally high and low NEE 395 

values that represented large carbon release and sequestration rates, respectively for some sites, 396 

such as the Audubon Research Ranch site (AZ), Fermi National Accelerator Laboratory 397 

Agricultural site (IL), Goodwin Creek site (MS), and Fort Peck (MT). In absolute magnitudes, 398 

the model substantially underestimated those exceptional values. For example, the model 399 

estimates were far below the observed NEE values higher than 2 g C m
-2

 day
-1

 at the Greek 400 

Creek site (MS), and were far above the observed NEE values below -3 g C m
-2

 day
-1

 at the 401 

Audubon Research Ranch site (AZ). Overall, the model performed better for deciduous forests, 402 

savannas, grasslands and croplands than for evergreen forests and shrublands.  403 

The disagreement between estimated and observed NEE values is due to the following 404 

three reasons. First, the MODIS and tower footprints did not always matched with each other. 405 

As mentioned earlier, for each explanatory variable derived from MODIS data, we used the 406 

values averaged within the 3 km × 3 km area (MODIS footprint) surrounding each flux tower 407 
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to represent the values at the tower. The footprints of MODIS and AmeriFlux matched with 408 

each other for most sites because the vegetation structure within the 3 km × 3 km area 409 

surrounding the flux tower is similar to that at the tower. However, some ecosystems are fairly 410 

complex in structure and topography, even over the relatively small area represented by a 411 

MODIS cell [Running et al., 1999], and the vegetation structure at the flux tower is different 412 

from that within the MODIS footprint. For example, the Tonzi Ranch site (CA) is dominated 413 

by deciduous blue oaks (Quercus douglasii), and the understory and open grassland are 414 

dominated by cool-season C3 annual species [Ma et al., 2007]. The MODIS footprint consists 415 

of a larger fraction of grassland. The phenologies of blue oaks and grassland are distinct from 416 

each other [Ma et al., 2007], and therefore these two plant species had differential 417 

contributions to the NEE integrated over the MODIS footprint. In the spring, wet conditions 418 

along with warm temperatures facilitated the fast growth of grass, leading to large carbon 419 

sequestration rates within the MODIS footprint. Therefore, in absolute magnitudes, our NEE 420 

estimates were higher than the observed values at the tower. Grasses senesced by the end of the 421 

spring as the rainy season ended [Ma et al., 2007]. The senescence of grasses provided carbon 422 

sources in the summer, and thus lowered the carbon sequestration rates within the MODIS 423 

footprint. Therefore, in absolute magnitudes, our NEE values were much lower than the 424 

observed values at the tower in the summer.  425 

Second, we estimated NEE at 8-day time steps, and therefore may not be able to 426 

capture the variability of NEE within each 8-day period. The MODIS LST and EVI data 427 

products were averaged from the corresponding daily products over a period of 8 and 16 days, 428 

respectively [Huete et al., 2002; Wan et al., 2002]. For each period, only data with good quality 429 

were retained for compositing, and thus the number of days actually used for compositing is 430 
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often lower than the total number of days over the period. The compositing technique for the 431 

MODIS surface reflectance product is based on the minimum-blue criterion that selects the 432 

clearest conditions over the 8-day period [Vermote and Vermeulen, 1999]. Therefore, the 8- or 433 

16-day values did not always represent the average conditions over the 8- or 16-day period. 434 

The exclusion of days with high and low values could lead to underestimation and 435 

overestimation of NEE values, respectively. For example, each 16-day EVI composite was an 436 

average of daily EVI over a period of 16 days. The number of acceptable pixels over a 16-day 437 

compositing period is typically less than 10 and often less than 5 due to cloud contaminations 438 

and extreme off-nadir sensor view angles [Huete et al., 2002]. The compositing process may 439 

exclude high EVI values that represented high fPAR or fractional vegetation cover, therefore 440 

leading to lower estimates of NEE. On the other hand, the compositing process may also 441 

exclude low EVI values that represented low fPAR or fractional vegetation cover, thereby 442 

leading to higher NEE estimates.  443 

Third, the exceptionally high or low NEE values that our model could not effectively 444 

capture might be affected by spikes remaining in the eddy covariance measurements. Among 445 

these exceptional NEE values, positive values were often associated with Re values with much 446 

smaller magnitudes, leading to negative GPP estimates that were ecophysiologically 447 

impossible. Eddy covariance measurements are often affected by spikes, due to different 448 

reasons both biophysical (changes in the footprint or fast changes in turbulence conditions) and 449 

instrumental (e.g., water drops on sonic anemometer or on open path IRGA) [Papale et al., 450 

2006].  451 

We averaged our estimated and observed 8-day NEE for each AmeriFlux site and 452 

examined the relationship between estimated and observed mean 8-day NEE across the sites 453 
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(Figure 7). The model estimated NEE reasonably well at the site level (r
2
 = 0.72, p < 0.00001). 454 

Overall, in absolute magnitudes, the model underestimated NEE. The performance of the 455 

model also varied with site. On average, some sites provided carbon sources, whereas other 456 

sites provided carbon sinks. High overestimation of carbon sequestration occurred at the 457 

Toledo Oak Openings site (OH), whereas high underestimation of carbon sequestration 458 

occurred at the Mature Red Pine site (WI), Duke Forest Pine site (NC), Duke Forest 459 

Hardwoods (NC), and North Carolina Pine (NC). High overestimation of carbon release 460 

occurred at Audubon Research Ranch (AZ), ARM Oklahoma (OK), and Freeman Ranch 461 

Mesquite (TX), whereas high underestimation of carbon release occurred at Mead Irrigated 462 

(NE), Goodwin Creek (MS), and Austin Cary (FL).  463 

We also averaged our estimated and observed 8-day NEE over all AmeriFlux sites for 464 

each vegetation type, and examined the relationship between estimated and observed NEE 465 

across the vegetation types (Figure 8). The model predicted NEE at the biome level very well 466 

(r
2
 = 0.95, p < 0.00001). Again, in absolute magnitudes, the model underestimated NEE. The 467 

performance of the model also varied with vegetation type. In absolute magnitudes, high 468 

overestimation occurred for evergreen forests and shrublands.  469 

Our study demonstrated that MODIS data have great potential for scaling up flux tower 470 

NEE data to continental scales across a variety of vegetation types. NEE is much more difficult 471 

to estimate or simulate than GPP because the carbon pools and associated heterotrophic 472 

respiration are difficult to estimate or simulate [Running et al., 2004]. The performance of our 473 

model for estimating NEE is remarkable given the wide variety of ecosystem types, age 474 

structures, fire and insect disturbances, and management practices. In future research, 475 

additional explanatory variables should be selected in order to better account for vegetation 476 
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and soil carbon pools. For example, spatially explicit estimates of forest biomass [e.g., Zhang 477 

et al., 2006] and soil organic carbon [e.g., Global Soil Data Task Group, 2000] may provide 478 

useful information for vegetation and soil carbon pools and potentially improve the estimation 479 

of NEE. In addition, the use of higher temporal resolution (e.g., daily) may also improve the 480 

estimates of NEE, spikes in particular, by capturing the variability of NEE within each 8-day 481 

period. 482 

3.2. Continental-scale estimation of NEE 483 

We estimated NEE for each 1 km × 1 km cell for the conterminous U.S. for each 8-day 484 

interval over the period 1/1/2005-2/28/2006. Figure 9 shows examples of four 8-day NEE 485 

images in 2005, including March 14-21, July 12-19, September 14-21, and December 11-18. 486 

The regression tree model trained at the AmeriFlux sites generally captured the expected 487 

spatiotemporal patterns of NEE. The majority of the conterminous U.S. were carbon neutral or 488 

released carbon in March or December because at this time of the year most ecosystems were 489 

dormant; in July, the ecosystems in the east sequestered carbon from the atmosphere, whereas 490 

many areas in the west released carbon due to high Re; in September, the ecosystems in the 491 

east sequestered less carbon as vegetation began to senesce. Some ecosystems in the Pacific 492 

Northwest and California sequestered carbon from the atmosphere throughout the year.  493 

We aggregated 8-day NEE estimates for each season in 2005 (Figure 10). The carbon 494 

balances of terrestrial ecosystems at temperate and high latitudes exhibited strong seasonal 495 

fluctuations [Falge et al., 2002]. The NEE estimates also varied substantially over space. In the 496 

spring, many areas in the eastern half of the conterminous U.S. including the Southeast and the 497 

Gulf Coast exhibited negative NEE values, indicating that these ecosystems sequestered carbon 498 

from the atmosphere. The growing season of these ecosystems started in the mid- to late 499 
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spring, and GPP quickly exceeded Re, leading to net carbon sequestration in the season. By 500 

contrast, the Upper Great Lakes region, the northern Great Plains, and the New England region 501 

exhibited positive NEE values and provided carbon sources. The Upper Great Lakes region 502 

and the northern Great Plains are dominated by croplands. Most crops were planted between 503 

April-June, with corn planted between April and mid-May, soybeans between mid-May and 504 

mid-June, and sorghum between late May and late June [Shroyer et al., 1996]. Crops were 505 

sparse in the beginning of the growing season and Re was far above GPP, thereby leading to 506 

carbon releases. The New England region and the northern portion of the Upper Great Lakes 507 

region are dominated by temperate-boreal transitional forests, and their relatively late greenup 508 

due to low air temperatures led to carbon releases in the spring. Many regions in the western 509 

half of the conterminous U. S. released carbon into the atmosphere in the spring because of the 510 

sparse vegetation and the dominance of Re over GPP. The Pacific Coast slightly sequestered 511 

carbon even in the spring because the dominant evergreen forests in the region sequestered 512 

carbon due to mild temperatures and moist conditions [Anthoni et al., 2002]. The 513 

Mediterranean region sin California also sequestered carbon in the spring. The Mediterranean 514 

climate is characterized by mild winter temperatures concomitant with the rainy season as 515 

opposed to severe summer droughts and heat [Barbero et al., 1992]. These ecosystems 516 

sequestered carbon due to precipitation surplus and relatively warm temperatures in the spring 517 

[Xu and Baldocchi, 2004].  518 

In the summer, the eastern half of the conterminous U.S. provided carbon sinks as GPP 519 

far exceeded Re due to optimal temperature and soil moisture conditions. By contrast, a vast 520 

majority of the land across the western counterpart released carbon into the atmosphere, 521 

including the Great Basin, the Colorado Plateau, and the western Great Plains. The 2005 522 
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summer drought affecting these regions [National Climatic Data Center, 2008] reduced GPP, 523 

whereas the high temperatures increased Re, leading to net carbon releases. Some other regions 524 

in the west sequestered carbon from the atmosphere, including the northern Rocky Mountains 525 

and the Pacific Coast. Some Mediterranean ecosystems in California also released carbon into 526 

the atmosphere because summer is a part of the dry season.  527 

In the fall, the Southeast and the Gulf Coast still provided carbon sinks, but the absolute 528 

values of NEE or the rates of carbon sequestration substantially decreased relative to those in 529 

the summer. This is because vegetation began to senesce in these regions in the fall. The Upper 530 

Great Lakes region and the Great Plains were largely carbon sources due to the harvesting of 531 

crops. The majority of the land across the west including the Great Plains, the Great Basin, and 532 

the Colorado Plateau released carbon into the atmosphere. The northern Pacific Coast, 533 

however, still provided carbon sinks. The Mediterranean ecosystems in California released 534 

carbon as the dry season spanned into the fall.   535 

In the winter, the vast majority of the conterminous U.S. exhibited positive NEE 536 

values, indicating that the U.S. terrestrial ecosystems provided carbon sources in this season as 537 

most ecosystems were dormant at this season of the year. Some regions in the Pacific Coast 538 

sequestered carbon even in the winter because of the dominance of evergreen forests and mild 539 

temperatures in the regions. This agreed with the finding of Anthoni et al. [2002] that old-540 

growth ponderosa pine in Oregon slightly sequestered carbon in the winter season. For the 541 

Mediterranean ecosystems in California, a smaller part of the region released carbon into the 542 

atmosphere relative to the fall as the wet season started in the winter. 543 

Figure 11a shows the trajectory of the mean 8-day NEE (g C m
-2

 day
-1

) for each 544 

vegetation type averaged over the entire conterminous U.S. throughout 2005. Overall, 545 
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deciduous forests, croplands, savannas, and mixed forests showed large intra-annual variability 546 

in NEE, whereas evergreen forests, grasslands, and shrublands exhibited much less interannual 547 

variability. The season patterns of NEE were determined by the seasonal differences in LAI, 548 

physiological capacity, meteorological conditions, the length of the growing season, soil 549 

temperature, and moisture status [Falge et al., 2002]. In the late fall, winter, and early spring, 550 

on average, the U.S. terrestrial ecosystems exhibited positive NEE values and therefore 551 

released carbon into the atmosphere. All vegetation types except evergreen forests and 552 

grasslands released carbon. Among vegetation types exhibited positive NEE values, deciduous 553 

forests exhibited highest values, followed by mixed forests; croplands exhibited intermediate 554 

values; shrublands and savannas exhibited lowest values. Evergreen forests still sequestered 555 

carbon from the atmosphere. During the growing season, on average, the U.S. terrestrial 556 

ecosystems exhibited negative NEE values and sequestered carbon from the atmosphere. All 557 

vegetation types except shrublands sequestered carbon. In absolute magnitudes, the highest 558 

NEE values occurred for deciduous forests, followed by croplands, savannas, and mixed 559 

forests; intermediate values occurred for evergreen forests; the lowest values occurred for 560 

grasslands. Shrublands released carbon because of high temperatures and low soil moisture 561 

conditions. Baldocchi et al. [2001] showed that the net CO2 exchange of temperate deciduous 562 

forests increases by about 5.7 g C m
2
 day

-1
 for each additional day that the growing season, 563 

defined as the period over which mean daily CO2 exchange is negative due to net uptake by 564 

ecosystems, is extended. We found that on average, the CO2 exchange of deciduous forests 565 

across the conterminous U.S. increased 3.3 g C m
-2

 day
-1

 for each additional day that the 566 

growing season is extended, Our continental-scale estimate was 42% lower than the estimate 567 

by Baldocchi et al. [2001] based on three temperate deciduous forests.  568 
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Figure 11b shows the trajectory of the total 8-day NEE (Tg C day
-1

) aggregated from 569 

the NEE estimates over the conterminous U.S. for each vegetation type. The differences in the 570 

trajectories of total 8-day NEE among vegetation types were different from those of mean 8-571 

day NEE because of the differences in the areas among vegetation types (Figure 12). In the late 572 

fall, winter, and early spring, the U.S. terrestrial ecosystems provided a carbon source (1-2 Tg 573 

C day
-1

). Croplands, deciduous forests, and mixed forests provided carbon sources, whereas 574 

evergreen forests provided a carbon sink. Shrublands, savannas, and grasslands, however, were 575 

nearly carbon neutral. During the growing season, overall, the U.S. terrestrial ecosystems 576 

provided a carbon sink, with peak total NEE values of -17 Tg C day
-1

. All vegetation types 577 

except shrublands functioned as carbon sinks. In absolute magnitudes, the highest total NEE 578 

values (about 10 Tg C day
-1

) occurred for croplands; the intermediate values occurred for 579 

deciduous forests, savannas, and mixed forests; the lowest values occurred for evergreen 580 

forests and grasslands. By contrast, shrublands provided a carbon source. Total 8-day NEE 581 

exhibited largest intra-annual variability for croplands, intermediate variability for deciduous 582 

forests, savannas, and mixed forests, and lowest variability for evergreen forests, grasslands, 583 

and shrublands.  584 

Our spatially explicit estimates of NEE across the conterminous U.S. provided an 585 

independent dataset from simulations by biogeochemical modeling and inverse modeling for 586 

examining the spatiotemporal patterns of NEE and constraining U.S. terrestrial carbon 587 

sinks/sources. Our estimates have advantages over these models simulations in that we took 588 

advantage of NEE measurements from a number of AmeriFlux sites involving representative 589 

U.S. ecosystems. Moreover, compared to biogeochemical modeling, our scaling-up approach 590 

implicitly considered the effects of climate variability, land use/land cover change, 591 
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disturbances, extreme climate events, and management practices. Compared to inverse 592 

modeling techniques, our approach provided estimates at high spatial (1 km × 1 km) and 593 

temporal resolutions (8 day). NEE is notoriously difficult to quantify over large areas [Running 594 

et al., 2004], and the accuracy of simulated NEE for regions and continents by biogeochemical 595 

models is poorly known due to lack of spatially explicit, independent validation datasets. Our 596 

estimates may provide an independent validation dataset for these model simulations.  597 

4. Summary and conclusions 598 

We combined MODIS and NEE data from 42 AmeriFlux sites involving a variety of 599 

vegetation types to develop a predictive NEE model using a regression tree approach. The 600 

model estimated NEE reasonably well. We then applied the model to estimate NEE for each 1 601 

km × 1 km cell for the conterminous U.S. for each 8-day period in 2005. The model generally 602 

captured the spatiotemporal patterns of NEE. Deciduous forests, croplands, savannas, and 603 

mixed forests showed large intra-annual variability in NEE, whereas evergreen forests, 604 

grasslands, and shrublands exhibited much less interannual variability. Total 8-day NEE 605 

exhibited largest intra-annual variability for croplands, intermediate variability for deciduous 606 

forests, savannas, and mixed forests, and lowest variability for evergreen forests, grasslands, 607 

and shrublands.  608 

 Our study demonstrated that MODIS has great potential for scaling up AmeriFlux 609 

NEE measurements to the continental scale. Our estimates may provide an independent dataset 610 

from simulations with biogeochemical models and inverse modeling approaches for examining 611 

the spatiotemporal patterns of NEE and constraining terrestrial carbon sinks/sources for 612 

regions and continents. More importantly, our scaling-up approach implicitly considered the 613 

effects of climate variability, land use/land cover change, disturbances, extreme climate events, 614 
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and management practices that could not be easily considered altogether in other modeling 615 

approaches. Our spatially explicit NEE estimates at high spatial and temporal resolutions may 616 

therefore provide an independent dataset from simulations with biogeochemical models and 617 

inverse modeling approaches for continental-scale terrestrial carbon cycling studies.  618 
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Figure captions: 908 

Figure 1. Location and spatial distribution of the AmeriFlux sites used in this study. The base 909 

map is the reclassified MODIS land-cover map that was used to for the continental-scale 910 

estimation of NEE.  911 

Figure 2. Examples of the splitting of NEE data into a training set (2000-2004) and a 912 

validation set (2005-2006): (a) Harvard Forest EMS Tower (MA); (b) FNAL Agricultural Site 913 

(IL); (c) Fort Peck (MT). 914 

Figure 3. Scatterplot of observed 8-day NEE versus predicted 8-day NEE. The solid line is the 915 

1:1 line.  916 

Figure 4. Scatterplot of predicted 8-day NEE versus residuals (observed - predicted) over the 917 

period 2005-2006.  918 

Figure 5. The average error and relative error across all AmeriFlux sites for each 8-day period.  919 

Figure 6. Observed (red line) and predicted (green line) 8-day NEE (g C m
-2

 day
-1

) for each 920 

AmeriFlux site over the period 2005-2006.  921 

Figure 7. Scatterplot of observed mean NEE versus predicted mean NEE across the AmeriFlux 922 

sites. The abbreviations of these sites are given in Table 1. 923 

Figure 8. Scatterplot of observed mean NEE versus predicted mean NEE across vegetation 924 

types: EF - evergreen forests; DF - deciduous forests; MF - mixed forests; Sh - shrublands; Sa - 925 

savannas; Gr - grasslands; Cr – Croplands. 926 

Figure 9. Predicted NEE for four 8-day periods in 2005: (a) March 14 - 21; (b) July 12 - 19; 927 

(c) September 14 - 21; (d) December 11 - 18. Positive values indicate carbon release, whereas 928 

negative values indicate carbon sequestration. 929 
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Figure 10. Predicted NEE for each season in 2005: (a) spring (March-May); (b) summer 930 

(June-August); (c) fall (September-November); (d) winter (December-February). Positive 931 

values indicate carbon release, whereas negative values indicate carbon sequestration. 932 

Figure 11. Estimated 8-day NEE for each vegetation type in 2005. (a) Mean 8-day NEE (g C 933 

m
-2

 day
-1

); (b) Total 8-day NEP (Tg C day
-1

).  934 

Figure 12. The area of each vegetation type across the conterminous U. S.  935 
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Table 1. Site descriptions including name, latitude, longitude, vegetation structure, years of data available, and references for each flux 

site in this study. 

Site State Lat Lon Vegetation structure Vegetation type Year References 

Audubon Research Ranch 

(ARR) 

AZ 31.59 -110.51 Desert grasslands Grasslands 2002-2006  

Santa Rita Mesquite (SRM) AZ 31.82 -110.87 Mesquite-dominated savanna Savannas 2004-2006 Watts et al., 

2007 

Walnut Gulch Kendall 

Grasslands (WGK) 

AZ 31.74 -109.94 Warm season C4 grassland Grasslands 2004-2006  

Sky Oaks Old Stand (SOO) CA 33.37 -116.62 Chaparral (Mediterranean-type ecosystems) Shrublands 2004-2006 Lipson et al., 

2005 

Sky Oaks Young stand 

(SOY) 

CA  33.38 -116.62 Chaparral (Mediterranean-type ecosystems) Shrublands 2001-2006 Lipson et al., 

2005 

Tonzi Ranch (TR) CA 38.43 -120.97 Oak savanna, grazed grassland dominated by blue 

oak and grasses 

Savannas 2001-2006 Ma et al., 2007 

Vaira Ranch (VR) CA 38.41 -120.95 Grazed C3 grassland opening in a region of 

oak/grass savanna 

Grasslands 2001-2006 Xu et al., 2004 

Niwot Ridge Forest (NRF) CO 40.03 -105.55 Subalpine coniferous forest dominated by subalpine, 

Engelmann spruce, and lodgepole pine 

Evergreen forests 2000-2003 Monsoon et al., 

2002 

Kennedy Space Center -

Scrub Oak (KSC) 

FL 28.61 -80.67 Scrub-oak palmetto dominated by schlerophyllous 

evergeen oaks and the Saw Palmetto Serenoa repens 

Shrublands 2000-2006 Dore et al., 

2003 

Austin Cary - Slash Pine 

(AC) 

FL 29.74 -82.22 Slashpine dominated by Pinus palustris/Pinus ellottii Evergreen forests 2001-2005 Powell et al., 

2005 

Bondville (Bon) IL 40.01 -88.29 Annual rotation between corn (C4) and soybeans 

(C3) 

Croplands 2001-2006  

FNAL agricultural site 

(FAg) 

IL 41.86 -88.22 Soybean/corn Croplands 2005-2006  

FNAL Prairie site (FPr) IL 41.84 -88.24 Tall grass prairie Grasslands 2004-2006  

Morgan Monroe State 

Forest (MMS) 

IN 39.32 -86.41 Mixed hardwood deciduous forest dominated by 

sugar maple, tulip poplar, sassafras, white oak, and 

black oak 

Deciduous forests  2000-2005 Schmid et al., 

2000 

Harvard Forest EMS Tower 

(HFE) 

MA 42.54 -72.17 Temperate deciduous forest dominated by red oak, 

red maple, black birch, white pine, and hemlock 

Deciduous forests 2000-2004 Urbanski et al. 

2007 

Harvard Forest Hemlock 

Site (HFH) 

MA 42.54 -72.18 Temperate coniferous forest dominated by hemlock Evergreen forests 2004  

Little Prospect Hill (LPH) MA 42.54 -72.18 Temperate deciduous forest dominated by red oak, Deciduous forests 2002-2005  
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red maple, black birch, white pine, and hemlock 

Howland forest (HF) ME 45.20 -68.74 Boreal--northern hardwood transitional forest 

consisting of hemlock-spruce-fir, aspen-birch, and 

hemlock-hardwood mixtures 

Evergreen forests 2000-2004 Hollinger et al., 

1999, 2004 

Howland forest (west tower) 

(HFW) 

ME 45.21 -68.75 Deciduous needle forest, Boreal/northern hardwood 

ecoton, old coniferous 

Deciduous forests 2000-2004 Hollinger et al., 

1999, 2004 

Sylvania Wilderness Area 

(SWA) 

MI 46.24 -89.35 Old-growth eastern hemlock/sugar 

maple/basswood/yellow birch 

Mixed forests 2002-2006  

Univ. of Mich. Biological 

Station (UMB) 

MI 45.56 -84.71 Mid-aged conifer and deciduous, northern 

hardwood, pine understay,aspen, mostly deciduous, 

old growth hemlock 

Mixed forests 2000-2003 Gough et al., 

2007 

Missouri Ozark (MO) MO 38.74 -92.20 Oak hickory forest Deciduous forests 2004-2006 Gu et al. 2006, 

2007 

Goodwin Creek (GC) MS 34.25 -89.97 Temperate grassland Grasslands 2002-2006  

Fort Peck (FPe) MT 48.31 -105.10 Grassland Grasslands 2000-2006  

Duke Forest loblolly pine 

(DFP) 

NC 35.98 -79.09 Even-aged loblolly pine forest Evergreen forests  2001-2005 Oren et al. 

1998, 2006 

Duke Forest hardwoods 

(DFH) 

NC 35.97 -79.10 An uneven-aged closed-canopy stand in an oak-

hickory type forest composed of mixed hardwood 

species with pine (P. taeda) as a minor component 

Deciduous forests 2003-2005 Pataki and 

Oren, 2003 

North Carolina loblolly pine 

(NCP) 

NC 35.80 -76.67 Loblolly pine plantation Evergreen forests 2005-2006  

Mead -irrigated continuous 

maize site (MIC) 

NE 41.17 -96.48 Continuous maize Croplands 2001-2005 Verma et al. 

2005 

Mead  irrigated rotation 

(MIR) 

NE 41.16 -96.47 Maize-soybean rotation Croplands 2001-2005 Verma et al. 

2005 

Mead  rainfed (MR) NE 41.18 -96.44 Maize-soybean rotation Croplands 2001-2005 Verma et al. 

2005 

Bartlett Experimental Forest 

(BEF) 

NH 44.06 -71.29 Temperate northern hardwood forest dominated by 

American beech, red maple, paper birch, and 

hemlock 

Deciduous forests 2004-2005  

Toledo Oak Openings 

(TOP) 

OH 41.55 -83.84 Oak Savannah dominated by quercus rebrua, 

quercus alba, and acer rubrum 

Savannas 2004-2005  

ARM Oklahoma (ARM) OK 36.61 -97.49 Winter wheat, some pasture and summer crops Croplands 2003-2006  

Metolius intermediate aged 

ponderosa pine (MI) 

OR 44.45 -121.56 Temperate coniferous forest dominated by pinus 

ponderosa, purshia tridentate, arctostaphylos patula 

Evergreen forests  2003-2005 Law et al. 

2003; Irvine et 

al. 2007 

Metolius new young pine 

(MN) 

OR 44.32 -121.61 Temperate coniferous forest dominated by pinus 

ponderosa and purshia tridentata 

Evergreen forests  2004-2005 Law et al. 

2003; Irvine et 
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al. 2007 

Brookings (Bro) SD 44.35 -96.84 Temperate grassland Grasslands 2004-2006  

Freeman Ranch Mesquite 

Juniper (FRM) 

TX 29.95 -98.00 Grassland in transition to an Ashe juniper-

dominated woodland 

Savannas 2004-2006  

Wind River Crane Site 

(WRC) 

WA 45.82 -121.95 Temperate coniferous forest dominated by douglas-

fir and western hemlock 

Evergreen forests 2000-2004  

Lost Creek (LC) WI 46.08 -89.98 Alder-willow deciduous wetland Deciduous forests 2000-2005  

Willow Creek (WC) WI 45.81 -90.08 Temperate/Boreal forest dominated by white ash, 

sugar maple, basswood, green ask, and red oak 

Deciduous forests 2000-2006  

Wisconsin intermediate 

hardwood (WIH) 

WI 46.73 -91.23  Deciduous forests 2003  

Wisconsin mature red pine 

(MRP) 

WI 46.74 -91.17  Evergreen forests 2002-2005  

 

Descriptions on vegetation structures are from the site information available at http://public.ornl.gov/ameriflux/ for all sites except 

Duke Forest - hardwoods.  The description on the vegetation for Duke Forest - hardwoods is from 

http://www.env.duke.edu/other/AMERIFLUX/hwsite.html.  
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Table 2. The seven broader vegetation types used in the study.  

 

Vegetation types IGBP class Definition [Belward and Loveland, 1996] 

Evergreen forests Evergreen needleleaf 

forests (1), evergreen 

broadleaf forests (2) 

Tree canopy cover > 60% and tree height > 2m. 

Most of the canopy remains green all year 

Deciduous forests Deciduous needleleaf 

forests (3), deciduous 

broadleaf forests (4) 

Tree canopy cover > 60% and tree height > 2m. 

Most of the canopy is deciduous 

Mixed forests Mixed forests (5) Tree canopy cover > 60% and tree height > 2m. 

Mixed evergreen and deciduous canopy 

Shrublands Closed shrublands (6), 

open shrublands (7) 

Shrub canopy cover > 10% (10-60% for open 

shrublands, >60% for closed shrublands) and 

height < 2m 

Savannas Woody savannas (8), 

savannas (9) 

Forest canopy cover between 10-60% (30-60% 

for woody savannas, 10-30% for savannas) and 

height > 2m 

Grasslands Grasslands (10) Herbaceous cover. Woody cover < 10% 

Croplands Croplands (12) Temporary crops followed by harvest and a 

bare soil period 
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Figure 1. Location and spatial distribution of the AmeriFlux sites used in this study. The base 

map is the reclassified MODIS land-cover map that was used to for the continental-scale 

estimation of NEE.  
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Figure 2. Examples of the splitting of NEE data into a training set (2000-2004) and a validation 

set (2005-2006): (a) Harvard Forest EMS Tower (MA); (b) FNAL Agricultural Site (IL); (c) 

Fort Peck (MT). 
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Figure 3. Scatterplot of observed 8-day NEE versus predicted 8-day NEE. The solid line is the 

1:1 line.  

 

 

                

 

 

 

 

 

 

 

 

 

 

 



 50 

                 
                    

 

Figure 4. Scatterplot of predicted 8-day NEE versus residuals (observed - predicted) over the 

period 2005-2006.  
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Figure 5. The average error and relative error across all AmeriFlux sites for each 8-day period.  
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Figure 6. Observed (red line) and predicted (green line) 8-day NEE (g C m

-2
 day

-1
) for each 

AmeriFlux site over the period 2005-2006.  
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Figure 7. Scatterplot of observed mean NEE versus predicted mean NEE across the AmeriFlux 

sites. The abbreviations of these sites are given in Table 1. 
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Figure 8. Scatterplot of observed mean NEE versus predicted mean NEE across vegetation 

types: EF - evergreen forests; DF - deciduous forests; MF - mixed forests; Sh - shrublands; Sa - 

savannas; Gr - grasslands; Cr – Croplands. 
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Figure 9. Predicted NEE for four 8-day periods in 2005: (a) March 14 - 21; (b) July 12 - 19; (c) 

September 14 - 21; (d) December 11 - 18. Positive values indicate carbon release, whereas 

negative values indicate carbon sequestration. 
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Figure 10. Predicted NEE for each season in 2005: (a) spring (March-May); (b) summer (June-

August); (c) fall (September-November); (d) winter (December-February). Positive values 

indicate carbon release, whereas negative values indicate carbon sequestration. 
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Figure 11. Estimated mean and total 8-day NEE for each vegetation type in the conterminous 

U.S. in 2005. (a) Mean 8-day NEE (g C m
-2

 day
-1

); (b) Total 8-day NEE (Tg C day
-1

).  
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Figure 12. The area of each vegetation type across the conterminous U. S.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


