0GR,

LA-UR-09-***

Approved for public release;
distribution is unlimited.

Title: | Illustrating the Practice of Statistics

Author(s): | Christina A. Hamada
Michael S. Hamada

Intended for: | Submission to The American Statistician

- Los Alamos

Los Alamos National Laboratory, an alfirmative aclion/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Securily Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee ils technical correciness.

Form B36 (7/06)

Illustrating the Practice of Statistics

C. A. Hamada
School of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3Gl

M. S. Hamada
Statistical Sciences Group
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

09.27.09 1230

Abstract

Key Words: Bayesian, experimental design, frequentist, interval-censored data, modeling, optimization,
regression, simulation.

1. Introduction

The practice of statistics involves analyzing data and planning data collection schemes to answer
scientific questions. Issues often arise with the data that must be dealt with and can lead to new
procedures. [n analyzing data, these issues can sometimes be addressed through the statistical models
that are developed. Simulation can also be helpful in evaluating a new procedure. Moreover, simulation
coupled with optimization can be used to plan a data collection scheme.

The practice of statistics as just described is much more than just using a statistical package. In
analyzing the data, it involves understanding the scientific problem and incorporating the scientist’s
knowledge. In modeling the data, it involves understanding how the data were collected and accounting
for limitations of the data where possible. Moreover, the modeling is likely to be iterative by considering
a series of models and evaluating the fit of these models. Designing a data collection scheme involves
understanding the scientist’s goal and staying within his/her budget in terms of time and the available
resources. Consequently, a practicing statistician is faced with such tasks and requires skills and tools to

do them quickly.

We have written this article for students to provide a glimpse of the practice of statistics. To
illustrate the practice of statistics, we consider a problem motivated by some precipitation data that our
relative, Masaru Hamada, collected some years ago. We describe his rain gauge observational study in
Section 2. We describe modeling and an initial analysis of the precipitation data in Section 3. In Section
4, we consider alternative analyses that address potential issues with the precipitation data. In Section 5,
we consider the impact of incorporating additional information. We design a data collection scheme to
illustrate the use of simulation and optimization in Section 6. We conclude this article in Section 7 with

a discussion.

2. The Rain Gauge Observational Data

In the metropolitan Washington, D.C. area, there is a network of volunteers that collects
precipitation data year round. From the spring to the fall, the precipitation is collected in a plastic rain
gauge. In the winter, a plastic rain gauge cannot be used because it will freeze and crack. As a way to
record snowfall, the volunteers were instructed to collect the snow in a standard 2.5 metal can, let the
snow melt indoors, pour the melted snow in the can into a plastic rain gauge, record the measurement,
and estimate the snowfall by multiplying the can measurement by 0.44. Our relative thought that the
0.44 factor for estimating snowfall was too small and that 0.45 might be a better factor. So over two
summers when it rained, he recorded the precipitation collected in the rain gauge and in a standard 2.5
metal can; both were mounted next to each other at the same height. The amount in the can was
measured by first dumping the rain gauge and pouring the rain in the can into the rain gauge. Our
relative collected the data the next morning after it rained at around 7 A.M. The data are displayed in
Table 1, where the columns labeled x are the precipitation (in inches) collected in the standard 2.5 metal
can and the columns labeled y are the precipitation (in inches) collected in the rain gauge. In summary,

our relative collected these data to assess whether the 0.44 factor was too small.

Table 1: Rain Gauge Observational Data (precipitation in can (x) and in rain gauge (y) in inches)

| x 'y "Interval x | Intervaly |x % Interval x | Interval y |
o 005 0.1050.115 0.0450.055 041 025 040 0.42 024 026 |
108 0.50 1,05 1.10 0.49 0.51 145 0.70 1425 1475 0.69 0.71

116 0.54 | 115 120 053 055 0.22 0.12 021 023 0.1150.125
(275 131 27252775 130 135 ¥y 1,00 220 225 0.99 1.025
o2 0.07 0.1150.125 0.065 0.075 0.70 0.38 0.69 0.71 037 0.39
060 028 0.59 0.61 027 029 273 1.63 270 2.75 1.60 1.65

1.55 0.73 1.525 1.575 072 0.74 0.02 0.02 0.0150.025 0.0150.025
1.00 . 0.46 0.99 1.025 0.45 0.47 0.18 0.09 0.175 0.185 0.085 0.095
0.6] 0.35 0.60 0.62 0.34 0.36 0.27 0.14 0.26 0.28 0.1350.145
318 1.40 3.15 3.20 1.375 1.425 1.25 0.62 1.225 1.275 0.61 0.63
2.16 0.91 2.15 2.20 0.90 0.92 0.46 0.23 0.45 047 0.22 0.24
1.82 0.86 1.80 1.85 0.85 0.87 0.31 0.17 0.30 0.32 0.1650.175
475 2.05 4.7254.775 2.0252.075 0.75 0.33 0.74 0.76 0.32 0.34
1.05 0.58 1.025 1.075 0.57 0.59 255 1.17 2.5252.575 1.15 1.20
0.92 041 0.91 093 0.40 0.42 1.00 043 0.99 1.025 0.42 0.44
0.86 0.40 0.85 0.87 0.39 041 3.98 1.77 3.95 4.00 1.75 1.80
0.24 0.14 0.23 0.25 0.135 0.145 1.26 0.58 1.25 1.30 (.57 0.59
0.01 0.03 0.0050.015 0.025 0.035 5.40 2.34 53755425 230 2.35
0.51 0.25 0.50 0.52 0.24 0.26 1.02 0.50 1.00 1.05 0.49 0.51
2.15 0.96 2.1252.175 0.95 0.97 3.75 1.62 3.7253.775 1.60 1.65
0.53 0.32 0.52 0.54 0.31 033 3.70 1.70 3.675 3.725 1.675 1.725
5.20 225 5.175 5.225 22252275 0.30 0.14 0.29 0.31 0.1350.145
0.00 0.06 0.00 0.01 0.055 0.065 0.07 0.06 0.065 0.075 0.055 0.065
117 0.60 115 1.20 0.59 0.61 0.58 0.31 0.57 0.59 0.30 0.32

I 6.67 3.10 6.65 6.70 3.075 3.125 0.72 0.35 0.71 0.73 0.34 036

| 0.04 0.04 0.0350.045 0.035 0.045 0.63 0.29 0.62 0.64 0.28 0.30
222 1.00 220 2.25 0.99 1.025 1.55 0.73 1.525 1.575 0.72 0.74

| 0.05 0.05 0.045 0.055 0.045 0.055 2.47 1.23 245 2.50 1.20 1.25

l 0.15 0.09 | 0.1450.155 0.085 0.095

3. Modeling and an Initial Analysis

We begin considering a model for the rain gauge observational data by plotting the data in Figure
1. We note that the point (2.73, 1.63) is apparently different from the other 56 data points and discard it
in subsequent analyses. Too much has passed since the data were collected to find out more why this
point appears to be quite different from the rest; we assume that something like a gross recording error

occurred.

Figure 1: Plot of Precipitation in Can (x) and Rain Gauge (y)

o o]
< -
v |
£ [e]
o]
o | o
(']
(o]
- © o %
'\"——| 00
=)
& = OQ
&
S @ﬁ
o
o &
< I [L | | | |
0 1 2 3 4 5 6

Regarding the form of the model, the question about the factor applied to the can measurement to
obtain the equivalent rain gauge measurement suggests a linear model. Figure 1 also suggests a linear

model with the form y = 8, x+ £.. At first thought, a model without an intercept makes sense because if
it does not rain, then there should be no water in the can or the rain gauge; that is, g, is the factor our

relative has a question about. A residual plot (not shown here) shows too many positive residuals, so that

next we consider the model with an intercept,
y=Po+Bx+e, Q)

where error€ ~ N(0,52) . See the results from fitting this model in R (R Core Development Team, 2004)
using frequentist inference in Table 2, which indeed show that both the intercept and slope are
significant and that the estimate for g, is close to 0.44. It is interesting that without the intercept the
estimate for g, is 0.4511, which would have suggested changing the factor.

As an aside, we wondered why there was a non-zero intercept. Recall that the data were collected
over the summer and the measurements were taken the next morning. Consequently, one explanation is

evaporation and likely there is more in the metal can than the plastic rain gauge. Another reason might

be that there is some loss in pouring the rain in the can into the rain gauge because beads of water tend

to remain on the metal can.

Table 2: Results from Fitting (1) to the Rain Gauge Observational Data

Parameter Estimate Std. Err. t p value
B, 0.0344 0.0076 4.5 <10”
B, 0.4398 0.0037 120.5 <1077

Before drawing such conclusions, we should check how well the model fits by looking at the

residual plot in Figure 2. The plot suggests that the spread of the residuals increases as the can

measurements increase. More importantly, we wonder if we fit such a model, would the results suggest a

different factor than 0.44.

Figure 2: Residual Plot from Fitting (1) to the Rain Gauge Observational Data

o
o
[=1
-]
o
[Tel
o 00 o
_ o
®
Sy o © L]
2
] o ° s
@ o
o o o o
=
i R
=1 gq) o
o
QR 000 =]
o
oo, °
e o
o o
7]
= o
=
o
T I I
0 1 2

Because we often need to address such issues quickly, we may not even have the time to figure
out what is in the literature nor to obtain specialized software to address them. We are aware of models
with non-constant error variance so we write a standard one down as

loglo(x)]= oo+ o x - (2)
To avoid having to develop methodology to fit (1) with & ~ N(0,g%(x)) and g*(x) given in (2), we
take a Bayesian approach using WinBUGS (Spiegelharter et al. (2004)), where we only need to specify a
model and rely on Bayes’ Theorem (De Groot, 1970) to do the inference. WinBUGS employs the
advanced Bayesian computing as described in Gelman et al. (2004). See the WinBUGS code, which
used diffuse prior distributions for the model parameters, in Appendix A that produced the results in
Table 3. The scaled residual plot (i.e., the residuals scaled by their standard deviations using the
posterior medians of the parameters in (1) and (2)) in Figure 3 appears to be better. Also a normal plot of
the scaled residuals (not shown here) is much straighter than the residuals for (1) alone. From Table 3,

see that a 95% credible interval for g, is (0.4341, 0.4563) which rules out neither 0.44 nor 0.45.

Figure 3: Scaled Residual Plot from Fitting (1) and (2) to the Rain Gauge Observational Data

Scaled Residual
L=}

Table 3: Results from Fitting (1) and (2) to the Rain Gauge Observational Data Using WinBUGS (0.025,

0.50, and 0.975 posterior quantiles)

Parameter 0.025 0.50 0.975

o 4,091 13,806 13,520
on 0.1629 0.3015 0.4771
B, 0.01983 0.03041 0.04165

B, 0.4341 0.4444 0.4563

By now, the reader has likely figured out that the factor is the ratio of the area of the top of the
rain gauge and the area of the top of the can. The rain gauge’s dimensions are 64mm by 59 mm and the
can has a radius 52 mm. Consequently, the factor is 3776/8494.867 = 0.4445. We see that the median of
B, is surprisingly close to the truth.

4. Addressing Additional Data Issues

Assessing the quality of the measurements is always a good thing to do in any analysis. For the
rain gauge observational study, we noticed that the gradations on the rain gauge are larger for larger
amounts of rain: 0.01 inches for 0 to 0.20 inches, 0.02 inches for 0.20 to 1.00 inches, and 0.05 inches for
amounts larger than 1.00 inch. Our relative had recorded his best estimate of the amount of rain in the
can and rain gauge as displayed in the x and y columns of Table 1. Based on the size of the gradations,
we can be sure that the actual amounts in the can and rain gauge are in intervals as shown in the columns
labeled “Interval x™ and “Interval y” in Table 1.

In the practice of statistics, we may wonder if the results from analyzing the interval data will
differ substantially from what we have already obtained, but we need to balance our concern that they
may differ substantially against the deadline when the analysis is needed. Often as in this case, we can
handle the measurement limitations by modeling. That is, we treat the interval y data as interval-
censored data and the interval x data as having a uniform distribution. The WinBUGS code in Appendix
A is easily modified as displayed in Appendix B and the results are shown in Table 4. Note that the

Table 4 results are nearly the same as those in Table 3. Consequently, we would likely present the

simpler analysis of the x and y data in the analysis report, but note that the measurement uncertainty had

been addressed and not found to have an impact on the results.

Table 4: Results from Fitting (1) and (2) to the Interval Censored Rain Gauge Observational Data Using
WinBUGS (0.025, 0.50, and 0.975 posterior quantiles)

' Parameter 0.025 10.50 0.975
o 4127 3.836 3520

o 0.1622 0.3043 0.4761
B, 0.01922 70.02980 0.04111
B, 0.4341 0.4445 0.4562

5. Evaluating the Impact of Additional Information

We wondered if knowing some additional information about the factor would reduce the
uncertainty of estimating the factor. For example, suppose that we know the area of rain gauge is 3776
mm?, the area of the can is proportional to the squared radius (2704 mm?), and the factor is the ratio of
the two areas. In other words, we need to estimate n. Consequently, we adapted the WinBUGS code in
Appendix A by replacing B, by 3776/(nx2704) and using a diffuse prior on 7 (i.e., N(3,100)). The
results for the factor by evaluating the posterior of 3776/(nx2704) was virtually the same as for g, in
Table 3. Interestingly, the 95% credible interval for n obtained from this analysis was (3.058, 3.216),
with a posterior median of 3.14. We also considered the two other variations where we know 7 but we
do not know the area of the rain gauge or where we do not know the radius of the can; both gave
virtually the same posterior for 8,. Apparently, no real information was added in any of these scenarios;

only the form of the problem was changed.

6. Designing a Data Collection Scheme
While the practicing statistician often analyzes data that have already been collected,
opportunities arise when the statistician is asked to help develop a data collection scheme or design.

Suppose that our relative did not want to wait to collect additional years of rain data, but instead wanted

to conduct an experiment to find out whether a factor of 0.45 was warranted in converting the can to rain
gauge measurement. Such an experiment might use a uniform delivery system such as a sprinkler with a
rotating head. By positioning the can and rain gauge together at the same height and running the
sprinkler for different lengths of time, measurements from the can and rain gauge could be taken. Next,
we consider the planning of such an experiment.

First, we consider a criterion for the design. Suppose that we want a design that with high

probability, say 0.90, will produce a 95% confidence interval for §,in (1) does not contain 0.45. But we

also want to minimize the time that it will take to perform the experiment. Suppose that we do not have
much time to produce a design so that we will assume only (1) holds, i.e., with constant error variance.

We will also assume that 8,= 0, B,=0.4445,and ¢ =0.01. We might have picked g,= 0.445, halfway
between 0.44 and 0.45 but decided to use the true value since this is only an illustration. The & =0.01

value we might obtain by doing some preliminary runs for a given amount of time. In setting up the
experiment, we would also need to choose a sprinkler and confirm that it is providing uniform delivery
of water, an experiment in itself.

Next, we consider a class of data collection schemes. We will restrict our search to two point
designs whose minimum amount is 0.2 inches and maximum amount is 1.5 inches; that is, we believe
the linear model (1) holds. We also consider designs with a maximum of 200 samples per point. So how
do we find a design within this class that minimizes time while meeting the criterion that with 0.90

probability the design will produce a 95% confidence interval for g, that does not contain 0.45? Note

that we will estimate the probability by generating 1000 data sets and use the observed proportion.

We know from the experimental design literature that the D-optimal design spreads the two
points as far apart with equal sample sizes. Consequently, we evaluate this design and find that the
criterion has an observed proportion of 1.000 but it requires nearly 378 hours to run; assuming that the
sprinkler delivers 0.90 inches per hour in the can, then the amounts of 0.2 and 1.5 inches correspond to
about 13 and 100 minutes. Note that the evaluation is simple to develop in R by repeatedly generating

data, fitting (1), and computing a 95% confidence interval for g,. We used the R function evalSolution()
presented in Appendix C.

How do we find a design that takes less time? We doubt that there is either literature or software
for our problem because of the specialized criterion and the time minimization aspect. Since we can

evaluate a design, it is pretty easy to write code in R for a genetic algorithm (GA) that is presented in

Appendix C. A genetic algorithm is a stochastic optimization method based on evolutionary principles
(Goldberg (1989), Michalewicz (1992)) and has been used for design; Hamada et al. (2001) is one such
example. Please see these references for further details. For the design problem we are considering, we
used a population of 50 designs and ran the GA for 25 generations in which 100 new designs through
crossover and mutation are generated from the previous designs and evaluated each generation. The best
50 designs among these 100 new designs and the 50 previous designs become the new generation of 50
designs. The GA found the following design: 89 samples at 0.22 inches and 47 samples at 1.31 inches
with an observed probability of meeting the criterion of 0.92 and a time of nearly 90 hours.
Consequently, we have found a design requiring less than a quarter of time that the D-optimal design
requires!

If we had more time, we might see how the two point design performs under (1) and (2). But
since we fit (1) and (2) using WinBUGS, an evaluation of this design is more involved. It may be
possible to use the R interface for WinBUGS, but we have sometimes experienced WinBUGS crashing
on a particular data set for admittedly more complicated models. However, we have found YADAS
(Graves, 2003) to be robust in evaluating many data sets, although its use requires a steep learning
curve. And if we had even more time, we might use a GA whose evalSolution() calls YADAS through a
system command to analyze generated data sets in evaluating a design; that is, evaluating a single design

may it self be time consuming, let alone 100°s or 1000’s of designs.

7. Discussion

This article has introduced students to the practice of statistics, which involves analyzing data
and designing data collection schemes. The analysis of data involves developing models whose form
provides a way to answer the scientists’s questions. The models should be faithful to the data in the way
they are collected and account for their limitations. For example, preliminary modeling of the rain gauge
observational data suggested an increasing error variance with the amount in the can. Moreover, the rain
gauge measures less precisely for larger amounts. In this case, both of these features could be handled in
the modeling. We also saw that additional information for the rain gauge observational data did not
improve the inference. However, often in practice improved inferences result from scientific information
provided by the scientist; see Annis (2005) that used engineering knowledge to improve a helicopter

design (Box, 1992) and required fewer resources to do it. In considering the design of a data collection

10

scheme, we saw that a candidate design could be evaluated through simulation and that we could find a
better design by optimization coupled with simulation.

This article has shown that the practicing statistician cannot rely on canned packages alone. The
practicing statistician needs to have a toolkit to explore different analyses and to design data collection
schemes. A package like R is useful because we can combine analyses with its graphical capabilities to
assess how well models fits. The package WinBUGS frees the practicing statistician to concentrate on
developing models that are faithful to the data and not have to worry about developing specialized
inference methodology. In designing data collection schemes, the practicing statistician can use R’s
programming capabilities by evaluating schemes through simulation and by finding better schemes
through implementing an optimization algorithm such as a genetic algorithm.

With these things in mind, students can prepare for the practice of statistics by learning to
develop models that address a scientist’s questions and that are faithful to the data and their limitations.
Students can also be learning packages that have modeling and programming capabilities so that they
can analyze data with models that they develop, assess their fit through graphics, assess data collection
schemes through simulation, and design data collection schemes through optimization. Students can
make small attempts even in analyzing data sets assigned for homework or take on small projects that

require more effort but have the potential for learning even more about the practice of statistics.

References

D. Annis, D. (2005). “Rethinking the paper helicopter: combining statistical and engineering
knowledge,” The American Statistician, 59, 320-326.

Box, G.E.P. (1992). “Teaching engineers experimental design with a paper helicopter,” Quality
Engineering, 4, 453-459.

DeGroot, M.H. (1970). Optimal Statistical Decisions. New York: McGraw-Hill.

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (2004). Bayesian Data Analysis, Second Edition
Boca Raton: Chapman & Hall/CRC.

-

Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning,
Reading: Addison-Wesley.

Graves, T.L. (2003). “An Introduction to YADAS”. (yadas.lanl.gov).
Hamada, M., Martz, H.F., Reese, C.S., and Wilson, A.G. (2001). “Finding Near-Optimal Bayesian

Experimental Designs Via Genetic Algorithms,” The American Statistician, 55, 175-181.

11

Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs,
New York: Springer-Verlag.

R Development Core Team (2004). R: A Language and Environment for Statistical Computing. Vienna:

R Foundation for Statistical Computing. http://www.R-project.org.

Spiegelhalter, D., Thomas, A., Best, N., and Lunn, D. (2004). WinBUGS Version 1.4 User Manual.

Appendix A: WinBUGS Code for Fitting Model (1) and (2)

error std dev increases in x

model
{
for(iin1:N) {
y[i] ~ dnorm(muli],tau[i]) # tau is precision or 1/var
mu|i] <- beta0 + betal * x[i]
tau[i] <-1/varf[i]
var[i]<-sigmali]*sigmali|
sigmali]<-exp(alphaO+alphal *x[i])
}

priors

beta0 ~ dnorm(0.0,1.0E-6)
betal ~ dnorm(0.0,1.0E-6)
alpha0 ~ dnorm(0.0,1.0E-6)
alphal ~ dnorm(0.0,1.0E-6)

Appendix B: WinBUGS Code for Fitting Model (1) and (2) with Interval Censored Data

#y[i], x[i] - interval censored data

model
{
for(iin1 :N) {
y[i] ~ dnorm(mu(i],tau[i])I(yI[i],yh[i])
x[i] ~ dunif(xI[i],xh[i])
mu[i]<-beta0+betal *x[i]+0*xx[i]+0*yy[i] #xx[] and yy[] are unused variables
in the data set that are zeroed out

tau[i] <-1/var[i]
var[i]<-sigmali]*sigma]i]
sigmali]<-exp(alphaO+alphal *x[i])

12

beta0 ~ dnorm(0.0,1.0)
betal ~ dnorm(0.0,1.0)
alpha0 ~ dnorm(0.0,1.0E-1)
alphal ~ dnorm(0.0,1.0)

Appendix C: R Code for Designing a Data Collection Scheme

2 pt data collection plan

-- minimize time

-- require probability of betal 0.975 upper confidence bound < 0.45|betal = 0.4445
>=0.90

function getRandomSolution
getRandomSolution <- function(maxn,minx,maxx)
{

X <- rep(0,4) # x[1:2] are amounts, x[3:4] are sample sizes
X[3] <- sample(maxn,1)

X[4] <- sample(maxn,1)

a<-runif(2)

x[1] <- minx+a[l]*(maxx-minx)

X[2] <- minx+a[2]*(maxx-minx)

X[1:2] <- sort(x[1:2]) # order amounts

X #return

}
end getRandomSolution

function getCrossoverSolution

getCrossoverSolution <- function(popsize,curpop,cureval)
{

#pick parents

invo <- 1/order(cureval)

pind <- sample(seq(1:popsize),2,prob=invo)

new <- curpop[pind[1],]

for(iin 1:4)

{#for

if(rbinom(1,1,.5)==1)

{#if

new(i] <- curpop[pind[2],i]

y#if

}for

new[1:2] <- sort(new[1:2]) # order amounts
new #return

}

end getCrossoverSolution

13

function getMutationSolution
getMutationSolution <- function(cursol,mr,ms,ig,minx,maxx,maxn)
[

1

prMut <- exp(-ms*ig)

new <- cursol

fact <- ms*exp(-mr¥*ig)

for(i in 3:4)

{#for
if(rbinom(1,1,prMut)==1)

{#if2

z <- (cursol[i]-1)/(maxn-1)
if{lz==1) z=.999

if(z==0) z=.001

d <- log(z/(1-z))+rmorm(1)*fact
u <- exp(d)/(1+exp(d))

new([i] <- 1+floor(maxn*u)
V#ifl

Hifor

mutate x1, x2
if(rbinom(1,1,prMut)==1)

{#if
z <- (cursol[1]-minx)/(maxx-minx)
if(z==1) z=.999

if(z==0) z=.001

d <- log(z/(1-z))+rnorm(1)*fact

u <- exp(d)/(1+exp(d))

new|1] <- minx+u*(maxx-minx)
Yif

if(rbinom(1,1,prMut)==1)

{#if

z <- (cursol[2]-minx)/(maxx-minx)
if(z==1) z=.999

if(z==0) z=.001

d <- log(z/(1-z))+rnorm(1)*fact

u <- exp(d)/(1+exp(d))

new[2] <- minx+u*(maxx-minx)
Hif

new[1:2] <- sort(new[1:2]) # order amounts
new # return

}

end getMutationSolution

function evalSolution
evalSolution <- function(sol,nsim)

{

build data collection plan

14

x <- c(rep(sol[1],s0l[3]),rep(sol[2],s01[4]))
n <- length(x)

factr <- sqrt(sum((x-mean(x))"*2))
pr<-0

for(i in 1:nsim){

#generate data

y <- 0 + 0.4445%x+.01*rnorm(n)

fit model

fit <- Im(y~x)

betalhat <- fit$coef[2]

calculate confidence interval
sigmahat <- sqrt(sum((fit$res)"2)/(n-2))
get 95% confidence interval

box <- qt(.975,n-2)*sigmahat/factr
high <- betalhat+box

if(high < .45) pr<-pr+l

}

pr <- pr/nsim

get time assume 0.15 inches per 10 min
time <- (sum(x)/(.15*6))

penalize if pr <.9

{

if(pr <.9) crit <- 999999+time
else

crit <- time

c(crit,pr) # return

}

end evalSolution

data collection plan and evaluation parameters
nsim <- 1000 # number data sets per evaluation
maxx <- 1.5 # max amount

minx <- .2 # min amount

maxn <- 200 # max sample size per amount

GA parameters
maxgen <- 25 # max number of generations
popsize <- 50 # population size
mrate <- .01 # used in mutation, relaxation
msigma <- 1 # used in mutation, relaxation
numvar<-4 # solution is dimension 4, 2 amounts, 2 sample sizes
pop <- matrix(rep(0,popsize*3*numvar),ncol=numvar)
solutions, top popsize solutions at end of generation is next population
eval <- matrix(rep(0,popsize*3*2),ncol=2) # eval - evaluate criterion
bSol <- matrix(rep(0,maxgen*numvar),ncol=numvar) # best solution per generation

15

bEval <- matrix(rep(0,maxgen*2),ncol=2) # criterion of best solution per generation

START GA

#get initial population - randomly
for(i in 1:popsize){

popl[i,] <- getRandomSolution(maxn,minx,maxx)
h

#evaluate initial population

for(i in 1:popsize){

eval[i,] <- evalSolution(popl[i,].nsim)
}

#order 1:popsize

o <- order(eval[l:popsize])
pop[1:popsize,] <- poplo,]
eval[l:popsize,] <- eval[o,]

pop0 <- pop(1.]

eval0 <- eval[l,]

run GA for maxgen generations
for(igen in 1:maxgen)
{#igen

#apply crossover

offset <- popsize

for(i in 1:popsize){

poploffset+i,] <- getCrossoverSolution (popsize,pop[1:popsize,],eval[1:popsize])
}

#evaluate crossover population

for(i in 1:popsize){

eval[itoffset,] <- evalSolution(pop[i+offset,],nsim)

}

#apply mutation

offset <- 2*popsize

for(i in 1:popsize){

pop[offset+i,| <- getMutationSolution(pop[i,],mrate,msigma,igen,minx,maxx,maxn)
}

#evaluate mutation population

for(i in 1:popsize){

eval[i+offset,] <- evalSolution(pop[i+offset,],nsim)

1

s
#order 3*popsize solutions
o <- order(eval[,1])

pop <- pop[o,]

16

eval <- eval[o,]

#save best

bSol[igen,] <- pop[1,]
bEval[igen,] <- eval[l,]
}#igen

c(eval0,pop0) # print criterion and best solution for generation 0
cbind(bEval,bSol) # print criterion and best solution for remaining generations

17

