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1. Introduction 

The practice of statistics involves analyzing data and planning data collection schemes to answer 

scientific questions. Issues often arise with the data that must be dealt with and can lead to new 

procedures. In analyzing data, these issues can sometimes be addressed through the statistical models 

that are developed. Simulation can also be helpful in evaluating a new procedure. Moreover, simulation 

coupled with optimization can be used to plan a data collection scheme. 

The practice of statistics as just described is much more than just using a statistical package. In 

analyzing the data, it involves understanding the scientific problem and incorporating the scientist's 

knowledge. In modeling the data, it involves understanding how the data were collected and accounting 

for limitations of the data where possible. Moreover, the modeling is likely to be iterative by considering 

a series of models and evaluating the fit of these models. Designing a data collection scheme involves 

understanding the scientist's goal and staying within hislher budget in terms of time and the available 

resources. Consequently, a practicing statistician is faced with such tasks and requires skills and tools to 

do them quickly. 
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We have written this article for students to provide a glimpse of the practice of statistics. To 

illustrate the practice of statistics, we consider a problem motivated by some precipitation data that our 

relative, Masaru Hamada, collected some years ago. We describe his rain gauge observational study in 

Section 2. We describe modeling and an initial analysis of the precipitation data in Section 3. In Section 

4, we consider alternative analyses that address potential issues with the precipitation data. In Section 5, 

we consider the impact of incorporating additional infonnation. We design a data collection scheme to 

illustrate the use of simulation and optimization in Section 6. We conclude this article in Section 7 with 

a discussion. 

2. The Rain Gauge Observational Data 

In the metropolitan Washington, D.C. area, there is a network of volunteers that collects 

precipitation data year round. From the spring to the fall, the precipitation is collected in a plastic rain 

gauge. In the winter, a plastic rain gauge cannot be used because it will freeze and crack. As a way to 

record snowfall, the volunteers were instructed to collect the snow in a standard 2.5 metal can, let the 

snow melt indoors, pour the melted snow in the can into a plastic rain gauge, record the measurement, 

and estimate the snowfall by multiplying the can measurement by 0.44. Our relative thought that the 

0.44 factor for estimating snowfall was too small and that 0.45 might be a better factor. So over two 

summers when it rained, he recorded the precipitation collected in the rain gauge and in a standard 2.5 

metal can; both were mounted next to each other at the same height. The amount in the can was 

measured by first dumping the rain gauge and pouring the rain in the can into the rain gauge. Our 

relative collected the data the next morning after it rained at around 7 A.M. The data are displayed in 

Table I, where the columns labeled x are the precipitation (in inches) collected in the standard 2.5 metal 

can and the columns labeled yare the precipitation (in inches) collected in the rain gauge. In summary, 

our relative collected these data to assess whether the 0.44 factor was too small. 

Table 1: Rain Gauge Observational Data (precipitation in can (x) and in rain gauge (y) in inches) 

x y Interval x Intervaly x y Interval x Intervaly 

0. 11 0.05 0.1050. 115 0.0450.055 OAI 0.25 OAO OA2 0.24 0.26 

1.08 0.50 1.05 LI 0 OA9 0.51 IA5 0.70 IA25 IA75 0.69 0.71 

1.16 0.54 Ll5 1.20 0.53 0.55 0.22 0.12 0.21 0.23 0.1.150.125 

2.75 1.31 2.7252.775 1.30 1.35 2.22 1.00 2.20 2.25 0.99 1.025 

0.12 0.07 0.1150.125 0.0650.075 0.70 0.38 0.69 0.71 0.37 0.39 

0.60 0.28 0.59 0.61 0.27 0.29 2.73 1.63 2.70 2.75 1.60 1.65 
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1.55 0.73 1.525 1.575 0.72 0.74 0.02 0.02 0.0150.025 0.0150.025 

1.00 0.46 0.99 1.025 0.45 0.47 0.18 0.09 0.1750.185 0.0850.095 

0.61 0.35 0.60 0.62 0.34 0.36 0.27 0.14 0.26 0.28 0.1350.145 

3.18 1.40 3.15 3.20 1.375 1.425 1.25 0.62 1.225 1.275 0.61 0.63 

2.16 0.91 2.15 2.20 0.90 0.92 0.46 0.23 0.45 0.47 0.22 0.24 

1.82 0.86 1.80 1.85 0.85 0.87 0.31 0.17 0.30 0.32 0.1650.175 

4.75 2.05 4.7254 .775 2.0252 .075 0.75 0.33 0.74 0.76 0.32 0.34 

1.05 0.58 1.025 1.075 0.57 0.59 2.55 1.17 2.5252.575 l.l5 1.20 

0.92 0.41 0.91 0.93 0.40 0.42 1.00 0.43 0.99 1.025 0.42 0.44 

0.86 0.40 0.85 0.87 0.39 0.41 3.98 1.77 3.95 4.00 1.75 1.80 

0.24 0.14 0.23 0.25 0.1350.145 1.26 0.58 1.25 1.30 0.57 0.59 

0.01 0.D3 0.0050.015 0.0250.035 5.40 2.34 5.3755.425 2.30 2.35 

0.51 0.25 0.50 0.52 0.24 0.26 1.02 0.50 1.00 1.05 0.49 0.51 

2.15 0.96 2.1252.175 0.95 0.97 3.75 1.62 3.7253.775 1.60 1.65 

0.53 0.32 0.52 0.54 0.31 0.33 3.70 1.70 3.675 3.725 1.675 1.725 

5.20 2.25 5.1755.225 2.225 2.275 0.30 0.14 0.29 0.31 0.1350.145 

0.00 0.06 0.00 0.01 0.0550.065 0.D7 0.06 0.0650.075 0.0550.065 

1.17 0 .60 1.15 1.20 0.59 0.61 0.58 0.31 0.57 0.59 0.30 0.32 

6.67 3.10 6.65 6.70 3.0753.125 0.72 0.35 0.71 0.73 0.34 0.36 

0.04 0.04 0.0350.045 0.0350.045 0.63 0.29 0.62 0.64 0.28 0.30 

2.22 1.00 2.20 2.25 0.99 1.025 1.55 0.73 1.525 1.575 0.72 0.74 

0.05 0.05 0.0450.055 0.0450.055 2.47 1.23 2.45 2.50 1.20 1.25 

0. 15 0.09 0.1450.155 0.0850.095 

3. Modeling and an Initial Analysis 

We begin considering a model for the rain gauge observational data by plotting the data in Figure 

1. We note that the point (2.73, 1.63) is apparently different from the other 56 data points and discard it 

in subsequent analyses. Too much has passed since the data were collected to find out more why this 

point appears to be quite different from the rest; we assume that something like a gross recording error 

occurred. 
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Figure 1: Plot of Precipitation in Can (x) and Rain Gauge (y) 
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Regarding the form of the model, the question about the factor applied to the can measurement to 

obtain the equivalent rain gauge measurement suggests a linear model. Figure 1 also suggests a linear 

model with the form y = /31 X + E . At first thought, a model without an intercept makes sense because if 

it does not rain, then there should be no water in the can or the rain gauge; that is, f31 is the factor our 

relative has a question about. A residual plot (not shown here) shows too many positive residuals, so that 

next we consider the model with an intercept, 

(1) 

where errorE - N(0,(j2). See the results from fitting this model in R (R Core Development Team, 2004) 

using frequentist inference in Table 2, which indeed show that both the intercept and slope are 

significant and that the estimate for f31 is close to 0.44. It is interesting that without the intercept the 

estimate for f31 is 0.4511, which would have suggested changing the factor. 

As an aside, we wondered why there was a non-zero intercept. Recall that the data were collected 

over the summer and the measurements were taken the next morning. Consequently, one explanation is 

evaporation and likely there is more in the metal can than the plastic rain gauge. Another reason might 
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be that there is some loss in pouring the rain in the can into the rain gauge because beads of water tend 

to remain on the metal can. 

Table 2: Results from Fitting (1) to the Rain Gauge Observational Data 

Parameter Estimate Std. Err. t p value 

Po 0.0344 0.0076 4.5 < 10-U4 

PI 0.4398 0.0037 120.5 < 10-15 

Before drawing such conclusions, we should check how well the model fits by looking at the 

residual plot in Figure 2. The plot suggests that the spread of the residuals increases as the can 

measurements increase. More importantly, we wonder if we fit such a model, would the results suggest a 

different factor than 0.44. 

Figure 2: Residual Plot from Fitting (1) to the Rain Gauge Observational Data 
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Because we often need to address such issues quickly, we may not even have the time to figure 

out what is in the literature nor to obtain specialized software to address them. We are aware of models 

with non-constant en-or variance so we write a standard one down as 

log[a(x)] = ao + ao x . (2) 

To avoid having to develop methodology to fit (1) with e ~ N(0,a2(x)) and a 2 (x) given in (2), we 

take a Bayesian approach using WinBUGS (Spiegelharter et al. (2004)), where we only need to specify a 

model and rely on Bayes' Theorem (De Groot, 1970) to do the inference. WinBUGS employs the 

advanced Bayesian computing as described in Gelman et al. (2004). See the WinBUGS code, which 

used diffuse prior distributions for the model parameters, in Appendix A that produced the results in 

Table 3. The scaled residual plot (i.e., the residuals scaled by their standard deviations using the 

posterior medians of the parameters in (1) and (2)) in Figure 3 appears to be better. Also a normal plot of 

the scaled residuals (not shown here) is much straighter than the residuals for (1) alone. From Table 3, 

see that a 95% credible interval for PI is (0.4341,0.4563) which rules out neither 0.44 nor 0.45. 

Figure 3: Scaled Residual Plot from Fitting (1) and (2) to the Rain Gauge Observational Data 
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Table 3: Results from Fitting (1) and (2) to the Rain Gauge Observational Data Using WinBUGS (0.025, 

0.50, and 0.975 posterior quantiles) 

Parameter 0.025 0.50 0.975 

ao -4.091 -3.806 -3.520 

al 0.1629 0.3015 0.4771 

Po 0.01983 0.03041 0.04165 

fil 0.4341 0.4444 0.4563 

By now, the reader has likely figured out that the factor is the ratio of the area of the top of the 

rain gauge and the area of the top of the can. The rain gauge's dimensions are 64nun by 59 nun and the 

can has a radius 52 nun. Consequently, the factor is 3776/8494.867 = 0.4445. We see that the median of 

/3, is surprisingly close to the truth. 

4. Addressing Additional Data Issues 

Assessing the quality of the measurements is always a good thing to do in any analysis. For the 

rain gauge observational study, we noticed that the gradations on the rain gauge are larger for larger 

amounts ofrain: 0.01 inches for 0 to 0.20 inches, 0.02 inches for 0.20 to 1.00 inches, and 0.05 inches for 

amounts larger than 1.00 inch. Our relative had recorded his best estimate of the amount of rain in the 

can and rain gauge as displayed in the x and y columns of Table 1. Based on the size of the gradations, 

we can be sure that the actual amounts in the can and rain gauge are in intervals as shown in the columns 

labeled "Interval x" and "Interval y" in Table 1. 

In the practice of statistics, we may wonder if the results from analyzing the interval data will 

differ substantially from what we have already obtained, but we need to balance our concern that they 

may differ substantially against the deadline when the analysis is needed. Often as in this case, we can 

handle the measurement limitations by modeling. That is, we treat the interval y data as interval­

censored data and the interval x data as having a uniform distribution. The WinBUGS code in Appendix 

A is easily modified as displayed in Appendix B and the results are shown in Table 4. Note that the 

Table 4 results are nearly the same as those in Table 3. Consequently, we would likely present the 
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simpler analysis of the x and y data in the analysis report, but note that the measurement uncertainty had 

been addressed and not found to have an impact on the results. 

Table 4: Results from Fitting (1) and (2) to the Interval Censored Rain Gauge Observational Data Using 

WinBUGS (0.025, 0.50, and 0.975 posterior quantiles) 

Parameter 0.025 0.50 0.975 

ao -4.127 -3 .836 -3 .520 

at 0.1622 0.3043 0.4761 

f30 0.01922 0.02980 0.04111 

fi l 0.4341 0.4445 0.4562 

5. Evaluating the Impact of Additional Information 

We wondered if knowing some additional information about the factor would reduce the 

uncertainty of estimating the factor. For example, suppose that we know the area of rain gauge is 3776 

mm2
, the area of the can is proportional to the squared radius (2704 mm\ and the factor is the ratio of 

the two areas. In other words, we need to estimate 1'[. Consequently, we adapted the WinBUGS code in 

Appendix A by replacing /31 by 3776/( 1{x 2704) and using a diffuse prior on 1{ (i .e., N(3,100)). The 

results for the factor by evaluating the posterior of 3776/( 1{x2704) was viltually the same as for /31 in 

Table 3. Interestingly, the 95% credible interval for 1{ obtained from this analysis was (3.058, 3.216), 

with a posterior median of 3.14. We also considered the two other variations where we know 1{ but we 

do not know the area of the rain gauge or where we do not know the radius of the can; both gave 

virtually the same posterior for /31. Apparently, no real information was added in any of these scenarios; 

only the form of the problem was changed. 

6. Designing a Data Collection Scheme 

While the practicing statistician often analyzes data that have already been collected, 

0ppOltunities arise when the statistician is asked to help develop a data collection scheme or design. 

Suppose that our relative did not want to wait to collect additional years of rain data, but instead wanted 
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to conduct an experiment to find out whether a factor of 0.45 was warranted in converting the can to rain 

gauge measurement. Such an experiment might use a uniform delivery system such as a sprinkler with a 

rotating head. By positioning the can and rain gauge together at the same height and running the 

sprinkler for different lengths of time, measurements from the can and rain gauge could be taken. Next, 

we consider the planning of such an experiment. 

First, we consider a criterion for the design. Suppose that we want a design that with high 

probability, say 0.90, will produce a 95% confidence interval for f31 in (1) does not contain 0.45. But we 

also want to minimize the time that it will take to perform the experiment. Suppose that we do not have 

much time to produce a design so that we will assume only (1) holds, i.e., with constant error variance. 

We will also assume that f30 = 0, f31 = 0.4445, and (J = 0.01. We might have picked f31 = 0.445, halfway 

between 0.44 and 0.45 but decided to use the true value since this is only an illustration. The (J = 0.01 

value we might obtain by doing some preliminary runs for a given amount of time. In setting up the 

experiment, we would also need to choose a sprinkler and confirm that it is providing uniform delivery 

of water, an experiment in itself. 

Next, we consider a class of data collection schemes. We will restrict our search to two point 

designs whose minimum amount is 0.2 inches and maximum amount is 1.5 inches; that is, we believe 

the linear model (1) holds. We also consider designs with a maximum of200 samples per point. So how 

do we find a design within this class that minimizes time while meeting the criterion that with 0.90 

probability the design will produce a 95% confidence interval for f31 that does not contain 0.45? Note 

that we will estimate the probability by generating 1000 data sets and use the observed proportion. 

We know from the experimental design literature that the D-optimal design spreads the two 

points as far apart with equal sample sizes. Consequently, we evaluate this design and find that the 

criterion has an observed proportion of 1.000 but it requires nearly 378 hours to run; assuming that the 

sprinkler delivers 0.90 inches per hour in the can, then the amounts of 0.2 and 1.5 inches correspond to 

about 13 and 100 minutes. Note that the evaluation is simple to develop in R by repeatedly generating 

data, fitting (l), and computing a 95% confidence interval for f3 1. We used the R function evalSolutionO 

presented in Appendix c. 

How do we find a design that takes less time? We doubt that there is either literature or software 

for our problem because of the specialized criterion and the time minimization aspect. Since we can 

evaluate a design, it is pretty easy to write code in R for a genetic algorithm (GA) that is presented in 
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Appendix C. A genetic algorithm is a stochastic optimization method based on evolutionary principles 

(Goldberg (1989), Michalewicz (1992)) and has been used for design; Hamada et al. (2001) is one such 

example. Please see these references for further details. For the design problem we are considering, we 

used a population of 50 designs and ran the GA for 25 generations in which 100 new designs through 

crossover and mutation are generated from the previous designs and evaluated each generation. The best 

50 designs among these 100 new designs and the 50 previous designs become the new generation of 50 

designs. The GA found the following design: 89 samples at 0.22 inches and 47 samples at 1.31 inches 

with an observed probability of meeting the criterion of 0.92 and a time of nearly 90 hours. 

Consequently, we have found a design requiring less than a quarter of time that the D-optimal design 

requires! 

Ifwe had more time, we might see how the two point design performs under (1) and (2). But 

since we fit (1) and (2) using WinBUGS, an evaluation of this design is more involved. It may be 

possible to use the R interface for WinBUGS, but we have sometimes experienced WinBUGS crashing 

on a particular data set for admittedly more complicated models. However, we have found Y ADAS 

(Graves, 2003) to be robust in evaluating many data sets, although its use requires a steep learning 

curve. And if we had even more time, we might use a GA whose evalSolutionO calls YADAS through a 

system command to analyze generated data sets in evaluating a design; that is, evaluating a single design 

may it self be time consuming, let alone 100's or 1000's of designs. 

7. Discussion 

This article has introduced students to the practice of statistics, which involves analyzing data 

and designing data collection schemes. The analysis of data involves developing models whose form 

provides a way to answer the scientists's questions. The models should be faithful to the data in the way 

they are collected and account for their limitations. For example, preliminary modeling of the rain gauge 

observational data suggested an increasing error variance with the amount in the can. Moreover, the rain 

gauge measures less precisely for larger amounts. In this case, both of these features could be handled in 

the modeling. We also saw that additional information for the rain gauge observational data did not 

improve the inference. However, often in practice improved inferences result from scientific information 

provided by the scientist; see Annis (2005) that used engineering knowledge to improve a helicopter 

design (Box, 1992) and required fewer resources to do it. In considering the design of a data collection 
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scheme, we saw that a candidate design could be evaluated through simulation and that we could find a 

better design by optimization coupled with simulation. 

This article has shown that the practicing statistician cannot rely on canned packages alone. The 

practicing statistician needs to have a toolkit to explore different analyses and to design data collection 

schemes. A package like R is useful because we can combine analyses with its graphical capabilities to 

assess how well models fits. The package WinBUGS frees the practicing statistician to concentrate on 

developing models that are faithful to the data and not have to worry about developing specialized 

inference methodology. In designing data collection schemes, the practicing statistician can use R's 

programming capabilities by evaluating schemes through simulation and by finding better schemes 

through implementing an optimization algorithm such as a genetic algorithm. 

With these things in mind, students can prepare for the practice of statistics by learning to 

develop models that address a scientist's questions and that are faithful to the data and their limitations. 

Students can also be learning packages that have modeling and programming capabilities so that they 

can analyze data with models that they develop, assess their fit through graphics, assess data collection 

schemes through simulation, and design data collection schemes through optimization. Students can 

make small attempts even in analyzing data sets assigned for homework or take on small projects that 

require more effort but have the potential for learning even more about the practice of statistics. 
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Appendix A: WinBUGS Code for Fitting Model (1) and (2) 

# error std dey increases in x 

model 
{ 

} 

fore i in 1 : N ) { 

} 

y[i] - dnorm(mu[i],tau[i]) # tau is precision or IIvar 
mu[i] <- betaO + betal * x[i] 
tau[i] <-l/var[i] 
var[i]<-sigma[i] * sigma[i] 
sigma[i]<-exp(alphaO+alphal *x[i]) 

# priors 
betaO - dnorm(O.O, l.OE-6) 
betal - dnorm(0.0,1.OE-6) 
alphaO - dnorm(0.0,l.OE-6) 
alpha1 - dnorm(0.0,1.0E-6) 

Appendix B: WinBUGS Code for Fitting Model (1) and (2) with Interval Censored Data 

#y[i], x[i] - interval censored data 

model 
{ 

fore i in 1 : N ) { 

} 

y [i] - dnorm(mu[i],tau[i])I(yl[i],yh[i]) 
x[i] - dunif(xl[i],xh[i]) 
mu[i]<-betaO+betal *x[i]+O*xx[i]+O*yy[i] #xx[] and yy[] are unused variables 

# in the data set that are zeroed out 
tau[i] <-lIvar[i] 
var[i]<-sigma[i] *sigma[i] 
sigma[i]<-exp(alphaO+alpha1 *x[i]) 
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} 

betaO - dnorm(O.O,l.O) 
betal - dnorm(O.O,l.O) 
alphaO - dnorm(O.O, l.OE-I) 
alphal - dnorm(O.O,I.O) 

Appendix C: R Code for Designing a Data Collection Scheme 

# 2 pt data collection plan 
# -- minimize time 
# -- require probability of beta 1 0.975 upper confidence bound < 0.45lbetal = 0.4445 
# >= 0.90 

# function getRandomSolution 
getRandomSolution <- function(maxn,minx,maxx) 
{ 
x <- rep(0,4) # x[l :2] are amounts, x[3:4] are sample sizes 
x[3] <- sample(maxn,l) 
x[4] <- sample(maxn,l) 
a<-runif(2) 
x[l] <- minx+a[l]*(maxx-minx) 
x[2] <- minx+a[2]*(maxx-minx) 
x[l :2] <- sort(x[1:2]) # order amounts 
x #return 
} 
# end getRandomSolution 

# function getCrossoverSolution 
getCrossoverSolution <- function(popsize,curpop,cureval) 
{ 
#pick parents 
invo <- l/order( cureval) 
pind <- sample(seq(l :popsize),2,prob=invo) 
new <- curpop[pind[l],] 
for(i in 1:4) 
{#for 
if(rbinom( I, 1,.5)== I) 
{#if 
new[i] <- curpop[pind[2],i] 
}#if 
}#for 
newEl :2] <- sort(new[l :2]) # order amounts 
new #return 
} 
# end getCrossoverSolution 
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# function getMutationSolution 
getMutationSolution <- function( cursol,mr,ms,ig,minx,maxx,maxn) 
{ 
prMut <- exp(-ms*ig) 
new <- cursol 
fact <- ms*exp(-mr*ig) 
for(i in 3:4) 
{#for 
if(rbinom( 1,1 ,prMut)== I) 
{#if2 
z <- (cursol[i]-l )/(maxn-l) 
if(z==l) z=.999 
if(z==O) z=.OOI 
d <- log(z/(1-z) )+morm(1 )*fact 
u <- exp(d)/(1 +exp(d)) 
new[i] <- I +f1oor(maxn*u) 
}#ifl 
}#for 
# mutate xl, x2 
if(rbinom(l, I ,prMut)== I) 
{#if 
z <- (cursol[l]-minx)/(maxx-minx) 
if(z==l) z=.999 
if(z==O) z=.OOI 
d <- log(z/(1-z))+morm(1)*fact 
u <- exp( d)/( I +exp( d)) 
new[l] <- minx+u*(maxx-minx) 
}#if 
if(rbinom(l, I ,prMut)==l) 
{#if 
z <- (cursol[2]-minx)/(maxx-minx) 
if(z==l) z=.999 
if(z==O) z=.OO 1 
d <- log(z/(1-z))+morm(l )*fact 
u <- exp( d)/(1 +exp( d)) 
new[2] <- minx+u*(maxx-minx) 
}#if 
new[l :2] <- sort(new[l :2]) # order amounts 
new # return 
} 
# end getMutationSolution 

# function evalSolution 
evalSolution <- function(sol,nsim) 
{ 
# build data collection plan 
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X <- c(rep(sol[l ],sol[3 ]),rep(sol[2],sol[ 4])) 
n <- length( x) 
factr <- sqrt(swn«x-mean(x)Y'2)) 
pr <- 0 
for(i in 1 :nsim){ 
#generate data 
y <- 0 + 0.4445*x+.Ol *rnorm(n) 
# fit model 
fit <- Im(y~x) 
betalhat <- fit$coef[2] 
# calculate confidence interval 
sigmahat <- sqrt(swn«fit$resY'2)/(n-2)) 
# get 95% confidence interval 
box <- qt(.975,n-2)*sigmahatlfactr 
high <- beta1 hat+box 
if(high < .45) pr<-pr+ 1 
} 
pr <- pr/nsim 
# get time asswne 0.15 inches per 10 min 
time <- (sum(x)/(.15*6)) 
# penalize if pr < .9 
{ 
if(pr < .9) crit <- 999999+time 
else 
crit <- time 
} 
c( crit,pr) # return 
} 
# end evalSolution 

# data collection plan and evaluation parameters 
nsim <- 1000 # nwnber data sets per evaluation 
maxx <- 1.5 # max amount 
minx <- .2 # min amount 
maxn <- 200 # max sample size per amount 

# GA parameters 
maxgen <- 25 # max number of generations 
popsize <- 50 # population size 
rnrate <- .01 # used in mutation, relaxation 
msigma <- 1 # used in mutation, relaxation 
numvar<-4 # solution is dimension 4, 2 amounts, 2 sample sizes 
pop <- matrix(rep(0,popsize*3*nwnvar),ncol=numvar) 

# solutions, top popsize solutions at end of generation is next population 
eval <- matrix(rep(0,popsize*3*2),ncol=2) # eval - evaluate criterion 
bSol <- matrix(rep(O,maxgen*numvar),ncoi=numvar) # best solution per generation 
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bEval <- matrix(rep(O,maxgen*2),ncol=2) # criterion of best solution per generation 

# START GA 

#get initial population - randomly 
for(i in 1 :popsize){ 
pop[i,] <- getRandomSolution(maxn,minx,maxx) 
} 
#evaluate initial population 
for(i in 1 :popsize){ 
eval[i,] <- evaISolution(pop[i,],nsim) 
} 
#order 1 :popsize 
o <- order( eval[l:popsize]) 
pop[ I:popsize,] <- pop[ 0,] 
eval[1 :popsize,] <- eval[ 0,] 
po pO <- pop[l,] 
evalO <- eval[1,] 

# run GA for maxgen generations 
for(igen in 1 :maxgen) 
{#igen 

#apply crossover 
offset <- popsize 
for(i in 1 :popsize){ 
pop[ offset+i,] <- getCrossoverSolution (popsize,pop[l :popsize,],eval[l :popsize]) 
} 
#evaluate crossover population 
for(i in I: popsize){ 
eval[i+offset,] <- evalSolution(pop[i+offset,],nsim) 
} 

#apply mutation 
offset <- 2*popsize 
forO in 1 :popsize) { 
pop[offset+i,] <- getMutationSolution(pop[i,],mrate,msigma,igen,minx,maxx,maxn) 
} 
#evaluate mutation population 
for(i in l:popsize){ 
eval[i+offset,] <- evaISolution(pop[i+offset,],nsim) 
} 

#order 3*popsize solutions 
o <- order( eval [, I]) 
pop <- pop[ 0,] 
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eval <- eval[ 0,] 
#save best 
bSol[igen,] <- pop[l,] 
bEval[igen,] <- eval[ I,] 
}#igen 

c( evalO,popO) # print criterion and best solution for generation 0 
cbind(bEval,bSol) # print criterion and best solution for remaining generations 
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