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There exist certain systems which generate real-time data at high bandwidth, but do not necessarily 
require the long-term retention of that data in normal conditions. In some cases, the data may not 
actually be useful, and in others, there may be too much data to permanently retain in long-term storage 
whether it is useful or not. However, certain portions of the data may be identified as being vitally 
important from time to time, and must therefore be retained for further analysis or permanent storage 
without interrupting the ongoing collection of new data. 

We have developed a system, Mahanaxar, intended to address this problem. It provides quality of 
service guarantees for incoming real-time data streams and simultaneous access to already-recorded 
data on a best-effort basis utilizing any spare bandwidth. It has built in mechanisms for reliability and 
indexing, can scale upwards to meet increasing bandwidth requirements, and handles both small and 
large data elements equally well. We will show that a prototype version of this system provides better 
performance than a flat file (traditional filesystem) based version, particularly with regard to quality of 
service guarantees and hard real-time requirements. 
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Abstract 

There exist certain systems which generate real-time 
data at high bandwidth, but do not necessarily re­
quire the long-term retention of that data in normal 
conditions. In some cases , the data may not actually 
be useful, and in others , there may be too much data 
to permanently retain in long-term storage whether 
it is useful or not. However , certain portions of the 
data may be identified as being vitally important 
from time to time, and must therefore be retained 
for fur ther analysis or permanent storage without in­
terrupting the ongoing collection of new data. 

We have developed a system, Mahanaxar, intended 
to address this problem. It provides quality of ser­
vice guarantees for incoming real-time data streams 
and simultaneous access to a lready-recorded data on 
a best-effort basis utilizing any spare bandwidth . It 
has built in mechanisms for reliability and indexing, 
can scale upward to meet increasing bandwidth re­
quirements, and handles both small and large data 
elements equally well. Vlfe will show that a prototype 
version of this system provides better performance 
than a fl at file (traditional filesystem) based version, 
particularly with regard to quality of service guaran­
tees and hard real-time requirements. 

1 Introduction 

The ability to capture and store data in real time is 
a common requirement in many aspects of modern 
life, though perhaps not often thought about by the 

'This work was carried out under the auspices of the Na­
t ional Nuclear Security Administration of t he U.S. Depart­
ment of Energy at Los Alamos National Laboratory under 
Contract No.DE-AC52-06NA25396. This work received fund­
ing from Los Alamos National Laboratory LORD Project 
#20080729DR. 

1 

D:m. alxlw lo l:xpir<:- / 

Figure 1: Ring Buffer Diagram 

ordinary person. To record a television show for later 
viewing, some sort of device is nc'eded to record the 
signal in real time. To monitor a secure area, secu­
rity cameras and other sensors need to record their 
data in real time. Capt,llring scientific data from an 
experiment also requires the ability to record data in 
real time. 

However, there i$ a world of differellce between 
recording a single television show and recording the 
output of an 0xpC'rimcnt or observation in scientific 
fields. In television, a standard NTSC/ ATSC sig­
nal provides data at around 20 MB/s[l]' a rate eas­
ily reached by any consumer level hard drive avail­
able today. By contest, the Large Hadron Collider at 
CERN generates data on the order of 300 MB/s after 
filtering[6] and has a large machille rOOlll (and global 
network) behind it. What if an even higher date rate 
is required , and what if there isn't necessarily a high­
end storage backend available? 

A large subset of data capture, both in scientific 
and other applications, has the interesting property 
that most of the data is actually "worthless" in the 
long run. As a trivial example, consider a security 
camera positioned to watch over a door. The data 
generated by such a setup does not need to be kept 
over the long term: it shows nothing but a door with 
nothing happening. One needs only look at it long 
enough to determine that nobody has tried to break 



in, and then the data is worthless. The same principle 
applies to data on larger scales as well, particularly 
in data captured by sensors. If the results can be 
summarized by "nothing interesting," then there is 
no need to keep the full set of data. Only when you 
notice somebody breaking in through the door, or 
notice something "interesting" on your sensor, do you 
want to ac.tually preserve the data. 

This may be best described as a "write-once , read­
maybe," or perhaps a "write-once, read-rarely," stor­
age system. All the data needs to be captured in real 
time and stored temporarily, but chances are good 
that it won't actually be needed , and thus the data 
can safely "expire" after a period of time. This can 
be easiJy conceptualized as a rillg buffer (figure 1): if 
the data isn 't consumed in a set amount of time , it is 
automatically overwritten with new data. 

In order to address this problem, we created Ma­
hanaxar , which uses a rillg buffer arch itecture to tem­
porarily capture data. Our first priority is to pro­
vide quality of service guarantees for incoming data 
streams, but we have also considered system reliabil­
ity and scalability. We will present our design for this 
class of problem, and show that it has superior per­
formance to other methods for managing this type of 
data. 

2 Background 

This project was first conceived as a storage system 
for the Long Wavelength Array (LWA) project[8). 
The LWA is a distributed radio telescope currently 
under construction in southwestern New Mexico. The 
initial plan is for 53 separate stations scattered over 
kilometers of desert, with each station generating ap­
proximately 72.5 MB/s of data, for an overall data 
rate of slightly over 3.75 GB/s, generated continu­
ously and without letup over the lifetime of the sys­
tem. 

Radio astronomy generates a lot of data, most of 
which turns out to be random noise, and "useless." 
Even if all the data were useful , it would be very dif­
ficulty to retain all of it in a system which generates 
a petabyte of it in just over three days. It may not 
actually be apparent whether the data is "useful" or 
not until much la ter , so we must therefore retain the 
data for a set period of time and allow an outside ob­
server the opportunity to declare the data interesting 
if necessary. 

As we explored the concept, we realized that there 
were many other applications that generate lots of 
"useless" data, but require a portion of it from time 
to time. Thus we decided to develop a general ized so-
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lution that could address all such problems. Broadly 
speaking, we focused on two "canonical" real-world 
problems set at opposite ends of the spectrum, with 
other problems being derivatives and combina tions of 
those two. 

1. Fixed-size, non-indexed data: 

Fixed-size, non-indexed data is the sort gener­
ated by the LWA project , and by many types of 
sensor systems in general. It arr ives at an ab­
solutely fixed rate, never varying, and is only 
indexed on a single variable: time of genera­
tion. Oftentimes such data is generated at too 
high a rate to be captured on one storage device 
and must be broken into multiple streams. Such 
streams need to be correlated with each other in 
order to regain the full data picture. Any or­
der given to preserve data will be via timestamp 
only, calculated by an external observer monitor­
ing the data to determine if it is ever interesting. 

2. Variable-size, indexed data: 

Variable-size, indexed data describes any data 
source where events are recorded as they happen 
at variable rates. Such events may be indexed 
by time, but a lso by other variables in order for 
an external process to know exactly why some­
thing was recorded. Searching and preserving 
data may be based on timestamps alone, but will 
more likely be based on other indices. This prob­
lem is more difficult to address due to a non-fixed 
size and data rate in add ition to the difficulties 
of indexing. 

The concept of a rin g buffer to gather sensor data is 
not a new one: Antelope[2) and Data Turbine[14] are 
both designed along those lines, but can not deal with 
the data rates that we expect here. Neither service 
offers actual quality of service guarantees; only best­
effort dota recording. Other systems like th e Iletwork 
tmff'ic capturing "Time Machine" [10) deal with the 
problem by classifying and prioritizing data stream s 
and dropping what they can 't handle . Even then, 
there are still no real time guarantees in the system; 
only a promise that it will record data at best-effort 
capacity and make sure that higher priority streams 
get first dibs on storage. 

The COSS Storage System from Squid [4) utilizes 
a ring buffer based model, but also functions solel y 
on a best-effort basis in terms of bandwidth, and the 
mechanism for "preserving" data is simply to rewrite 
it again at the top of the buffer. Larger storage sys­
tems such as Lustre do not make quality of service 
guarantees from moment to moment[5), which could 



be problematic if running a system where data gener­
ation rate is very close to the maximum system band­
width. Larger systems also have no convenient mech­
anism to automatically expire old data as capacity 
runs low. 

Some Quality of Service work has been focused on 
providing guarantees of a certain service level from 
the storage system, as in RT-Mach[ll] and Ceph[15], 
but only to the ctegree of categorizing traffiC' for an 
appropriately fair level of service. Data streams can 
be guaranteed to get a certain portion of the system 
resources in both the short and long term , but the 
guarantee is of the nature "you will get X% of the 
time every Y time units ," rather than "you are guar­
anteed Z MB/s of bandwidth." 

The disk request scheduling system Fahradd [12] is 
capable of providing QoS guarantees within certain 
constraints. Fahradd takes the approach of reserv­
ing a certain portion of disk head time for request­
ing processes, and lets each process spend that disk 
head time however they wish. Unfortunately for the 
purposes of our problem, that guarantee isn 't quite 
strong enough: a percentage of disk head time does 
not necessarily translate into bandwidth capabilities , 
and we need to be able to guarantee a certain band­
width rather than a certain portion of disk time. 

Using a fl at file based approach on a standard file 
system has the benefit of simplicity and may work in 
limited circumstances , but fragmentation over time 
is an inevitable problem as we keep the file system 
at near full capacity, expiring and writing data con­
stantly. We also explored the possibility of using a 
database, but while databases are well suited to the 
problem of indexing and searching, they are less well 
suited to storing large chunks of data, and prelim­
inary testing quickly demonstrated that a database 
approach was not realistic. 

Because the nature of this problem involves near­
constant writes, we assume that any approach will 
have to remain based on conventional rotational disk 
drives for the foreseeable future. Solid state storage 
devices promise to become prominent in the near fu­
ture, but despite potential bandwidth improvements, 
it would not be wise to use a device with a limited 
number of write cycles. Write endurance for one of 
the latest Intel SSDs is only rated at 1-2 petabytes 
worth of writes[9], and while that trend will proba­
bly improve in the future, the mechanical endurance 
of rotational disk drives dealing with constant writes 
will probably remain far superior. 
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3 Example Use Cases 

As briefly mentioned in the last section , there are 
two primary use cases which stand at opposite ex­
tremes of the spectrum. Our first use case is based 
on the type of data that the L'0iA generates: contin­
uously streaming fixed size sellsor data. It arrives at 
an unchanging bandwidth , does not need to be in­
dexed , and is uniformly "large. " Our second use case 
is monitoring network traffic: each element is fairly 
smal l (perhaps on the order of a few thousand bytes 
or less) , but a ll of different sizes. Each data element 
may also have to be indexed on multiple variables 
other than time. 

3.1 Continuously Streaming Sensor 
Data 

Storing continuously streaming sensor data of the 
LWA sort is the less difficult task of the two. It arrives 
at the same rate forever, never varying. The layout 
of each chunk is known in advance, or perhaps it is 
just treated as a straight stream of bytes which can 
be broken up in whatever manner the storage system 
deems convenient. 

Interaction with this type of data is extremely lim­
ited - we take it and store it with a sequence number 
(t imestamp) and don't worry about it again until it 
comes time to overwrite it with new data. If an exter­
nal process decides that the data is worthwhile and 
should be preserved, the storage system only needs to 
be told that "timestamp X is interesting" and has no 
harder task than findin g that timestamp and marking 
it as not to be overwritten until further notice. 

It may take some time to determine whether the 
data is interesting (hence the ring buffer approach). 
For example, a radio telescope may be collecting in­
teresting data, but nobody knows that until ten min­
utes later when a stupendous event is suddenly regis­
tered, and astronomers need to know what happened 
leading up to that event. An external process needs 
only order the system to preserve data up to the limit 
of its buffering ability aud collect it later. 

This example is perhaps the most basic use case 
possible, but it covers a wide variety of sensor-based 
systems. 

3.2 Variable-Rate Indexed Network 
Traffic 

Storing vari able-rate indexect network t.raffiC' is a far 
more difficult task than storing fi xed-rate sensor data. 
There is a natural ebb and flow of network traffic 
that coincides with societal rhythms throughout the 



day, and spikes of traffic may arrive at entirely un­
predictable times. Both the aggregate bandwidth and 
the sizes of individual data elements are in a constant 
state of Aux. 

Furthermore, data elements must be indexed by 
more than a simple measure of time. Searching for 
data packets sent between time X and time Y is use­
ful, but not nearly as useful as the ability to search 
for data packets sent between time X and Y, between 
source A and source B, and with protocol type M. 
A system lacking the ability to index data on-the­
fly and search on those indices has severely reduced 
usefulness. This scenario is more difficult to handle, 
and it is a use case that no exist ing system currently 
handles well. 

4 Design 

We designed our system with three principle factors 
in mind: 

1. Quality of Service Guarantees: 

VYe must be able to guarantee quality of service 
for the incoming stream, up to a declared band­
width. If the incoming data stream requires X 
MBjs of write bandwidth, we need to make sure 
it gets X MBjs of write bandwidth no matter 
what. If it exceeds that amount, we'll do the 
best we can, but no assurances. All other ac­
tivity on the disk must have lower priority; the 
key factor is not to lose a single byte of incom­
ing data. Any other processes wanting to use the 
drive, as well as the task of getting the data back 
off again, must wait. 

2. Commodity Components: 

In the case of the LWA project, the physical lo­
cation for the system may literally be a shack in 
the desert. We can't assume a high-end network 
infrastructure or storage backend. On the other 
hand , we also want to be able to take advan­
tage of a dedicated machine room if we have it 
available. In a ll cases we want to take maximum 
advantage of the hardware we have, and never 
want to solve anything by "throwing more disks 
at it" until the problem goes away. 

3. Reliability: 

The data that we collect can never be regener­
ated. If there's a hardware failure (and there 
will be, often, if it's a shack in the desert), we 
need to be able to retrieve the data if necessary. 
On the other hand , any reliability mechanism we 
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Figure 2: Average read and write speeds on one par­
ticular disk 

use can't compromise the first factoL quality of 
service guarantees. 

4.1 Staying Close to the Hardware 

One of our first design decisions was that we needed 
to stay close to the hardware. In order to make real 
quality of service assurances , we need to know what 
the underlying hardware is capable of, and what it is 
actually doing at any particular moment. This is par­
ticularly important when it comes to disk drives, as 
performance can differ by several orders of magnitude 
depending on use patterns. By carefully mapping out 
hardware capabilities, we can tell if we need to avoid 
certain regions of the drive that can't guarantee the 
rate we need. 

As an example of why we need to pay close atten­
tion to the hardware, consider one of the hard drives 
we used in testing: A 1.5 terabyte drive provided a 
consistent minimum write bandwidth of 68 MBjs or 
oetter for the first quarter of the drive. By the last 
quarter of the drive, we co uld manage only a con­
sistent minimum write bandwidth of 52 MBjs. The 
overall performance curve is shown in figure 2, and 
the other disk drives we tested show similar patterns , 
with higher capacity drives having a sharper dropo!!" 
at the end. 

By staying close to the hardware , we are able to de­
termine what data rate we can "advertise," and per­
haps more importantly, what performance increases 
we can gain by ignoring certain regions of the drive. 
It, may be worthwhile to sacrifice extr::t eapacity for 
extra bandwidth in some circumstances. 

However, in order to take advantage of our knowl­
edge of hardware , we need to use the disk without any 
interface layers. \lYe envision turning our prototype 



system into a specialized file system in the future, but 
in our prototype system (the specific architecture de­
cisions for it are discussed in the next section) , we 
treat the disk as a raw device and eschew traditional 
file systems. 

4.2 Chunk-Based Layout 

The first step in taking advantage of our hardware 
knowledge is to significantly restrict the data layout. 
Modern file systems are generally good at data place­
ment, but over time, fragmentation is inevitable , par­
ticularly in a filesystem constantly at 99%+ capacit.y. 
Bamlwidth is very difficult to guarantee if a process 
puts related data on widely-separated portions of the 
disk , and this problem is only exacerbated by a sys­
tem that's constantly filling the disk to near capac­
ity, deleting portions to put in new data, and doing 
it again ad infinitulll. 

To address the problems of data layout , we took a 
cue from traditional 512-byte disk blocks, and declare 
that no data can be written in segments smaller than 
the chunk size. Chunk size can be customized based 
on what sort of data the system stores , but for most 
purposes, the bigger the chunk, the better. The time 
to write a 1 KB piece of data to the drive is most of­
ten dominated by seek time and rotational delay, but 
those factors are diminished into near-insignificance 
when writing a single 50 MB chunk. 

It is well known that data sequentiality has a very 
large impact on overall bandwidth[7], and we attempt 
to exploit this factor as much as possible. There 
are a few disadvantages to only dealing in very large 
chunks, but since the workload is intended to be a 
high-bandwidth stream of quickly-expiring data, the 
advantages vastly outweigh the disadvantages. 

4.3 Chunk Indexing and Consistency 

Standard file systems store their indexing information 
on the disk itself for two main reasons: first, holding 
the entire indexing structure in memory is at best 
inconvenient , and at worst impossible (depending on 
the amount of RAM). It also isn't necessary most of 
the time because large portions of the file system !flay 
not be accessed for large periods of time. Secondly, in 
the event of a system crash, it is far easier to recover 
file information from known portions of the disk that 
it is to traverse the entire disk and try to figure out 
the structure anew each time. 

VVe have a substantial advantage in this area be­
cause our chunk sizes are both large and placed in 
predetermined locations. We realized that the only 
information that our system really needs is a piece of 
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data describing the physical layout of the disk , which 
translates to little more than the chunksize and any 
skipped regions of the disk. This is somewhat akin 
to the "superblock" of a file system. With that infor­
mation, we can assemble an index to hold in mem­
ory and never actually commit it to disk, thus saving 
space and (far more importantly) bandwidth. 

Modern disks can usually be filled to capacity 
within a matter of hours. Because of that fact , any 
chunk indexing information that we maintain on disk 
will be entirely out of date within that time , and 
partially out of date within seconds. Maintaining a 
consistent index on disk would require very rapid up­
dates , which could be a major problem when we're 
trying to utilize every megabyte of throughput. If we 
delay writing an index to disk , much of the point is 
lost , because it goes out of date so quickly. 

Therefore we decided to keep the chunk index en­
tirely in main memory and never commit it to disk. 
We can do this for two reasons: firs t , with large 
chunks, reconstruction of the index only takes a few 
minutes upon startup. Secondly, this is a system 
which is never supposed to be shut down. If it ever 
does go offline (perhaps through a power failme), 
there had better be a backup plan available to ensure 
that data is not lost, and the time to re-index the 
old drive upon recovery is much less of a factor. The 
extra time is a small price to pay for improving our 
overall performance, particularly since in the event of 
a data crash, the drive would have to be scanned for 
consistency anyway. 

4.4 Reliability and Recovery 

Disks will fail from time to time, whether via a recov­
erable crash or via outright hardware failure. When 
that happens , we need to account for two things: 
making sure that ongoing data collection is not dis­
rupted , and maintaining t.he ability to recover lost 
data if the drive is entirely dead. 

This problem may be best. addressed by redundant 
drives in a small system, but the more interesting case 
is a large system: mirroring drives in a large instal­
lation is an unnecessary waste of money and energy 
when there are more elegant. solutions available. In 
this case, the easiest solution is an old familiar one: 
RAID. 

RAID systems offer fault-tolerant behavior and 
certa in performance advantages with the proper 
workload, but also have disadvantages when they op­
erate in a degraded mode after failure. Traditional 
storage systems might see drastically increased access 
times to read data as it gets reconstructed , though 
writing entirely Ilew data is often ullaffected. How-



ever, those disadvantages are mitigated for this type 
of data load, which we previously characterized as 
"write once, read rarely." 

If a disk fails, it may be that none of its data is 
interesting, and we never need to deal with the prob­
lem of data reconstruction. In this case, degraded 
RAID mode has no performance impact whatsoever. 
Even if we do need to recover some of the data, it 
is highly unlikely that we'll ever need to recover an 
entire disk 's worth , and in any case , we need only do 
it lazily upon demand rather than immediately upon 
failure. 

However, this technique only works well for re­
lated data streams which are deemed interesting (or 
not) as a single unit. If RAID is done over mul­
tiple data streams with no relation to each other, 
any preservations would have to be mirrored across 
streams to keep consistency for RAID. Collection of 
data would never be impaired, but the size of the 
ring buffer would be dramatically reduced in many 
circumstances as each stream had to save uninter­
esting sections to match interesting chunks in other 
streams. 

Reliability is not limited to RAID alone; any 
erasure-correcting code would work well. Reed­
Solomon codes (as an example) are not often used in 
high-performance storage because they have a high 
overhead for their encoding and decoding process. 
While the encoding process remains a factor here, it 
may be that decoding is never needed, even on drive 
failure, due to the reasons above. 

4.5 Indexing 

Indexing is one of the most difficult problems to deal 
with. It is reasonably simple to design a system that 
only needs to consider timestamps for each data ele­
ment, and work with those alone. It is conSiderably 
more difficult to design a system which must index on 
multiple variables and quickly search through them. 
Without the ability to quickly search indexed infor­
mation, data may incorrectly expire. 

With large elements and relatively few indices, it 
would be possible to keep everything in memory. 
Large chunks indexed only by timestamps could be 
contained in only a few hundred kilobytes of main 
memory, and searching would be extremely simple. 

However, there are many scenarios where the data. 
elements are tiny and there are multiple indices per 
element. Consider storing IP packets which are in­
dexed on source and destination addresses (4 bytes 
each), protocol (1 byte), and data length (4 bytes). 
Since we have to account for the worst case scenario, 
all packets may only be 20 bytes in size. Stored on 
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a 2 TB drive, the indexing information would take 
hundreds of gigabytes of main memory: clearly not 
feasible. While this is an unlikely scenario, it is likely 
that there would be too much indexing information 
to store in main memory at some point in the lifetime 
of the system. 

At least some portion of the index must be stored 
on disk , as there is no room for it elsewhere. Our solu­
tion is to attach an "index" segment to each chunk on 
disk which holds the relevant indices to that chunk. 
If nobody ever inquires about the data, the index 
segment expires along with the actual data. If some­
one does need to search, we can narrow it down as 
much as possible with whatever index we have in 
main memory (timestamps, at the least), and then 
work on searching the rest. 

In order to not reinvent the wheel, we have elected 
to place the secondary search problem in the hands 
of a mechanism well suited to the task: a database. 
When we need to search on a chunk of data, we read 
the index portion off of the disk (a much smaller task 
than getting the entire chunk off', fortunately) and 
pass it into a database to perform the search. After­
wards, the data is dropped from the database again, 
never having to be stored for more than the time it 
takes to search in main memory. This style of lazy 
search allows us to optimize data storage according 
to our own bandwidth lleeds, but hand off the search 
problem to other systems already well suited to the 
task. 

4.6 Scaling 

Our system may need to scale upwards. A lot. The 
LWA may only be 53 stations at the beginning, but 
what if it (or a similar project) requires 500 stations? 
There is also a large difference between monitoring 
a network switch in a small complex versus a major 
router connecting a large site to the outside world. 

Since our model is tied so closely to the hardware, 
we can scale the data capture portion easily. Each 
disk is bound to only a single data stream, and does 
not need to make any decisions on its own initiative -
some sort of outside process (which may be running 
on the same hardware) needs to be monitoring the 
data in real time with the ability to quickly decide 
what needs to be saved. From the disk point of view, 
the only connection that its data stream might have 
with any other is by being part of the same RAID 
group. 

From a control point of view, hundreds or thou­
sands of streams may be tied together, and a con­
troller process might want to preserve the data over 
a thousand different disk:;, at least long enough to do 
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Figure 3: Data chunk layout 

a more detailed search on it. As a communications 
problem more than anything else, we have not yet 
focused on this aspect, as existing communications 
methods like MPI are probably suitable. This is an 
area which we still need to fully explore. 

5 Prototype Architecture 

Our eventual goal is to create a specialized filesystem 
and interface layer, but for prototype and testing pur­
poses, we first created a system named Mahanaxar. 
It is a multithreaded process running in userspace and 
accessing the disk as a raw dev ice. Multiple processes 
can be run on the same machine, one per disk , but 
all access to a given disk m·ust be through its asso­
ciated process in order to manage bandwidth. Each 
process/disk is governed by a configuration file that 
specifies, among other things, what the chunk size 
is , what the element size range is, and how to index 
each element. State can be restored from scanning 
and re-indexing the disk upon startup. 

Each process is made up of several threads , with 
the most important two being the data processing 
thread which is responsible for indexing and arrang­
ing the data into chunks, and the I/O thread which 
puts chunks on disk, and retrieves them again upon 
request. Our I/ O model works upon a simple prior­
ity scheme: if there's a chunk of data ready to be put 
outo the disk, it gets first priority. A chunk is only 
read off t.he disk if nothing is ready to be written. 

This method produces a somewhat jagged access 
pattern for reads (nothing for a while and then a 
chunk delivered suddenly and all at once), it allows 
us to make the most use of bandwidth by keeping 
the disk head in place as long as possible. The read 
process will never be entirely starved , though it may 
have wait a while. 

As each element arrives in the storage system, it is 
indexed and placed into a chunk. If element sizes are 
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large, one element may be equal to one chunk, and 
if element sizes are small , hundreds of elements may 
go into a single chunk. The default indexing is based 
around chunks: a pair of timestamps (microsecond 
resol u tioll ) which list the time that the first element 
started to arrive, and the time when the last element 
was fully received. 

Figure 3 shows the chunk layout. Sentinel val­
lies are placed at either end of the chunk to man­
age consistency checking: they're written preceding 
and following the rest of the chunk, which allows us 
to determine which segments have been corrupted in 
the event of sudden failure. Metadata describes how 
many elements are in the chunk and where they are. 
This is also in the main memory index, but must be 
present on disk for recovery purposes . Indexing in­
formation follows, and then the act ual data segment 
which may be composed or one or more elements. 

The chunk size is configurable, but we have found 
that larger chunks (at least 50 MB) provide the best 
performance. In order to avoid wasted space, chunk 
size should be arranged so that it 's a close multiple of 
the typical element size (including separate indexing 
information). If elements are 25 megabytes each, a 
49 MB chunk size would be a poor choice. 

If main memory is of sufficient size, and elements 
sufficiently large, each element can be individually 
indexed by timestamp and possibly other "primary 
ids." The system will not allow extra primary IDs 
if the worst-case scenario (all elements are mini­
mum sized) means that a full index couldn'l; fit in 
main memory. If element sizes are particularly small, 
timestamp ranges are stored on a chunk basis rather 
than individual element basis. 

Our system does mean that space is wasted if only 
one small element in an entire chunk is supposed to 
be saved. As currently implemented, Mahanaxar only 
allows saving chunks in whole or not at all , meaning 
that there is potentially a large amount of wasted 
disk space in worst case scenarios. We do, however , 
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have plans to change this behavior in the future. 

6 Testing 

Our testing machine used an Intel Core 2 Quad pro­
cessor clocked at 2.83 GHz (model number Q9550), 
and had 8 GB of main memory. The operating sys­
tem was Debian 5.1. Because our system is I/O fo­
cused with reasonably light processing requirements, 
CPU power was never a major factor in our experi­
mentation. We ran tests using several different disks 
on the same machine and achieved similar results on 
ea{;h disk, adjusted for its individual bandwidth, We 
carefully profiled one particular disk to use for the 
experiments presented here so that all comparisons 
could be made between systems running on the exact 
same piece of hardware. 

The particular disk we used for generating the re­
sults we present here was a 'Western Digital Caviar 
Green of 1.5 TB advert ised capacity. However, we 
should note that while the drive is measured by pow­
ers of ten , we have elected to use the binary conven­
tion in measuring KB, MB , etc., from here onward. 

The raw write bandwidth of this particular disk av­
eraged from 50 MB/ s to 70 !VIB/s, and its read band­
width from 57 MB/s to 115 MB/s. Upon profiling the 
drive, we determined that read bandwidth decreased 
in a linear fashion from its peak at the beginning of 
the drive at 115 MB/s to a point about 80% through 
the drive where it rea{;hed about 70 MB/s, Band­
width dropped off sharply in the last 20% of the drive 
to a low of around 50 MB/s . Meanwhi le, the write 
bandwidth only dropped from 70 MB/s to 65 MB/ s 
in that same 80%, and followed the same sharp curve 
down in the last portion of the disk, A performance 
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graph is available in figure 2, in the background sec­
tion. 

Due to this behav ior , we elected to not use the 
"lower" portion of the drive and thus be able to offer 
a maximum write bandwidth of 60 MB/s, with 5-10 
MB/s comfortably left over for reading. This left us 
with a usable disk size of slightly over one (binary) 
terabyte. 

The disk write cache was disabled for our testing so 
that we could be (reasonably) sure that the data was 
act ually on disk when we thought it was there. In­
terestingly, this slightly improved overall write band­
width on the disks we tested on. 

Our primary comparison point was a general pur­
pose file system 11 tilizing fiat files. Because journal­
ing file systems can have an adverse effect on raw 
throughpu t, we elected to use the ext2 file system in 
order to get the best performance to compare against 
(preliminary testing indica ted that both ext3 and 
XFS did not perform as well as ext2 for this type 
of workload). Data was only sync'ed to disk after 
around a hundred megabytes were accumulated in 
each cycle so thai; the filesystem write cache could 
reorder to improve its own performance. 

Mahanaxar explicitly syncs to disk after every 
chunk write to ensure that data is where we think 
it is. Doing this wi th slllall elemetlts in a Rat file sys­
tem degrades performance masSively, so we relaxed 
that requirement with the standard filesystem, even 
though it means that it can't guarantee data is saved 
in as tight a timeframe as Mahanaxar. 

'0le also intended to compare against a pure 
database model , but quickly discovered that its per­
formance could not come close to matching our own 
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system or the flat file based system, The initial pop­
ulation of our MySQL database was of comparable 
speed to our own system and the standard filesys­
tem, but deleting elements took excessive time, slow­
ing performance down to less than a third of the other 
two, It is excellent for searching data, but not for 
quick deletion and insertion of new data over the size 
of an entire disk drive , 

Our primary testing procedure was to select vari­
ous element sizes and measure what read bandwidth 
was available with each approach when we declared 
a certain write bandwidth (usually 60 MB/s) , We 
ran tests over the entire space of the first 80% of the 
drive, and left the slowest portion partitioned into 
an off lirni ts area, We also created smaller parti tions 
within the space for certain tests in order to gather 
more finely-grained data, 

'vVe modified our test ing procedure a few times 
when it became apparent that the flat file / filesystem 
approach was starting to fall behind, For example, 
when dealing with variable element sizes, the filesys­
tem had to delete an appropriate number of files to 
create room , and create a new file of the appropriate 
elemellt size , Because the file system was so full (as 
intended), fragmentation developed quickly and the 
filesystem was soon unable to keep up with the de­
clared write bandwidth, In order to help it compen­
sate for that problem, we pulled back on the variable 
element sizes and overwrote files in place to maintain 
the data locality initia lly set up by the filesystem, 

7 Results 

Figure 4 shows the results of Mahanaxar versus a 
normal flat file systelll, One process is attempting 
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to write its data in real-time at a rate of 60 MB/ s, 
Another process is attempting to read from the disk 
at much lower rates (2-16 MB/s) , The bandwidth 
of the drive in that particular area has more than 
enough capacity to allow 60 MB/ s of writing and up 
to 12 MB / s worth of reading if the two processes are 
properly sharing access. 

The values presented in the graph are the average 
read and write bandwidths of Mahanaxar and the flat 
file system over an entire partition which is already 
populated with existing data at the start of the test, 
Mahanaxar maintains a constant write bandwidth of 
60 MB/s no matter how much bandwidth a writing 
process asks for. By contrast, the flat file approach 
starts falling behind the required 60 MB/s bandwidth 
with a process trying to read only 2 MB/s from the 
same disk, At 2 MB/ s, it has fallen about 2% behind 
the required write speed, By 10 MB/ s (which the 
disk can easily hand le if managed correctly), the flat 
file approach can only record 94% of the incoming 
data, while the write process still can 't even get its 
requested 10 MB/ s (it gets about 8.5 MB/s). 

The write (and read) bandwidth for the flat file ap­
proach drop off even more sharply at more bandwidth 
than what the disk can provide is requested, whereas 
Mahanaxar simply throttles the read requests in or­
der to maintain its full 60 MB/s write bandwidth, Be­
cause of this disparity, we introduced a similar mech­
anism for the filesystetn ill our other tests to ellsure 
that writing always had priority, 

Figure 5 shows the results of a full-disk test with a 
write bandwidth of 60 MB/s , With the new mecha­
nism to ensure that the fiJ esystem always had priority 
for writes, it was able to keep up with Mahanaxar. 



However , we purposefully designed this test to give 
the fiat filesystem ideal conditions by specifying a 60 
MB element size. By writing elements at no smaller 
than 60 MB, t he flat filesystem gai ned several advan­
tages of Mahanaxar in that it could do the equivalent 
of "large chunk" writes. Even so, the maximum read 
speed available in the regular fileyslem was less lhan 
Mahanaxar. 

Figure 6 shows what happens when the filesystem 
has been fully populated and is "looping around" 
again. It shows a detail view (focusing on a small 
region of the disk ) illustrating the difference in read 
bandwidth as elements start expiring and new ones 
were added. We should also note that we let the fi a t 
filesystem maintain an in-memory list of element or­
dering rather than looking up the oldest elements via 
metadata for every deletion - that latter approach 
leads to quickly-degrad ing performance. 

The write bandwidth for both systems remains at 
60 MB/ s, but the read bandwidth for the filesystem 
based approach drops down to 2-4 MB/s, compared 
to Mahana,'(ar's 10-12 MB/ s. The flat file system 
seems to stab ilize around that 2-4 MB / s range af­
ter the collection process has been going on for some 
t ime, though only because all elements are of fixed 
size for this test and can be overwritten in place. 
When the elements are variable size, the performance 
of the fiat file system slowly degrades over time. 

The x-axis may require a bit of explanation: in the 
case of Mahanaxar, the x-axis is a literal representa­
t ion of where the data is in the disk. It is measured 
from the start of the segment by 60 MB chunks. For 
the flat file system, the units are the same, but they 
do not necessarily correspond with physical location 
in the disk because the file system does not place ex­
act ly linearly. 

Figure 5 shows performance for 60 ~.,tlB element 
sizes, an area where the fiat file system performance 
can almost match Mahanaxar. Figure 7 reduces ele­
ment size to 1 MB each and shows part of what hap­
pens there. Mahanaxar retains a write bandwidth of 
60 MB/s (not shown on the graph in order to see de­
tail at the bottom) and maintains a read bandwidth 
of around 20 MB/s: precisely what it could manage 
with 60 MB elements. The reason it is able to do 
so is because it combines elements together into 60 
MB chunks and has virtually identical performance 
for getting the data on and off disk. 

However, the fl at file based system can no longer 
keep up once elements reach 1 MB. If not sync'ed , 
the filesystem can "pretend" to keep up (and even 
have superior performance) for quite a bit of time 
as it takes advantage of write caching, but it even­
tually collapses under its own weight. Synchronizing 
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after every element is unrealistic, however, so we only 
forced a sync every 100 elements (MB) to keep it hon­
est. 

We found that the maximum write performance 
that the fiat file approach could manage was about 
35 MB/ s. At 38 MB/ s and above , it would slowly fall 
behind over the course of time and eventually start 
losing data. At 35 Mb/ s it loses no data, and can 
read at about 1 MB/s. This compares very poorly to 
Mahanaxar 's smooth 60 MB/s write and 20 MB / s 
read. 

When we tested variable element size 011 the flat 
file system, performance decreased steadily over time 
without appearing to stabilize at any point, probably 
because fragmentation gets worse and worse as old 
elements of variable sizes are deleted to make room 
for new elements of different sizes . We also tested the 
performance of a database storage system, but initial 
performance was only a third that of Mahanaxar, and 
it collapsed very quickly as old elements expired and 
new elements arrived. 

8 Conclusion and Future Work 

The performance of lVlahanaxar shows that it has a 
clear edge over standard filesystems for the "write 
once, read rarely" work load. By staying very close 
to the physical hardware and aligning our workload 
appropriately, we are able to provide real guarantees 
on quality of service to meet a set of hard real-time 
deadlines. Vie are able to reach performance levels 
very close to the tested maximum of what a hard 
drive can handle, though this does necessitate gener­
at ing profiles on a per-drive basis to ensure we can 
Illeet deadlines. 

Even when standard filesyslems are adapted to pri­
oritize one data stream over all other disk activity, 
they cannot advertise as high a bandwidth as Ma­
hanaxar is capable of, even when element size is large. 
With smaller element sizes, other file systems have 
performance at less than half the level of Mahanaxar 
for this style of workload. 

Our future intentions are to turn this project into 
a full specialized filesystem and develop an API for 
interaction with it . We also need to address the pre­
viously mentioned problem of needing to preserve an 
entire chunk of data when only one element is worth 
saving, and develop the appropriate scaling mecha­
nism to allow this system to be controlled over thou­
sands of drives at once . We would also like to explore 
more complicated reliability schemes, moving beyond 
the RAID-like model we adapted for the prototype. 
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