
LA-UR- OQ- {;t;:; / 33
Approved for public release;
distribution is unlimited.

Q Alamos
NATIONAL LABORATORY
--- EST . 1943 ---

Title: Managing High-Bandwidth Real-Time Data Storage

Author(s): David Bigelow, HPC-5 & UC Santa Cruz
Scott Brandt, UC Santa Cruz
John Bent, HPC-5
HB Chen, HPC-5

Intended for: The USENIX 2010 FAST Conference
FAST - 8th USENIX Conference on File and Storage
Technologies (FAST '10)
February 23-26, 2010
San Jose, CA

Los Alamos National Laboratory, an aHirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration 01 the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

Managing High-Bandwidth Real-Time Data Storage

David Bigelow
UC Santa Cruz

Los Alamos National Lab
dbigelow@cs.ucsc.edu

Scott Brandt
UC Santa Cruz

scott@cs.ucsc.edu

Abstract

John Bent, HB Chen
Los Alamos National Lab

{johnbent, hbchen}@ lanl.gov

There exist certain systems which generate real-time data at high bandwidth, but do not necessarily
require the long-term retention of that data in normal conditions. In some cases, the data may not
actually be useful, and in others, there may be too much data to permanently retain in long-term storage
whether it is useful or not. However, certain portions of the data may be identified as being vitally
important from time to time, and must therefore be retained for further analysis or permanent storage
without interrupting the ongoing collection of new data.

We have developed a system, Mahanaxar, intended to address this problem. It provides quality of
service guarantees for incoming real-time data streams and simultaneous access to already-recorded
data on a best-effort basis utilizing any spare bandwidth. It has built in mechanisms for reliability and
indexing, can scale upwards to meet increasing bandwidth requirements, and handles both small and
large data elements equally well. We will show that a prototype version of this system provides better
performance than a flat file (traditional filesystem) based version, particularly with regard to quality of
service guarantees and hard real-time requirements.

Managing High-Bandwidth Real-Time Data Storage

David Bigelow
UC Santa Cruz

Los Alamos National Lab
dbigelow@cs.ucsc.edu

Scott Brandt
UC Santa Cruz

scott@cs.ucsc.edu

Abstract

John Bent, HB Chen
Los Alamos National Lab

{johnbent, hbchen}@lanl.gov

There exist certain systems which generate real-time data at high bandwidth, but do not necessarily
require the long-term retention of that data in normal conditions. In some cases, the data may not
actually be useful, and in others, there may be too much data to permanently retain in long-term storage
whether it is useful or not. However, certain portions of the data may be identified as being vitally
important from time to time, and must therefore be retained for further analysis or permanent storage
without interrupting the ongoing collection of new data.

We have developed a system, Mahanaxar, intended to address this problem. It provides quality of
service guarantees for incoming real-time data streams and simultaneous access to already-recorded
data on a best-effort basis utilizing any spare bandwidth. It has built in mechanisms for reliability and
indexing, can scale upwards to meet increasing bandwidth requirements, and handles both small and
large data elements equally well. We will show that a prototype version of this system provides better
performance than a flat file (traditional filesystem) based version, particularly with regard to quality of
service guarantees and hard real-time requirements.

l.vlanaging High-Bandwidth Real-Time Data Storage*

David Bigelowtt , Scott Brandtt , John Bent+ , HB Chen+
tUniversity of California, Santa Cruz

+Los Alamos National Laboratory, HPC-5
{dbigelow, scott}@cs .ucsc.edu, {johnbent, hbchen}@lanl.gov

Note: This is unpublished work currently under
submission. Please do not distribute it to others with­
out the permission of the authors.

Abstract

There exist certain systems which generate real-time
data at high bandwidth, but do not necessarily re­
quire the long-term retention of that data in normal
conditions. In some cases , the data may not actually
be useful, and in others , there may be too much data
to permanently retain in long-term storage whether
it is useful or not. However , certain portions of the
data may be identified as being vitally important
from time to time, and must therefore be retained
for fur ther analysis or permanent storage without in­
terrupting the ongoing collection of new data.

We have developed a system, Mahanaxar, intended
to address this problem. It provides quality of ser­
vice guarantees for incoming real-time data streams
and simultaneous access to a lready-recorded data on
a best-effort basis utilizing any spare bandwidth . It
has built in mechanisms for reliability and indexing,
can scale upward to meet increasing bandwidth re­
quirements, and handles both small and large data
elements equally well. Vlfe will show that a prototype
version of this system provides better performance
than a fl at file (traditional filesystem) based version,
particularly with regard to quality of service guaran­
tees and hard real-time requirements.

1 Introduction

The ability to capture and store data in real time is
a common requirement in many aspects of modern
life, though perhaps not often thought about by the

'This work was carried out under the auspices of the Na­
t ional Nuclear Security Administration of t he U.S. Depart­
ment of Energy at Los Alamos National Laboratory under
Contract No.DE-AC52-06NA25396. This work received fund­
ing from Los Alamos National Laboratory LORD Project
#20080729DR.

1

D:m. alxlw lo l:xpir<:- /

Figure 1: Ring Buffer Diagram

ordinary person. To record a television show for later
viewing, some sort of device is nc'eded to record the
signal in real time. To monitor a secure area, secu­
rity cameras and other sensors need to record their
data in real time. Capt,llring scientific data from an
experiment also requires the ability to record data in
real time.

However, there i$ a world of differellce between
recording a single television show and recording the
output of an 0xpC'rimcnt or observation in scientific
fields. In television, a standard NTSC/ ATSC sig­
nal provides data at around 20 MB/s[l]' a rate eas­
ily reached by any consumer level hard drive avail­
able today. By contest, the Large Hadron Collider at
CERN generates data on the order of 300 MB/s after
filtering[6] and has a large machille rOOlll (and global
network) behind it. What if an even higher date rate
is required , and what if there isn't necessarily a high­
end storage backend available?

A large subset of data capture, both in scientific
and other applications, has the interesting property
that most of the data is actually "worthless" in the
long run. As a trivial example, consider a security
camera positioned to watch over a door. The data
generated by such a setup does not need to be kept
over the long term: it shows nothing but a door with
nothing happening. One needs only look at it long
enough to determine that nobody has tried to break

in, and then the data is worthless. The same principle
applies to data on larger scales as well, particularly
in data captured by sensors. If the results can be
summarized by "nothing interesting," then there is
no need to keep the full set of data. Only when you
notice somebody breaking in through the door, or
notice something "interesting" on your sensor, do you
want to ac.tually preserve the data.

This may be best described as a "write-once , read­
maybe," or perhaps a "write-once, read-rarely," stor­
age system. All the data needs to be captured in real
time and stored temporarily, but chances are good
that it won't actually be needed , and thus the data
can safely "expire" after a period of time. This can
be easiJy conceptualized as a rillg buffer (figure 1): if
the data isn 't consumed in a set amount of time , it is
automatically overwritten with new data.

In order to address this problem, we created Ma­
hanaxar , which uses a rillg buffer arch itecture to tem­
porarily capture data. Our first priority is to pro­
vide quality of service guarantees for incoming data
streams, but we have also considered system reliabil­
ity and scalability. We will present our design for this
class of problem, and show that it has superior per­
formance to other methods for managing this type of
data.

2 Background

This project was first conceived as a storage system
for the Long Wavelength Array (LWA) project[8).
The LWA is a distributed radio telescope currently
under construction in southwestern New Mexico. The
initial plan is for 53 separate stations scattered over
kilometers of desert, with each station generating ap­
proximately 72.5 MB/s of data, for an overall data
rate of slightly over 3.75 GB/s, generated continu­
ously and without letup over the lifetime of the sys­
tem.

Radio astronomy generates a lot of data, most of
which turns out to be random noise, and "useless."
Even if all the data were useful , it would be very dif­
ficulty to retain all of it in a system which generates
a petabyte of it in just over three days. It may not
actually be apparent whether the data is "useful" or
not until much la ter , so we must therefore retain the
data for a set period of time and allow an outside ob­
server the opportunity to declare the data interesting
if necessary.

As we explored the concept, we realized that there
were many other applications that generate lots of
"useless" data, but require a portion of it from time
to time. Thus we decided to develop a general ized so-

2

lution that could address all such problems. Broadly
speaking, we focused on two "canonical" real-world
problems set at opposite ends of the spectrum, with
other problems being derivatives and combina tions of
those two.

1. Fixed-size, non-indexed data:

Fixed-size, non-indexed data is the sort gener­
ated by the LWA project , and by many types of
sensor systems in general. It arr ives at an ab­
solutely fixed rate, never varying, and is only
indexed on a single variable: time of genera­
tion. Oftentimes such data is generated at too
high a rate to be captured on one storage device
and must be broken into multiple streams. Such
streams need to be correlated with each other in
order to regain the full data picture. Any or­
der given to preserve data will be via timestamp
only, calculated by an external observer monitor­
ing the data to determine if it is ever interesting.

2. Variable-size, indexed data:

Variable-size, indexed data describes any data
source where events are recorded as they happen
at variable rates. Such events may be indexed
by time, but a lso by other variables in order for
an external process to know exactly why some­
thing was recorded. Searching and preserving
data may be based on timestamps alone, but will
more likely be based on other indices. This prob­
lem is more difficult to address due to a non-fixed
size and data rate in add ition to the difficulties
of indexing.

The concept of a rin g buffer to gather sensor data is
not a new one: Antelope[2) and Data Turbine[14] are
both designed along those lines, but can not deal with
the data rates that we expect here. Neither service
offers actual quality of service guarantees; only best­
effort dota recording. Other systems like th e Iletwork
tmff'ic capturing "Time Machine" [10) deal with the
problem by classifying and prioritizing data stream s
and dropping what they can 't handle . Even then,
there are still no real time guarantees in the system;
only a promise that it will record data at best-effort
capacity and make sure that higher priority streams
get first dibs on storage.

The COSS Storage System from Squid [4) utilizes
a ring buffer based model, but also functions solel y
on a best-effort basis in terms of bandwidth, and the
mechanism for "preserving" data is simply to rewrite
it again at the top of the buffer. Larger storage sys­
tems such as Lustre do not make quality of service
guarantees from moment to moment[5), which could

be problematic if running a system where data gener­
ation rate is very close to the maximum system band­
width. Larger systems also have no convenient mech­
anism to automatically expire old data as capacity
runs low.

Some Quality of Service work has been focused on
providing guarantees of a certain service level from
the storage system, as in RT-Mach[ll] and Ceph[15],
but only to the ctegree of categorizing traffiC' for an
appropriately fair level of service. Data streams can
be guaranteed to get a certain portion of the system
resources in both the short and long term , but the
guarantee is of the nature "you will get X% of the
time every Y time units ," rather than "you are guar­
anteed Z MB/s of bandwidth."

The disk request scheduling system Fahradd [12] is
capable of providing QoS guarantees within certain
constraints. Fahradd takes the approach of reserv­
ing a certain portion of disk head time for request­
ing processes, and lets each process spend that disk
head time however they wish. Unfortunately for the
purposes of our problem, that guarantee isn 't quite
strong enough: a percentage of disk head time does
not necessarily translate into bandwidth capabilities ,
and we need to be able to guarantee a certain band­
width rather than a certain portion of disk time.

Using a fl at file based approach on a standard file
system has the benefit of simplicity and may work in
limited circumstances , but fragmentation over time
is an inevitable problem as we keep the file system
at near full capacity, expiring and writing data con­
stantly. We also explored the possibility of using a
database, but while databases are well suited to the
problem of indexing and searching, they are less well
suited to storing large chunks of data, and prelim­
inary testing quickly demonstrated that a database
approach was not realistic.

Because the nature of this problem involves near­
constant writes, we assume that any approach will
have to remain based on conventional rotational disk
drives for the foreseeable future. Solid state storage
devices promise to become prominent in the near fu­
ture, but despite potential bandwidth improvements,
it would not be wise to use a device with a limited
number of write cycles. Write endurance for one of
the latest Intel SSDs is only rated at 1-2 petabytes
worth of writes[9], and while that trend will proba­
bly improve in the future, the mechanical endurance
of rotational disk drives dealing with constant writes
will probably remain far superior.

3

3 Example Use Cases

As briefly mentioned in the last section , there are
two primary use cases which stand at opposite ex­
tremes of the spectrum. Our first use case is based
on the type of data that the L'0iA generates: contin­
uously streaming fixed size sellsor data. It arrives at
an unchanging bandwidth , does not need to be in­
dexed , and is uniformly "large. " Our second use case
is monitoring network traffic: each element is fairly
smal l (perhaps on the order of a few thousand bytes
or less) , but a ll of different sizes. Each data element
may also have to be indexed on multiple variables
other than time.

3.1 Continuously Streaming Sensor
Data

Storing continuously streaming sensor data of the
LWA sort is the less difficult task of the two. It arrives
at the same rate forever, never varying. The layout
of each chunk is known in advance, or perhaps it is
just treated as a straight stream of bytes which can
be broken up in whatever manner the storage system
deems convenient.

Interaction with this type of data is extremely lim­
ited - we take it and store it with a sequence number
(t imestamp) and don't worry about it again until it
comes time to overwrite it with new data. If an exter­
nal process decides that the data is worthwhile and
should be preserved, the storage system only needs to
be told that "timestamp X is interesting" and has no
harder task than findin g that timestamp and marking
it as not to be overwritten until further notice.

It may take some time to determine whether the
data is interesting (hence the ring buffer approach).
For example, a radio telescope may be collecting in­
teresting data, but nobody knows that until ten min­
utes later when a stupendous event is suddenly regis­
tered, and astronomers need to know what happened
leading up to that event. An external process needs
only order the system to preserve data up to the limit
of its buffering ability aud collect it later.

This example is perhaps the most basic use case
possible, but it covers a wide variety of sensor-based
systems.

3.2 Variable-Rate Indexed Network
Traffic

Storing vari able-rate indexect network t.raffiC' is a far
more difficult task than storing fi xed-rate sensor data.
There is a natural ebb and flow of network traffic
that coincides with societal rhythms throughout the

day, and spikes of traffic may arrive at entirely un­
predictable times. Both the aggregate bandwidth and
the sizes of individual data elements are in a constant
state of Aux.

Furthermore, data elements must be indexed by
more than a simple measure of time. Searching for
data packets sent between time X and time Y is use­
ful, but not nearly as useful as the ability to search
for data packets sent between time X and Y, between
source A and source B, and with protocol type M.
A system lacking the ability to index data on-the­
fly and search on those indices has severely reduced
usefulness. This scenario is more difficult to handle,
and it is a use case that no exist ing system currently
handles well.

4 Design

We designed our system with three principle factors
in mind:

1. Quality of Service Guarantees:

VYe must be able to guarantee quality of service
for the incoming stream, up to a declared band­
width. If the incoming data stream requires X
MBjs of write bandwidth, we need to make sure
it gets X MBjs of write bandwidth no matter
what. If it exceeds that amount, we'll do the
best we can, but no assurances. All other ac­
tivity on the disk must have lower priority; the
key factor is not to lose a single byte of incom­
ing data. Any other processes wanting to use the
drive, as well as the task of getting the data back
off again, must wait.

2. Commodity Components:

In the case of the LWA project, the physical lo­
cation for the system may literally be a shack in
the desert. We can't assume a high-end network
infrastructure or storage backend. On the other
hand , we also want to be able to take advan­
tage of a dedicated machine room if we have it
available. In a ll cases we want to take maximum
advantage of the hardware we have, and never
want to solve anything by "throwing more disks
at it" until the problem goes away.

3. Reliability:

The data that we collect can never be regener­
ated. If there's a hardware failure (and there
will be, often, if it's a shack in the desert), we
need to be able to retrieve the data if necessary.
On the other hand , any reliability mechanism we

4

120

110

100

~ 90 ::<
£
'0 80
.~

u
70 c

'" en
60

50

40
0

Avg Read Speed -­
Avg Write Speed -------

................................ ---_ _ .. " ,
"
".

2500 5000 7500 10000 12500 15000

Position in Disk, GB

Figure 2: Average read and write speeds on one par­
ticular disk

use can't compromise the first factoL quality of
service guarantees.

4.1 Staying Close to the Hardware

One of our first design decisions was that we needed
to stay close to the hardware. In order to make real
quality of service assurances , we need to know what
the underlying hardware is capable of, and what it is
actually doing at any particular moment. This is par­
ticularly important when it comes to disk drives, as
performance can differ by several orders of magnitude
depending on use patterns. By carefully mapping out
hardware capabilities, we can tell if we need to avoid
certain regions of the drive that can't guarantee the
rate we need.

As an example of why we need to pay close atten­
tion to the hardware, consider one of the hard drives
we used in testing: A 1.5 terabyte drive provided a
consistent minimum write bandwidth of 68 MBjs or
oetter for the first quarter of the drive. By the last
quarter of the drive, we co uld manage only a con­
sistent minimum write bandwidth of 52 MBjs. The
overall performance curve is shown in figure 2, and
the other disk drives we tested show similar patterns ,
with higher capacity drives having a sharper dropo!!"
at the end.

By staying close to the hardware , we are able to de­
termine what data rate we can "advertise," and per­
haps more importantly, what performance increases
we can gain by ignoring certain regions of the drive.
It, may be worthwhile to sacrifice extr::t eapacity for
extra bandwidth in some circumstances.

However, in order to take advantage of our knowl­
edge of hardware , we need to use the disk without any
interface layers. \lYe envision turning our prototype

system into a specialized file system in the future, but
in our prototype system (the specific architecture de­
cisions for it are discussed in the next section) , we
treat the disk as a raw device and eschew traditional
file systems.

4.2 Chunk-Based Layout

The first step in taking advantage of our hardware
knowledge is to significantly restrict the data layout.
Modern file systems are generally good at data place­
ment, but over time, fragmentation is inevitable , par­
ticularly in a filesystem constantly at 99%+ capacit.y.
Bamlwidth is very difficult to guarantee if a process
puts related data on widely-separated portions of the
disk , and this problem is only exacerbated by a sys­
tem that's constantly filling the disk to near capac­
ity, deleting portions to put in new data, and doing
it again ad infinitulll.

To address the problems of data layout , we took a
cue from traditional 512-byte disk blocks, and declare
that no data can be written in segments smaller than
the chunk size. Chunk size can be customized based
on what sort of data the system stores , but for most
purposes, the bigger the chunk, the better. The time
to write a 1 KB piece of data to the drive is most of­
ten dominated by seek time and rotational delay, but
those factors are diminished into near-insignificance
when writing a single 50 MB chunk.

It is well known that data sequentiality has a very
large impact on overall bandwidth[7], and we attempt
to exploit this factor as much as possible. There
are a few disadvantages to only dealing in very large
chunks, but since the workload is intended to be a
high-bandwidth stream of quickly-expiring data, the
advantages vastly outweigh the disadvantages.

4.3 Chunk Indexing and Consistency

Standard file systems store their indexing information
on the disk itself for two main reasons: first, holding
the entire indexing structure in memory is at best
inconvenient , and at worst impossible (depending on
the amount of RAM). It also isn't necessary most of
the time because large portions of the file system !flay
not be accessed for large periods of time. Secondly, in
the event of a system crash, it is far easier to recover
file information from known portions of the disk that
it is to traverse the entire disk and try to figure out
the structure anew each time.

VVe have a substantial advantage in this area be­
cause our chunk sizes are both large and placed in
predetermined locations. We realized that the only
information that our system really needs is a piece of

5

data describing the physical layout of the disk , which
translates to little more than the chunksize and any
skipped regions of the disk. This is somewhat akin
to the "superblock" of a file system. With that infor­
mation, we can assemble an index to hold in mem­
ory and never actually commit it to disk, thus saving
space and (far more importantly) bandwidth.

Modern disks can usually be filled to capacity
within a matter of hours. Because of that fact , any
chunk indexing information that we maintain on disk
will be entirely out of date within that time , and
partially out of date within seconds. Maintaining a
consistent index on disk would require very rapid up­
dates , which could be a major problem when we're
trying to utilize every megabyte of throughput. If we
delay writing an index to disk , much of the point is
lost , because it goes out of date so quickly.

Therefore we decided to keep the chunk index en­
tirely in main memory and never commit it to disk.
We can do this for two reasons: firs t , with large
chunks, reconstruction of the index only takes a few
minutes upon startup. Secondly, this is a system
which is never supposed to be shut down. If it ever
does go offline (perhaps through a power failme),
there had better be a backup plan available to ensure
that data is not lost, and the time to re-index the
old drive upon recovery is much less of a factor. The
extra time is a small price to pay for improving our
overall performance, particularly since in the event of
a data crash, the drive would have to be scanned for
consistency anyway.

4.4 Reliability and Recovery

Disks will fail from time to time, whether via a recov­
erable crash or via outright hardware failure. When
that happens , we need to account for two things:
making sure that ongoing data collection is not dis­
rupted , and maintaining t.he ability to recover lost
data if the drive is entirely dead.

This problem may be best. addressed by redundant
drives in a small system, but the more interesting case
is a large system: mirroring drives in a large instal­
lation is an unnecessary waste of money and energy
when there are more elegant. solutions available. In
this case, the easiest solution is an old familiar one:
RAID.

RAID systems offer fault-tolerant behavior and
certa in performance advantages with the proper
workload, but also have disadvantages when they op­
erate in a degraded mode after failure. Traditional
storage systems might see drastically increased access
times to read data as it gets reconstructed , though
writing entirely Ilew data is often ullaffected. How-

ever, those disadvantages are mitigated for this type
of data load, which we previously characterized as
"write once, read rarely."

If a disk fails, it may be that none of its data is
interesting, and we never need to deal with the prob­
lem of data reconstruction. In this case, degraded
RAID mode has no performance impact whatsoever.
Even if we do need to recover some of the data, it
is highly unlikely that we'll ever need to recover an
entire disk 's worth , and in any case , we need only do
it lazily upon demand rather than immediately upon
failure.

However, this technique only works well for re­
lated data streams which are deemed interesting (or
not) as a single unit. If RAID is done over mul­
tiple data streams with no relation to each other,
any preservations would have to be mirrored across
streams to keep consistency for RAID. Collection of
data would never be impaired, but the size of the
ring buffer would be dramatically reduced in many
circumstances as each stream had to save uninter­
esting sections to match interesting chunks in other
streams.

Reliability is not limited to RAID alone; any
erasure-correcting code would work well. Reed­
Solomon codes (as an example) are not often used in
high-performance storage because they have a high
overhead for their encoding and decoding process.
While the encoding process remains a factor here, it
may be that decoding is never needed, even on drive
failure, due to the reasons above.

4.5 Indexing

Indexing is one of the most difficult problems to deal
with. It is reasonably simple to design a system that
only needs to consider timestamps for each data ele­
ment, and work with those alone. It is conSiderably
more difficult to design a system which must index on
multiple variables and quickly search through them.
Without the ability to quickly search indexed infor­
mation, data may incorrectly expire.

With large elements and relatively few indices, it
would be possible to keep everything in memory.
Large chunks indexed only by timestamps could be
contained in only a few hundred kilobytes of main
memory, and searching would be extremely simple.

However, there are many scenarios where the data.
elements are tiny and there are multiple indices per
element. Consider storing IP packets which are in­
dexed on source and destination addresses (4 bytes
each), protocol (1 byte), and data length (4 bytes).
Since we have to account for the worst case scenario,
all packets may only be 20 bytes in size. Stored on

6

a 2 TB drive, the indexing information would take
hundreds of gigabytes of main memory: clearly not
feasible. While this is an unlikely scenario, it is likely
that there would be too much indexing information
to store in main memory at some point in the lifetime
of the system.

At least some portion of the index must be stored
on disk , as there is no room for it elsewhere. Our solu­
tion is to attach an "index" segment to each chunk on
disk which holds the relevant indices to that chunk.
If nobody ever inquires about the data, the index
segment expires along with the actual data. If some­
one does need to search, we can narrow it down as
much as possible with whatever index we have in
main memory (timestamps, at the least), and then
work on searching the rest.

In order to not reinvent the wheel, we have elected
to place the secondary search problem in the hands
of a mechanism well suited to the task: a database.
When we need to search on a chunk of data, we read
the index portion off of the disk (a much smaller task
than getting the entire chunk off', fortunately) and
pass it into a database to perform the search. After­
wards, the data is dropped from the database again,
never having to be stored for more than the time it
takes to search in main memory. This style of lazy
search allows us to optimize data storage according
to our own bandwidth lleeds, but hand off the search
problem to other systems already well suited to the
task.

4.6 Scaling

Our system may need to scale upwards. A lot. The
LWA may only be 53 stations at the beginning, but
what if it (or a similar project) requires 500 stations?
There is also a large difference between monitoring
a network switch in a small complex versus a major
router connecting a large site to the outside world.

Since our model is tied so closely to the hardware,
we can scale the data capture portion easily. Each
disk is bound to only a single data stream, and does
not need to make any decisions on its own initiative -
some sort of outside process (which may be running
on the same hardware) needs to be monitoring the
data in real time with the ability to quickly decide
what needs to be saved. From the disk point of view,
the only connection that its data stream might have
with any other is by being part of the same RAID
group.

From a control point of view, hundreds or thou­
sands of streams may be tied together, and a con­
troller process might want to preserve the data over
a thousand different disk:;, at least long enough to do

Sentinel Values

I
I I

I~ IIIIIIIII~ I I I 1IIIIIItlllili ~I
Metadata

I "" Indexing Data One Element

Figure 3: Data chunk layout

a more detailed search on it. As a communications
problem more than anything else, we have not yet
focused on this aspect, as existing communications
methods like MPI are probably suitable. This is an
area which we still need to fully explore.

5 Prototype Architecture

Our eventual goal is to create a specialized filesystem
and interface layer, but for prototype and testing pur­
poses, we first created a system named Mahanaxar.
It is a multithreaded process running in userspace and
accessing the disk as a raw dev ice. Multiple processes
can be run on the same machine, one per disk , but
all access to a given disk m·ust be through its asso­
ciated process in order to manage bandwidth. Each
process/disk is governed by a configuration file that
specifies, among other things, what the chunk size
is , what the element size range is, and how to index
each element. State can be restored from scanning
and re-indexing the disk upon startup.

Each process is made up of several threads , with
the most important two being the data processing
thread which is responsible for indexing and arrang­
ing the data into chunks, and the I/O thread which
puts chunks on disk, and retrieves them again upon
request. Our I/ O model works upon a simple prior­
ity scheme: if there's a chunk of data ready to be put
outo the disk, it gets first priority. A chunk is only
read off t.he disk if nothing is ready to be written.

This method produces a somewhat jagged access
pattern for reads (nothing for a while and then a
chunk delivered suddenly and all at once), it allows
us to make the most use of bandwidth by keeping
the disk head in place as long as possible. The read
process will never be entirely starved , though it may
have wait a while.

As each element arrives in the storage system, it is
indexed and placed into a chunk. If element sizes are

7

large, one element may be equal to one chunk, and
if element sizes are small , hundreds of elements may
go into a single chunk. The default indexing is based
around chunks: a pair of timestamps (microsecond
resol u tioll) which list the time that the first element
started to arrive, and the time when the last element
was fully received.

Figure 3 shows the chunk layout. Sentinel val­
lies are placed at either end of the chunk to man­
age consistency checking: they're written preceding
and following the rest of the chunk, which allows us
to determine which segments have been corrupted in
the event of sudden failure. Metadata describes how
many elements are in the chunk and where they are.
This is also in the main memory index, but must be
present on disk for recovery purposes . Indexing in­
formation follows, and then the act ual data segment
which may be composed or one or more elements.

The chunk size is configurable, but we have found
that larger chunks (at least 50 MB) provide the best
performance. In order to avoid wasted space, chunk
size should be arranged so that it 's a close multiple of
the typical element size (including separate indexing
information). If elements are 25 megabytes each, a
49 MB chunk size would be a poor choice.

If main memory is of sufficient size, and elements
sufficiently large, each element can be individually
indexed by timestamp and possibly other "primary
ids." The system will not allow extra primary IDs
if the worst-case scenario (all elements are mini­
mum sized) means that a full index couldn'l; fit in
main memory. If element sizes are particularly small,
timestamp ranges are stored on a chunk basis rather
than individual element basis.

Our system does mean that space is wasted if only
one small element in an entire chunk is supposed to
be saved. As currently implemented, Mahanaxar only
allows saving chunks in whole or not at all , meaning
that there is potentially a large amount of wasted
disk space in worst case scenarios. We do, however ,

.!!!
'" :2
.;
'0
.~

-0
c;
!II

'"

60 i---!- ' 0 · .. 0 ' 0 ·· 0" -0 " 8 " -
0

__ .El.
-0

£} - 0- ' 0 . 8-.
50

40

30

20

10

o

Mahanaxar Write Speed ____
Mahanaxar Read Speed - -.--­
Filesystem Write Speed -- G- ..
Filesystem Read Speed .. 0

o 0

o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Requested Read Speed, MBls

Figure 4: Performance of Mahanaxar against regular
filesystem , 60 MB/s iutended write speed

have plans to change this behavior in the future.

6 Testing

Our testing machine used an Intel Core 2 Quad pro­
cessor clocked at 2.83 GHz (model number Q9550),
and had 8 GB of main memory. The operating sys­
tem was Debian 5.1. Because our system is I/O fo­
cused with reasonably light processing requirements,
CPU power was never a major factor in our experi­
mentation. We ran tests using several different disks
on the same machine and achieved similar results on
ea{;h disk, adjusted for its individual bandwidth, We
carefully profiled one particular disk to use for the
experiments presented here so that all comparisons
could be made between systems running on the exact
same piece of hardware.

The particular disk we used for generating the re­
sults we present here was a 'Western Digital Caviar
Green of 1.5 TB advert ised capacity. However, we
should note that while the drive is measured by pow­
ers of ten , we have elected to use the binary conven­
tion in measuring KB, MB , etc., from here onward.

The raw write bandwidth of this particular disk av­
eraged from 50 MB/ s to 70 !VIB/s, and its read band­
width from 57 MB/s to 115 MB/s. Upon profiling the
drive, we determined that read bandwidth decreased
in a linear fashion from its peak at the beginning of
the drive at 115 MB/s to a point about 80% through
the drive where it rea{;hed about 70 MB/s, Band­
width dropped off sharply in the last 20% of the drive
to a low of around 50 MB/s . Meanwhi le, the write
bandwidth only dropped from 70 MB/s to 65 MB/ s
in that same 80%, and followed the same sharp curve
down in the last portion of the disk, A performance

8

.!!!
'"

60 ~------------------------------~

50

:2 40 .; Write Speed (both) -­
Read Speed (Mahanaxar) ------­
Read Speed (Filesystem)

'0
~ 30
c:
!II

'" 20 ~_-,_~"'_._.,, ___ ,_-,

1 0 .•........ : ... ~:.:::.~::-- -:.------: -.-.:~:::~'-.::.-:.~::~.~::-;.,

o ~~~~~~ __ ~~~ __ ~~~-L~~~
o 2000 4000 6000 8000 10000 12000

Position in Disk. MB

Figure 5: Performance of Mahanaxar against filesys­
tern with strict priorities, 60 MB element size, 60
MB/ s write speed

graph is available in figure 2, in the background sec­
tion.

Due to this behav ior , we elected to not use the
"lower" portion of the drive and thus be able to offer
a maximum write bandwidth of 60 MB/s, with 5-10
MB/s comfortably left over for reading. This left us
with a usable disk size of slightly over one (binary)
terabyte.

The disk write cache was disabled for our testing so
that we could be (reasonably) sure that the data was
act ually on disk when we thought it was there. In­
terestingly, this slightly improved overall write band­
width on the disks we tested on.

Our primary comparison point was a general pur­
pose file system 11 tilizing fiat files. Because journal­
ing file systems can have an adverse effect on raw
throughpu t, we elected to use the ext2 file system in
order to get the best performance to compare against
(preliminary testing indica ted that both ext3 and
XFS did not perform as well as ext2 for this type
of workload). Data was only sync'ed to disk after
around a hundred megabytes were accumulated in
each cycle so thai; the filesystem write cache could
reorder to improve its own performance.

Mahanaxar explicitly syncs to disk after every
chunk write to ensure that data is where we think
it is. Doing this wi th slllall elemetlts in a Rat file sys­
tem degrades performance masSively, so we relaxed
that requirement with the standard filesystem, even
though it means that it can't guarantee data is saved
in as tight a timeframe as Mahanaxar.

'0le also intended to compare against a pure
database model , but quickly discovered that its per­
formance could not come close to matching our own

12

10

8

6

Mahanaxar -­
Fiat File System --- ----

0l......-......L~...L..~w.............L~..........,........J~'"""""'-'~..L.........J~~

o 200 400 600 800 1000 1200 1400 1600 18002000

Position in a particular disk partition , in MB

Figure 6: Closeup comparison of Mahanaxar and
filesystem read performance, 60 MB/s data rate

system or the flat file based system, The initial pop­
ulation of our MySQL database was of comparable
speed to our own system and the standard filesys­
tem, but deleting elements took excessive time, slow­
ing performance down to less than a third of the other
two, It is excellent for searching data, but not for
quick deletion and insertion of new data over the size
of an entire disk drive ,

Our primary testing procedure was to select vari­
ous element sizes and measure what read bandwidth
was available with each approach when we declared
a certain write bandwidth (usually 60 MB/s) , We
ran tests over the entire space of the first 80% of the
drive, and left the slowest portion partitioned into
an off lirni ts area, We also created smaller parti tions
within the space for certain tests in order to gather
more finely-grained data,

'vVe modified our test ing procedure a few times
when it became apparent that the flat file / filesystem
approach was starting to fall behind, For example,
when dealing with variable element sizes, the filesys­
tem had to delete an appropriate number of files to
create room , and create a new file of the appropriate
elemellt size , Because the file system was so full (as
intended), fragmentation developed quickly and the
filesystem was soon unable to keep up with the de­
clared write bandwidth, In order to help it compen­
sate for that problem, we pulled back on the variable
element sizes and overwrote files in place to maintain
the data locality initia lly set up by the filesystem,

7 Results

Figure 4 shows the results of Mahanaxar versus a
normal flat file systelll, One process is attempting

9

~
CD
::'i
.c
~
-0
c:
."

CD

40

30

20

10

o - - - - -

Flat File Wnte Speed -­
Fiat File Read Speed ------­

Mahanaxar Read Speed ... ,""

..........

o 2000 4000 6000 8000 10000 12000

Progress through partition, in MB

Figure 7: Closeup comparison of Mahanaxar and
filesystem read performance, 60 MB/ s data rate , 1
MB element size

to write its data in real-time at a rate of 60 MB/ s,
Another process is attempting to read from the disk
at much lower rates (2-16 MB/s) , The bandwidth
of the drive in that particular area has more than
enough capacity to allow 60 MB/ s of writing and up
to 12 MB / s worth of reading if the two processes are
properly sharing access.

The values presented in the graph are the average
read and write bandwidths of Mahanaxar and the flat
file system over an entire partition which is already
populated with existing data at the start of the test,
Mahanaxar maintains a constant write bandwidth of
60 MB/s no matter how much bandwidth a writing
process asks for. By contrast, the flat file approach
starts falling behind the required 60 MB/s bandwidth
with a process trying to read only 2 MB/s from the
same disk, At 2 MB/ s, it has fallen about 2% behind
the required write speed, By 10 MB/ s (which the
disk can easily hand le if managed correctly), the flat
file approach can only record 94% of the incoming
data, while the write process still can 't even get its
requested 10 MB/ s (it gets about 8.5 MB/s).

The write (and read) bandwidth for the flat file ap­
proach drop off even more sharply at more bandwidth
than what the disk can provide is requested, whereas
Mahanaxar simply throttles the read requests in or­
der to maintain its full 60 MB/s write bandwidth, Be­
cause of this disparity, we introduced a similar mech­
anism for the filesystetn ill our other tests to ellsure
that writing always had priority,

Figure 5 shows the results of a full-disk test with a
write bandwidth of 60 MB/s , With the new mecha­
nism to ensure that the fiJ esystem always had priority
for writes, it was able to keep up with Mahanaxar.

However , we purposefully designed this test to give
the fiat filesystem ideal conditions by specifying a 60
MB element size. By writing elements at no smaller
than 60 MB, t he flat filesystem gai ned several advan­
tages of Mahanaxar in that it could do the equivalent
of "large chunk" writes. Even so, the maximum read
speed available in the regular fileyslem was less lhan
Mahanaxar.

Figure 6 shows what happens when the filesystem
has been fully populated and is "looping around"
again. It shows a detail view (focusing on a small
region of the disk) illustrating the difference in read
bandwidth as elements start expiring and new ones
were added. We should also note that we let the fi a t
filesystem maintain an in-memory list of element or­
dering rather than looking up the oldest elements via
metadata for every deletion - that latter approach
leads to quickly-degrad ing performance.

The write bandwidth for both systems remains at
60 MB/ s, but the read bandwidth for the filesystem
based approach drops down to 2-4 MB/s, compared
to Mahana,'(ar's 10-12 MB/ s. The flat file system
seems to stab ilize around that 2-4 MB / s range af­
ter the collection process has been going on for some
t ime, though only because all elements are of fixed
size for this test and can be overwritten in place.
When the elements are variable size, the performance
of the fiat file system slowly degrades over time.

The x-axis may require a bit of explanation: in the
case of Mahanaxar, the x-axis is a literal representa­
t ion of where the data is in the disk. It is measured
from the start of the segment by 60 MB chunks. For
the flat file system, the units are the same, but they
do not necessarily correspond with physical location
in the disk because the file system does not place ex­
act ly linearly.

Figure 5 shows performance for 60 ~.,tlB element
sizes, an area where the fiat file system performance
can almost match Mahanaxar. Figure 7 reduces ele­
ment size to 1 MB each and shows part of what hap­
pens there. Mahanaxar retains a write bandwidth of
60 MB/s (not shown on the graph in order to see de­
tail at the bottom) and maintains a read bandwidth
of around 20 MB/s: precisely what it could manage
with 60 MB elements. The reason it is able to do
so is because it combines elements together into 60
MB chunks and has virtually identical performance
for getting the data on and off disk.

However, the fl at file based system can no longer
keep up once elements reach 1 MB. If not sync'ed ,
the filesystem can "pretend" to keep up (and even
have superior performance) for quite a bit of time
as it takes advantage of write caching, but it even­
tually collapses under its own weight. Synchronizing

10

after every element is unrealistic, however, so we only
forced a sync every 100 elements (MB) to keep it hon­
est.

We found that the maximum write performance
that the fiat file approach could manage was about
35 MB/ s. At 38 MB/ s and above , it would slowly fall
behind over the course of time and eventually start
losing data. At 35 Mb/ s it loses no data, and can
read at about 1 MB/s. This compares very poorly to
Mahanaxar 's smooth 60 MB/s write and 20 MB / s
read.

When we tested variable element size 011 the flat
file system, performance decreased steadily over time
without appearing to stabilize at any point, probably
because fragmentation gets worse and worse as old
elements of variable sizes are deleted to make room
for new elements of different sizes . We also tested the
performance of a database storage system, but initial
performance was only a third that of Mahanaxar, and
it collapsed very quickly as old elements expired and
new elements arrived.

8 Conclusion and Future Work

The performance of lVlahanaxar shows that it has a
clear edge over standard filesystems for the "write
once, read rarely" work load. By staying very close
to the physical hardware and aligning our workload
appropriately, we are able to provide real guarantees
on quality of service to meet a set of hard real-time
deadlines. Vie are able to reach performance levels
very close to the tested maximum of what a hard
drive can handle, though this does necessitate gener­
at ing profiles on a per-drive basis to ensure we can
Illeet deadlines.

Even when standard filesyslems are adapted to pri­
oritize one data stream over all other disk activity,
they cannot advertise as high a bandwidth as Ma­
hanaxar is capable of, even when element size is large.
With smaller element sizes, other file systems have
performance at less than half the level of Mahanaxar
for this style of workload.

Our future intentions are to turn this project into
a full specialized filesystem and develop an API for
interaction with it . We also need to address the pre­
viously mentioned problem of needing to preserve an
entire chunk of data when only one element is worth
saving, and develop the appropriate scaling mecha­
nism to allow this system to be controlled over thou­
sands of drives at once . We would also like to explore
more complicated reliability schemes, moving beyond
the RAID-like model we adapted for the prototype.

References

[1] ADVANCED TELEVISION SYSTEMS COMMIT­
TEE, INC. A/53: ATSC Digital Television Stan­
dard, Paris 1-6, 2001, 3 January 2007.

[2] BOULDER REAL TIME TECHNOLOGIES, INC.
Antelope: ARTS configuro.tion and operations
manual, 3 November 1998.

[31 BRUNO , J. , BRUSTOLONI, J . , GABBER, E. ,
OZOEN, B. , AND SILBERSCHATZ, A. Disk
scheduling with quality of service guarantees. In
IEEE Intemational ConfeTence on M'ultimedia
Computing and Systems (7-11 June 1999 1999) ,
pp. 400-405 vol 2.

[4] CHADD , A. http: //deveLsquid-
cache.org/coss/ coss-notes . txt, 2005.

[5] DATADIRECT NETWORKS. Best practices for
architecting a lustre-based s torage environment.
Tech. rep ., DataDirect Networks, 2008.

[6] GRID , L. C. Gridbriefings: Grid computing ill
five minutes, August 2008.

[7] Hsu , W. W. , SMITH , A. J., AND YOUNG ,
H. C . The a utomatic improvement of locality
in storage systems. ACM Trans. Comp'Ld. Syst.
23, 4 (2005) , 424-473.

[8] http://www.phys. unm.edurlwa/ index.htmL

[9] Int el X25-E SATA Solid State DTive Prod'uct
Reference Sheet, 2009.

[10] KORNEXL, S., PAXSON, V. , DREGER, H.,
FELDMANN , A. , AND SOMMER, R. Building a
time machine for efficient recording and retrieval
of high-volume network traffic. In IMC '05: PTO­
ceedings of the 5th ACM SIGCOMM confeTence
on Intemet Measurement (Berkeley, CA, USA ,
2005) , USENIX Association , pp. 23-23.

[11] MOLANO, A., JUVVA , K., AND RAJKUMAR, R.
Real-time filesystems. guaranteeing timing con­
straints for disk accesses in rt-mach. In The 18th
IEEE Real- Time Systems Symposium (Decem­
ber 2-5, 1997 1997), pp. 155-165 .

[12] POVZNER, A. , KALDEWEY, T. , BRANDT, S. ,
GOLDING , R. , WONG , T. M., AND MALTZAHN,
C. Efficient guaranteed disk request scheduling
with fahrrad. In Eurosys '08: Proceedings of
the 3rd ACM SIGOPS/ EuroSys European Con­
ference on Computer Systems 2008 (New York ,
NY, USA , 2008) , ACM, pp. 13-25

11

[13] RANGASWAMI, R., DIMITRlJEVIC, Z., CHANG,
E., AND SCHAUSER, K. Building mems-based
storage systems for streaming media. Trans.
Storage 3, 2 (2007), 6.

[14] TILAK, S., HUBBARD, P. , MILLER, M., AND
FOUNTAIN , T. The ring buffer network bus
(rbnb) dataturbine strea ming data middleware
for environmental observing systems. In e­
Science (Bangalore , India, 10/ 12/ 20072007) .

[151 Wu, J., AND BRANDT, S. Providing quality
of service support in object-based file system.
In 24th IEEE Conference on Mass Storage Sys­
tems and Technologies (24-27 Sept. 2007 2007) ,
pp.157- 170.

