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This report will focus on the estimation of unmeasured dynamic inputs to a structure given a numerical model of 

the structure and measured response acquired at discrete locations . While the estimation of inputs has not 

received as much attention historically as state estimation, there are many applications where an improved 

understanding of the immeasurable input to a structure is vital (e.g. validating temporally varying and spatially­

varying load models for large structures such as buildings and ships). In this paper, the introduction contains a 

brief summary of previous input estimation studies. Next, an adjoint-based optimization method is used to 

estimate dynamic inputs to two experimental structures . The technique is evaluated in simulation and with 



experimental data both on a cantilever beam and on a three-story frame structure. The performance and 

limitations of the adjoint-based input estimation technique are discussed . 

1. INTRODUCTION 

1.1 Motivation 

Knowledge of excitation to a structure can be useful for a number of different engineering applications. With a 

better understanding of the dynamic input to a system, the response of that system to its operational and 

environmental loading conditions can be more accurately determined. This information can be used to optimize 

design with the intent of improving system performance for failure mechanisms such as yielding, fatigue, stability 

or excessive deformation. However, it is not always convenient or possible to measure dynamic inputs to a 

system. For example, direct measurement of the input may be impractical when the excitation has a complex 

spatial distribution (e.g. wave loading on a ship hull) or when the structure is very large (e.g. suspension bridge 

subject to traffic loading). In these instances a method for estimating the inputs becomes useful. The estimation of 

inputs to a system constitutes an inverse problem, which has been studied for a wide variety of applications in 

structural dynamics (e.g. experimental modal analysiS and finite element model updating). 

1.2 Background 

Numerous techniques based in the frequency or time domain have been used experimentally for input estimation; 

these include deconvolution methods, Kalman filters, dynamic programming, and gradient based methods. For 

the most part, research has focused on linear, time-invariant systems, involved only numerical simulations, and 

ignored the problem of identifying spatially-varying loads. In 1992, Carne et al. [1] developed the Sum of 

Weighted Averages Technique (SWAT), and applied the technique to experimentally identify the loading time­

history on the nose cone of a weapon system. Later, Carne et al. [2] and Mayes [3] demonstrated the success of 

two methods of identifying the weighting matrix used with SWAT. In [4], an extended Kalman filter and recursive 

least-squares estimator were applied to a non-linear, spring-mass-damper system to reconstruct a series of 

various shape impulses. In simulation, the method performed admirably for a three degree-of-freedom (DOF) 

system. Nordstrom [5) developed a variation on the Kalman filter which was implemented in simulation on a time­

variant system, and on a bridge structure with a moving input, both with excellent results. 

Each of the previously mentioned techniques comes with its own set of limitations. Deconvolution methods 

involve an inversion of the frequency response function, which in itself is inherently unstable. The SWAT method 

only identifies the force applied to an object's center of mass and, therefore, cannot determine the location of 

inputs. Kalman filtering requires some knowledge of the expected noise in signals. Additionally, as Kalman filtering 

is run online, it only uses information from the previous state. In situations where the entire data history is known, 

a better estimate could be made at each instant combining past and future data. For this study, input estimation 



will be performed using an adjoint-based optimization method. Previous applications for this technique include 

model predictive control and weather forecasting. The adjoint-based method developed herein has none of the 

above limitations but can be highly computationally and memory intensive. 

1.3 Purpose 

Because many structural characteristics can be determined from understanding the loading applied to a system, 

improved input estimations result in a better definition of the system as a whole. Previous input estimation 

research has shown great success in numerical simulation, but few studies have implemented the techniques on 

physical structures. In this work, inputs estimated by an adjoint-based optimization method are compared to those 

measured to evaluate its performance. This is done by implementing the method on two structures; a three-story 

frame structure and a cantilever beam. 

1.4 Outline 

This report contains an overview of the adjoint-based optimization method for input estimation in section two. A 

more rigorous derivation of the algorithm can be found in Appendix A. Next, the physical structures and numerical 

models are presented along with results of time series simulations to validate the models for this application . 

Section 4 presents results for estimating the input to both structures, followed by a discussion of the success of 

the technique along with its limitations and difficulties. 

2. ADJOINT·BASED OPTIMIZATION 

To begin the adjoint-based optimization, a simple cost function (based on the error between the predicted outputs 

and the measured outputs) is constructed; the aim is to find an input which minimizes it. To accomplish this 

minimization, a fairly straight forward gradient-descent process is followed . As briefly shown in Appendix A, the 

gradient of the cost function with respect to the input can be calculated with two simulations, regardless of the 

length of the input or complexity of the structure. The adjoint-based optimization method proves to have a lower 

computational cost when compared to a finite difference approach for estimating the gradient as only two 

simulations are required to generate an estimated input. 

Implementation of the adjoint-based optimization method involves a few preliminary steps and a while loop to 

perform the iterations on the input guess. First, a model is created in state space and some guess must be made 

for the input. The required number of iterations is largely dependent on the accuracy of the initial input guess. For 

the while loop, some criterion for stopping the iterations needs to be calculated along with a threshold setting. 

Since the true input to the tested structures in laboratory testing can be measured directly, a metric calculated with 

the true input vector and the current estimate can be used as a stopping criterion. In an application where input 

estimation is required due to the difficulty of measuring inputs directly, a stop criterion based on the difference 



between two successive input estimates could be used. 

The adjoint-based optimization while loop itself contains three main steps. First, the current input estimate is used 

to simulate the states of the system using a numerical integration technique. Next, a test function is solved by 

reverse time numerical integration to calculate the gradient of the cost function with respect to the current input 

estimate. Finally, the gradient is used to update the input estimate using any standard gradient descent based 

optimization method . A line search can be used to calculate the step size for input updating. Figure 1 diagrams 

the adjoint-based optimization method for input estimation flowing from left to right. 

Measured ) J, Cost -+ dJ/du, 
Outputs Function Gradient 

t ~ 
u, Input -+ System -+ Predicted Update 
Guess Model Outputs Guess 

t ~ 
u,New ( no- Guess Change - yes-+ Input 
Guess Acceptable? Found 

Figure 1. Flow diagram for adjoint-based optimization input estimation 

3. STRUCTURES AND MODELING 

The adjoint-based method was implemented on two structures: a three-story structure and a cantilever beam. As 

shown in Figure 2, the three-story structure consists of four aluminum columns (17.7 x 2.5 x 0.6 cm) which are 

connected to the top and bottom of each aluminum plate (30.5 x 30.5 x 2.5 cm) creating a four OOF system. 

Accelerometers were attached at the center line of each floor on the opposite side to the excitation source to 

measure the system's response. Input to the system was applied by a shaker at the base floor. 



Figure 2. Three-story structure 

To verify the accuracy and practicality of the proposed modeling approach, numerical simulations were conducted 

on both test structures and compared to experimental data. A four DOF lumped-mass model was constructed for 

the three-story structure, as shown in Figure 3. Modal Damping was added for modes 2, 3 and 4, as well as 

additional mass, stiffness and damping to account for the effects caused by the shaker and rails attached to the 

base. The response of the accelerometer was modeled with a simple low pass filter. Using a downhill simplex 

algorithm certain parameters were optimized, including the base's stiffness, mass and damping; the damping 

ratios for modes 2, 3 and 4; the accelerometer filter bandwidth; and the column stiffness. The measured and 

simulated accelerations due to a chirp input (25 to 75 Hz) are shown in Figure 4. 
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Figure 3. Four OOF lumped mass model for three-story structure 
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Figure 4. Measured and simulated acceleration due to a chirp input (25 to 75 Hz) 

Figure 5 shows the cantilever beam set up; a steel L-bracket (10.2 x 10.2 x 0.95 cm) is bolted to an aluminum 

base (30 .5 x 61 x 2.5 cm). An aluminum beam (45.7 x 5.0 x 3.2 cm) is fastened to the L-bracket by four bolts and 

an aluminum block (7.6 x 5 x 1.25 cm). Response of the structure was measured at the free end of the beam with 

an accelerometer and a CCO laser displacement sensor. A shaker was attached 5.25 cm from the fixed end of the 

beam to provide the input. 

Figure 5. Cantilever beam structure 



For the cantilever beam a finite element model was constructed using three beam elements. Additional mass, 

stiffness, and damping were added to the node corresponding to the input location to model the effect of the 

stinger and shaker. The shaker's mass, stiffness and damping were again optimized with the downhill simplex 

algorithm . Figure 6 shows the simulated tip displacement alongside the measurement from the laser displacement 

sensor for a chirp input from 15 to 25 Hz (across the first bending mode). 
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Figure 6. Simulated and measured tip displacement 

RESULTS 

Adjoint-based optimization was used to estimate various input signals applied to the cantilever beam and three­

story structure. The optimization routine was first implemented using simulated response data and performed 

extremely well. The routine was then implemented using measured response data from the structures, which also 

worked successfully. Finally, for the three-story structure, the adjoint-based method was implemented using an 

unknown input location as well as fewer accelerometer readings. In this section estimated inputs are compared 

graphically to the actual inputs as measured by a force transducer. 

3.1 Input Estimation for the Cantilever Beam 

The adjoint-based optimization was first implemented using simulated response data. Figure 7 shows the 

performance of the optimization routine for a combination signal comprised of sine and triangle waves. The adjoint 

routine is able to recreate the input signal perfectly. This simulation comprised of 5000 data points and took 2476 

iterations to converge. 
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Figure 7. Simulated input estimation of combination signal 

Next, the adjoint-based optimization method was implemented using measured response data. The cantilever 

beam was excited with various signals each measured with a force transducer. Figure 8 shows the time history of 

both the measured input (black) and estimated input (red) for a 15-25 Hz chirp input signal. The input signal was 

comprised of 4096 data points and took 85 iterations to converge to the specified tolerance. The adjoint-based 

optimization method is able to recreate the input to a reasonable degree of accuracy. The magnitude and phasing 

of the estimate matches the measurement well. The differences can be attributed to noise in the measurement 

data, unmodeled interactions between the transducer, stinger, and shaker, or the fact that the beam model cannot 

recreate high frequency response with only 6 degrees-of-freedom. 
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Figure 8. Input estimation of 15-25 Hz Chirp Signal 

Figure 9 shows the performance of the adjoint method for an impulse chain excitation to the system. The impulse 

chain signal was composed of two square wave sections at the beginning and middle of the signal. The 

measurement shown from the force transducer shows the shaker's attempt to respond instantaneously to the 

voltage steps in the signal. The adjoint-based method was able to recreate the basic shape and magnitude of an 

impulse chain input. Again, some higher frequency signal components are evident in the measurements that do 

not appear in the estimate. The impulse chain had 4096 data points and converged in 185 iterations, more than 

twice as many as the chirp signal. 
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Figure 9. Input estimation of impulse chain signal 



3.2 Input Estimation for the Three-Story Structure 

As with the cantilever beam the adjoint-based optimization was first implemented on the three-story structure 

using simulated response data. Figure 10 shows the performance of the adjoint method for a combination signal 

implemented on simulated response data . This combination of sine and triangle wave signals was comprised of 

5000 data points. The routine ran through 490 iterations to reach the prediction which matched the measured 

input perfectly. 
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Figure 10. Simulated input estimation of combination signal 

The adjoint-based method was next implemented using measured response to various input signals. Figures 11 a, 

11 b, and 11 c compare the time histories of the estimated signal and the measured input signal for a 45 Hz sine 

wave input. Enlarged sections of the data sets are provided to show the phasing of the input estimate and 

measurement. Figure 11 c shows the force envelopes of both the measured and estimated inputs. The force 

envelope allows for direct comparison between the magnitude of the input estimate and measurement. The 

envelopes were computed using a Hilbert transform . 

The sine wave input shown in Figures 11a, 11b and 11c was comprised of 16384 data points . The adjoint-based 

routine ran 705 iterations to produce the above estimation . Though the magnitude of the estimate is 25% too 

large for most of the signal , the phasing was recreated correctly. 
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Figure 11c. Input estimation of 45 Hz sine wave (envelope) 

Next, Figures 12a, 12b, 12c and 12d compare input estimates to experimental measurements for a 40-80Hz chirp 

input signal. The chirp signal was comprised of 16384 data points. The adjoint-based routine took 490 iterations to 

converge on this particular estimation . Figures 12a and 12b show that the estimation matches the measured input 

to a good degree for most of the time history. Figure 12c highlights the areas where the magnitude of the 

estimation does not match the measurement input as well. However, the phasing is estimated correctly 

throughout the signal. 
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Figure 12b. Input estimation of 40-80 Hz chirp input (enlarged) 
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Figure 12c. Input estimation of 40-80 Hz chirp input (enlarged) 



450r-----~----~----~----_.------~----~----~ 

400 

350 

~ 300 
<lI 
a. 

..Q 250 
<lI 
> 
~ 200 
<lI 
U 
::; 150 

u... 

100 

50 Input Measurement 

%~----~----~2~----~3----~====~~====~6====~7 
Time (s) 

Figure 12d. Input estimation of 40-80 Hz chirp input (envelope) 

To add more complexity input estimation was attempted with fewer accelerometers attached to the three-story 

structure. For this study, all accelerometers were removed except one; the system was then excited by the same 

40-80Hz chirp signal used previously. Figures 13a, 13b, and 13c compare the performance of the input 

estimation routine with measured data for a single accelerometer placed at the base of the structure. 
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Figure 13a. Input estimation of 40-80 Hz chirp input with base measurement only 
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Figure 13b. Input estimation of 40-80 Hz chirp input with base measurement only (enlarged) 
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Figure 13c. Input estimation of 40-80 Hz chirp input with base measurement only (enlarged) 

With a single accelerometer on the base floor, the adjoint routine took much longer at 7090 iterations to converge. 

The estimated inputs match the measured input nearly as well as with all four accelerometers. Next, an 

accelerometer was placed only on the third floor of the structure; the structure was then excited with the same 

chirp signal. Figures 14a, 14b, and 14c compare the performance of the input estimation routine with measured 

data for this accelerometer placement. 
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With the accelerometer on the top floor, the estimation converged after 16270 iterations of the adjoint-based 

routine. The input estimation is clearly not as accurate as when all four accelerometers or just the base 

accelerometer is used. Figure 14c shows problems with the estimated phase leading the measurement. From the 

envelopes in Figure 15, the peak magnitude of the estimate using only an accelerometer on the 3rd floor is 2.5 

times larger than the true value. In comparison the trial using an accelerometer at the base estimates the 

magnitude to within 20% for all but the end of the signal. 
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4. CONCLUSION 

This preliminary study on implementing adjoint-based optimization techniques for use in estimating inputs to 

dynamic structures produced promising results . In simulation, the method is able to recreate any continuous input 

to any model , although for some systems many iterations of the optimization may be needed to reach a perfect 

estimate. For the cantilever beam structure, the adjoint-based optimization performed as well as can be expected 

considering the simplistic model used with only 6 degrees-of-freedom . Likewise, input estimation for the three­

story structure worked well when accelerometers were placed on every floor. With limited sets of measurements, 

the estimate was not able to accurately reconstruct the magnitude of the input though the phasing still matched 

the measurement. With an improved model (particularly for energy dissipation on the three story structure), the 

adjoint-based optimization method would be expected to perform even better than the results shown here. The 

routine may also be expected to perform better for fewer response measurements if the gradient descent was 

changed to a global minimization technique . 
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APPENDIX A 

Mathematically, the details of the adjoint-optimization approach are as follows. The non-linear finite element 

model can be represented as 

x = f(x,u,t) (1 ) 

where x is the vector of system states (usually positions and velocities of all the nodes in the mesh of the 

structure), u is a vector of inputs at nodes on the structure and t is time. The measured outputs, y, can generally 

be represented as 

y=Cx 

where, C is some matrix. Stated another way, the outputs are some linear combination of the states of the system. 

The model's error is then defined to be 

e = Y- Y m 

The goal of the optimization is to select u such that e is minimized. Or, more precisely, we want to minimize the 

cost function 

lIT T J = - e edt 
2 0 

(2) 

Since e = Cx - Y m ' after some manipulation, this cost function can be rewritten as 

f T T T 
J = Jo x Qx-2Ym Cx+ Y", Ym dt 

where Q=CT C. If the input u is perturbed by u', the perturbed state trajectory is given by the tangent linear 

equation 

x' = A(t)x' + B(t)u' or £X' = Bu' (3) 

d 
where .e = - - A(t) and A(t) and B(t) are obtained by linearizing Equation 1 about x and u. The resulting 

dt 

perturbation to J is given by 

(4) 

The goal of what follows is simply to re-express J ' as a functional linear in u'. To that end, we integrate Equation 3 

against a test function, r. 

s: rT f!x'dt = s: rT (x' - A(t)x}it 

Using integration by parts, we can rewrite the above equation as 

rr rT f!x'dt = IT (t r)T x'dt + rT x,!,=r 
Jo 0 1=0 



where f * = - ~ - A(t Y . This is true for any test function , r. If we select r such that 
dt 

f *r=Qx-cTYm 

r(r) = 0 

where T is the final time, then Equation 4 can be rewritten as 

(5) 

Equation 5 is referred to as the adjoint equation. Thus, we have expressed J' as a functional linear in u'. The 

gradient of which with respect to u is then simply 

Therefore, givens some initial guess at u, Equation 1 is solved for x. This x is then used in conjunction with the 

measured data, Ym. to solve Equation 5 in reverse-time since reT) is known. From r, the gradient of the cost 

function with respect to the input may be calculated , and used to update u (using any number of standard gradient 

descent based optimization techniques). Note that solving Equation 5 requires what is known as an adjoint 

version of the simulation code, which can calculate the linearized A(t) and B(t) , as functions of x and u. This step 

allows for non-linear models to be used with the technique. 


