

 2

In summary, we achieved all goals of this project, in particular the design of a very fast com-

pression algorithm for floating-point data and a software implementation thereof with a through-

put above 10 gigabits per second. There were no problems or delays, no absence or changes of

key personnel, and we have used the funds as budgeted.

The project has resulted in the following products:

1) The sequential FPC compression algorithm

2) The parallel pFPC compression algorithm

3) 13 real-world scientific datasets

4) Three peer-reviewed publications

 a) A DCC’07 publication describing FPC

 http://users.ices.utexas.edu/~burtscher/papers/dcc07a.pdf

 b) A TC’09 journal article describing FPC in much more detail

 http://users.ices.utexas.edu/~burtscher/papers/tc09.pdf

 c) A DCC’09 publication describing pFPC

 http://users.ices.utexas.edu/~burtscher/papers/dcc09.pdf

5) One non-refereed technical report describing the source code of FPC line by line

 http://users.ices.utexas.edu/~burtscher/papers/tr08.pdf

6) Three web sites for the dissemination of the results of this project

 a) A download site for the FPC source code and documentation

 http://www.csl.cornell.edu/~burtscher/research/FPC/

 b) A download site for the 13 datasets

 http://www.csl.cornell.edu/~burtscher/research/FPC/datasets.html

 c) A download site for the pFPC source code and documentation

 http://users.ices.utexas.edu/~burtscher/research/pFPC/

The remainder of this document describes the operation and performance of FPC and pFPC.

THE FPC ALGORITHM

FPC compresses linear sequences of IEEE 754 double-precision floating-point values by sequen-

tially predicting each value, xoring the true value with the predicted value, and leading-zero

compressing the result. As illustrated in Figure 1, it uses variants of an fcm [13] and a dfcm [7]

value predictor to predict the doubles. Both predictors are effectively hash tables. The more ac-

curate of the two predictions, i.e., the one that shares more common most significant bits with the

true value, is xored with the true value. The xor operation turns identical bits into zeros. Hence,

if the predicted and the true value are close, the xor result has many leading zeros. FPC then

counts the number of leading zero bytes, encodes the count in a three-bit value, and concatenates

it with a single bit that specifies which of the two predictions was used. The resulting four-bit

code and the nonzero residual bytes are written to the output. The latter are emitted verbatim

without any encoding.

FPC outputs the compressed data in blocks. Each block starts with a header that specifies how

many doubles the block encodes and how long it is (in bytes). The header is followed by the

stream of four-bit codes, which in turn is followed by the stream of residual bytes. To maintain

byte granularity, which is more efficient than bit granularity, a pair of doubles is always

processed together and the corresponding two four-bit codes are packed into a byte. In case an

odd number of doubles needs to be compressed, a spurious double is encoded at the end. This

 3

spurious value is later eliminated using the count information from the header. For speed rea-

sons, FPC keeps the four-bit codes and the residual bytes separate instead of interleaving them.

Figure 1: FPC compression algorithm overview

Decompression starts by reading the current four-bit code, decoding the three-bit field, read-

ing the specified number of residual bytes, and zero-extending them to a full 64-bit number.

Based on the one-bit field, this number is xored with either the 64-bit fcm or dfcm prediction to
recreate the original double. This lossless reconstruction is possible because xor is reversible.

For performance reasons, FPC interprets all doubles as 64-bit integers and uses only integer

arithmetic. Since there can be between zero and eight leading zero bytes, i.e., nine possibilities,

not all of them can be encoded with a three-bit value. We decided not to support a leading zero

count of four because it occurs only rarely [4]. Consequently, all xor results with four leading

zero bytes are treated like values with only three leading zero bytes and the fourth zero byte is

emitted as part of the residual.

Before compression and decompression, both predictor tables are initialized with zeros. After

each prediction, they are updated with the true double value to ensure that they generate the same

sequence of predictions during compression as they do during decompression. The following

pseudo code demonstrates the operation of the fcm predictor. The table_size has to be a

power of two. fcm is the hash table.

unsigned long long true_value, fcm_prediction, fcm_hash, fcm[table_size];
...
fcm_prediction = fcm[fcm_hash]; // prediction: read hash table entry
fcm[fcm_hash] = true_value; // update: write hash table entry
fcm_hash = ((fcm_hash << 6) ^ (true_value >> 48)) & (table_size – 1);

Right shifting the true_value (i.e., the current double expressed as a 64-bit integer) by 48

bits eliminates the often random mantissa bits. The remaining 16 bits are xored with the previous

hash value to produce the new hash. However, the previous hash is first shifted by six bits to the

left to gradually phase out bits from older values. The hash value (fcm_hash) therefore

represents the sequence of most recently encountered doubles, and the hash table stores the

double that follows this sequence. Hence, making an fcm prediction is tantamount to performing

a table lookup to determine which value followed the last time a similar sequence of previous

doubles was seen.

 64

fcm dfcm

 64 64

3f82 4… 3f51 9…

compare compare

predictor closer

code value

 1 64

leading

zero byte

counter

encoder

bita cnta bitb cntb residuala

 x y 0 2 z

. . .

1+3

residualb
. . .

 0 to 8 bytes

7129 889b 0e5d
. . .

compressed

block

3f82 3b1e 0e32 f39d
. . .

uncompressed 1D

block of doubles

selector

doubleb

XOR

. . .

 4

The dfcm predictor operates in the same way. However, it predicts integer differences be-

tween consecutive values rather than absolute values, and the shift amounts in the hash function

are different.

unsigned long long last_value, dfcm_prediction, dfcm_hash, dfcm[table_size];
...
dfcm_prediction = dfcm[dfcm_hash] + last_value;
dfcm[dfcm_hash] = true_value – last_value;
dfcm_hash = ((dfcm_hash << 2) ^ ((true_value – last_value) >> 40)) &
 (table_size – 1);
last_value = true_value;

The complete C source code and a brief description of how to compile and use it are available

at http://www.csl.cornell.edu/~burtscher/research/FPC/. The web site also contains a detailed

discussion of the code and some of the optimization techniques it employs. Additional informa-

tion on FPC is available elsewhere [3, 4].

THE PFPC ALGORITHM

We have investigated two main techniques to parallelizing FPC. The first approach is to divide

the data into chunks and have multiple instances of FPC losslessly compress or decompress the

chunks in parallel. The number of threads (instances) and the chunk size are user selectable. The

second approach is to split the algorithm into multiple components and execute the components

in parallel. This is typically done in a pipelined fashion where every stage performs part of the

processing and streams its (intermediate) results to the next stage. The number of stages, and

therefore the number of parallel threads, is determined by the programmer, making this the less

flexible of the two approaches. Nevertheless, the two parallelization approaches are independent

and can be combined.

Because FPC is memory and not compute bound [4], the pipelined approach, which introduc-

es a lot of extra memory traffic to stream the intermediate data from one core to the next, does

not work well. All our attempts to pipeline FPC have failed in the sense that the parallel code

was always slower than the sequential code. Hence, we focused on the chunked approach.

There are two key parameters in the chunked approach: the chunk size and the thread count.

The chunk size determines the number of consecutive doubles that make up a chunk. Depending

on the size of the data to be processed, the last chunk may not be a full-size chunk. The thread

count determines the number of parallel compression or decompression threads that work togeth-

er. Depending on the data size and thread count, some threads may be assigned one fewer chunk

than others. Chunks are assigned in a round-robin fashion to the threads. If c is the chunk size (in
number of doubles), n is the thread count, and vi is the i

th
 value in the sequential data stream, then

the kth chunk consists of values vk*c through v(k+1)*c-1 and is assigned to the k mod n
th
 thread. Fig-

ure 2 illustrates this process with two threads.

Figure 2: pFPC data chunking and thread assignment

������ ���	
� ��������� �������

�	
��� �	
���

�������

�������	� �������

��

��� ��

��� ��

�����������	

��

��� ��

��� ��

��� ��

��� ��

�����

��� ��

���

 5

Note that pFPC is a reimplementation of the FPC algorithm that runs slower with one thread

than the original FPC implementation on our Itanium 2 system but faster on x86-based systems.

Moreover, pFPC is easier to read and simpler to integrate with other code. The C source code is

available at http://users.ices.utexas.edu/~burtscher/research/pFPC/. More detailed information

about pFPC can be found elsewhere [5].

EVALUATION METHODOLOGY

System and Compiler

We compiled and evaluated FPC as well as other compressors on a 64-bit system with a 1.6 GHz

Itanium 2 CPU, which has a 16 kB L1 data cache, a 256 kB unified L2 cache, a 3 MB L3 cache

(on chip), and 3 GB of main memory. The operating system is Red Hat Enterprise Linux AS4

and the compiler is the Intel C Itanium Compiler version 9.1. We used the “-O3 -mcpu=itanium2

-static” compiler flags for each compressor.

We compiled and evaluated pFPC on a 64-bit system with two dual-core 3 GHz Xeon CPUs.

Each of the four cores has a 32 kB L1 data cache. Each dual-core module contains a shared 4

MB unified L2 cache. The system has 4 GB of shared main memory. The operating system is

Red Hat Linux 2.6.23.15. We used gcc version 4.1.2 with the “-O3 -march=core2 -static -pthread

-std=c99” compiler flags.

For brevity, we only show results for these two systems in this report. Results for additional

systems can be found elsewhere [4, 5].

Datasets

We used thirteen datasets from various scientific domains for our evaluation. Each dataset con-

sists of a binary sequence of IEEE 754 double-precision floating-point numbers and belongs to

one of the following categories.

Observational data: These datasets comprise measurements from scientific instruments.

• obs_error: observation input values specifying brightness temperature errors of a weather sa-

tellite

• obs_info: latitude and longitude of the observation points of a weather satellite

• obs_spitzer: observational data from the Spitzer Space Telescope showing a slight darkening

as an extrasolar planet disappears behinds its star

• obs_temp: observational data from a weather satellite denoting how much the observed tem-

perature differs from the actual contiguous analysis temperature field

Numeric simulations: These datasets are the results of numeric simulations.

• num_brain: simulation of the velocity field of a human brain during a head impact

• num_comet: simulation of the comet Shoemaker-Levy 9 entering Jupiter’s atmosphere

• num_control: control vector output between two minimization steps in weather-satellite data

assimilation

• num_plasma: simulated plasma temperature of a wire array z-pinch experiment

Parallel messages: These datasets capture the MPI messages sent by a node in a parallel system

running NAS Parallel Benchmark (NPB) [1] and ASCI Purple [10] applications.

• msg_bt: NPB computational fluid dynamics pseudo-application bt

• msg_lu: NPB computational fluid dynamics pseudo-application lu

• msg_sp: NPB computational fluid dynamics pseudo-application sp

• msg_sppm: ASCI Purple solver sppm

• msg_sweep3d: ASCI Purple solver sweep3d

 6

Table 1 summarizes information about each dataset. The first two data columns list the size in

megabytes and in millions of double-precision values. The middle column shows the percentage

of doubles in each dataset that are unique, i.e., appear exactly once. The fourth column displays

the first-order entropy in bits. The last column expresses the randomness of the datasets in per-

cent, that is, it reflects how close the first-order entropy is to that of a truly random dataset with

the same number of doubles.

Table 1: Statistical information about each dataset

We observe that all datasets contain several million doubles. What is striking is that the data-

sets from all three categories appear to largely consist of unique values. Moreover, they are high-

ly random from an entropy perspective, even the ones that do not contain many unique values

(e.g., num_plasma).
Based on these statistics, it is unlikely that a pure entropy-based compression approach will

work well. Note that the higher-order entropies are also close to random because of the large

percentage of unique values. Clearly, we have to use a good data model or subdivide the doubles

into smaller entities (e.g., bytes), some of which may exhibit less randomness, to compress these

datasets well. FPC and pFPC incorporate both approaches.

Other Compressors

This subsection describes the compression schemes with which we compare FPC. GZIP and

BZIP2 are lossless, general-purpose algorithms that can be used to compress any kind of data.

The remaining algorithms represent our implementations of special-purpose floating-point com-

pressors from the literature. They are all single-pass, lossless compression schemes that “know”

about the format of double-precision values. We compiled the C source code of each algorithm

described in this section with the same compiler and optimization flags as FPC.

BZIP2: BZIP2 [8] is a general-purpose compressor that operates at byte granularity. It im-

plements a variant of the block-sorting algorithm described by Burrows and Wheeler [2]. It ap-

plies a reversible transformation to a block of inputs, uses sorting to group bytes with similar

contexts together, and then compresses them with a Huffman coder. The block size is adjustable.

We evaluate all supported block sizes, i.e., one through nine.

DFCM: Our previously proposed DFCM scheme [12] maps each encountered floating-point

value to an unsigned integer and predicts it with a modified dfcm predictor. This predictor com-

putes a hash out of the three most recently encountered differences between consecutive values

in the input. Next, it performs a hash table lookup to retrieve the differences that followed the

last two times the same hash was encountered, and one of the two differences is used to predict

size doubles unique values 1st order randomness

(megabytes) (millions) (percent) entropy (bits) (percent)

msg_bt 254.0 33.30 92.9 23.67 94.7

msg_lu 185.1 24.26 99.2 24.47 99.7

msg_sp 276.7 36.26 98.9 25.03 99.7

msg_sppm 266.1 34.87 10.2 11.24 44.9

msg_sweep3d 119.9 15.72 89.8 23.41 97.9

num_brain 135.3 17.73 94.9 23.97 99.5

num_comet 102.4 13.42 88.9 22.04 93.1

num_control 152.1 19.94 98.5 24.14 99.6

num_plasma 33.5 4.39 0.3 13.65 61.9

obs_error 59.3 7.77 18.0 17.80 77.8

obs_info 18.1 2.37 23.9 18.07 85.3

obs_spitzer 189.0 24.77 5.7 17.36 70.7

obs_temp 38.1 4.99 100.0 22.25 100.0

 7

the next value. A residual is generated by xoring the predicted value with the true value. This

residual is encoded using a four-bit leading zero bit count. We evaluate predictor sizes between

16 B and 512 MB.

FSD: The FSD compressor implements the fixed step delta-algorithm proposed by Engelson

et al. [6]. As it reads in a stream of doubles, it iteratively generates difference sequences from the

original sequence. The order determines the number of iterations. A zero suppress algorithm is

then used to encode the final difference sequence, where each value is expected to have many

leading zeroes. Generally, gradually changing data tend to benefit from higher difference orders

whereas rapidly changing data compress better with lower orders. We evaluate orders one

through five (higher orders perform worse).

GZIP: GZIP [9] is a general-purpose compression utility that operates at byte granularity and

implements a variant of the LZ77 algorithm [14]. It looks for repeating sequences of bytes

(strings) within a 32 kB sliding window. The length of the string is limited to 256 bytes, which

corresponds to the lookahead buffer size. GZIP uses two Huffman trees, one to compress the dis-

tances in the sliding window and another to compress the lengths of the strings as well as the in-

dividual bytes that were not part of any matched sequence. The algorithm finds duplicated

strings using a chained hash table. A command-line argument determines the maximum length of

the hash chains and whether lazy evaluation should be used. We evaluate all supported levels,

i.e., one through nine.

PLMI: The PLMI scheme proposed by Lindstrom and Isenberg [11] uses a Lorenzo predictor

in the front-end to predict 2D and 3D geometry data for rendering. In case of general linear data,

as is the case with our datasets, the Lorenzo predictor reverts to a delta predictor, which

processes data similar to the first-order FSD algorithm. Our implementation of PLMI employs a

modified dfcm predictor (see above), which we found to compress linear data better. The pre-

dicted and true floating-point values are mapped to an unsigned integer from which a residual is

computed by a difference process. The final step involves encoding the residual with range cod-

ing based on Schindler’s quasi-static probability model. We evaluate predictor sizes between 16

B and 512 MB.

RESULTS

Compression Ratio

This subsection investigates the highest compression ratio that the six algorithms achieve on

each dataset. Note that we individually optimized the size, level, or order for each algorithm and

dataset to obtain the results shown in Table 2. The numbers in bold print reflect the best com-

pression ratio for each dataset.

FPC achieves the highest geometric mean compression ratio because on four datasets it ex-

ceeds the performance of the other five algorithms by a large margin. The other algorithms sub-

stantially outperform FPC on only two datasets, msg_sppm and obs_spitzer.
No algorithm performs best on all datasets. In fact, no algorithm is best on more than five of

the thirteen datasets. There is also no best algorithm within the three dataset categories. Even

GZIP and BZIP2, the general-purpose compressors that have no knowledge of the format of

double-precision floating-point values, provide the highest compression ratio on some of the da-

tasets. Only FSD is outperformed on all of our datasets.

None of our datasets are highly compressible with any of the algorithms we studied. Only

msg_sppm can be compressed by at least a factor of two with all six algorithms. Two datasets,

num_control and obs_temp, cannot even be compressed by ten percent. These results are consis-

 8

tent with the randomness information presented in Table 1, based on which we would expect

msg_sppm to be the most and obs_temp the least compressible dataset. The highest overall com-

pression ratio of 15.05 is obtained on num_plasma, which exhibits the second lowest randomness

and the lowest percentage of unique values.

 On some datasets, most notably msg_sweep3d, num_plasma, obs_error, and obs_info, and to
a lesser extent obs_spitzer, one algorithm performs much better than the others. With the excep-

tion of msg_sweep3d, these datasets all have relatively few unique values and low randomness.

The five datasets with above 99% randomness cannot be compressed by more than 26% by any

of the algorithms we investigated.

Table 2: Maximum compression ratio of the six algorithms on each dataset

FPC Throughput

This subsection examines the compression and decompression throughput of the six algorithms

(i.e., the raw dataset size divided by the runtime). Figure 3 plots the throughput in gigabits per

second versus the geometric mean compression ratio on the Itanium 2 system. The individual

data points correspond to different sizes, levels, or orders.

Figure 3: Compression (left) and decompression (right) throughput vs. compression ratio

For a given compression ratio, FPC compresses our datasets 8 to 300 times faster and decom-

presses them 9 to 100 times faster than the other algorithms. DFCM has the next highest

throughput though GZIP’s decompression throughput is similar. FSD is third, but it delivers the

lowest compression ratios on our datasets. PLMI compresses the datasets faster than GZIP but

decompresses them more slowly. BZIP2 is the slowest algorithm but reaches the second highest

BZIP2 DFCM FPC FSD GZIP PLMI

msg_bt 1.10 1.36 1.29 1.07 1.13 1.24

msg_lu 1.02 1.24 1.17 1.00 1.06 1.19

msg_sp 1.08 1.25 1.26 0.99 1.11 1.19

msg_sppm 6.93 4.23 5.30 2.35 7.43 5.02

msg_sweep3d 1.29 1.56 3.09 1.21 1.09 1.21

num_brain 1.04 1.23 1.16 1.10 1.06 1.12

num_comet 1.17 1.17 1.16 1.11 1.16 1.18

num_control 1.03 1.07 1.05 0.99 1.06 1.06

num_plasma 5.79 1.30 15.05 1.00 1.61 1.26

obs_error 1.34 1.52 3.60 1.16 1.45 1.26

obs_info 1.22 1.23 2.27 1.00 1.15 1.16

obs_spitzer 1.75 1.00 1.03 0.96 1.23 1.08

obs_temp 1.02 1.01 1.02 0.97 1.04 1.04

geo_mean 1.52 1.36 1.95 1.11 1.35 1.30

0

1

2

3

4

5

6

7

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

geometric-mean compression ratio

c
o
m
p
re
s
s
io
n
 t
h
ro
u
g
h
p
u
t
(G
b
/s
)

BZIP2

DFCM

FPC

FSD

GZIP

PLMI

0

1

2

3

4

5

6

7

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

geometric-mean compression ratio

d
e
c
o
m
p
re
s
s
io
n
 t
h
ro
u
g
h
p
u
t
(G
b
/s
)

BZIP2

DFCM

FPC

FSD

GZIP

PLMI

 9

compression ratio. All algorithms except our implementation of PLMI decompress faster than

they compress. FPC compresses at up to 5.43 Gb/s and decompresses at up to 6.73 Gb/s. More

results for FPC are available elsewhere [4].

pFPC Throughput

This subsection studies the compression and decompression throughput of pFPC. Figure 4 plots

the throughput in megabytes per second versus the chunk size with a small and a large predictor

on a four-core Xeon system. The left panel shows the compression throughput and the right pan-

el the decompression throughput.

We see that the large predictor yields a lower throughput than the small predictor. This is be-

cause the small predictor’s tables fit in the L1 data cache. Therefore, accessing them almost al-

ways results in L1 hits, which are fast and do not increase the memory traffic beyond the L1

cache. The large predictor’s tables are 256 times as large. Accessing them causes many slow L1

misses and increases the memory bandwidth demand. We further observe that compression is

slower than decompression as it requires more operations.

Small chunk sizes yield the lowest throughputs, especially for decompression. There are two

reasons for this behavior. First, the inner loop in the compressor and decompressor iterates over

the elements of a single chunk and the outer loop iterates over the chunks. For smaller chunk siz-

es, the outer loop has to perform more iterations, each of which involves running the inner loop.

This results in higher looping overhead compared to large chunks, which only require a few ite-

rations of the outer loop. Hence, larger chunks perform better, even with a single thread. Second,

for chunk sizes up to and including 4, multiple threads access the same cache line, which may

cause false sharing and coherence traffic. Decompression suffers more because in the decom-

pressor the output buffer, which is written by the threads, is shared, whereas in the compressor

only the input buffer, which is merely read by the threads, is shared. We notice another jump in

performance at a chunk size of 512. 512 doubles require 4 kB of storage, which is the page size

of the Xeon system. Hence, we believe this jump is due to improved TLB performance. At this

threshold, the number of pages touched by each thread in the multi-threaded runs is halved,

which reduces the pressure on the TLB.

Figure 4: Harmonic-mean compression (left) and decompression (right) throughput versus the

chunk size for two predictor sizes and various thread counts on a four-core Xeon system

Finally, we find that the throughput increases with the number of threads. Clearly, paralleliza-

tion helps, especially for larger chunk sizes. For both predictor sizes, the average speedup with

two threads is about 1.8 for compression and 1.75 for decompression. The corresponding spee-

���

���

���

���

����

����

����

����

����

� � � �

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
	
�

�
�
	
�

�
�
�
�
�

�
�

�
�

�
�
�
�
�

�
�
��
�
�
�
�
�
�	

�

�

�
�

��������	

���	
��
���� ���	
��
�����

���	
��
����� ���	
��
�����

���	
��
���� ���	
��
�����

���	
��
����� ���	
��
�����

���

���

���

���

����

����

����

����

����

� � � �

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
	
�

�
�
	
�

�
�
�
�
�

�
�

�
�

�
�
�
�
�

�
�
��
�
�
�
�
�
�	

�

�

�
�

��������	

���	
��
���� ���	
��
�����

���	
��
����� ���	
��
�����

���	
��
���� ���	
��
�����

���	
��
����� ���	
��
�����

 10

dups with the small predictor are 2.5 and 2.25 for three threads and 3.0 and 2.6 for four threads.

With the large predictor, the speedups are 1.85 and 1.75 for three threads and 2.05 and 1.9 for

four threads. Clearly, the throughput scales sublinearly, and scaling is worse for decompression.

There are two factors that limit scaling, the load balance and the memory bandwidth. Because

the CPUs in our systems share the main memory, the memory bandwidth demand increases with

the thread count and limits how many parallel threads can usefully be employed. Moreover, there

are three sources of load imbalance: an unequal number of chunks per thread, a partial last

chunk, and a variable processing speed. Because some predictions cause cache misses in the pre-

dictor tables, some doubles take longer to (de)compress than others.

To quantify the load imbalance, we wrote a load-balanced version of pFPC in which the

threads grab chunks whenever they are ready for the next chunk. Because threads may grab

chunks out-of-order, the predictor has to be reinitialized before each chunk, which takes time and

lowers the compression ratio. Hence, this approach only works for large chunk sizes and small

predictors that require infrequent zeroing out. The highest throughputs measured with this ver-

sion of pFPC are 10% higher, but only for compression with the small predictor. There is almost

no difference for decompression or for compression with the large predictor. Overall, the load

imbalance in pFPC does not seem high and mostly affects compression.

To quantify the memory bandwidth, we wrote yet another version of pFPC that does not per-

form any compression but simply copies the values from the input buffer to the output buffer.

This version does not cause any memory traffic for accessing predictors. It yields a throughput of

2.05 GB/s. With the small predictor, the “compressing” version of pFPC reaches a throughput of

1.7 GB/s, which is reasonably close to the maximum the memory subsystem can deliver, espe-

cially when accounting for the extra memory accesses to the predictor tables. Hence, the memory

bandwidth fundamentally limits the scaling of pFPC. Nevertheless, pFPC reaches 10.9 and 13.6

Gb/s throughput with a compression ratio of 1.18 on a 4-core 3 GHz Xeon and is therefore fast

enough to feed a 10 Gb/s network link in real time. More results are available elsewhere [5].

REFERENCES
[1] D. Bailey, T. Harris, W. Saphir, R. v. d. Wijngaart, A. Woo and M. Yarrow. “The NAS Parallel Benchmarks 2.0.” Technic-

al Report NAS-95-020, NASA Ames Research Center. 1995.

[2] M. Burrows and D. J. Wheeler. “A Block-Sorting Lossless Data Compression Algorithm.” Digital SRC Research Report

124. May 1994.

[3] M. Burtscher and P. Ratanaworabhan. “High Throughput Compression of Double-Precision Floating-Point Data.” Data

Compression Conference, pp. 293-302. 2007.

[4] M. Burtscher and P. Ratanaworabhan. “FPC: A High-Speed Compressor for Double-Precision Floating-Point Data.” IEEE

Transactions on Computers, Vol. 58, No. 1, pp. 18-31. 2009.

[5] M. Burtscher and P. Ratanaworabhan. “pFPC: A Parallel Compressor for Floating-Point Data.” Data Compression Confe-

rence, pp. 43-52. 2009.

[6] V. Engelson, D. Fritzson and P. Fritzson. “Lossless Compression of High-Volume Numerical Data from Simulations.” Data

Compression Conference, pp. 574-586. 2000.

[7] B. Goeman, H. Vandierendonck and K. Bosschere. “Differential FCM: Increasing Value Prediction Accuracy by Improving

Table Usage Efficiency.” International Symposium on High Performance Computer Architecture, pp. 207-216. 2001.

[8] http://www.bzip.org/, 2009.

[9] http://www.gzip.org/, 2009.

[10] https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/, 2009.

[11] P. Lindstrom and M. Isenburg. “Fast and Efficient Compression of Floating-Point Data.” IEEE Transactions on Visualiza-

tion and Computer Graphics, Vol. 12, No. 5. 2006.

[12] P. Ratanaworabhan, J. Ke and M. Burtscher. “Fast Lossless Compression of Scientific Floating-Point Data.” Data Com-

pression Conference, pp. 133-142. 2006.

[13] Y. Sazeides and J. E. Smith. “The Predictability of Data Values.” 30th International Symposium on Microarchitecture, pp.

248-258. December 1997.

[14] J. Ziv and A. Lempel. “A Universal Algorithm for Data Compression.” IEEE Transaction on Information Theory, Vol. 23,

No. 3, pp. 337-343. May 1977.

