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Abstract

The effect of higher-order corrections to the Born approximation is studied

for the previously obtained giant conductance enhancement in tunnel-coupled

double quantum wires in a parallel magnetic field. The relative correction

is found to be significant and depends on various effects such as the mag-

netic field, electron and impurity demsities, impurity positions, symmetric

and asymmetric doping profiles, and center barrier thickness.
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I. INTRODUCTION

In a recent letter, one of the authors proposed a giant low-temperature magneto-

conductance mechanism in a closely tunnel-coupled double quantum wire structure. 1 The

impurity-limited conductance was shown to be enhanced abruptly by as much as two or-

ders of magnitude within a narrow range of an applied parallel magnetic field. The double

quantum wires which are stacked in the z direction and extended along the y direction are

created by adding a lateral confinement to Gah double quantum wells (QW’S) in the z

direction. The lateral confinement is achieved by depositing split metal gates on the front

and back of the double QW’S (DQWS) of widths L., which deplete the electrons under-

neath the gates when a negative voltage is applied. The thickness LB of the AIGaAs center

barrier between the QW’S is small (e.g., 15 - 40 ~), allowing the electrobs to tunnel in

the z direction. In this paper, we consider an extreme size quantum limit where only the

ground sub-level from the x-confinement and the ground tunnel-split doublet from the z---

confinement are relevant. The magnetic field 1? = (B, O, O) is in the x chrection. By using

a two-dimensional finite-difference wave-packet technique, a recent numerical calculation of

coupled double wires with somewhat different numerical values for the Q W depths, widths

and the barrier widths yielded a much smaller conductance enhancement than predicted by

the Born approximation,l making it necessary to examine the effects of higher-order correc-

tions to the Born approximation which yielded the large enhancement. While we find that

the corrections amount to as much as about 22% for short range impurity scattering, the

conductance enhancement is still two to three orders of magnitude as predicted by Lyo.l

The basic idea of the conductance enhancement can be understood from the energy

dispersion curves of symmetric double quantum wires at 4.82’ in Fig. 1. Here, the dash-

dotted curves indicate the energy parabolas of the two QW’S in the absence of tunneling,

displaced relative to each other by the magnetic field in an amount of Ak = d/.!?2 where d is

the well to well separation and 1 = (h/e13) 112is the magnetic length. The degeneracy at the

crossing point is removed due to tunneling, opening an anti-crossing gap which separates
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the upper and lower branches shown by the solid curves. The gap moves up in energy as the

diamagnetic energy increases with increasing B and crosses the chemical potential p.1 The

chemical potential is shown by a horizontal dashed line in Fig. 1. The Born approximation

for the momentum dissipation corresponds to the direct back scattering between the initial

and final Fermi points ki and kf shown by the filled circles. In this case, the confinement

wave functions at the two Fermi points are separated and localized in QW1 and QW2 with

a very small overlap, yieldlng a very small scattering rate. In contrast, when p is above the

gap, we have two pairs of Fermi points such that the wave functions of the pairs have large

- amplitudes in Q W1 and Q W2, respectively, yielding a large scattering rate. Also, when ~

is below the gap at a higher field, back scattering occurs inside the same QW as illustrated

by the broken arrows in Fig. 1. Therefore, the scattering rate is relatively large when p lies

outside the gap. As a result,

the magnetic field where p is

The Born approximation

a giant conductance enhancement is obtained in the range of

inside the gap.

may, however, underestimate the scattering rate when ~ is

inside the gap ‘and overestimate the conductance enhancement. There are higher-order pro-

cesses which give significant contributions to back scattering. These processes are illustrated

in Fig. 1 by solid arrows. In these two-step processes, scattering occurs through the inter-

mediate virtual states near the gap edges (z. e., near k = O) shown by the open circles. These

intermediate states have large amplitudes in both QW’S, providing a significant simultane-

ous overlap with the initial and final wave functions at ki and kf. In this paper, we study

the effect of these higher-order contributions.

The organization of this paper is as follows. In Section H, we present the formalism

beyond the Born approximation for the conductance of the electrons in the double quantum

wires under a parallel magnetic field. Numerical results and discussions are presented in Sec.

HI for the relative comections to the conductance enhancement introduced by the higher-

order corrections as a function of magnetic field. The paper is concluded in Sec. IV with

some brief remarks.
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II. FORMALISM

Using the Landau gauge forthevector potential~= (O, –Bz, O), the Hamiltonianof

the system is given by ~ = fiz + fiz with

72.= -& -g’,V.(z) ,

(1)

(2)

where m;(z) is the position-dependent effective mass of electrons in the z-direction, which

equals mw = 0.0665m0 inside the GaAs wells and mB = (0.0665 + 0.083q)m0 inside the

AlqGal_qAs barriers with q being the alloY composition index of the ternary barriermaterial,

w is the free electron mass, VDQW(z) = 0.57 x 1.42’7q (eV) in the barrier region and

zero inside the well, and VL(x) is the lateral confinement potential of the quantum wires.

Moreover, k in Eq. (1) is the electron wave vector along the wires. For the Hamiltonian in

Eqs. (1) and (2), the electron wave fi.mctions can be written as

1
< qj, k >= -y oo(~) exP(~~Y) +jk(z) ,

J_

(3)
Y

where the electrons are assumed to be in the lowest energy eigen-state @o(z), and the index

j = 1, 2 stands for the lower and upper tunnel-split branches in the z dh-ection. The electron

energy is given by

t,. = E; + E;(k) , (4)

where E;(k) is determined by fiz’@jk (z) = E; (~) ’@jk(Z), and % is the ground level given b

fizq$o(x) = Ef@o(z). As seen from the kistterm in Eq. (1), the effect of I? is to displace the

origins of the transverse crystal momenta k in the wire direction in the two quantum wells

relative to each other by A k = d/1’. Here, d = L= + LB is the center-to-center distance

between QW’S. The ener~ dispersion curves E;(k) are displayed in Fig. 1 for q = 0.3,

Lz=80~, L~=50~, and B=4.8T.
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The conductance is given by

G(~)=~~vj~[–.f’(&k)]gjk> “ (5)
Y ~,k

where Vjk = h‘ld~f (k)/dk, gjk = Vjkrjk, and Tjk is the relaxation time. The factor of 2 re-

sults from the spin summation. In Eq. (5), ft(~3k)isthe first derivative of the Fermi function.

-The quantity gjk represents the linear deviation from the equilibrium Fermi distribution and

satisfies the Boltzmann equation:

2X
~ ~ (gjk - %p) ‘jk,mp $(~jk - &nP) = 0,

Vjk — — (6)
%P

fro) + ~k ~, is the irreducible scattering part shown in Fig. 2 (a) forwhere ~jk,rnp = jk,mp 3,

the ladder approximation in’ the diagrammatic expansion of the current-current correlation

~o) represented by a rung, is the Born approximation and is thefunction.3 The first term ~k,mp,

impurity-averaged scattering strength times the total number of impurities NI (see Eq. (9))

while the second term is the higher-order single-impurity correction- Although this term is

of higher order” in the scattering potential than the Born term, it occurs without a small

direct overlap between the initial and final states in the gap. Instead, the final and initial

states are” mediated through the intermediate states which have large overlap with both

states as dkcussed in Sec. I and as seen below in Eq. (12). Hence, we need not consider

the third-order contributions shown in Fig. 2 (b) which include a direct overlap between the

initial and final states. The conductance in Eq. (5) yields

2e2
G(B) = —

hLy g ‘
(7)

where g is the sum of gjk over all the Fermi points. An exact solution for g was obtained in

Ref. 1 and is given by replacing V2(k, p) in Eqs. (5)-(7) of Ref. 1 with ~jk,mp. The relative

correction to the Born conductance G~@” (B) due to higher-order scattering ~jk,mp is

AG GBWn(B) – G(B)

G– G(B) .
(8)

The impurity interaction matrix in Eq. (6) is
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where R~ is the position of an individual impurity atom and ~(l?~) is the probability density

distribution function of the impurity atoms in the system with J d3~~ T(EJ = 1. The

matrix element in Eq. (9) is given by

1
‘~k,mp = L

-1
d3F @mp(F– ~~) &(x) exp [i(p – ~)Y] vjk(~)~mp(~) , (lo)

Y

where @m~(F – ~~) is the interaction potential between the electron at F and the impurity

atom at ~~. The higher-order scattering part in Eq. (6) is given by

A~jk,e, = N1 I d3~~ ~(fi~) T’~,e,(~jk) 2 , (11)

where TJ~,l,(&) includes only the principal part:

T}k,e~(S) = ~ ‘~k,mp ‘;P,ts

(t - L’)
‘“ (12)

[t - %p]2 + [1’mp(t)]2 .m,p

Here, I’mP(E) is the eneregj-dependent damping:

“rjk(~) = ZNI ~ ~ d3~~ ~(~x) Ujk,mp2 6(: – &m’) .
mp

(13)

111. NUMERICAL RESULTS AND DISCUSSIONS

In thk section, we present numerical results for the B-dependent conductance enhance-

ment. Several different structures of double quantum wires as well as doping configurations

are studied to bring out salient features of the results. We assume that the impurities are

distributed uniformly on several 6–doping sheets perpendicular to the z direction:4

P(ZJ = [c, 6(ZA–Z,)+C26(Z,– 22)+ ...]/s , (14)

where z~ is the impurity sheet position, $ is the area of the impurity sheet and Ci is the

fractional distribution with Cl + C2 + . . . = 1. Mostly, we will study a binary distribution

(i.e., Cl + Cz = 1) for various positions of the impurity sheets. Next, we assume that the

short-range screened electron-impurity interaction takes a Gaussian form5
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[1[F’- R,p
LPmp(F–IIA)= UOexp – A, ,

0
(15)

where the interaction strength is VO and AO measures the interaction range. Finally, we

assume that the lateral confinement of the quantum wires takes a parabolic potential

V~(x] = rnwf2~x2/2, yielding

with a = ~mw!2Z/h. The interaction matrices in Eqs. (9) and (11) are then explicitly given

(17)

{( + –k)’ + (s– P)2]I’$(~ - Grip)
}

2

x ~ exp W;,m’ W’:p,es , (18)
[~- timpp + IrmP(&)l’m,’

where n{ = NI/S is the total two-dimensional impurity density of the system, and the

impurity interaction integral is given by

W;,mp=J ~z‘@jk(~)’@mp(z)[

1
exp ——A; (

1
z – z~)’ . (19)

In the following numerical calculations, we consider two samples. Sample 1 is the sym-

metric AZo.3G~.TAs/GaAs DQWS with 280 meV barrier heights, L= = 80 ~ well widths,

and hflZ = 265 meV. The effective mass of electrons is mw = 0.067n (m~ = 0.073~)

in the wells (barriers). The center barrier thickness is LB = 60 ~, and the tunneling gap

at B = O is 0.8 meV. The impurity interaction strength is UO= 1.26 eV and the impurity

interaction range is A. = 12 ~. Sample 2 has the same parameters as those of sample 1

except that the center barrier thickness is LB = 50 ~ and the tunneling gap at B = O
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is 1.5 meV. The” calculations are performed at T = 4 K. Other parameters used in the

calculation will be given in the corresponding figure captions.

In Fig. 3(a), we compare G(B)/G(0) for sample 1. Note that while G(B)/G(0) is inde-

pendent of nz in the Born approximation, higher-order contributions depend on nI through

the energy-dependent damping term in Eq. (13). The Born enhancement is shown in (a) by

the dashed curve. A giant enhancement of the conductance is obtained when p lies inside

the anti-crossing gap in the range of the field between 4.2 T and 5.2 T. The effect of the

higher-order correction in Fig. 3(a) can be as much as 22% as seen from Fig. 3(b). It is in-

teresting to note that the effect of the higher-order correction is smaller for larger ni in Fig.

3(b). This is due to the fact that back scattering through the intermediate states becomes

suppressed, when the damping 17~P(Zj~) cx nl in the denominator of Eq. (12) becomes large. .-

From Fig. 3(b) we find that AG/G is decreased by more than an order of magnitude when-

nJ is increased from nI = 8.12 x 1010 cm-2 to nl = 8.12 x 1011 cm-2. For the lower nI in

(b), the dips DI and Dz at the edges of the gap come from the high density-of-states, which

enhances I’~P(&) and suppresses AG/G. The dip Ds around the middle of the gap is due to

the cancellation between the positive and negative contributions to the. numerator &– &.. in

Eq. (12) from the intermediate states near both edges of the gap. Small fluctuations in the

curves in Fig. (3) are due to the numerical fluctuations arising from using a finite number

of k points in the numerical evaluation.

In Fig. 4, we compare G(B)/G(0)

sheets in the two outer barrier layers.

for sample 1 with different positions of 6–doping

When the two impurity sheets are moved by 15 ~

from the outer interfaces of QW’S into the barriers as shown in the inset, the enhancement

G(B) /G(0) is increased significantly inside the gap (i.e., 4.2 T < B <5.2 T) although there

is almost no change outside the gap. In this case, the impurity interaction in Eq. (19) is

reduced when p is inside the gap. This explains the increase of G(B)/G(0) in the fiO~re.

G(l?)/G(0) is insensitive to AO for 12 ~ < AO <25 ~. From Eqs. (17) and (18), the increase

of AO enhances the impurity interaction matrix elements in Eq. (19) but suppresses the form
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factors (i. e., large momentum transfer) in Eqs. (17) and (18) at the same time, both outside

and inside the gap. For this reason, the enhancement is largely insensitive to Ao.

G(B) /G(0) is compared in Fig. 5 for symmetric and asymmetric doping of sample 1 for

~1 = 8.12 X 1011 cm-2. By changing from symmetric to asymmetric doping, G(B)/G(0)

remains the same inside the gap but is increased outside the gap- Here, AG/G is very

small as already discussed regarding Fig. 3 (b). The increased G(B) /G(0) outside the gap

for asymmetric doping can be explained in the following way. l’T Under a large 1?, the wave

functions at the Fermi points become separated into either one of QW’S resembling two

-parallel resistors with individual resistance G and combined resistance Ro/2 for symmetric

doping. For asymmetric doping, the resistance of the channels becomes & + AR, yielding

a total resistance (M – AR2) /2& < &/2. This implies that the asymmetric doping

with AR # O has the smaller total resistance or the larger total conductance compared to

that in the symmetric doping. Namely, more current flows through the channel with fewer

impurities and a higher conductance, increasing the total conductance. However, at B = O

and inside the gap, the conductance depends only on Cl + Cz (which equals 1), yielding the

same enhancement inside the gap for symmetric and asymmetric doping.

We show in F’ig. 6 the dependence of G(B)/G(0) on the electron density nl~ for sample 1

assuming that the number of the impurities inside the effective width of the wires equals that

of the electrons:

nl~ is decreased

region is shifted

nlD = LZnI where L. is the confinement width in the x dh-ection. When

from 6.5 x 105 cm-l to 3.5 x 105 cm-1, the onset of the gap-enhancement

from B = 4.2 T to B = 1.87’ due to the reduction of ~. The visible

reduction of G(l?)/G(0) inside the gap for the lower density nl~ = 3.5 x 105 cm-l is a

result of a large overlap between the wave functions of the two Fermi points due to the fact

that the degree of the separation of the wave functions into the two Q W’s are smaller at

low fields. In addition, the dispersion around the gap edges becomes flatter at low fields,

increasing the density-of-states there and relatively sharpening the dlp of G(13) /G(0) at the

gap edges.
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The quantities G(13)/G(0) and AG/G are compared for samples 1 and 2 in Fig. 7. The

gap in (a) is much larger for sample 2 (with a thinner center barrier) due to greater electron

tunneling. Also, the wave functions at the two Fermi points inside the gap have much larger

overlap with the impurities, leadlng to the reduction of G{ B)/G(O) inside the gap. Increased

electron tunneling diminishes AG/G outside the gap in (b) for n~ = 8.12 x 1010 cm-2. This

reduction is caused by the enhanced damping arising from larger wave function overlap with

the impurities.

In Fig. 8, we present G(B) /G(0) for sample 1 for two cases where the impurities lie (1)

at all four interfaces and (2) only at the two outer interfaces. The total number of impurities

is the same for each case. For the case with the two impurity sheets at the outer interfaces,

G(B)/G(0) is large inside the gap compared with the other case with two additional impurity

sheets. ~nis is due to the enhanced impurity interaction in Eq. (19) at the center barrier.

In Fig. 9, we exhibit G(l?)/G(0) for sample 1 with different positions of the impurity

sheets in the center barrier. When the two impurity sheets are moved inward symmetrically

by 5 ~ from the interfaces, the enhancement G(13)/G(0) decreases significantly inside the

gap but increases only by a small amount outside the gap. Because the eigenstates of the

upper branch are independent of k and anti-symmetric at B = O, the wave functions have

on] y a small amplitude at the impurity sites near the center of the middle barrier. As a

result, G(0) is greatly increased when the two impurity sheets are pushed towards the center

of the middle barrier. On the other hand, this anti-symmetry is absent at high fields when

~ lies within the gap. Consequently, G(l?)/G(0) is reduced inside the gap mainly due to the

large value of G(0).

The enhancement G{ B)/G(O) is displayed in Fig. 10 for Gai4s/AJo.3Gao.7As DQWS at

T = 4 K for another set of parameters which simulates the scattering of electrons by

interface roughness.2 The parameters are L= = 80 ~, LB = 40 ~, and nlD = 6.5 x 105 cm– 1.

AO = 15 ~ is the correlation length, and the total equivalent density of interface roughness is

given by nI = l/nA~ = 14.16 x 1012 cnz-2 with Cl = (2’2= C3 = Cl = 0-25. Furthermore, we
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assume two-monolayer fluctuation A = 10 A, giving rise to the ground-sub-level fluctuation

which is the equivalent interaction strength UO= ~(2A/L.) = 20 meV. Here ~ = 80 meV

is the average energy of the tunnel-split ground sub-levels. For this sample, the anti-crossing

gap is large (i. e., 2 meV) due to the thin center barrier which increases the coupling between

the two quantum wires. The enhancement G(B) /G(0) is greatly suppressed inside the gap

in Fig. 10 compared with the results obtained for sample 1 (with a thicker center barrier).

because of the large overlap of the wave functions at the interfaces. We note that the

equivalent L?ois two orders of magnitude lower in this case. Consequently, the contribution

from A1jk,~~ term in Eq. (18) to AG/G is reduced by four orders of magnitude compared to

Figs. 7 and 8. This leads to a very small “AG/G, which implies that the Born approximation

is more accurate in thk particular case. We also note that nl~ in Fig. 10 is smaller than

that used by Vurgaftman and Meyer. 2 As is explained by Fig. 6, the increase of nl~ will

enhance G(13) /G(0) inside the gap.

IV. CONCLUSIONS AND REMARKS ‘

The effect of higher-order corrections to the Born approximation was studied for the giant

conductance enhancement in tunnel-coupled double quantum wires in a parallel magnetic

field. The relative correction was found to be as much as 22%. The effects of multiple

scattering and weak localization have been neglected. The effect of coulomb interaction on

the electron energy levels has also been neglected. Various effects have been found to play

a role in the conduct ante enhancement. These effects include the impurity sheet densities,

linear electron density, positions of the impurity sheets, symmetric and asymmetric impurity

distribution, and the center barrier thickness. The higher-order corrections consist of two-

step back-scattering processes through the virtual intermediate states near the gap edges.

These processes increase the overlap of the wave functions at the two Fermi points with the

impurities inside the anti-crossing gap and reduce the conductance enhancement compared

to the Born approximation. The magnitude of the damping of the the intermediate states
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near the gap edges has been shown to affect significantly the relative higher-order correction

to the Born approximation.

We have also examined the effect of the interface roughness scattering on the conductance

enhancement for strongly-coupled wires. A much smaller conductance enhancement was

obtained for a sample with a thinner center barrier. Higher-order corrections to the Born

approximation were found to be negligible for this case. The sample used in our calculation

has a much smaller linear electron density compared with that studied by Vurgaftman

and Meyer.2 The anti-crossing gap of their sample occurs at much higher magnetic fields.

Although a direct comparison was not made, our results indicate that the enhancement is

much larger than that obtained by these authors. It is diflicult to compare the enhancement

mechanisms considered in our paper and in Ref. 2, because the latter relies totally on a

numerical method.
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FIGURES

FIG. 1. Energy dispersion curves Z2~(k) with j = 1, 2at B=4.8Tfor q=0.3, L, =80 &

LB = 50 ~ and a schematic illustration of the two-step back scattering processes. The dashed

horizontal line represents the chemical potential # at T = 4 K for nl~ = 6.5 x 105 cm–l. The

dash-dottwl curves are the energy levels in the absence of electron tunneling between the two wires.

The solid arrows indicate higher-order scattering processes through the intermediate states (open

circles) near the anti-crossing gap edges between the initial and final states (filled circles) when ~

lies inside the gap. The broken arrows represent the back scattering processes within the quantum

wires when p is below the gap.

FIG. 2. (a) Second order. (left) and fourth order (right) irreducible scattering part. (b) These

third order diagrams are not important for the reason described in the text.

FIG. 3. (a) G{ B)/G(O) and (b) AG/G of sample 1 as a function of B. In (a),

G~~n(B)/G~an(0) (dashed curve) and G(B)/G(0) are shown for nl = 8.12 x 1011 cm–2

(dash-dotted curve) and nI = 8.12 x 1010 cm-2 (solid curve). The black dots in the inset in-

dicate the impurities at the outer interfaces of the two quantum wells with Cl = C2 = 0.5. In (b),

AG/G are presented for nl = 8.12 x 1011 cm-2 (dashed curve) and nr = 8.12 x 1010 cm-2 (solid

curve), respectively. 2’ = 4 K, nl~ = 6.5 x 105 cm–l are assumed. The symbols D1, Dz, and D3

indicate the dips of AG/G at the edges of the gap and around the middle of the gap.

FIG. 4. G(B)/G(0) and G~@”(B)/G~-(0) of sample 1 at T = 4 K as a function of B for

two different positions of symmetric &–impurity sheets with Cl = Cz = G.5. The impurity sheets

are at the outer interfaces (dash-dotted curve) and 15 ~ away from the outer interfaces inside the

barriers (solid and dashed curves) as illustrated in the insets. Here, nI = 8.12 x 1011 cm-2 and

nlD = 6.5 x 105 cm–l.



FIG. 5. G(B)/G(0) and GBa”(B)/G~~n(0) of sample 1 at T = 4 K as a function of B for

symmetric and asymmetric impurity distributions illustrated in the insets. The two impurity sheets

are at the outer interfaces of the double quantum wells. Here, Cl = Cz = 0.5 for the symmetric

impurity distribution (dash-dotted curve) and Cl = 0.6 and C2 = 0.4 for the asymmetric case

(dashed and solid curves). The one-dimensional impurity density equals nl~ = 6.5 x 105 cm-l

lnll ~–2.with nl = 8-12 x LW

FIG. 6. G{ B)/G(O) of sample 1 as a function of B, for nlD = 6.5 x 105 cm-l (dash-dotted

curve) and nm =- 3.5 x 105 cm– 1 (solid curve) at T = 4 K. The dashed curve represents

GB-(B)/GBan(0) for nlD = 3.5 x 105 cm- 1. The electron density is the same as that of impur-

ities. The two impurity sheets are 15 ~ away from the outer interfaces of the double quantum

wells inside the barriers with Cl = Cz = 0.5.

FIG. 7. (a) G(B)/G(0) and (b) AG/G of sample 1 and sample 2 as a function of B for T = 4 K,

nlD = 6.5 x 10s cm–l and nI = 8.12 x 1010 cm–2. In (a), G(B)/G(0) of sample 1 (dash-dottd

curve) is compared with G ‘Orn(B)/GBOrn(0) (dashed curve) and G(B)/G(0) (solid curve) of sample

2. In (b), AG/G is displayed for sample 1 (dash-dotted curve) and sample 2 (solid curve). In (a)

and (b), the two impurity sheets are at the outer interfaces of the double quantum wells with

Cl = C2 = 0.5 as illustrated in the insets of (a). The symbols DI, Dz, and D3 in (b) indicate the

dips of AG/G at the edges of the gap and around the middle of the gap.

FIG. 8. G(B)/G(0) and GBwm(B)/GB@n(0) of sample 1 at T = 4 K for nlD = 6.5 x 10s cm–l

and nz = 8.12x 1010cm–2 as a fmction of B. The insets show two different impurity configurations,

namely Cl = C2 = 0.5 with the impurities at the outer interfaces only (dsah-dotted curve) and

Cl = Cz = C3 = CA = 0.25 with the impurities at the four interfaces (dashed and solid curves).



FIG. 9. G(13)/G(0) and G~wm(B)/G~wn(0) of sample 1 as a function of B at T = 4 K for

nl~ = 6.5 x 105 cm– 1 and nl = 8.12 x 1010cm–2 for two different impurity positions in the center

barrier. The impurities are at the interfaces (dash-dottd curve) and 5 ~ away from the interfaces

inside the barrier (dashed and solid curves) as illustrate in the insets.

FIG. 10. G{ B)/G(O) as a function of B at T = 4 K with an equal (i. e.,

Cl = Cz = C’S = CA = 0.25) impurity distribution (or interface roughness) at all four inter-

faces as illustrated in the inset. The parameters used are AO = 15 ~, UO= 20 meV, LB = 40 ~,

nl = 1.416 x 1013 cm-2, L. = 80 ~, and nl~ = 6.5 x 105 cm-l. Here, GB@n(B)/GBan(0) (dashed

curve) and G( B)/G(O) (solid curve) are nearly equal.
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