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Abstract

The effect of higher-order corrections to the Born approximation is studied
for the previously obtained gianf conductance enhancement in tunnel-coupled
double quantum wires in a parallel magnetic field. The relative correction
is found to be significant and depends on various effects such as the mag-
netic field, electron and impurity densities, impurity positions, symmetric

and asymmetric doping profiles, and center barrier thickness.
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I. INTRODUCTION

In a recent letter, one of the authors proposed a giant low-temperature magneto-
conductance mechanism in a closely tunnel-coupled double quantum wire structure.! The
impurity-limited conductance was shown to be enhanced abruptly by as much as two or-
ders of magnitude within a narrow range of an applied parallel magnetic field. The double
quantum wires which are stacked in the z direction and extended along the y direction are
created by adding a lateral confinement to GaAs double quantum wells (QW’s) in the z
direction. The lateral confinement is achieved by depositing split metal gates on the front
and back of the double QW’s (DQWs) of widths L., which deplete the electrons under-
neath the gates when a negative voltage is applied. The thickness Lg of the: AlGaAs center
barrier between the QW’s is small (e.g., 15 ~ 40 A), allowing the electro'né to tunnel in
the z direction. In this paper, we consider an extreme size quantum limit where only the
ground sub-level from the z-confinement and the ground tunnel-split doublet from the z-
confinement affe relevant. The magnetic field B = (B, 0, 0) is in the z direction. By using
a two-dimensional finite-difference wave-packet technique, a recent numerical calculation? of
coupled double wires with somewhat different numerical values for the QW depths, widths
and the barrier widths yielded a much smaller conductance enhancement than predicted by
the Born approximation,! making it necessary to examine the effects of higher-order correc-
tions to the Born approximation which yielded the large enhancement. While we find that
the corrections amount to as much as about 22% for short range impurity scattering, the

conductance enhancement is still two to three orders of magnitude as predicted by Lyo.!

The basic idea of the conductance enhancement can be understood from the energy
dispersion curves of symmetric‘ double quantum wires at 4.8 7" in Fig. 1. Here, the dash-
dotted curves indicate the energy parabolas of the two QW's in the absence of tunneling,
displaced relative to each other by the magnetic field in an amount of Ak = d/¢? where d is

the well to well separation and £ = (h/eB)'/? is the magnetic length. The degeneracy at the

crossing point is removed due to tunneling, opening an anti-crossing gap which separates




the upper and lower branches shown by the solid curves. The gap moves up in energy as the
diamagnetic energy increases with increasing B and crosses the chemical potential pu.! The
chémical potential is shown by a horizontal dashed line in Fig. 1. The Born approximation
for the momentum dissipation corresponds to the direct back scattering between the initial
and final Fermi points k; and k; shown by the filled circles. In this case, the confinement
wave functions at the two Fermi points are separated and localized in QW1 and QW2 with
a very small overlap, yielding a very small scattering rate. In contrast, when p is above the
gap, we have two pairs of Fermi points such that the wave functions of the pairs have large
“amplitudes in QW1 and QW2, respectively, yielding a large scattering rate. Also, when
is below the gap at a higher field, back scattering occurs inside the same QW as illustrated
by the broken arrows in Fig. 1. Therefore, the scattering rate is relatively large when g lies
outside the gap. As a result, a giant cénductance enhancement is obtained in the range of

the magnetic field where p is inside the gap.

The Born approximation may, however, underestimate tﬁe scattering rate When i is
inside the gap and overestimate the conductance enhancement. There are higher-order pro-
cesses which give significant contributions to back scattering. These processes are illustrated
in Fig. 1 by solid arrows. In these two-step processes, scattering occurs through the inter-
mediate virtual states near the gap edges (i.e., near k = 0) shown by the open circles. These
intermediate states have large amplitudes in both QW’s, providing a significant simultane-
ous overlap with the initial and final wave functions at k; and ky. In this paper, we study

the effect of these higher-order contributions.

The organization of this paper is as follows. In Section II, we present the formalism
beyond the Born approximation for the conductance of the electrons in the double quantum
wires ‘under a parallel magnetic field. Numerical results and discussions are presented in Seé.
III for the relative corrections to the conductance enhancement introduced by the higher-
order corrections as a function of magnetic field. The paper is concluded in Sec. IV with

some brief remarks.




II. FORMALISM

Using the Landau gauge for the vector potential A = (0, —Bz, 0), the Hamiltonian of
the system is given by H = H, + H, with
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where m?(z) is the position-dependent effective mass of electrons in the z-direction, which
equals mw = 0.0665m, inside the GaAs wells and mp = (0.0665 + 0.0831)mg inside the
Al,Gay_yAs barriers with 7 being the alloy composition index of the ternary barrier materialv
my is the free electron mass, Vpow(z) = 0.57 x 1.427n (eV) in the barrier region and
zero inside the well, and V. (x) is the lateral confinement potential of the quantum wires.
Moreover, k in Eq. (1) is the electron wave vector along the wires. For the Hamiltonian in

Egs. (1) and (2), the electron wave functions can be written as

<k >= jL— do(®) expliky) Pinl2) | 3)

where the electrons are assumed to be in the lowest energy eigen-state ¢o(x), and the index
j = 1, 2 stands for the lower and upper tunnel-split branches in the z direction. The electron

energy is given by
& = Eg + E5(K) (4)

where E7 (k) is determined by Hopi(z) = E%(k)(z), and EF is the ground level given by
Hopo(x) = EZdo(z). As seen from the last term in Eq. (1), the effect of B is to displace the
origins of the transverse crystal momenta k in the wire direction in the two quantum wells
relative to each other by Ak = d/¢?. Here, d = L, + Lp is the center-to-center distance
between QW’s. The energy dispersion curves E%(k) are displayed in Fig. 1 for n = 0.3,
L,=80 A, Lp=50A4, and B=48T.




The conductance is given by

G(B) —% S vk [=F(Ex)) gk s | )
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where vj, = h“ldEj (k)/dk, gjx = vjkTjk, and Tj is the relaxation time. The factor of 2 re-
sults from the spin summation. In Eq. (5), f'(€;c) is the first derivative of the Fermi function.
‘The quantity g;x represents the linear deviation from the equilibrium Fermi distribution and

satisfies the Boltzmann equation:
Vik — 4 Z (g]k gmp )k mp U(Sjk mp) =0 y (6)

where Lk mp = Ifk mp T ALjkmp is the irreducible scattering part shoWn in Fig. 2 (a) for
the ladder approximation in the diagrammatic expansion of the current-current correlation
function.® The first term I(k 'mp»> TEPTEsented by a rung, is the Born approximation and is the
impurity-averaged scattering strength times the total number of impurities N; (see Eq. (9))
while the second term is the higher-order single-impurity correction. Although this term is
of higher order in the scattering potential than the Born term, it occurs without a small
direct overlap between the initial and final states in the gap. Insﬁead, the final and initial
Sta’ces are mediated through the intermediate states which have large overlap with both
states as discussed in Sec. I and as seen below in Eq. (12). Hence, we need not consider
the third-order contributions shown in Fig. 2 (b) which include a direct overlap between the

initial and final states. The conductance in Eq. (5) yields

GB) =g, | G

where g is the sum of gji over all the Fermi points. An exact solution for g was obtained in
Ref. 1 and is given by replacing V2(k, p) in Egs. (5)-(7) of Ref. 1 with Z;x,,- The relative

correction to the Born conductance G®*™(B) due to higher-order scattering AZjy mp is

AG  GE(B)— G(B)
CRETT:) ' ®)

The impurity interaction matrix in Eq. (6) is

5




2

10, =Ny [ ERPE [l ©

where R, is the position of an individual impurity atom and P(R,) is the probability density
distribution function of the impurity atoms in the system with [ d®R, P(R,) = 1. The

matrix element in Eq. (9) is given by

Wim = - [ FUTE ) G3(#) @0 lip — K] YW, (10)

where U™ (7 — R,) is the interaction potential between the electron at 7 and the impurity

atom at R,. The higher-order scattering part in Eq. (6) is given by |
, - 2
AIjk,ls - NI / dsRA P(R/\) lTjI\k,fs(gjk)l ’ ' (11)

where T, ,,(£) includes only the principal part:

A A A (E,' - gmp)
: = . . 2
T]k,és(g) mzm u]k,mp ump,ls [g . gmp]g + {Fmp(g)P (1 ) .
Here, I';p(€) is the energy-dependent damping:
: 35 5 A2
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I11. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present numerical results for the B-dependent conductance enhance-
ment. Several different structures of double quantum wires as well as doping configurations
are studied to bring out salient features of the results. We assume that the impurities are

distributed uniformly on se_veral 5—doping sheets perpendicular to the z direction:*
P(Zy) =[C16(Zx—21) + C2 8(Zx — 29) +-- ] /S, (14)

where z; is the impurity sheet position, S is the area of the impurity sheet and C; is the
fractional distribution with C; + Cy + --- = 1. Mostly, we will study a binary distribution
(i.e., Cy + Cy = 1) for various positions of the impurity sheets. Next, we assume that the

short-range screened electron-impurity interaction takes a Gaussian form®
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— R, 12
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0

where the interaction strength is Uy and Ay measures the interaction range. Finally, we
assume that the lateral confinement of the quantum wires takes a parabolic potential®

Vi(x) = mw22?/2, yielding

‘ o 1/2 1 |
_[(a\" 1 o9 9 _
do(z) = (ﬁ) exp( 5 & ) (16)
with o = /mw{2, /h. The interaction matrices in Eqs. (9) and (11) are then explicitly given
by

zfusa%[ exp [-5(s = k)W] So Wi,
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X {mzp €Xp (—%{(p — k)2 + (S —p)2]Ag) | [8 . g'r(ni];-f'ﬁzv)np(g)] ij ,mp Wftp,ls } s (18)

where n; = N;/S is the total two-dimensional impurity density of the system, and the

impurity interaction integral is given by

Jk mp / dz Yii(2)hmp(2) exp [ (z - Zﬁ)2] - (19)

| In the following numerical calculations, we consider two samples. Sample 1 is the sjfh—
metric Aly3Gap7As/GaAs DQWs with 280 meV barrier heights, L, = 80 A well widths,
and 7§, = 265 meV. The effective mass of electrons is mw = 0.067mg (mp = 0.073my)
in the wells (barriers). The center barrier thickness is Ly = 60 A, and the tunneling gap
at B = 0 is 0.8 meV. The impurity interaction strength is Uy = 1.26 eV and the impurity
interaction range is Ag = 12 A. Sample 2 has the same parameters as those of sample 1

except that the center barrier thickness is Lg = 50 A and the tunneling gap at B = 0
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is 1.5 meV. The calculations are performed at T' = 4 K. Other parameters used in the

calculation will be given in the corresponding figure captions.

In Fig. 3(a), we compare G(B)/G(0) for sample 1. Note that while G(B)/G(0) is inde-
pendent of n; in-the Born approximation, higher-order contributions depend on n; throﬁgh
the energy-dependent damping term in Eq. (13). The Born enhanéement is shown in (a) by
the dashed curve. A giant enhancement of the conductance is obtained when yu lies inside
the anti-crossing gap in the range of the field between 4.2 T and 5.2 T. The effect of the
- higher-order correction in Fig. 3(a) can be as much as 22% as seen from Fig. 3(b). It is in-

teresting to note that the effect of the higher-order correction is smaller for larger ny in Fig.

3(b). This is due to the fact that back scattering through the intermediate states becomes .- -

" suppressed, when the damping I'y,,(€;) o< ny in the denominator of Eq. (12) becomes large.
From Fig. 3(b) we find that AG/G is decreased by more than an order of magnitude when
n; is increased from n; = 8.12 x 10 em™2 to n; = 8.12 x 10! cm™2. For the lower n; in
(b), the dips D; and D, at the edges of the gap come from the high density-of-states, which .
enhances Fmp((;:jk) and suppresses AG/G. The dip D3 around the middle of the gap is due to
the cancellation between the positive and negative contributions to the. numerator £ — &, in
Eq. (12) from the intermediate state.s near both edges of the gap. Small fluctuations in the
curves in Fig. (3) are due to the numerical fluctuations arising from using a finite number

of k points in the numerical evaluation.

In Fig. 4, we compare G(B)/G(0) for sample 1 with different positions of §—doping
sheets in the two outer barrier layers. When the two impurity sheets are moved by 15 A
from the outer interfaces of QW’s into the barriers as shown in the inset, the enhancement
G(B)/G(0) is increased significantly inside the gap (i.e., 4.2 T < B < 5.2 T') although there
is almost no change outside the gap. In this case, the impurity interaction in Eq. (19) is
reduced when p is inside the gap. This explains the increase of G(B)/G(0) in the figure.
G(B)/G(0) is insensitive to Ag for 12 A < Ao <25 A. From Egs. (17) and (18), the increase

of Ag enhances the impurity interaction matrix elements in Eq. (19) but suppresses the form




factors (i.e., large momentum transfer) in Egs. (17) and (18) at the same time, both outside

and inside the gap. For this reason, the enhancement is largely insensitive to A,.

G(B)/G(0) is compared in Flg 5 for symmetric and asymmetric doping of sample 1 for
n; = 8.12 x 10" ¢m™2. By changing from symmetric to asymmetric doping, G(B)/G(0)
remains the same inside the gap but is increased outside the gap. Here, AG/G is very
small as already discussed regarding Fig. 3 (b). The increased G(B)/G(0) outside the gap

for asymmetric doping can be explained in the following way.l"” Under a large B, the wave

.. functions at the Fermi points become separated into either one of QW’s resembling two

-parallel resistors with individual resistance Ry and combined resistance R/2 for symmetric
doping. For asymmetric doping, the resistance of the channels becomes Ry + AR, yielding
a total resistance (R — AR?)/2Ry < Rp/2. This implies that the asymmetric doping
with AR # 0 has the smaller total resistance or the larger total conductance compared to
that in the symmetric doping. Namely, more current flows through the channel with fewer
impurities and a higher conductance, increasing the total conductance. However, é.t B=20
and inside the éap, the conductance depends only-on C; + C» (which equals 1), yielding the

same enhancement inside the gap for symmetric and asymmetric doping.

We show in Fig. 6 the dependence of G(B)/G(0) on the electron density n,p for sample 1
assuming that the number of the impurities inside the effective width of the wires equals that
of the electrons: nip = L,n; where L, is the confinement width in the z direction. When
nyp is decreased from 6.5 x 10° cm™? to 3.5 x 10° cm™!, the onset of the gap-enhancement
region is shifted from B = 4.2 T to B = 1.8 T due to the reduction of x. The visible
reduction of G(B)/G(0) inside the gap for the lower density nip = 35x 10° cm™! is a
result of a large overlap between the wave functions of the two Fermi points due to the fact
that the degree of the separation of the wave functions into the two QW’s are smaller at
low fields. In addition, the dispersion around the gap edges becdmes flatter at low fields,

increasing the density-of-states there and relatively sharpening the dip of G(B)/G(0) at the

gap edges.




The quantities G(B)/G(0) and AG/G are compared for samples 1 and 2 in Fig. 7. The
gap in (a) is much larger for sample 2 (with a thinner center barrier) due to greater electron
tunneling. Also, the wave functions at the two Fermi points inside the gap have much larger
overlap with the impurities, leading to the reduction of G(B)/G(0) inside the gap. Increased
electron tunneling diminishes AG /G outside the gap in (b) for n; = 8.12 x 10'° ¢m™2. This
reduction is caused by the enhanced damping arising from larger wave function overlap with -

the impurities.

In Fig. 8, v&}e present G(B)/G(0) for sample 1 for two cases where the impurities lie (1)
at all four interfaces and (2) only at the two outer interfaces. The total number of impurities
is the same for each case. For the case with the two impurity sheets at the outer interfaces,
G(B)/G(0) is large inside the gap compared with the other case with two additional impurity

sheets. This is due to the enhanced impurity interaction in Eq. (19) at the center barrier.

In Fig. 9, we exhibit G(B)/G(0) for sample 1 with different positions of the impurity
sheets in the center barrier. When the two impurity sheets are moved inward symmetrically
by 5 A frofn the interfaces, the enhancement G(B)/G(0) decreases significantly inside the
gap but increases only by a small amount outside the gap. Because the eigenstates of the
upper branch are independent of k£ and anti-symmetric at B = 0, the wave functions have
only a small amplitude at the impurity sites near the center of the middle barrier. As a
result, G(0) is greatly increased when the two impurity sheets are pushed towards the center
of the middle barrier. On the other hand, this anti-symmetry is absent at high fields when

1 lies within the gap. Consequently, G(B)/G(0) is reduced inside the gap mainly due to the
large value of G(0).

The enhancement G(B)/G(0) is displayed in Fig. 10 for GaAs/Aly3Gay7As DQWs at
T = 4 K for another set of parameters which simulates the scattering of electrons by
interface roughness.? The parameters are L, = 80 A, Lg = 40 ﬁ, and nip = 6.5 x 10° em~1.
Ag = 15 A is the correlation length, and the total equivalent density of interface roughness is

given by n; = 1/7A2 = 14.16 x 10'2 cm ™2 with C; = C, = C; = Cy = 0.25. Furthermore, we
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assume two-monolayer fluctuation A = 10 A, giving rise to the ground-sub-level fluctuation
which is the equivalent interaction strength Up = E(2A/L,) = 20 meV. Here E = 80 meV
is the average energy of the tunnel-split ground sub-levels. For this sample, the anti-crossing
gap is large (i.e., 2 meV) due to the thin center barrier which increases the coupling between
the two quantum wires. The enhancement G(B)/G(0) is greatly suppressed inside the gap
in Fig. 10 compared with the results obtained for sample 1 (with a thicker center barrier).A
because of the large overlap of the wave functions at the interfaces. We note that the
equivalent Up is two orders of magnitude lower in this case. Consequently, the contribution
from Al es term in Eq. (18) to AG/G is reduced by four orders of magnitude compared to
Figs. 7 ar;d 8. This leads to a very small AG/G, which implies that the Born apprbximation
is more accurate in this particular case. We also note that n1p in Fig. 10 is smaller than
that used by Vurgaftman and Meyer.? As is explained by Fig. 6, the increase of n;p will
enhance G(B)/G(0) inside the gap. 4

IV. CONCLUSIONS AND REMARKS

The effect of higher-order corrections to the Born approximation was studied for the giant
conductance enhancement in tunnel-coupled double quantum wires in a parallel magnetic
field. The relative correction was found to be as rhuch as 22%. The effects of multiple
scattering and weak localization have been neglected. The effect of coulomb interaction on
the electron energy levels has also been neglected. Various effects have been found to play
a role in the conductance enhancement. These effects include the impurity sheet densities,
linear electron density, positions of the impurity sheets, symmetric and asymmetric impurity

“distribution, and the center barrier thickness. The higher-order corrections consist of two-
step back-scattering processes through the virtual intermediate states near the gap edges.
These processes increase the overlap of the wave functions at the two Fermi points with the
impurities inside the anti-crossing gap and reduce the conductance enhancement compared

to the Born approximation. The magnitude of the damping of the the intermediate states
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near the gap edges has been shown to affect significantly the relative higher-order correction

to the Born approximation.

We have also examined the effect of the interface roughness scattering on the conductance
enhancerﬁent for strongly-coupled wires. A much smaller conductance enhancement was
vobtained for a sample with a thinner center barrier. Higher-order corrections to the Born
approximation were found to be negligible for this case. “The sample used in our calculatioﬁ
has a much smaller linear electron density compared with that studied by Vurgaftman
and Meyer.2 The é.ﬁti-crossing gap of their sample occurs at much higher magnetic fields.
Although a direct comparison was not made, our results indicate that the enhancement is
much larger than that-obtained by these authors. It is difficult to compare the enhancement
mechanisms considered in our paper and in Ref. 2, because the latter relies totally on a

numerical method.
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FIGURES

FIG. 1. Energy dispersion curves E7(k) with j =1, 2at B=4.8T for n = 0.3, L; = 80 A,
Lp = 50 A and a schematic illustration of the two-step back scattering processes. The da§hed
horizontal line represents the chemical potential g at T = 4 K for nip = 6.5 x 10° em™!. The
dash-dotted curves are the energy levels in the absence of electron tunneling between the two wires.
The solid arrows indicate higher-order scattering processes through the intermediate states (open
circles) near the anti-crossing gap edges between the initial and final states (filled circles) when p
lies inside the gap. The broken arrows represent the bacl; scattering processes within the quantum

wires when g is below the gap.

FIG. 2. (a) Second order (left) and fourth order (right) irreducible scattering part. (b) These

third order diagrams are not important for the reason described in the text.

FIG. 3. (a) G(B)/G(0) and (b) AG/G of sample 1 as a function of B. In (a),
GBo™(B)/GB™(0) (dashed curve) and G(B)/G{(0) are shown for n;y = 8.12 x 101 em™2
(dash-dotted curve) and ny = 8.12 x 10! em™2 (solid curve). The black dots in the inset in-
dicate the impurities at the outer interfaces of the two quantum wells with C; = Cy = 0.5. In (b),
AG/G are presented for ny = 8.12 x 10! cm‘é (dashed curve) and n; = 8.12 x 101% em=2 (solid
curve), respectively. T =4 K, nip = 6.5 X 10° em™! are assumed. The symbols D;, D3, and Ds

indicate the dips of AG/G at the edges of the gap and around the middle of the gap.

FIG. 4. G(B)/G(0) and GB°™(B)/GB°™(0) of sample 1 at T = 4 K as a function of B for |
two different positions of symmetric é—-impurity sheets with C; = Cs =-G.5. The impurity sheets
are at thé outer interfaces (dash-dotted curve) and 15 A away from the outer interfaces inside the
barriers (solid and dashed curves) as illustrated in the insets. Here, n;y = 8.12 x 10! em~2 and

nip = 6.5 x 10% em~1.




FIG. 5. G(B)/G(0) and GB™(B)/GB*™(0) of sample 1 at T = 4 K as a function of B for
‘symmetric and asymmetric impurity distributions illustrated in the insets. The two impurity sheets
are at the outer interfaces of the double quantum wells. Here, C; = Cy = 0.5 for the symmetric
impurity distribution (dash-dotted curve) and C; = 0.6 and Cz = 0.4 for the asymmetric case
(dashed and solid curves). The one-dimensional impurity density equals ny D. = 6.5 x 10° em™!

with ny = 8.12 x 10! em™2.

FIG. 6. G(B)/G(0) of sample 1 as a function of B for n;p = 6.5 x 10° em~! (dash-dotted
curve) and njp = 3.5 x 10° cm~! (solid curve) at T = 4 K. The dashed curve represents
GEBo™(B)/GB™(0) for nip = 3.5 x 10° em~!. The electron density is the same as that of impu-
rities. The two impurity sheets are 15 A aWay from the outer interfaces of the double quantum

wells inside the barriers with C; = Cy = 0.5.

FIG. 7. (a) G(B)/G(0) and (b) AG/G of sample 1 and sample 2 as a function of B for T =4 K,
n1p = 6.5 x 10% em™! and n; = 8.12 x 101° em~2. In (2), G(B)/G(0) of sample 1 (dash-dotted
curve) is compared with GB™(B)/GB™(0) (dashed curve) and G(B)/G(0) (solid curve) of sample

| 2. In (b), AG/G is displayed for sample 1 (dash-dotted curve) and sample 2 (solid curve). In (a)
and (b), the two impurity sheets are at the outer interfaces of the double quantum wells with
Cy ::.C'z' = 0.5 as illustraded in the insets of (a). The symbols Dy, Ds, and D3 in (b) indicate the

dips of AG/G at the edges of the gap and around the middle of the gap.

FIG. 8. G(B)/G(0) and GB’™(B)/GB*™(0) of sample 1 at T =4 K for n;p = 6.5 x 10° em™!
and ny = 8.12x10'% em~? as a function of B. The insets show two different impurity configurations,
namely C} = Cs = 0.5 with the impurities at the outer interfaces only (dsah-dotted curve) and

Cy = C2 = C3 = C4 = 0.25 with the impurities at the four interfaces (dashed and solid curves).



FIG. 9. G(B)/G(0) and GB™(B)/GB™(0) of sample 1 as a function of B at T = 4 K for
nip = 6.5 % 10° em~! and ny = 8.12 x 101° ¢m~2 for two different impurity positions in the center
barrier. The impurities are at the interfaces (dash-dotted curve) and 5 A away from the interfaces

inside the barrier (dashed and solid curves) as illustrated in the insets.

FIG. 10. G(B)/G(0) as a function of B at T = 4 K with an equal (ie,
Cy = Cy = C3 = C4 = 0.25) impurity distribution (or interface roughness) at all four inter-
faces as illustrated-in the inset. The parameters used are Ag = 15 A, Uy = 20 meV, Lg = 40 A,
n; =1.416x 10" em™2 L, = 80 4, and n,p = 6.5 x 10° em ™. Here, GB™(B)/GB*(0) (dashed

curve) and G(B)/G(0) (solid curve) are nearly equal.
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