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Elliptical vortices in shear: Hamiltonian moment
formulation and Melnikov analysis

Keith Ngan,® Steve Meacham,?and P. J. Morrison®

Abstract

The equations of motion for interacting, elliptical vortices in a background shear flow
are derived using a Hamiltonian moment formulation. The equations reduce to the 6th
order system of Melander et al. [J. Fluid Mech. 167, 95 (1986)] when a pair of vortices
is considered and shear is neglected. The equations for a pair of identical vortices are
analyzed with a number of methods, with particular emphasis on the basic interactions
and on the implications for vortex merger. The splitting distance between the stable and
unstable manifolds connecting the hyperbolic fixed points of the intercentroidal motion—the
separatrix splitting—is estimated with a Melnikov analysis. This analysis differs from the
standard time-periodic Melnikov analysis on two counts: (a) the “periodic” perturbation
arises from a second degree of freedom in the system which is not wholly independent of
the first degree of freedom, the intercentroidal motion; (b) this perturbation has a faster
time scale than the intercentroidal motion. The resulting Melnikov integral appears to be
exponentially small in the perturbation as the latter goes to zero. Numerical simulations,
notably Poincaré sections, provide a global view of the dynamics and indicate that there are
two modes of merger. The effect of the shear on chaotic motion and on chaotic scattering is

also discussed.
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I. INTRODUCTION

In this paper, we present a simple approximate model of the dynamics of N ellipti-
cal vortices in a two-dimensional shear flow. Our model has many similarities with other

reduced vortex models, most notably with the uniform elliptical vortex in shear of Kida

(1981)! and the interacting elliptical vortices of Melander et al. (1986)2 (hereafter MZS).

What distinguishes our model is the simultaneous presence of vortex-vortex and vortex-
shear interactions. These processes complement and compete with one another, resulting
in some extremely complex behavior. In deriving our model, we follow the procedure of
Flierl et al. (1995)% (hereafter FMM); we begin with a Hamiltonian description of the full
(infinite-dimensional) system and make approximations within this Hamiltonian framework
so as to obtain a reduced Hamiltonian description. In this way, the Hamiltonian structure
of the problem is preserved in a natural way.

Vortex-vortex and vortex-shear interactions may be found in many different contexts, but
they are especially common in geophysics. Nearly homogeneous potential vorticity eddies are
common in the atmosphere* and ocean,> ¢ and they are an important component of large-
scale atmosphere-ocean dynamics. The occlusion of large amplitude meanders on strong
atmospheric or oceanic jets often leads to the formation of relatively long-lived eddies. The
emergence of quasi-uniform vortices and their complex interaction with one another has
been recognized as an important feature of freely-decaying geostrophic (two-dimensional)

turbulence.”®

In our model, vortex merger is the combined result of vortex-vortex and vortex-shear
interactions. In the absence of any external flow, like-signed vortices will orbit around
one other when far apart, but merge when sufficiently close together.!°~12 When there is

background shear, it is possible for well-separated vortices to merge if they are oriented




appropriately. Furthermore, these two basic interactions can also interfere with one another:
the shear flow may sweep the vortices past one another before they can merge; or each vortex
may advect the other around itself, enabling the shear to separate them.

Vortex merger provides much of the physical motivation for this study, but we are not
concerned with vortex merger per se. We derive the equations of motion for our new model
and we attempt to elucidate some aspects of its rather complex behavior. Because of its
physical relevance, we have chosen vortex merger to be a unifying theme in our analysis; but
it is not the primary focus of this study. The analysis addresses: the relative importance of
the different physical processes; whether it is possible to make any predictions about chaotic
motion; and some interesting dynamical phenomena which are unrelated to vortex merger
(e.g. chaotic scattering).

Our model is obtained by generalizing that of MZS to include a background shear flow;
it is essentially a model of N interacting Kida-like vortices. Like MZS, we approximate the
vortices as elliptical patches of uniform vorticity and employ an expansion based on spatial
moments of the vorticity distribution. However, our derivation of the resulting Hamiltonian
system is considerably different. Instead of deriving the equations of motion by manipu-
lating the moments, we follow FMM and utilize methods from noncanonical Hamiltonian
dynamics.}3-14

As with MZS, this model is an approximate one. We assume that the vortices are small
and well-separated and that they remain elliptical for all time. The model is consistent as
long as the distance between vortex centers is larger than the vortex dimensions. It loses
its asymptotic consistency when the vortices are very close; deviations from ellipticity are
higher order corrections to the equations of motion. The model cannot accurately describe
the details of vortex merger because it assumes that the vortices always remain elliptical;

during a vortex merger event, the vortices deviate increasingly from ellipticity. Dritschel and

Legras (1991)!2 have shown that a higher order, non-Hamiltonian model (their “elliptical
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model with disturbances”) gives a better approximation to some of the deformations seen
during merger. A Hamiltonian moment method cannot capture these processes completely,
but in the absence of external strain, both the elliptical model and the model of MZS give
similar predictions for the onset of merger. Thus, despite its limitations, there is reason to
hope that the model considered in this paper should provide some insight into the interaction

of uniform vortices in shear.

Noncanonical methods have proven to be useful in several branches of continuum me-
chanics, notably geophysical fluid dynamics!®~!6 and magnetohydrodynamics.'”~!® The non-
canonical formalism readily lends itself to a systematic procedure for approximating the
equations of motion. A simple noncanonical representation of the Hamiltonian structure of
the general inviscid and nondiffusive fluid equations involves writing the equations of motion

in the form

0Z
a_t = {Z7 H}’ (1)

where Z(x,t) is the appropriate set of fluid variables (e.g. pu, p,...), and H[Z] is a Hamil-

tonian functional. In an Eulerian description, the noncanonical Poisson bracket, {, }, has

(roya=(z 3. 53] ) @

where F' and G are functionals, {, ) is an integration over the volume corresponding to the

the form

spatial variable x, and the functional derivative is defined by

§F|Z;67] = <5z, g-> . 3)

The bracket of (2) is a Lie algebra product for functionals, i.e. is bilinear, antisymmetric,
and satisfies the Jacobi identity, {F,{G, H}}+{G,{H, F}}+{H,{F,G}} = 0, provided the
“inner bracket” [, | is a Lie algebra product for functions. In the present context, the [, ]
corresponds to the horizontal Jacobian. Brackets of the form of (2) are called Lie-Poisson

brackets.




The Poisson bracket can be simplified in situations where we can confine our attention
to a special subset of all admissible functionals F' and G. Specifically, for functions, f and

g, of a finite set of linear functionals of Z, the Poisson bracket may be written as

xOf 0 :
{f»g}(z)=zecgk5£; a_j;a Jak7€=172>"'M7 (4)

where the 27 are the new “dynamical variables,” and the quantities c}® are the structure
constants of some Lie algebra. Repeated sum notation is used here (and henceforth). The
cosymplectic matrix, J7* = z‘czk, inherits the property of skew-symmetry and it automat-
ically guarantees Jacobi’s identity for the reduced bracket. Using (1) and (4) to obtain

equations of motion for the dynamical variables,

i x OH
= JJk 5? (5)

The main difficulty in applying the finite-dimensional noncanonical formalism is in de-
termining the cosymplectic matrix. In this work, we use a Hamiltonian reduction method,
similar to that of FMM, to re-express, exactly, the Poisson bracket for two-dimensional Euler
flow in terms of a reduced set of dynamical variables: the first and second order vorticity mo-
ments. The idea of reduction has a long pedigree dating to Jacobi and Poincaré.1%-2° Here,
reduction allows us to transform an infinite-dimensional system into a finite-dimensional
one. The Hamiltonian nature of the equations of motion is more explicit, and the derivation

somewhat simpler, than in MZS because of reduction and the noncanonical formalism.2!

In Sec. II, the cosymplectic matrix and the Hamiltonian are computed for a system of
N elliptical vortices in shear. We obtain a system of coupled first order ODE’s describing
the vortices’ quadratic moments and their centroidal motion. A system analogous to that of
MZS is obtained by transforming from moment variables to physical variables.

In Sec. III, we nondimensionalize the equations and provide a physical interpretation

of them. We isolate the physical processes present and assess their relative importance,
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restricting ourselves to a system of two vortices in order to facilitate the analysis. The
resulting 4th order, nonlinear system is still difficult to analyse, but considerable insight into
the model’s behavior may be gained by comparing it to some integrable models: (i) a pair
of isolated Kida vortices; (ii) the MZS model for N = 2; and (iii) a point vortex pair in
shear. Some features of the first two models have been mentioned already; the third model
is, for sufficiently strong strain, distinguished by the presence of a separatrix dividing closed
orbits (the vortices rotate around one another) from unbounded ones (the vortices separate).
Differences between the dynamics of our model and the integrable ones are a consequence
of the additional physical processes present in the former. Any of these three models could
be used as the basic state for an analysis; we have chosen the point vortex pair in shear
because its phase space geometry provides a useful conceptual framework. For the cases we
are interested in, closed concentric orbits fill the region from the origin (where the vortices
coincide) to the separatrix (see Fig. 1 and the Appendix); the fate of these orbits under a
perturbation is essential to vortex merger. The motion around the perturbed separatrix is
also of interest: for nonintegrable perturbations, the stable and unstable manifolds associated
with the hyperbolic fixed points no longer coincide,?? the separatrix splits apart and the
component manifolds intersect transversally, leading to chaotic motion and transport across
the (unperturbed) separatrix.23-2°

We compute an approximation to the separatrix splitting analytically by performing
a Melnikov analysis (Sec. IV). The Melnikov function forms part of an estimate of the
separation between the stable and unstable manifolds for a weakly perturbed dynamical
system; zeros of the Melnikov function are indicative of transverse intersections of the two
manifolds and thus chaotic motion. The problem considered here is not quite the same as
the standard Melnikov problem for two reasons: the perturbation expands the phase space,
and the perturbation has a time scale much shorter than that of the unperturbed motion.

The second of these suggests that the Melnikov integral will be exponentially small,?6 and




this is what we find.

In Sec. V, numerical simulations are presented. Poincaré sections are computed in order
to provide a global picture of the dynamics. Vortex merger for initial conditions inside and
outside the separatrix is described, the role of vortex-shear interactions being highlighted.
Chaotic motion around the separatrix is contrasted with that inside the separatrix and a
form of chaotic scattering is detected.

This paper concludes, in Sec. VI, with a brief discussion of the results.
II. HAMILTONIAN MOMENT FORMULATION

In this section, the equations of motion for N elliptical vortices in a background Kida
flow are derived following FMM. Using a Hamiltonian moment formulation in which the
quadratic Vérticity moments are the dynamical variables, FMM were able to derive the
equations of motion for the Kida vortex. Our work generalizes that of FMM by extending
the analysis to N interacting vortices. Briefly, our derivation proceeds by: (i) expressing the
Poisson bracket for the 2-D Euler equations in terms of the first and second order vorticity
moments; (ii) determining the cosymplectic matrix J7* from the bracket; (iii) computing the
Hamiltonian in terms of the moments; and (iv) obtaining the equations of motion from H

and Ji*k,
A. Poisson bracket

First, let us consider a two-dimensional Euler flow with a spatially and temporally vary-
ing vorticity distribution, g(x,t). We make the assumption that g approaches a uniform,
constant value, say w, sufficiently rapidly as |x| — co, and we set g(x,t) = w + ¢'(z, t).

The Poisson bracket for two-dimensional Euler flow is!*

[6F 6G
F.6}=[q [6—q,, 3?} dody, (6)




where F' and G are functionals of vorticity, §/6¢’ denotes a functional derivative, [a,b] =
azby — bzay is the two-dimensional Jacobian, and the constant background vorticity does
not appear. (The background vorticity will enter in the Hamiltonian by virtue of the dy-
namical role associated with the background flow.) We introduce a finite set of functionals
of the perturbation vorticity which we call moments, {a’[¢] : j = 0,...,K — 1}. For a

subset of functionals of ¢ depending only on ¢’ as functions of the moments, e.g. Fl¢'] =

f(a®ld), ..., a" D),

6F _ of b0
8¢ ~ Oai 6q
and (6) takes the form
_Of g , [8a7 Ga*
= ﬂ ik dg
=207 3k (7
where
, ba? Sa*
ik — U Dbl
7= [q [ = W} dedy. (8)

The success of this approach depends on whether we are able to approximate the Hamiltonian
of the system as a function of the moments, {a’}. This will in turn depend both on the nature

of the scalar field ¢’(z) and on our particular choice of moments.

Let us now move in the direction of spatial moments by introducing a finite (but as yet,
arbitrary) set of time-dependent disjoint areas {S;(t) : j =0,...,N — 1} and defining the

set of moments, {a’}, in terms of them by
@ = fq’ X ()X (2)x"2° dzdy, 9)

where r and s are nonnegative integers and r +s < 2 for 0 < k,l < N — 1. Here X;(z) =1

if # € S; and Xj(x) = 0 otherwise. The monomials z” and 2° may be associated with Xi(x)




and X;(x), respectively. Provided that ¢’ is such that we can choose the {S;} so that ¢ =0
on their boundaries, the Jacobians in the integrands of (8) are polynomials of at most second

degree. This ensures that J7* takes the form
Ji* = cFat. (10)

From the properties of the Jacobian, [, ], the constants ¢}* inherit the following properties:
(a) they are skew-symmetric, ¢} = —ci7; and (b) they satisfy Jacobi’s identity, ci*ck¢-+ckscli+
c®ci® = 0. The czk are therefore the structure constants of a Lie algebra and the bracket,
(7), is a Lie-Poisson bracket with cosymplectic matrix J. If the perturbation vorticity field

?

has the form of “clumps,” so that ¢’ is nonzero only on a set of compact, disjoint regions,
{D; : i=0,..., N—1}, then we may obtain a further simplification. Choosing the S; so that
each S; completely contains the corresponding D; but does not intersect any of the remaining
D’s, the moments in (9) are zero unless ¥ = [—the moments have compact support. Note
that because of the vorticity conserving property of the Euler equations, the moments are
simply constants for r = s = 0.

With these simplifications, we can think of our model as approximating the vorticity
distribution by a collection of elliptical patches of uniform vorticity, one patch being assigned
to each of the disjoint clumps in the original ¢’ distribution. More formally, there is a simple
correspondence between the instantaneous state of the moments and the configuration of a
collection of uniform elliptical patches. First order moments determine the positions of the
centroids, and second order moments define the aspect ratio and orientation of the equivalent
ellipses. Each vortex embodies an infinite number of degrees of freedom corresponding to
the shape of each region D; and the distribution of the vorticity within it. The moment
reduction, as we shall see, restricts this number to only two degrees of freedom per vortex,

one associated with the vortex centroid, and one with its ellipticity and orientation.

For the specific problem considered in this paper, we adopt the second perspective: N
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elliptical patches of uniform vorticity, ¢} (¢ = 0, ..., N—1), each with area, A;, and circulation,
I';. The steady uniform background vorticity is associated with a flow that combines both

background rotation and strain:
L oo, av, 1 2 o
U= w(@®+y) + 7elz” ~y), (11)
w and e being constants. This is the same background flow used in the Kida problem.

We now label the moments with a single suffix that combines information about both
the polynomial used to generate the moment and the vortex with which it is associated. (To
avoid unnecessary confusion, we lower the indices on the a’s.) After the reduction sketched
above, we find that there are six moments associated with each vortex. One is the circulation

of the vortex,
[ii=0G_3-3 = / gi dzdy; (12)
D;

two are the first moments of the vorticity,
a_j-3 = /D . gizdzdy  G_p 3= /D ' ¢’y dzdy; (13)

and the remaining three are second order moments,

A143i = /D _ g;'z? dzdy (14)

Qo4 = / i'zy dzdy

D;
~ _ 1,2
A3+3i = /D Y dzdy.

The i’s identify the vortices.

It is convenient to define functions 7; associated with the integrands of the @;:
Ties =T,  Mopsi =Y,  Tgys = Y (15)

m_1-3 =12, m_q_3; =Y, m_z_z = 1.
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The structure constants c}* can then be evaluated from the relations

[Mitsi, Matai] = 4Mays;, [M43i, Motai] = 2May3i, (16)
[Ma43i, Ma43i] = 2Miz s, [M_1-3;, M_p_3] = 1,
[M_1-3i, M1ys:] =0, [M_2_3i, Maya] =0,
and
[Mi_1-3i, Matai] = M_1-3, [Mi_1-3i, May3i] = 2M_o_3;, (17)
[M—2-3i, M14ai] = —2M_1_3;, [M_2_3i, Mar3i] = —M_z_3;.

(Any Jacobian with 7_3_3; as one of its arguments is clearly zero.)

B. Cosymplectic matrix

The cosymplectic matrix J7* is defined by

OF ., 8G
= —_— Jk —_—
{F,G} 5 I (18)
From (8), we see that
ik — / g} [, 7] X; Xedzdy. (19)

By construction, (19) is antisymmetric and guarantees that (18) satisfies Jacobi’s identity: an
existing Poisson bracket has been reduced using variables that constitute a Lie subalgebra.*
(Note that 6a@;/6q; = m;X;.)

Because of the factor of X;Xy in the preceding expression, moments of different vortices
do not couple together. It follows from the products (16)—(17) and the definitions of @, that

J is a direct sum over J;, the single-vortex cosymplectic matrices:
J = Ji. (20)

1=0
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For N = 2 vortices, J takes the block-diagonal form

J= (‘Z"%). (21)

Ordering the variables as (z; ... 2sy) where

(zl+6iaZ2+6i;z3+6iy24+6ia25+6i;z6+6i) = (0—3—31', a_1-2i, Q_2-2i, G143, A2+3i, a3+3i)>

J:-, a 6 x 6 matrix, has the following structure:

({00 0
=10 A G|, (22)
0 -CT B;
with
o 0 a-3-3;
A= (‘6—3—31' 0 ) ’ (23)
0 20143  4dagys;
B;= | —2G143i 0 20343; |, (24)
—4a2+3i  —20343i 0
and
o 0 -1-3i 20_9_3;
Ci= (“2a—1—3i —a_p-3i 0 ) ’ (25)

Before turning to the Hamiltonian, we first note that the system has some symmetries
that are independent of the form of the Hamiltonian. These symmetries are manifested in

Casimir invariants C, which are solutions of

% 0C
= Jik 22
0=J* == (26)

The Casimirs arise when the cosymplectic matrix is singular and correspond to constants of

the motion. There are infinitely many Casimirs for the 2-D Euler equations, the materially

conserved functionals of vorticity, but only 2N Casimirs for a system of N elliptical vortices
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in shear. Given the zeroes in the first column and row of J, the net circulation of each

vortex, d_s3_s;, is clearly a Casimir.

Change of coordinates

Since one of the coordinates in (22) is a Casimir, we can treat it as a constant parameter
and reduce the dimension of the submatrices J; by one. This leaves five remaining variables
per vortex, @_i-3;, A—2-3;, G143i, Q2+3i, and azy3;- The submatrices can themselves be
rendered block diagonal by using a transformation that replaces the second order moments

with second order moments about the vortex centroid. We set

A—j-3i = A—j-3; (27)
* *
z; = a—1—3i/ a_3-3i, v = a—2—3i/ a_3-3;
~ *2
A14+3i = Q143i — T; Q—3-3i, (28)

-~ %* %k
A243i = A243; — Z;Y; A-3-3i,

~ *2
a343i = A34+3i — Y; G-3-3i-

The variables (z},y;) are just the coordinates of the centroid of the ¢ th vortex. In the new
coordinates {a;}, we denote the cosymplectic matrix by J7*. After defining new functions

m;, the mixed products corresponding to (17) vanish when integrated over D; because

g — ) = N — ) = 0.
/Diq,(w ;) fDiqz(y ;)

The elements of the submatrix C; are thus identically zero and the new cosymplectic matrix

takes the form

=@ = (“gi%i). (29)

i=1

The block diagonal submatrices A;, B; are given by (23) and (24), the @’s being replaced

by a’s. A; is, to within a normalization factor, the canonical cosymplectic matrix for point
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vortex motion; B; is the cosymplectic matrix for a Kida vortex (cf. FMM). The block diagonal
form of J shows that, in this coordinate system, the vortices are not coupled through the

cosymplectic matrix. Coupling between the vortices arises through the Hamiltonian.

The existence of a second Casimir for each vortex now becomes apparent since (26) also

has the solution

i 2
C" = a143i0343i — Q53 (30)

For the particular case of uniform elliptical vortices, this is again related to the circulation

of an individual vortex:
I2A?
1672

i _

(31)

This is not true in the general case, however (cf. FMM).

C. Hamiltonian

We now seek an approximation to the Hamiltonian written wholly in terms of the a;.
For the 2-D Euler equations, the excess energy is an invariant quantity.?” For a system of
N uniform vortices in an unbounded domain with a background flow ¥ of uniform vorticity,

the excess energy is
1 N-1

=5 Z / (2\1:+Z W), de

where 1] is the streamfunction mduced by vortex i. For point vortex motion, the excess
energy is the Hamiltonian. With the ansatz that the excess energy is the Hamiltonian for

our system, we obtain

N-1

__1 / 2Uq, dzdy + / Wi dzdy+]§’ / Vg, dxdy} (32)
2 = z i Jo 7T ,

H=H,+ Hy+ Hs,




respectively. The first term in (32) corresponds to interactions of the background flow with
the vortices, the second to interactions of the vortices with themselves, and the third to

interactions of the vortices with one another. (The notation 5! stands for S35 ;.

The contribution to the streamfunction induced by a patch, D;, of vorticity, ¢, is
Yi(x) = /D q. G(z, z’) dz'dy’ (33)

where

G(m,w’)zglglnla:——w’l.

We now compute the three terms in (32). The first term can be written as

N-1 , 1 9 1 5
- A= 2w — d
H, ;} /Di q. [4 (w+e)z? + 1 (w—e)y ] zdy (34)

Nz_l{l (w+e) [ + azl“’”’] +lw—e [a + a2_2_3i”
=— = (w Q1430 = (w— ; X
pard 4 1434 a3 3 4 34-34 O3 3

So far we have not made any approximations. We now introduce two approximations
that allow us to estimate H, and Hj;. (a) We make the approximation that the vortices are
close to elliptical in shape with close to uniform vorticity. The existence of the circulation
Casimir then implies conservation of individual vortex area. A constant area ellipse can be
characterized by four parameters, for example, its aspect ratio, A (the ratio of the semi-major
and semi-minor axes), its orientation, ¢ (the angle between the fixed coordinate axes and
the rotating body frame), and the z and y centroids. These four parameters are uniquely
determined by the first and second order spatial moments of the ellipse. The centroid
coordinates have already been discussed; the second order moments are related to the aspect
ratio and orientation by

Fi A,;
47

a143 = (/\-i— ! cos® ¢; + A; sin? ¢i) (35)

a243i = (/\{ 1— )\i) sin ¢; cos ¢; Fiﬁi

15




1 IA;
A343; = ()‘i 'sin® ¢; + A cos? ¢i)

(b) Our second approximation is that the vortices remain well separated in the sense that
the vortex separations R;; and the length scales of the vortices, characterized by the length
of their semi-major axes, b;, satisfy

b;
€y = E < 1. (36)

To evaluate the term Hj, we only need the first approximation, that the vortices are nearly

elliptical. Using (33), H, can be written as

1N1

. Z q; / dmi/;)‘ dz;'G(z, ). (37)

Assuming that D; is an ellipse with aspect ratio A; this becomes

1 NZI Iy (1+,\)2
1=0 A"
and from (35),
H=—t 312 In
2T e

47
Q143 + @343;) =—— + 2] : (38)
=0 ' ' r A

iy
The final term, H3, may be written

1N1N1

Z > q,{q;-/D‘ dmi,/n dz;jln|z; -z |. (39)
i ]

=0 j=0
Letting @; = R; + &; where R; = (z},y}), we obtain
1 N-1 N- 1, y _ _ _ _
=Y Yy [ da [ dain| (Ri+ ) - (B +5)|.
=0 7F=0 t J

After dropping the tildes, and defining R;; = R; — R;,

1 N lN 1
H3=—— 'q:q;/ dw,/ dz; lnR?j
=0 ;=0
R,(a:,—-a:) Iwi—:z:~|2
l 1 J ) J .
+ n[ + R:?j + R?j
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We use the second approximation, (36), to expand the second logarithmic term and truncate
at second order in €;. The result is an expression involving only zeroth, first and second

order moments:

H=-L 55, TR + — | Tilarsa; + aassy) + = Ty(arsas + asss)
s 2 & Rz 2 j i) T 5 Lil01es: + a3y
— cos? 0:j(Tiary3; + Tjarya) — sin? 0:;(Tiazs; + Tjasts:) (40)
— sin 20;;(Tiag43; + Tjaysi)| ¢
where

(Rijcos By, Ry sin 6y;) = (z} — 3,95 — v} - (41)

Combining terms,

2

L, T;

-Mr—l

=0

a?, .. 2
{ w+e)ar+3i + (w—e)azyzi + (w+e) it R (w—-e) a’-—2—3z] (42)

I‘? 4m 9
-*-—7r {[ (@1+3i + a3+3i) T.A + ]}

1 N~1
+— ! [FiI‘j ln R,?] +

2r 35

2
—5 (0 cos 2635 — 23;; sin 29:'1')] )
J

i

where
aij = T (az43j — G1435)
Bij = Tiagys;.

Like the cosymplectic matrix, the Hamiltonian possesses several symmetries. There is a
decoupling between the first and second order moments. The Hamiltonian is invariant under
a change of vortex labels; the interaction energy of vortex ¢ with vortex j is, as it must be,

the same as that of vortex j with vortex i. A fact we shall use later is that the Hamiltonian
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may be decomposed into a part which depends only on global centroid information and a

part which depends only on the vortices’ relative displacement.
For N = 2 vortices, we let R = R;; = Rj; and 6 = 0;; = —(m — 6;). The Hamiltonian is
given by

H=-

|

[(w+e)a1+( —e)a3+(w+e)———+(w—e)a } (43)

-3[(w+e)a4+(w—e>ae+<w+e)%+(‘”‘8)%}

Fz F
——g—ln[(a1+a3) +2]—8—1n[(a4+a6)FA +2]
I 2

ar I‘oFllnR

R2 { cos 20 [To(ag — aq) + T'1(az — a1)] — 2sin 26 [[oas + Iag) H )

D. Equations of motion for q;

We now compute the equations of motion from (5) and (22)—(24), i.e. from

a =2a 0H + 4a OH
143 = 1+3i aa2+3i 2434 aa3+3i
a = —2a OH + 2a oH
2431 — 1+3:¢ 6a1+3,- 3431 aa3+3i
' 4qa il 2a oH
3431 2434 aa1+3i 3431 aa2+3i,
and
OH O0H
a_y-3i =0 — G_g-3; = —[} .
1-3: t 8(1_2_3,; 2-3i i aa_l_&:
The equations of motion for the quadratic moments are
N-1 .
. 121438 Fj Sin 201;]'
A143; = (44)
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2q,: _ NZ—I ' Fj COs 29,;]'

+azysi |—(w—e)—
a2+3i | —( ) (@11 +a3+3i)ﬁ%+2] = 7rR,2j

. 1 1
A2+43i = 5 w(@143i — G343:) + 3 e(a143i + a343:i)
N-1
+q; (@res = a3+:, J - Z '——Fj oo 39,5 (@143i + azy3i)
1
[(a14si +asa) i +21 ;= 27R}

N-1 :
. _ ’ a3+3z-Fj sin 20“'
a3+3i = Z - 5

; T R2,

7=0 (Y]

2q: : Nl f Fj Ccos 291'3'

+ag43i ((Wte€)+
+3i ( ) [(a1+3i + a3_|.3,;) F‘fLA,‘ + 2] =0 7I'Ri2j

After some simplification, the first order equations are

N-1

1 N
Z; = 2(w e)y; — 32_(:) 2Ru

sin 6;; (45)

N-
Z o R3 {(cu; + 0y3) sin 30;; + 2(By; + Bji) cos 365}

-=—(w+e)m +Z

cos §;;

o R”

1 N-
'f\— Z o R3 {—(ai; + i) cos 30;; + 2(8;; + B;i) sin 36;5} .

The equations (44) and (45) constitute a set of 5N coupled ODE’s. They are a closed
set even though they do not contain explicit evolution equations for R;; and 8;; because R;;

and 6;; may be determined from (41).

The equations can be simplified in the following way. Since the N quantities C* =
@143i0343i — G2 +3; are Casimirs, @143, az+43;, and az,3; are not all independent of one another.
This can be made explicit by employing a transformation of variables wherein the Casimirs

act as dependent variables, thereby leaving a set of only 4V independent equations of motion
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(N equations reduce to dC*/dt = 0). A further simplification may be had by noting that the
equations of motion do not depend on the global centroid position; one is left with a system
of 4N — 2 equations after appropriate linear combinations are taken. (Formally, this set is

generated by decoupling the global centroid from the Hamiltonian (42).)

E. Equations of motion in physical variables

By transforming to the more intuitive variables, (z}, yf, Ai, ¢:), a set of equations analo-

gous to those of MZS is obtained.

The equations for the evolution of (z}, y}) are (45). Using (35), we find that \; and ¢;

evolve according to

. N1 T T,
A=-X)' [ 25 8in 2(6;; — i) + essin 2¢i] (46)

1rR,2j

i =

w.l €

T+ X)? 21— \=RE " 2(6: — ¢1) — ecos 2¢,-} +

In the q'b,- equation, there is an apparent singularity when A; = 1. As noted by MZS, this
singularity arises from the fact that the orientation of a circular vortex is not well-defined.

MZS point out that one way to “desingularize” these equations is to introduce new variables

(61%) = (-;j—;i)i (M — 1)(cos 24, sin 265).

MZS further note that ((A; — 1)%%, 2¢;) is one set canonical variables for this problem. This
set was later used by Ide and Wiggins (1995)*2 in a study of the motion of a single elliptical
vortex in a time-dependent linear background flow; an alternative set is introduced in FMM.
Nevertheless, there is an essential singularity at R;; = 0 which cannot be removed by a
coordinate transformation. Following MZS we take R;; — 0 as being indicative of vortex
merger, but it should be noted that the model ceases to be consistent in this limit because

the assumption of well-separated vortices breaks down.
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F. Equations of motion for N =2

It is useful to present the equations of motion for N = 2 vortices in one place.

In terms of aspect ratios and orientations, the equations take the form:

A2 1— A2

Lo+ T4 {A()l; 2 sin2(6 — ¢o) + A X : sin2(0—¢1)} (47)
0 1

8m2R3

R= %eRsin% -

-_w e F0+F1
0—2 0s 20 + 5T R?

2

Lo+ 14 ;/\1 cos2(9—¢>1)}

8R4

2
{Aol 5 Ao cos 2(0 — ¢o) +A11
0

M =—=Xo { II‘-'EZ sin2(0 — ¢g) + esin 2¢0]

A==\ {£R§ sin2(0 — ¢1) + esin2¢1}

dAo _11+)\%{P1
T+ 7o) 21—,\3 TR

bo = cos 2(6 — ¢p) — ecos 2¢0} +

— cos 2(0 — ¢1)—60052¢1}

and the Hamiltonian is given by

—4mH = F()P]_ In R2 2 {Fz

14+ | or (E+N)?
,\0 +I'iln "
I'o+T

+——4—1 7R*(w + ecos 26)

oo [0+ 25%) + e(A5" = Ao) cos 260

A
+ 14 . {w(/\l + A7) +e(A7 ~ A1) cos 2¢1]

ol

= [Ao(,\o — A1) cos2(8 — o) + A1(A1 — AT1) cos 2(6 — ¢1)] :




III. BASIC ANALYSIS

In this section, we begin the analysis of our model. We use the formulation in aspect
ratio—orientation variables because physical processes are discerned more easily within it. We
will soon restrict ourselves to a system of two identical vortices. While more complicated
configurations will, or course, exhibit behavior which a symmetric vortex pair cannot, the
vortex-vortex and vortex-shear interactions that we analyze below are still present in more
complicated configurations—there are just more of them. The Hamiltonian for N vortices
(42) is not fundamentally different from that for two vortices (43): there are no multipole

interactions at the order of our truncation.

A. Nondimensionalization

Our starting point is the system (47). Letting D denote a characteristic separation scale,
we nondimensionalize as follows. We set R =1D, e = €qq, w = a€qo, 6 = A1/Ao, v = q1/40,
and scale time by g;'. We define a nondimensional perturbation parameter

Ao
wD?’

€= (49)

which we assume to be small. Then (47) becomes

1 C14+6v [1-22 1-X
r—-2—ersm20 € % { " sin2(0 — ¢o) + 6 ™ sin2(8 — ¢1) (50)
. € 1+6v
0—§(a+00320)+e 572

1+6v (1= M2 1- )2

2 0 1

- 2(9 —
ey { " cos2(0 — ¢p) + 6 " cos 2(8 ¢1)}

3o = —Xo {asm 260 + 5 6v sin2(9 — ¢0)}

/\1 = —)\1 {é'sin 2¢1 + ;65 sin 2(0 - qb]_)}
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~

; Ao 1 1+)\3 B p 5
Po = L+ %)? +§ =2 {60082050—511;—2- 0052(0—¢0)} +a§
; v 1142 p 5
N=TENeE T2IoN {“032‘151‘726082(9—¢1)}+a§.

The terms in (50) have a simple physical interpretation. The terms at O(1) represent
(a) the self-rotation of the vortices (the first terms in each of the ¢ equations), and (b) the
effects of the background flow on the vortices (the terms involving € in each equation).
At O(e), interactions between the vortices modify the evolution of the aspect ratios and
orientations, but have little effect on the separation. They, as with point vortices, produce
a constant change in the rotation rate of the separation vector, but no change in its length.
At O(€?), the shape and separation of the vortices are tightly coupled.

The first two equations in (50), the pair that govern the separation of the vortices, have
terms up to O(e?), while the remaining four have terms to O(e). The truncation implicit in
(50) arises from the truncation of the Hamiltonian: an infinite moment hierarchy is closed
at second order by approximating the vortices as ellipses.

We now specialize to the symmetric case of a pair of identical vortices and set A = Ag = Ay,

¢ = ¢p = ¢y and u = r%. As a consequence, v = 1, § = 1, and (50) becomes

. ~ 2 -1 1_A2 .
@ =¢eusin26 — e“u 5 sin2(0 — ¢) (51)
. € 1 122
0=E(a+cos20)+eu"1+e2~-u'2 A cos2(6 — ¢)
2 2 A
A= —{Esin2¢ + eu sin2(60 — )}
A 11+ )2 e

{Ecos 2¢ — eu™! cos 2(6 — ¢)} +a-.

=T ta1on 2
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B. Integrable basic states: perturbed point vortex pair in shear

The system (51) is a 4th order (2 degree-of-freedom), nonlinear, Hamiltonian system. In
the absence of shear, the 2-D Euler equations conserve angular impulse and the z and y cen-
troids; this leads to two independent integrals of motion for nonvanishing total circulation.?®
These integrals of motion are destroyed by background shear and the Hamiltonian is the
only one which remains. From our derivation, we know that this is a Hamiltonian system
represented in noncanonical coordinates (see FMM for a discussion of canonical coordinates);
we anticipate that there will be chaotic motion because the number of degrees of freedom
exceeds the number of integrals of motion.?® It is possible for points to wander unpredictably
over finite regions of phase space because there are fewer integrals of motion than degrees of
freedom.

The system (51) can be regarded as a perturbation to any of three integrable basic states:
(i) a pair of isolated Kida vortices; (ii) a point vortex pair in shear; and (iil) the MZS model.

The equations of motion for a Kida vortex are

A= —elsin2¢

A w 11+
SErE e T aTo e e

¢
and the A and ¢ equations in (51) take this form when € = 0. The (dimensional) equations

describing a point vortex pair in shear are

% = eusin 20

ry+rT
ecos20+ 1t 2

. w
o= 2 onu

5-’:—

and correspond to the u and @ equations in (51) when terms in € are neglected. The

equations for the MZS model are obtained by setting € = 0 in (50). The perturbations to




these basic states then represent the addition of: (i) vortex-vortex interactions; (ii) internal
degrees of freedom (aspect ratio and orientation); and (iii) vortex-shear interactions.

We choose to regard (51) as a perturbed point vortex pair in shear. There are two
reasons for this choice. The phase space geometry of a point vortex pair in shear provides a
particularly convenient framework for studying vortex merger. For sufficiently strong strain,
a separatrix divides closed orbits from unbounded ones in the absence of a perturbation
(see the Appendix for details). When perturbed, we will find that the vortices can merge
and that some of the closed orbits will disappear; furthermore, the separatrix splits apart
into distinct stable and unstable manifolds. (The connection between these phenomena is
discussed in Sec. 5.) The second reason is a practical one: there exist analytical tools, namely

the Melnikov function, which may be applied to systems with heteroclinic orbits.

In preparation for the Melnikov analysis, we apply one more scaling. We are particularly
interested in what happens in the vicinity of the separatrix of the point vortex pair. It will
prove convenient if the distance from the separatrix to the origin, determined by balancing
the first two terms in the 8 equation of (51), is scaled to be O(1). This is equivalent to

choosing € = ey where vy = O(1). The equations (51) then become,

2

1:/\1 sin 2(6 — ¢) + O(e*) (52)

% = eyusin 20 — e2u!

S -1 2_1_ —21_/\2 _ 4
f=c¢ —2—(a+cos20)+u +el=u cos 2(6 — @) + O(€*)

2 A

A= —€X {'y sin 2¢ + u~sin 2(8 — ¢)} + O(€%)

A, L1
T+22 " “21-X

(52) expresses the following sequence of interactions. On the O(1) time scale, the elliptical

(;;>= {'ycos2¢—-u'10052(0—— ¢)} +ea% + O(es).

vortices rotate at a rate A/(1 + A)%.. On a longer time scale, O(e~!), the aspect ratio and
rotation rate of the vortices slowly vary. The vortices move in the background shear flow and

under the influence of their mutual interaction on this same time scale. On an even longer
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time scale, O(e~2), the finite size of the vortices induce small perturbations to the rate at

which the vector separating their centroids changes.
IV. ASYMPTOTIC ANALYSIS

In this section, we investigate the system (52) by means of an asymptotic analysis in the
small parameter e. We use the Melnikov approach??3%-3! and appeal to analogies between
this system and a rapidly forced pendulum.

We begin by reminding the reader of how the Melnikov integral measures the distance
between the stable and unstable manifolds formed by the splitting of a homoclinic or hetero-
clinic orbit. We shall consider its most commonly encountered variant, that for a periodically

perturbed one degree-of-freedom Hamiltonian system:

. 0H ;¢
=% (g,p), P=-% (¢, p), (53)

where
H = Hy(q,p) + eHi(g, p, 1), (54)

and H; is an explicit periodic function of the time variable, . Let the explicit period of
H; be 7 and let this be O(1). Setting z(t) = (q(¢),p(t)), we consider the case in which
the unperturbed system has two hyperbolic fixed points which are joined by a heteroclinic
orbit 2(t) = 2¢(t). (The homoclinic case is analogous.) If one defines a function M of
to € (—00, 0) by

Mto) = [~ {Holzo(t)), Hizo(t),t+t0)} at, (55)

then the signed separation between the stable and unstable manifolds along the normal to

the unperturbed separatrix is given by

M(to)

Bl )

d(to) =
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The existence of one zero of M (o) implies the existence of infinitely many zeroes since M (to)
is periodic with period 7. (H, is periodic in its last argument.) And if OM(to)/0to 5 0 at
these points, there are infinitely many transverse manifold crossings and thus chaotic motion
in the vicinity of the separatrix. It is M that we refer to as the Melnikov function or Melnikov
integral.

The system (52) is not of the form required for the standard Hamiltonian Melnikov
analysis. To begin with, the variables are not canonical; but this is only a question of
coordinates. Next, the basic state that we would like to perturb around, that of a pair of
point vortices in shear, is a one degree-of-freedom system, while the full system (52) has
two degrees of freedom. Most importantly, there are two distinct time scales: the natural
time scale for the centroidal motion is O(e™!); the time scale for the rotation of the vortices
is O(1) and terms containing ¢ appear in the other three equations. The slow centroidal
motion is coupled with fast variations in the vortices’ orientation and shape, complicating
the analysis.

These difficulties can be resolved within a perturbative, multiple time-scale setting. An
explicit time-periodic perturbation to the Hamiltonian is not given, but in some parameter
ranges, the second degree of freedom, (), ¢), behaves like an oscillator and the variable ¢
increases monotonically with time. One can consider the first degree of freedom, (u, 8), to be
“perturbed” by this second degree of freedom. By transforming the autonomous two degree-

of-freedom system (52) into a nonautonomous one degree-of-freedom system where the slow

centroid motion is perturbed by the fast oscillatory terms of the u, 6 and X equations, a

multiple time-scale analysis can then be performed.
There is a growing body of research on Hamiltonian systems with rapidly oscillating
perturbations. The implications of this research for our system are briefly examined in the

next section.




A. The rapidly, but weakly, forced pendulum

Since there are two time scales in the restricted vortex system of (52), and the fast
oscillatory terms occur at higher order in €, we expect its behavior to be analogous to that
of a nonlinear pendulum forced by a weak but rapid oscillation, viz.

% +sinz = ésin (é) , (57)
where §e™™ — 0 for an appropriate positive power 7n.26:32-3% This is of the form shown in
(53) with

1
g=z, p=t, H0=§p2—cosq, H, = —qbsin(t/e).

When é = 0, the unperturbed system is a one degree-of-freedom Hamiltonian system with
a hyperbolic fixed point at (z = 0, £ = 0) and a homoclinic trajectory emanating from it
(identifying x = 27 with z = 0). As is standard with nonautonomous systems, one can define
a Poincaré section by strobing the system at the period of the forcing, 2me. For sufficiently
weak forcing, the associated Poincaré map has a hyperbolic fixed point that lies close to the
unperturbed one. In certain cases, it can be shown that the stable and unstable manifolds

persist, lie close to the unperturbed homoclinic orbit, and intersect transversally.3?

In the periodically forced Hamiltonian system described at the beginning of Sec. IV,
the splitting distance between the stable and unstable manifolds is O(e) and is given by
the Melnikov integral (56). For the rapidly forced system (57), the Melnikov integral is
exponentially small; but the meaning of this is uncertain because formally, the Melnikov
distance is only accurate to O(e?). It is, however, now thought that under properly specified
conditions, the Melnikov analysis generally does provide a good estimate of the splitting
distance.?> Kummer et al. (1991)3® were able to establish that the leading order term in the
splitting distance is indeed given by a Melnikov analysis when n = 5. It is conjectured that

a similar result holds when n = 1—which is in essence the case for the system (52). The
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proof of this, and of the exponentially small nature of the splitting distance, exploits the
explicit closed-form representation of the unperturbed system’s homoclinic trajectory. (This
allows the contours of integration of certain integrals to be moved in the complex plane.)
In the problem at hand, we cannot provide such proofs, largely because we have an implicit
representation only. Nevertheless, we argue that the structural similarity of the rapidly
forced pendulum to the restricted vortex system suggests that in the latter, the manifolds
should cross transversally and the separatrix splitting should be exponentially small. We
provide support for this by performing a Melnikov analysis and examining the leading order
contribution to the splitting distance. This does not constitute a proof because in this
asymptotic analysis, an infinite series of integrals contributes to the splitting distance and
they may not all be exponentially small.

We will later turn to numerical simulations to see if they are are in accord with this

picture.

B. Calculating a Melnikov function

We now present a Melnikov analysis which freely exploits a number of assumptions. To
begin with, we exploit the autonomous nature of the system and restrict our attention to
situations in which the vortex orientation, ¢, increases monotonically with time. Provided
there are trajectories for which A can be bounded away from 1, the form of (52) suggests

that this is reasonable for small €. This allows us to replace the independent variable ¢ with

¢:

du _ [ . 2 -1 1- /\2 . _

7 Q -e'yu sin 20 — e“u S sin 2(6 ¢)] (58)
_‘_Z_Q_ W —1} 21 Y _
d¢—Q-e{2(a+cos20)+u +esu cos2(0 — ¢)

dX

= Qe {rsin26 +usin2(0 - )}
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where

A 114 A2 _ -
Q={m“§1_—,\2{7¢"82¢—“10082(9—@}““%} -9

Next, the conservation of the Hamiltonian is invoked to express A = A(u, 8, ¢; h) and elimi-

nate A from the first two equations (58). The resulting system may be written in the form

du
do
b _
dé

= Fl(u797)‘(u? 07 ¢)) +f1(u? 9’)‘('“/’ 9: d’)?d)) (60)

F2(u1 0: A(’Un 0, ¢)) + f2(u’ 03 /\('LL, 67 ¢)a d))a

where

-1
_ . _ 2 -1 _ _ A v
Fy = eQyusin 26, Fg-—eﬂ{i(a+cos26)+u }, Q—Q(x\)—{m+ea§} :

32

fi=Q |eyusin20 — 2u? 1 /\’\ sin 2(6 — ¢)} ~ eQyusin 26, (61)

_ )2

fo=Q e{%(a+cos20)+u'1}+62%u"21 /\/\ cos2(0—¢)l —eﬂ{%(a+cos29)+u"l}.

We would like to obtain a one degree-of-freedom system whose basic state is given by
the equations of motion for a point vortex pair in shear. The functions F; and F, have the
correct form, but they do not constitute a proper basic state as they are a coupled to the

perturbed motion through Q(A). We therefore expand A in a perturbation series
A=Xdo+er(d)+..., (62)

where )g is a constant and can be treated as a parameter. (This is permissible for trajectories
with A bounded away from 0 and 1.) The function £2()\) can then be expanded in € and its

leading order component,

_ Ao N\~
Qo= {m+€a2} R (63)

used to define an appropriate basic state.
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We now write

du

do = G1(u, 0;Q) + g1(u, 6, ¢) (64)
de
El-a = G2(’LL, 0, QO) + 92(% 97 ¢)’
with
G, = él + g1 = €Qpyusin 26 + gy, (65)

Gr=Got o= el {T (@t cos20) + w7} +5

By construction, G; and Go—and thus the tilde quantities—have no explicit ¢ dependence
while ¢; and g» have an explicit m-periodic dependence on ¢. The functions g; and g; may
be obtained from

2

A

G=Q [e'yu sin 20 — e2u™! sin2(6 — ¢)} — efdgryu sin 26;

and g, and go may be obtained from

)2
G2=Q [6{%(a+cos29) +u‘1} + 2 %u‘2 1 A)\

cos 2(6 — ¢)}
—eQo {%(a + cos 26) + u‘l} :

(Note that while Fy, F3, G, and G are O(¢), fi1, f2, g1 and go are O(e?).) The basic state

is given by
du = .
d—¢- = G = eQyyusin 26 (66)
dg A _ Y -1
d¢-—G2—eQO{2(a+cos29)+u }

Identifying ® = e¢ as a slow time, these are indeed the equations of motion for a pair of

point vortices in shear. )y can be interpreted as a parameter set by the initial conditions.
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Without loss of generality, we assume that v > 0 (y < 0 just rotates the phase space through
90 degrees), and that a < 1 (a sufficient condition for the existence of hyperbolic fixed points;

see the Appendix).

We can now proceed along the lines of the standard Melnikov analysis. By analogy
with other 1.5 degree-of-freedom systems, a Poincaré section is defined on the plane ¢ =
¢p (mod ), ¢, € (—00, 00) being an arbitrary constant. (Formally, we transform to an au-
tonomous third-order system and plot intersections of its trajectories with ¢ = ¢, (mod «).)
In the unperturbed limit, the associated Poincaré map has hyperbolic fixed points at (u, §) =
(2/[v(1 — @)], £7/2) which are joined by a pair of invariant heteroclinic manifolds. The
smoothness of the system means that for any closed, compact range of A that does not
include A = 0 or 1, the hyperbolic points persist for sufficiently small €. It is therefore
expected that a perturbation will split the heteroclinic manifolds into distinct stable and
unstable manifolds.

Let go(¢) = (uo(ep),bo(ed)) be a heteroclinic trajectory of the unperturbed system.
Since the unperturbed system is autonomous, go(¢) passes through all the points on the
unperturbed heteroclinic manifold as ¢ increases from —oo to oo (i.e. from fixed point to
fixed point). In the usual way, a set of coordinates on the heteroclinic manifold is then
defined by a choice of the point go(0). Trajectories on the perturbed stable and unstable

manifolds can be obtained by expanding around this heteroclinic trajectory:

@ (; bpr €) = qo(d — p) + G (85 p), (67)

where j = s or u. The deviation g¥ is asymptotically small (in €) compared to gy as ¢ — —o0;

g} is asymptotically small compared to go as ¢ — +00. Actually, u; ~ O(e?) and 6, ~ O(€?).

Note that we have exploited the autonomous nature of the unperturbed system once more

in shifting the time origin ¢ = 0: for each particular choice of ¢,, the heteroclinic trajectory

is now given by go(¢ — ¢5).




We seek an estimate of the distance between these manifolds at a point g(0) and in a
direction normal to the unperturbed heteroclinic orbit. Letting G = (G1(q), G2(q)), (64) can

be rewritten as
dq
do

and the normal to the unperturbed invariant manifold is

=G(q) +9(q, %), (68)

Ltn = (—Ga(g0), G1(20))/(G1(20)? + G2(90)*)"* = n/(G1(q0)* + Ga(20)*)*.  (69)

The transverse splitting distance at go(¢ = 0) is then given by

d(¢p) = M(5)/1G2(20(0)) + G3(a0(0))]*/?, (70)

where
M(p) = A°(¢p; dp) — A% (¢p; ¢p) (71)

and

AV (¢ p) = n - (85 8p) = G1(a0(d — 8))8(5 0p) — Galao(d — dp))ul (3 p).  (72)

In order to calculate M(¢,), and thus the splitting distance, the system (64) must be
expanded. As G(q) = F(go, o) and likewise for g and f, the quantities A7 and ¢} may be

expressed in terms of f and F', simplifying the calculations. Expanding:

dAI dF; ) dqo (ng ) dqo ; dt9J du{
el et 4 “Ogr (=2 F)ao FY)aore 73
d¢ ( dq go,A0 ; q 40,20 ; ( l)q dg ( 2)q ’ d¢ ( )

(F18F1+F26F) o (Flapz F2%> y
qo,Ao

0 06 0 06
d#] du]
+(F1)qo Ao d¢ (FZ)QO Ao d¢1
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% = F (20($ — 65) + (8, 85), Do+ X)) = F (g0 — 85), 20) (74)

+£ (90(8 — 8p) + €L, 6p), o + M, ¢)

OF 4  OFy OF N (10F

+F (@ld — 65). 20 ) i - (2 )M 4 (df) o

Since F; and F3 have the form

Fi=p(N)gsP,), B = ~p(N) o Plu6),

many terms on the right-hand side of (73) cancel and

dz = F1(go(9 — ¢p), X0) f2(20(® — &p), Ao, #) — Fa(qo(d — op), Aa) f1(q0(@ — ¢p), Ao, D)

+\ (Flafz —anfl) (Fl%—&%)

OA oA ou Ou
Ofs Ofi
+6, (F 130 - F 90 +
which is formally O(e3) at leading order. Let us write this as
j
d;; =N+ +T3 + . (75)

The forms of the f’s are rather complicated, however. We can simplify the manipulation of

them by expanding in ¢, e.g.
f2(g0, Mo, ) = f20(g0; Ao, ®) + €fa1(go, Ao, @) + ... -
This induces corresponding expansions in the T"s:

T}' = Tjo + 67_’7'1 + ... (76)
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and (75) becomes

dAI
%— = €3T10 + 64(T2() + Tll) + ...

Integrating the preceding equation over ¢ yields M(¢,):
M(¢p) = € Mio(¢p) + € (Mao(¢p) + Mur(¢p)) + ... - (77)
The leading order contribution is fairly easy to calculate. With 4 = Q()\¢), we find that
11— )\% 2 1 . =1y :
Tio = W Qug {'y sin(46g — 2¢) + (ya + 2uy ") sin 2(6y — qb)} : (78)
0
Therefore,
o0
Mio(4p) = /_ _ Todd (79)

11-)2 ) o
~3 he % 22 5sin 2¢, /_oo ug ' {7y cos[4y(ep) — 2¢]

+(ya + 2ug ' (eg)) cos[260(e¢) — 26] } dg.

We have chosen the origin of the ¢ coordinate so that 63(0) = 0, i.e. the midpoint of the

heteroclinic trajectory.

From the leading sin 2¢, factor, we see that M;, crosses zero infinitely many times. By a
generalized Riemann-Lebesgue lemma,® the integral is < O(e") for any n: it is exponentially
small in e. A necessary (but not sufficient) condition for this to be the dominant part of
M (¢,) is that the higher-order corrections, M;;, Mag, etc., must also be at most exponentially
small. While this is at least possible for those T;,, that are rapidly oscillating functions of
¢, if there are any parts of T,, that have no fast time dependence, then we must consider
their contribution to M more carefully. Below we will find the leading order term with only

slow ¢ dependence and show that it makes zero contribution to M.

We need to compute T5+7T1;. This requires a knowledge of the first asymptotic correction

to the path of the perturbed stable and unstable manifolds. It can be shown that the first
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correction to A is
1
A = 5 Aofo {7 cos 2¢ — ug* cos 2(fy — ¢)} .
Then

T = {2/\ L +59% DY

Xug A {7 sin(46p — 2¢) + (ya + 2ug*) sin(26, — 2¢)}

+ A2

1 i
Ty = — 92 Y uyt {7 sin(46p — 2¢) + (ya + 2ug') sin(26, — 2(15)} .

Upon substituting for A;, we find that the sum T3 + T3; consists of two parts: a rapidly
oscillating component, T,¢, that like T1g, yields an exponentially small contribution upon
integration; and another component, To,, that does not oscillate rapidly. In principle, this
should result in a contribution to the Melnikov integral which is not exponentially small and

so would dominate M;g. However, if we calculate T5; explicitly, we find that

(1 — Ao)? 1+X2)1 _ . 1y
Ty = — { -(f—H—)—) +an3 i } $ 7" {ysin(460) + (ro -+ ") sin(200)} . (80)

This is symmetric about ¢ = ¢,, so the integral f%_ d¢ is identically zero, and the slow
component of Myy + M;; thus vanishes. As for slow perturbations to the positions of the
stable and unstable manifolds, there is a part of u; and #; which does not oscillate rapidly,
but it affects both manifolds in the same way and so does not contribute to the splitting
distance at this order. We note that the correction e*(Myy + M) formally occurs at the
same order as would the corrections associated with deviations of the shape of the vortices

from ellipticity (i.e. O(e3)).
V. NUMERICAL RESULTS

The Melnikov analysis suggests that a chaotic band may form around the unperturbed
separatrix, though the (exponentially small) scaling is rather tentative. Here we use nu-

merical simulations to both confirm this and provide a picture of the global dynamics. For
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simplicity, only the € dependence will be considered at length. The equations of motion (47)

are used for the integrations; the singularity at A = 1 has not caused any difficulty.

A. Poincaré sections

We construct Poincaré sections for the two degree-of-freedom Hamiltonian system (52)
by first choosing a value Hy for the Hamiltonian. A Poincaré section is then built-up by
computing trajectories from a set of initial conditions which satisfy H(A;u,6,¢ = 0) = H,.
Whenever ¢(t) = 0 (modn) in a specified sense (increasing for I'; > 0),% a point appears
on the three-dimensional Poincaré section spanned by u, 8 and A; it is then projected onto

the (u, 8) plane. The results are shown in (z,y) coordinates by applying the transformation

(z,y) = u'/?(cosf,sin ).

For each Poincaré section, Hy is fixed by evaluating H for a given (z = zq, ¥ = yo, A =
Ao; ¢ = 0) using (48). A set of initial conditions satisfying H = Hj is obtained by specifying

z,vy, ¢ and solving the nonlinear equation
H(\w, 6,6 =0)=H

for . (A bracketing-bisection scheme is used.) For ¢ = 0.01 to € = 0.03, we have observed
a maximum of 3 roots, the number depending on the value of Hy and the limits, Amin, Amax,
between which roots are found. The limits span the range of A over which the model is
expected to be (initially) valid. In most of the cases discussed below, Hy corresponds to
a point on the unperturbed separatrix. With a linear shear flow (e,w) = (1/7,—1/7) and
I' = 1, the fixed points are located at (zo, %) = (0, £1/(me)) = (0,%1); Hy is determined
using (Zo, Yo, Ao = (0, 1,1.5). We thus take D =1 in our definition of e.

In Fig. 2a, the Hamiltonian surface for ¢ = 0.01 without shear (i.e. A = 7/100) is shown:
it is a closed surface that does not extend beyond the cylinder u := 22 + 4% = 1. The

Hamiltonian surface looks very different once shear is added. In Fig. 2b, a Hamiltonian
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surface for € = 0.01 with shear is shown: the surface now fans-out beyond the unperturbed
separatrix. As it is smooth, all points on the surface are, in principle, accessible to one
another. Any point on the Hamiltonian surface, even those beyond the separatrix, should
be able to reach the cusp at the origin. In what follows, u — 0 and vortex merger are used

interchangeably.

Poincaré sections are shown in Fig. 3. For the MZS model, closed orbits encircle the
origin, but at a distance (Fig. 3a). There is a large gap in the interior where there are
no (closed) orbits at all; initial conditions that are too close to the origin merge before
appearing on a Poincaré section. Moving away from the origin, one sees that closed orbits
do not, in agreement with Fig. 2a, extend beyond u? = 1. For € = 0.01, there are, as with the
point vortex pair in shear, closed orbits inside the separatrix, and unbounded orbits outside
(Fig. 3b). There is also a gap in the interior. When e is increased, bounded and unbounded
orbits remain, but there are far fewer of them: the fraction of merging initial conditions
increases rapidly with €. For ¢ = 0.03, every point inside the unperturbed separatrix merges
(Fig. 3c).

In the absence of shear, the innermost orbit of the Poincaré section divides initial condi-
tions which merge from those that do not: it defines a critical merger criterion. This criterion
is mot, however, the same as the classical criterion for identical circular vortices, i.e. that
the critical separation, r, = 3.3r, where r, is the vortex radius (see MZS). The Poincaré
section is defined at constant H, not constant A. In general, it is expected that the critical
merger threshold defined on a constant Hamiltonian surface, r. y, will be greater than r,
with ming(r. ) = r.. Even for a Poincaré section associated with near-circular vortices at
the separatrix, 7. g is quite different from 7. because the vortices are strongly elongated away
from the separatrix. For example, r. g =~ 0.61 = 0.61r, and A(r,z) =~ 10 when A; = 1.001

and e = 0.01. In Fig. 4, we show a merging trajectory corresponding to Fig. 3a—note that
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7 is initially less than 7, g.

An innermost orbit can also be distinguished in Fig. 3b (i.e. € = 0.01 with shear), but it
cannot be associated with a critical merger threshold in the same way as the MZS model.
Because of the presence of the background shear, it is now possible for points outside the
separatrix to merge; the regions of the Poincaré section inside and outside the unperturbed
separatrix are no longer perfectly separated. Most of the exterior trajectories are analogous
to the unbounded orbits for a point vortex pair in shear—physically, the vortices approach
one another, reach a minimum separation, and are carried away by the shear—but the
combined effect of vortex-vortex and vortex-shear interactions now makes merger possible
for a small fraction of them (Fig. 5). In cases where ¢ is small, the innermost orbit defines a
critical radius that separates most of the merging orbits from most of the non-merging orbits
(e.g. Fig. 3b), the exchange between the interior and the exterior being rather limited.

The kind of merger represented by Fig. 5 is very different from that in Figs. 3a and
4. Whereas vortex-vortex interactions dominated the previous mode of merger vortex-shear
interactions are crucial to this one: vortex-shear interactions stretch the vortices out and
bring them together; vortex-vortex interactions then initiate the actual merger. For a typical
merging trajectory initially outside the separatrix (Fig. 6), A is initially greater than Ay,
the lower limit for the bracketing-bisection scheme, but considerably less than Ay, by the
time the trajectory crosses the separatrix. (These trajectories do not appear on the Poincaré
section because they merge before ¢ goes through #.) During the course of merger, the
approximation that the vortices are small and well-separated breaks down; but this does not
mean that this second mode of merger is a numerical artifact. Such a mechanism has been
observed in contour dynamics simulations of circular vortices in shear.?® In any case, it is
inevitable that the model break down during merger—this also occurs for the other mode of

merger, the vortex-vortex one.

Melander et al. (1988)!! derived a merger criterion for the MZS» model which agrees
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fairly well with contour dynamics simulations. When ambient shear is present, there does
not appear to be an analytical expression, based on the initial configuration of the vortex
pair, which concisely summarizes when they will and will not merge. A merger criterion
for initial conditions inside the separatrix could be determined by estimating the position of
the innermost orbit on the Poincaré section; but the situation is much more complicated for
initial conditions outside the separatrix. Outside the separatrix, vortex merger is the result of
a very complex interplay between vortex-vortex and vortex-shear interactions. Many initial
conditions yield trajectories which approach the separatrix, but most of these do not merge.
A small displacement in (u,8) can make the difference between merger and separation by
the shear. Another complicating factor is that for larger values of ¢, there is vortex-vortex

merger for points lying just outside the separatrix and initial A > 1.

B. Separatrix splitting and chaos

Because the Melnikov result is an asymptotic one and because the Melnikov function is
exponentially small, numerical verification of the formation of a heteroclinic tangle is needed.

Verification of the exponentially small nature of the numerator in the expression for
the separatrix splitting distance is difficult since the position of the folds is a function of
€ (though the slow time ® = e¢), and the folds will narrow and squeeze together as ¢
is reduced. Moreover, the denominator in (70) also becomes exponentially small as one
approaches the hyperbolic points, where the splitting is greatest. The important result is
not the precise scaling, but the existence of the heteroclinic tangle and the fact that the
splitting is generally small. It could be possible for the stable and unstable manifolds to
split apart, but not intersect transversally.

Figure 7a shows a blow-up of the € = 0.01 Poincaré section around the separatrix, while
Fig. 7b shows a typical trajectory in this region. Though we anticipate that a heteroclinic

tangle is present, its width is too narrow to be resolved by these pictures; one must look very
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closely around the separatrix for any evidence of the separatrix splitting. For larger values of
€, the separatrix splitting is clearly evident: there are distinct fold-like structures for € = 0.03
(Fig. 3c). This is very reminiscent of a heteroclinic tangle. Most trajectories, however, do
not follow these structures indefinitely: they usually merge after a short while. This explains
the fuzziness of Fig. 3c. Nevertheless, as with other systems containing a heteroclinic tangle,
there is an associated chaotic invariant set.

The separatrix splitting would appear to be relevant to vortex merger as there are only a
limited number of initial conditions outside the separatrix that lead to merger, but the rela-
tionship is not so simple. The separatrix splitting applies to that portion of the Hamiltonian
surface where A = O(1), and not to the small X states associated with exterior vortex merger.
Indeed this behavior could not be predicted from the Hamiltonian surface of Fig. 2b because
that figure does not cover a wide enough range of A. (Recall also that the Melnikov analysis
only applies to small perturbations about a basic state.) The separatrix splitting does have
an effect on vortex merger insofar as orbits with A = O(1) do not cross the separatrix, but

this is an indirect effect at best.

The neighborhood around the separatrix is not the only region in which we find chaotic
zones. Figure 8a is a blow-up of the Poincaré section between r = 0.50 and r = 0.40; Fig. 8b
is a typical trajectory in this region. The trajectories hop around chaotically until they
fall into the origin (i.e. the vortices merge). This inner chaotic region provides an example
of chaos associated with a higher-order resonance,3” 9:1 to be precise, between the natural
frequency of periodic contours in the unperturbed system and that of the perturbation. The
order of the resonance decreases as one approaches the origin, as would be expected.

As far as we can determine, trajectories spend only a finite amount of time in the chaotic
regions. This is evidently a system in which chaotic transients play an important role. Im-

mediately inside the unperturbed separatrix, we have seen that there are (weakly) chaotic
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trajectories (e.g. Figs. 3c and 7). For trajectories originating outside the separatrix, the
chaotic transients could give rise to chaotic scattering. Chaotic scattering is usually mani-
fested in rapid fluctuations of a scattering angle 6, (defined in terms of the initial and final
separation vectors) with respect to an impact parameter (some function of the initial sepa-
ration angle or distance).3¥3° The variations occur on all scales and are strongly correlated
with singularities or peaks in the residence time. The latter, which are just interaction times,

form a fractal set.

We use the angle of incidence 6; as an impact parameter. It is varied while the initial
radial separation r; is fixed. The scattering angle 6, is computed when the final separation
r¢ = 73, after the closest approach of the vortices. It is convenient to define 6, in terms of §;
and the final centroidal angle, 8s: 8, = 6; + 6y — 7 so that 8, = 0 corresponds to reflection
about the line y = 0, and 6, = 7 to reflection about z = 0. The residence time is determined
by the condition r < ;.

In Fig. 9a, 6, is plotted against 6; € (7/2, 7) for € = 0.01 and r; = 1.1. Instead of assuming
a continuous range of values, as is normally the case in chaotic scattering, 8, assumes only the
values 6, = 0 and 0; = 7 for this set of parameters. Because of the background shear, there
are only two possible outcomes to a scattering event: a trajectory can be carried off towards
increasing y (f; = 0), or towards decreasing y (6, = 7). (These trajectories correspond to
the two types of unbounded orbits present in the Poincaré section of Fig. 3b.) Moreover,
the vortices scatter only once before they are separated by the shear. This can be seen in
Fig. 9b, where the residence time is plotted against 8;. The residence time varies smoothly
with 6; and there is no evidence of fractal structure or of multiple scattering events.

Nevertheless, the scattering is chaotic. If one looks very closely, there are, as would be
expected, weak oscillations in 8, (Fig. 9¢). Despite the absence of multiple interactions and
strong oscillations in §,, the vortices do scatter bhaotically as 6, is not a perfectly smooth

function of ;. This is related to the existence of a nonattracting—but spatially extended—
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chaotic invariant set. The scattering angle 8, exhibits sensitive dependence on the incident
angle ;. This kind of scattering is quite different from that described in previous studies of
chaotic scattering in vortex dynamics.°~4! In these studies, the scattering can be represented

symbolically in terms of the exchange of different or like signed vortices.
V1. DISCUSSION

We began this paper by deriving the equations of motion for N elliptical vortices in a
background shear flow. This model is identical to that of Melander et al. (1986)? except
for the background shear (which combines rotation and shear). With this in mind, the
majority of this paper represents an attempt to understand what happens when vortex-
shear interactions are added, specifically the implications for vortex merger. The numerical
computations presented in the last part of this paper vividly illustrate the effect of vortex-
shear interactions and the complex interplay that exists between vortex-shear and vortex-
vortex interactions. Besides vortex merger, these interactions are manifested in chaotic
motion and a (weak) form of chaotic scattering. The Melnikov analysis of Sec. IV was
motivated by the expectation that the magnitude of the separatrix splitting would profoundly
influence the merger of initially well-separated vortices. The separatrix for a point vortex pair
in shear divides the interior from the exterior; with a perturbation, the addition of internal
degrees of freedom, the separatrix splits into stable and unstable manifolds which intersect
transversely, giving rise to a heteroclinic tangle and transport across the separatrix. In
analogy with results for rapidly forced oscillators,32—3% the Melnikov function is exponentially
small in the perturbation amplitude as it goes to zero.

We have determined that there are two modes of merger: inside the separatrix, points
merge if they are within a critical merger distanée; outside the separatrix, points merge if the
shear stretches the vortices out and brings them together with an appropriate orientation.

(This is made particularly clear by Figs. 5 and 6.) A merger criterion for the first mode
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can be determined directly from the Poincaré section, but the second mode is not so easily

characterized. Moreover, the relationship between the separatrix splitting and vortex merger

is not a simple one. While numerical computations confirm that the separatrix splitting is
small, it has been observed that widely separated vortices can merge. On the corresponding
trajectories, the aspect ratios of the vortices are not O(1) when the separatrix is crossed, but
much less; the trajectories do not cross the separatrix so much as they burrow underneath
it (in the 3-D phase space). In effect, the merging trajectories live on a different part of
the Hamiltonian surface. Evidence for the importance of the separatrix splitting is at best
negative: merger does not occur for trajectories where A = O(1).

The Hamiltonian moment formulation clarifies some aspects of MZS’s formulation and
it could also be used to derive higher order models (i.e. beyond the elliptical vortex approx-
imation). Another advantage of the Hamiltonian approach is that it enables one to explain
certain aspects of the dynamics by appealing to the topology of those surfaces. Also, it is
preferable to define a merger criterion for noncircular vortices at fixed Hy rather than fixed
A, especially when Hy has a simple physical interpretation.

Our analysis has been restricted to the simplest possible case of two identical vortices.
Furthermore, we have only considered a linear shear flow in our numerical computations.
It would be interesting to see what happens when these restrictions are relaxed. Indeed,
by considering a wider range of cases, it may be possible to find a situation wherein the

separatrix splitting does have a direct effect on vortex merger.




APPENDIX: A PAIR OF POINT VORTICES IN SHEAR

The equations of motion for N point vortices in a steady background flow u(z;) are given

by

21'71;— Fi N,kX(:D,;—:Bj)

+ u(z;), (A1)

o 2 j=1 l:l:i —:Bj |2

where k x (z;,y:) = (—¥i, x;). For N = 2 vortices and a background flow given by (11), i.e.

(wv) = (-3 (w-e)y, } (w+e)z), (A2)
“the equations of motion may be written in the form

) T2 yi—w 1

== —5(w-— A3

I o I T, — Ty lz 2 (OJ e)yl ( )

. Py i —x 1

= on | 23—, |2 trlwtem

: I'in p-wn 1

Iy = o I T — Ty |2 2 (w e)y‘Z

I'T zo—z
o= 214 Ly e)r,

=%|w1—w2]2 2

Defining X = z; — 23, Y = 4 — 2, and nondimensionalizing time by (T; + ')}, the

equations for the vortex separation are

.11
X——(%X2+Y2+§(w e))Y (A4)

. o/1 1 X
V= (g gt i ra) X
where now w = w/(I'y + '), e :=¢/(T'y + T'y).

There are two types of fixed points for the preceding equations:

1
2

11
I: X =0 Y=i(——— ) (A5)
mTWwW—=e
1 1 \2
I X=:!:(—~— )2, Y =0.
Tw+e
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Type 1 is present if w — e < 0, and type II is present if w + e < 0. Linearizing around the
fixed points, it is easily shown that type I are hyperbolic, and type II are elliptic.
The hyperbolic fixed points are connected by a separatrix (see Fig. 1). The separatrix is

defined implicitly by the Hamiltonian

_ Iy
DY

H

' 1 1
In|z, —z | +7 (w—e)(T1y? +Tay) + 7 (w + €)(T127 + Toz?). (A6)

For '} = 'y = 1 and (e,w) = (1/m, —1/7), the hyperbolic fixed points are located at (0, £1).
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and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
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FIG.

FIGURE CAPTIONS

FIG. 1. Phase space geometry for a point vortex pair in shear.

. Hamiltonian surfaces for I" = 1 and (zo, %, Ao) = (0,1,1.5). a) MZS model, i.e. A =

/100 or e = 0.01. b) e =0.01 and (w, e) = (-1/m, 1/7).

. Poincaré sections corresponding to the Hamiltonian surfaces of Fig. 2. a) MZS

model (e = 0.01, no shear). b) € = 0.01 with shear. ¢) ¢ = 0.03 with shear.

. Typical merging trajectory for ¢ = 0.01 and (w,e) = (—1/m, 1/7). The initial

conditions are (r;,6;, A;) = (0.400,1.57,0.111). This is an example of the vortex-

vortex mode of merger. (For convenience, ¢ is scaled by g = 100/7.)

. Merging initial conditions well-outside the separatrix plotted on top of a 2-D pro-

jection of the Hamiltonian surface. € = 0.01 and (w,e) = (—1/m, 1/7).

. Typical merging trajectory corresponding to Fig. 5. a) r : ¢; and b) A : . The initial

conditions are (r;, 8;, \;) = (9.00, 2.81, 0.0102). This is an example of shear-induced

merger. (For convenience, ¢ is scaled by ¢o = 100/7.)

. Blow-up of region around the separatrix for ¢ = 0.01. a) Poincaré section for ini-

tial conditions (r;,6;) = (0.99 — 1.01, 7/2). b) Typical trajectory just inside the
separatrix: (r;,8;, A;) = (0.998,1.57,0.7255). Other parameters as in Fig. 2. (For

convenience, ¢ is scaled by go = 100/7.)

. Chaos in the interior for € = 0.01. a) Poincaré section for r = 0.40—0.50. b) Typical

“chaotic” trajectory. The initial conditions are (r;, 6;, \; = (0.45,0.00, 0.152). Other

parameters as in Fig. 2. (For convenience, ¢ is scaled by go = 100/7.)
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FIG. 9. Chaotic scattering around the separatrix for e = 0.01,7; = 1.1. a) Scattering angle
8, vs. incident angle ;. b) Residence time vs. 6;. ¢) Expanded view of 8, vs. §;
for 6; € (w/2,1.68). Other parameters as in Fig. 2. (For convenience, ¢ is scaled by

gdo = 100/71’)

53




hyperbolic fixed point

separatrix

A

hyperbolic fixed point




=
-
y—

0.1
0.01
1

Fig. 2a







Fig. 3a




Fig. 3b




1.5

-1.5

0.5
-05

Fig. 3¢




A

0 S1°0 10 S00

Fig. 4




o1

or-

Fig. 5







91

0
©
o
4! 4! o1 8 ; . o ’
| 4 2000
| 1 ¥00°0
1 9000 >
- 8000
.4 100

100




80"
90-
¥'0-

0

70
0
90

80




90

§9°0

L0

SLO

80

¢80

60

$6°0

Fig. 7b







02

0.1

04
03

0.5 F

°
S

-0.1

Fig. 8b







1.8

r
1.75

1.7

1.65

1.6

45
40
351
30
25
20
15
10
5
0

SUIT} 30UPISal

Fig. 9b




891 99°1 o'l 'l 91 861 9¢°1

I t T 1 1

900°0-

S00°0-

$00°0-

€000~

2000~

100°0-

100°0

Fig. 9¢




