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Please find enclosed manuscript titled "A simple method for optimizing the root and 
evolutionary rate in phylogenetic trees with taxa collected at a minimum of two different 
time points" by Irina Maljkovic Berry, Gayathri Athreya, Moulik Kothari, Marcus 
Daniels, Bette Korber, Carla Kuiken, and Thomas Leitner, that we would like to submit 
for possible publication in Epidemics . 

This paper describes a fast and accurate method to root and estimate evolutionary rates in 
a given phylogenetic tree. While there are several methods that estimate rates and that 
can root trees, no method combines them into a fast and simple strategy. Thus, our 
method can take a tree calculated with any tree building method and optimize the root 
and rate in it. It is especially useful for large analyses, with either many taxa or many 
datasets. We have evaluated our method on simulated data that aimed at investigating the 
performance under many limiting situations, and found it to perform very good under 
situations that are typical in biological systems . 

We have used this method to analyze the HIV-l subtype Band C epidemics. We show 
that our method is able to track dynamic changes in these epidemics, and thus that it may 
be applicable to infer and predict changes in epidemics involving pathogens that evolve 
during their spread. We believe these results and this method are of great interest to your 
readers. 

The paper has not been sent to any other journal, and there are no other papers that 
currently are under consideration and relate to this paper from us . None of the authors 
have any conflicts of interest to delclare. 

Sincerely, 
Thomas Leitner, PhD 
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ABSTRACT 

Large sequence data sets provide an opportunity to investigate the dynamics of pathogen 

epidemics. Thus, a fast method to estimate the evolutionary rate from large and numerous 

phylogenetic trees becomes necessary. Based on minimizing tip height variances, we 

optimize the root in a given phylogenetic tree, to estimate the most homogenous 

evolutionary rate between samples from at least two different time points. Simulations 

showed that the method had no bias in the estimation of evolutionary rates, and that it was 

robust to tree rooting and topological errors. We show that the evolutionary rates of HI V-I 

subtype Band C epidemics have changed over time, with the rate of evolution inversely 

correlated to the rate of virus spread. For subtype B the evolutionary rate slowed down and 

tracked the start of the HAART era in 1996. Subtype C in Ethiopia showed an increase in 

the evolutionary rate when the prevalence increase markedly slowed down in 1995. Thus, 

we show that the evolutionary rate of HIV -Ion the popUlation level dynamically tracks 

epidemic events. 

Keywords: Viral evolution, Molecular epidemiology, Phylogeny, TreeRate 
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INTRODUCTION 

The rate of evolution is a fundamental quantity in the field of molecular biology and 

evolution, and has often been measured as the rate of nucleotide substitutions. Estimating 

the rate of substitutions is especially effective when there are known dates not only at the 

tips of a phylogenetic tree, but also deeper into the tree. This situation exists when there are 

either fossil data that can date historic events, or when the organism under study evolves 

fast enough to accumulate mutations for a researcher to sample it within reasonable time. 

The latter is the case among many viruses, where samples taken only a few years apart may 

display as much evolution as higher organisms do in millions of years (Leitner, 2002; 

Leitner and Albert, 1999). For example, HlV -I evolution has been estimated at rates 

between I x 1 0-3 and 17x 10-3 substitutions site -I yea(1 in env (Korber et aI., 2000; Leitner et 

aI., 1999; Maljkovic Berry et aI. , 2007; Salemi et aI. , 2001). 

Various methods have been proposed to estimate the rate of substitutions over time, i.e., the 

molecular clock. Originally, the molecular clock was estimated as a constant accumulation 

of substitutions over time (Kimura, 1980; Zuckerkandl et aI. , 1965) but that simplifying 

assumption may not always be appropriate (Gillespie, 1984; Gillespie, 1988; Takahata, 

1987) and more recently several Bayesian methods have been suggested on how to relax 

the strict molecular clock (Drummond et aI. , 2006; Huelsenbeck et aI., 2000; Kishino et aI., 

200 I; Sanderson, 2002; Thome et aI., 1998; Yang et aI., 2006). Some other recent methods 

also allow for samples with different collection dates (Rodrigo et aI. , 2003), and yet other 

methods have investigated and incorporated uncertainties in the time stamps (Korber et aI., 

2000; Leitner et aI., 1999; Yang et aI., 2006). Furthermore, local molecular clocks that can 
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accommodate higher levels of rate heterogeneity than the Bayesian approaches have been 

developed (Aris-Brosou, 2007; Yoder et aI., 2000). While the relaxed clocks in many cases 

appear to be more realistic and improve the rate estimates, they become more complex, 

requiring more assumptions to be made and more parameters to be estimated, and slow to 

run on computers. Also, a tree reconstructed under a fully unrestricted rate model, i.e., a 

tree with no clock assumption, may still have a better fit than a tree assuming a particular 

clock model. For these reasons, we have developed a fast and simple method to find the 

root that gives the most homogeneous rate in a given tree with samples from at least two 

different time points. The tree can be calculated by any method, and as long as the branch 

lengths are realistic measures of divergence, an average rate can be estimated for the time 

interval between the samples. 

We apply this method to the epidemics ofHIV-l subtypes Band C, from Europe and North 

America, and Africa, respectively. We show that, for subtype B, the evolutionary rate is 

constant until 1997, after which a significant decrease in the rate is observed. Interestingly, 

this decrease coincides with the global onset ofHAART in 1996. Furthermore, we did not 

observe a low evolutionary rate of the virus in the early epidemic, indicating that the period 

of exponential growth in the U.S.A. precedes most of the early documented sequences. 

Subtype C displayed large fluctuations. As in the subtype B epidemic, different countries in 

the subtype C epidemic had very different prevalence dynamics. Analyses of the Ethiopian 

subtype C sub-epidemic revealed an inverse correlation between virus spread and the 

evolutionary rate of HIV -1, where the evolutionary rate increased after 1995 when the rate 

of spread slowed down. Thus, we show that changes in HIV -1 epidemic can be revealed by 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Maljkovic Berry, Athreya et al. Page 5 

consecutively estimating the evolutionary rate. 

METHODS 

Root optimization 

A standard Newick formatted tree is the input. The operational taxonomic units (OTUs) in 

the tree can be divided into two longitudinal samples, each with an average distance to the 

root Xi and separated by a time interval f).t. The distance between these samples is 

calculated as f).d = X2 - XI (Fig 1). It is also possible to use an additional discard group, 

where one can put sequences not to be considered in the f).d calculation. In that way, 

OTUs in one phylogenetic tree can be rearranged and reanalyzed in several different ways. 

This also allows for trees constructed with samples from more than two time points to be 

analyzed, e.g., OTUs from a third (or many) time point(s) can be put in the discard group 

while f).d is calculated between time points one and two, then OTUs from time point one 

are put in the discard group and f).d is calculated between OTUs of time points two and 

three. Similarly, the method could be extended to optimize the tip height variances from all 

time points simultaneously (Eq.l). Thus, the method we propose measures the distance 

(amount of evolution) between OTUs in sample 1 and sample 2. It is primarily intended to 

estimate the evolutionary rate of a population sampled at (at least) two time points. For this 

calculation to be most reliable , sample land 2 OTUs should preferably not be separated 

into two monophyletic groups but rather intermixed. This is because if the two samples 

were monophyletically divided then l) biologically and epidemiologically, one could not be 
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certain that the two samples came from the same population or outbreak, and 2) 

mathematically, there would be no information on where to root the tree along the branch 

that separated the two samples because the variance would not change along it. Since~d 

between the samples can differ depending on how the tree is rooted, ~d is calculated at all 

nodes. Further, because the best root may not be at a node, we optimize the root along the 

branch that gives the best test statistic, and thus find the best distance between sample I and 

20TUs. 

We evaluated several test statistics for the root and rate optimization (see further Appendix 

A), including the simple, and best performing, test statistic of summing the variances of 

sample (s) 1 and 2 as 

(1) 

Our method can handle both unrooted and rooted Newick trees. A web version of this 

method is available at the Los Alamos HIV sequence database (www.hiv.lanl.gov), and is 

- - 2 2 2 ' 
named TreeRate. The output gives XI ' Xz, SI and S2 • LSs , and Ad for every node in the 

tree and the best rooting point. The web tool also allows the user to input the time points at 

which each sequence was sampled, in which case the evolutionary rate, ER=~d/At, is also 

calculated for every rooting node. The time interval At is calculated as the arithmetic mean 

of the sequences with an associated time point. 
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Simulations 

To evaluate how the rate and root optimization performed when data was limited, we tested 

the method llllder several limiting conditions, including different expected distances (t-,d), 

fraction of the tree that contained the expected distance (t-,dIH) , number of taxa, sequence 

length, and uncertainty in the tree topology. 

Random tree topologies were generated using MacClade (Maddison et aI., 2003). Branch 

lengths were added to simulate different genetic distances from the root as well as between 

sample 1 and 2. Branch lengths were randomly Poisson distributed around the expected 

values. At distances smaller than 0.001 substitutions/site trees will become uninformed 

because there will be very few substitutions between taxa, and conversely at very high 

distances alignments become a serious limitation. Therefore, we simulated trees in a 

biologically typical range where the expected distance between sample 1 and 2 (t-,d) ranged 

from 0.001 to 0.1 substitutions/site in 10 even logarithmic steps. This expected distance 

occurred at ratios 0.2, 0.5 and 0.8 of the total tree height (t-,dIH) (Fig I). The number of 

OTUs varied from 2 to 20 in sample I with sample 2 constant at 20, and 2 to 20 in sample 2 

with sample 1 constant at 20. In all simulations the sequence length was 1000 nt, except for 

when the effect of sequence length was investigated, where it was varied from 100 to 

100000 nt. To include uncertainty in the topology, i.e., dealing with incorrectly 

reconstructed trees, we generated sequences (1000 nt) using Seq-Gen (Rambaut et aI., 

1996), llllder a general-time-reversible model with Gamma distributed variation across sites 

according to a realistic HlV -1 situation (Leitner et aI., 1997). Subsequently, a neighbor 
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joining (BioNJ) tree was reconstructed using PAUP* (Gas cue I, 1997; Swofford, 2002) with 

the identical model as used to generate the sequences. Note that the tree uncertainty tests do 

not depend on how the trees were reconstructed; all we wanted to measure is the effect of 

not perfectly reconstructed trees. In all simulations 100 random trees were investigated at 

each setting and the root was optimized using the above test statistic (MSV). The inferred 

root and 6.d were registered and compared to the true root and 6.d. 

Comparison to other methods 

We compared the accuracy and the computing time of our method to two alternative 

strategies for estimating the evolutionary rates from longitudinal data (Table 1). 

The mean pairwise distance (MPD), which is the fastest way to calculate genetic 

differences between two (or more) samples; and 2) Bayesian Markov Chain Monte Carlo 

(BMCMC) simulations assuming explicit clock and population growth models (Drummond 

et aI., 2006), which is one of the perhaps most rigorous ways to estimate genetic 

differences. The MCMC analyses were performed using BEAST (Drummond et aI., 2007), 

with the substitution rates generated using a general-time reversible substitution model with 

gamma distribution and invariable rates among sites, and Markov Chain Monte Carlo runs 

of 10,000,000 steps sampled every 1,000 steps and analyzed with Tracer 

(beast.bio.ed.ac.ukITracer) with a discarded burn-in of 10%. The three methods were 

compared using three different subtype B HIV -I datasets consisting of U.S.A. sequences 

covering the V3 region. Dataset I contained 52 sequences sampled at two time points, 1986 

and 1997, dataset 2 contained 887 sequences sampled between 1978 and 2006, and dataset 
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3 contained 21 sequences sampled at three different time points, 1981 , 1990, and 2000. 

Reconstruction of HIV trees and TreeRate analyses 

HIV -1 subtype Band C phylogenies were inferred using PhyML (Guindon et aI., 2003), 

with a general-time-reversible DNA substitution model with invariable sites and Gamma 

distributed variable site rates. Starting trees for the heuristk search were derived by the 

BioNJ method and refined by SPR and NNI improvements. Viral divergence was 

calculated using TreeRate by calculating i1d between sequences sampled in 1978+ 1979 and 

all other sampling times for the subtype B epidemic in Europe and North America and B 

epidemic in U.S.A. , and between sequences sampled in 1984+ 1985 and all other sampling 

time points from the subtype C epidemic and C sub-epidemic in Ethiopia, respectively. We 

performed linear regression analyses of this data, and tested for the difference in slopes 

before and after all sampling time points using 1m in R (R Development Core Team, 2003), 

testing for the interaction of a dummy variable "before" and "after" a possible breaking 

point in time showing change in the slope. The change in the slope was assessed with an 

indicator, log Is l/s21, where s I is the slope "before" and s2 "after" the breakpoint, followed 

by a F-test for significance. 

RESULTS 

Identifying the optimality criterion 
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In the case when all branches were perfect, i.e., there was no variation in tip heights in each 

sample, the correct root and rate were always recovered (data not shown). Such a situation 

may be the case when sequences are infinitely long, but will never occur in real data. 

Therefore, to evaluate our method and its capacity to infer the correct genetic distance (~d) , 

and thus the rate of evolution, we simulated 25350 trees that aimed at limiting the 

information about the distance from the root to the OTUs. For the best root the distance 

between the two samples (~d) was estimated and compared to the correct genetic distance 

as~d/~d. 

We evaluated several test statistics to optimize the root and evolutionary rate in a given 

tree. Overall, the best rooting was found with the minimum sum of tip height variances 

(MSV) (Fig Sl). This criterion performed well at low ~d, increased its rooting accuracy at 

higher ~d, and was not sensitive to H. The best criterion to find the optimal rate was also 

MSV which showed no bias to over or underestimate at any rate investigated (Fig 2 & 3). 

Effect of low rates 

The MSV optimality criterion showed no bias in its average estimate of the evolutionary 

rate at different ~d/H ratios (Fig 2). At low ~d, however, stochastic effects on branch 

lengths may cause individual trees to display quite a large variation and thus over- or 

underestimate the rate by a factor of2 (at 0.001 substitutions/site and low ~d/H ratio). 

Trees reconstructed from sequences that are expected to only have moved apart 0.001 

substitutions/site are not very reliable in the first place, and thus it is no surprise that the 
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rate may be off by a factor 2 in such cases. In fact, at this low rate we observed cases where 

sample 2 had evolved less than sample 1, giving negative rate values. The dispersion 

decreased with higher ~d and ~dIH ratios, and in general the expected error in the estimate 

from a single tree was less than 10% at rates when ~d>O . OI substitutions/site at all ~dIH 

ratios. 

Effect of few taxa 

With few OTUs in either sample the ~d estimation became more uncertain, but the effect of 

few OTUs was not as severe as one might have expected (Fig S2). At ~d=O . OI 

substitutions/site, only 2 OTUs in either sample caused ~d/ ~d tree ratios to be off by a 

factor 2 or worse, but at higher rates even this sparse representation gave reasonable 

estimates in individual trees. There was a trend suggesting that fewer OTUs in sample I 

was worse than fewer in sample 2, explained by sample 2 having accumulated more 

substitutions and thus being more informative about its average height than sample 1. With 

more than 4 OTUs in either sample there was only slight improvement in the dispersion 

when more OTUs were added, and at ~dIH =0.8 even 2 OTUs gave very little variation 

around the average. 

Effect of sequence length 

Longer sequences means more information about branch lengths and less stochastic error, 

and thus more defined height estimates. When the part of the tree that informs about ~d is 
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small (ddIH=0 .2), sequence length becomes more important (Fig S3). This situation occurs 

when one is investigating recent events in a deep phylogeny. Hence, at dd=O.OO I 

substitutions/site and ddIH=0.2 close to a sequence length of3000 characters was required 

to lower the variation around dd to within 10% of the true rate. At higher dd and ddIH 

ratios the precision got much better. Many biological studies involve sequence lengths in 

the 300-10000 range (average length in GenBank is approximately 1000 nt 

(Benson et aI., 2007)), and at the lower end of this range (/=300-1000) our dd estimates 

had good precision (var [dd/dd]< 1.0) at all dd ' s for ddIH =0.8 and at roughly dd>0.0063 

substitutions/site for ddIH ~0.2). 

Effect of uncertain tree topology 

To assess the case when we do not have the correct tree, but rather a reasonable tree, we 

investigated trees that were reconstructed from DNA sequence data generated on random 

trees with 20 OTUs in each of two longitudinal samples. There was a clear correlation 

between the accuracy of the tree reconstruction and dd, i.e., at low dd the trees were less 

accurately reconstructed (Fig 3). As expected, finding an accurate rate was easier at higher 

expected rates. In general, at dd>0.003 substitutions/site the estimated rate was within 10% 

of the true rate, regardless of how inaccurate the reconstructed tree was. Interestingly, at 

higher ddIH ratios the trees were more inaccurate, because H was smaller, but the estimated 

rates were still good. Thus, the rate estimation was robust to errors in the (topological) tree 

reconstruction, which is important for real situations. 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

MaUkovic Berry, Athreya et al. Page 13 

Finding the correct root 

Strictly, finding the correct root requires the true tree to be recovered. Thus, we 

investigated the probability of finding the correct root given the true tree. The likelihood of 

finding the correct root increased with higher ild, sequence length and number of OTUs in 

samples 1 and 2, but decreased with higher ildIH ratios. At ildlH=0.2, the success of 

finding the correct root was 24% at ild=O.OOl substitutions/site, then increased to 83% at 

ild=O.l substitutions/site, while at ildIH =0.8 the success went from 6 to 26% (Fig S2). 

Similarly, increased sequence length had a stronger positive effect on the success of finding 

the correct root when ildlH was low. Finally, when there were limitations in the number of 

OTUs in either sample (N<20), the root was more often fOlmd in the correct location when 

ild was high. 

Comparison to other methods: TreeRate is both accurate and fast 

We compared the accuracy and the computing time of our method to two alternative 

strategies for estimating the evolutionary rates from longitudinal data, MPD and BMCMC 

(Table 1). As expected, the MPD was very fast and the BMCMC very slow. In scientific 

context accuracy is often more important than speed, however. Thus, considering accuracy 

in the evolutionary rate estimation first and speed second, our method gave accurate 

estimates at fast calculation speed, even when including tree building using ML (our 

method was >200 times faster than BMCMC on a 52 taxa set). The MPD gave inaccurate 

rates; with no homoplasy it is expected to seriously overestimate the differences, but with 
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HIV data which has a high degree of homoplasy the overestimation will be gradually 

compensated for so that with larger number of taxa the differences become underestimated 

(Table I). Thus, our method is well suited for analysis of large and numerous datasets. 

Application to real HIV-l data 

We collected HIV-I DNA sequences that covered the env V3 region with at least 324 and 

285 nt in the HIV database (hiv.lanl.gov) from the subtype Band C epidemics, respectively 

(B, 887 and C, 744 sequences). We confirmed that the sequences came from the same 

general respecti ve epidemic by reconstruction of large phylogenetic trees (data not shown). 

For instance, only subtype C sequences from the African C epidemic were included and not 

Indian C which form a distinct cluster, indicating a separate epidemic. Similarly, subtype B 

sequences from North America and Europe were confirmed to belong to the same 

epidemic. 

Figure 4 shows the real variances al
2 and a2

2 that our root optimization is based on (MSV) 

compared to the expected Poisson variances for the optimized heights XI and X2 of the 

subtype B data. Three observations justify the assumption of a fairly constant rate in each 

time interval: I) The real variances were proportional to the expected Poisson variances 

(R2:::::O.76). 2) As XI and X2 grew over time, so did al
2 and a2

2
, suggesting a Poisson 

process. 3) Samples from time point two generally had larger variance than those of time 

point one in each comparison (p<O.OI, t test), which would be expected if XI and X2 ~ 

Pois(li) and XI < X2 • Note that the assumption of a constant rate only applies to each 
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investigated time interval, and that this makes it possible to fmd rate changes over time, as 

we show below. This also allows to test at which time interval a constant rate is robustly 

inferred (here that was at ~t~3years) . 

Subtype Band C epidemics display complex evolutionary rates 

Both subtype Band C displayed evolutionary rates with relatively large fluctuations over 

time (Fig S5). When comparing our results to HIV-l prevalence data (www.unaids.org).it 

became clear that both epidemics consisted of sub-epidemics with different dynamics in the 

cOlmtries involved, i.e., while the prevalence increased in one country the prevalence went 

down in another. Thus, the uneven sampling from sub-epidemics that progress with 

different dynamics may explain a large portion of the fluctuations . Subtype C showed 

larger fluctuations over time than subtype B, agreeing with the fact that the epidemic 

dynamics in African cotmtries are much more diverse than those in European and North 

American countries. 

Dynamics in an epidemic are reflected in the evolutionary rate 

To decipher the complex overall pattern of the larger subtype Band C epidemics, we 

analyzed the two countries we had most data from; U.S.A. (subtype B) and Ethiopia 

(subtype C). The HIV-I subtype B epidemic in the U.S.A. showed a significant decrease 

(p<0.00 I, F -test) in the rate of evolution after 1997 (Fig 5A). Interestingly, while the 

prevalence kept stable at 0.6% this change in the rate of evolution coincided with the onset 

ofHAART in the U.S.A. (and Europe) in 1996. The overall subtype B epidemic in North 

America and Europe showed the same result (p<O.OO I, F-test). The subtype C epidemic in 
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Ethiopia had a clear stagnation in prevalence around 1995-1996 (Fig SB). While we had 

much more limited longitudinal sequence data available for this epidemic, the decrease in 

the epidemic rate was tracked by an increase in the evolutionary rate (p>O.OS, F-test) . Thus, 

when the epidemic rate changes, then the evolutionary rate of the virus inversely reflects 

that in a dynamic way. These results indicate that a sudden change in an epidemic may be 

reflected in the rate of evolution of the virus on the population level. 

DISCUSSION 

Large DNA sequence datasets with longitudinal samples have become common, especially 

for rapidly evolving organisms such as HIV. With the recent development of ultra-high 

throughput sequencing these already large datasets will become even larger. Large datasets 

from epidemics may inform about the rate of spread, and thus signal about outbreaks and 

other changes in the epidemic. Since our method is both fast and accurate, it may be used to 

efficiently analyze such data. 

We used TreeRate to assess the evolutionary rate and epidemiological history of HIV-l 

subtypes Band C. It has previously been suggested that there are subtype-specific 

differences in the patterns of epidemic growth of subtypes Band C (Walker et aI., 200S). 

Our results showed that the evolutionary rate of both subtypes displayed relatively large 

fluctuations over time, with subtype C having larger fluctuations than subtype B, agreeing 

with the fact that the epidemic dynamics in African countries are much more diverse than 
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those in European and North American countries. When compared to HIY -1 prevalence 

data from countries that the samples for subtype C were derived from, it became clear that 

this epidemic consisted of several sub-epidemics with different dynamics, explaining the 

fluctuations in the evolutionary rate over time. 

Thus, we investigated the evolutionary rates for two sub-epidemics from countries we had 

most data from: Ethiopia for subtype C, and U.S.A. for subtype B. In Ethiopia, subtype C is 

the most dominating subtype, and the introduction of HIY -1 into this country has been 

estimated to 1983 (1980-1984) (Abebe et aI., 2001). By analyzing the divergence of HIY-l 

from 1984+ 1985 (the earliest available sequences in the LANL HIY database) to all 

subsequent sampling time points up to 2005, we observed an indication of a dynamic 

inverse correlation between virus spread and the evolutionary rate. Prevalence data from 

Ethiopia show that HIY-I prevalence increased until about 1995, from which point it 

started to slowly decrease. Although the change in the slope was borderline significant, 

likely due to sparse data, this trend indicates that it is possible to study epidemic dynamics 

by consecutively estimating the rate of evolution of HIY -Ion the population level. 

For subtype B, there was a significant decrease in the rate of evolution at the time of 

introduction ofHAART in U.S.A. (and Europe). Ifantiretroviral therapy is successful, the 

viral replication within a host will be diminished, and there would be no measurable 

accumulation of substitutions in env. It has previously been shown that effective 

antiretroviral treatment can slow down and even totally abolish the evolution of HIY -1 in 

the envelope region (Drummond et aI., 2001; Nijhuis et aI. , 1998; Rodrigo et aI., 2003). It is 
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possible that this effect is reflected in the decrease of the evolutionary rate of subtype B on 

the population level. However, it is also possible that HAART effectively diminishes the 

number of HIV -I transmissions in the chronic stage of infection due to successful reduction 

of viral load, thus skewing the transmissions of the virus to the acute phase of infection. We 

have previously shown that the rate of evolution of HI V -I is lower if it is spread rapidly in 

a population, when most of the individuals are still in the acute phase of infection, before 

the HIV -I-specific irrunune system has a chance to exert pressure on the virus to change 

(Maljkovic Berry et aI., 2007). The exact mechanism of successful antiretroviral treatment 

on the rate of evolution of HIV -I needs to be further evaluated, as the use of HAART is 

increasing throughout the world and will affect other subtypes than B. By studying the 

effect of HAAR T on sUbtype B we might thus be able to predict the effect of HAAR T on 

the HIV -I pandemic as a whole. 

Several studies have indicated that HIV -I subtype B had spread rapidly in the initial stages 

of the epidemic in the U.S.A. (Gilbert et ai., 2007; Robbins et aI., 2003; Selik et ai., 1984; 

Walker et ai., 2005), with a slow-down of the rate of new infections in the beginning of the 

1990s. With this data, we would expect to see a lower evolutionary rate of subtype B before 

1990. This trend is not observed in our analysis, agreeing with a suggestion that the period 

of exponential growth of US subtype B precedes most of the early documented cases 

(Robbins et ai., 2003). Introduction of HI V-I subtype B into the US has been estimated to 

have occurred in or around 1969 (1962-1970) (Gilbert et aI., 2007). This suggests that the 

virus circulated in the country for about 12 years before recognition of AIDS in 1981. Since 

there are essentially no HIV sequences for this period, it is impossible to tell how fast the 
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virus was spreading in the US population during this time. However, data on increase of 

STDs and other rare infections among men who have sex with men (MSM), the risk group 

initially affected by HIV subtype B in the U.S.A., suggest that the virus might have been 

spreading rapidly during this silent period. For instance, in the MSM risk group, between 

1974 and 1979 amebiasis cutis ulcers increased by 250%, hepatitis A case reports doubled, 

and hepatitis B cases tripled (Garrett, 1995). In 1981, a study was published showing that 

the number of active cytomegalovirus (CMV) cases jumped in less then a decade from 10% 

to over 94% among MSM (Drew et aI., 1981). CMV has been associated with AIDS since 

the first reports of the epidemic in the MSM risk group. Thus, although it is possible that 

HIV -1 spread rapidly in the initial silent phase of the epidemic, our results indicate that the 

rate of spread had slowed down by the time of sampling of first HfV -I sequences. 

It is well known that HIV recombines during its evolution (Leitner et aI., 1995; Robertson 

et ai., 1995; Sabino et ai., 1994). If recombination occurs in phylogenetic trees, this 

undermines the fundamental assumption of a binary structure, and thus topology and 

branch lengths may become inaccurate. However, it is possible that HIV-l recombination 

may have a larger effect on the population level. In fast spread of the virus, such as in 

standing social IDU networks, the chances of superinfection, and thus recombination, are 

greater, suggesting that fast epidemics may have a higher rate of virus recombination. This 

may affect the assessment of the evolutionary rate on the population level, and is something 

that should be analyzed in the future, and is out of scope for this paper. Furthermore, it is 

unlikely that the amount of recombination will drastically change during an individual 

epidemic such as in our analyses of subtypes Band C over time, making recombination a 
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contributing but constant factor in these analyses. 

The HIV trees were inferred using a maximum likelihood method with no assumption of a 

molecular clock, i.e., all branches were free to vary. Thus, the variance we estimate will 

inform how "clocklike" a tree is. A fairly strict clock is likely to hold for closely related 

species or, as the primary intent of our method, for within-population estimates (Kishino et 

aL, 1990; Rambaut et aL, 1998; Yoder et aL, 2000). In the HIV data investigated here, we 

found that the rate in one time interval can follow a Poisson distributed clock quite well 

(Fig 4), but that temporal changes in the evolutionary rate may occur as the result of 

epidemic dynamics (Fig 5). 

Although we were able to find the correct root in 100% of our simulations when the 

sequence length was very high (100,000 nt) and ~d >0.006 substitutions/site at ~dIH=0.2, it 

appeared that our method in general was not very efficient at finding the correct root. 

This is not surprising because there will be very few, if any, substitutions on expected short 

branches, making it impossible to resolve the whole tree and thus to find the true topology 

and the correct root (e.g., Fig Ie). In spite of this, the rate estimates were generally good, 

within 10% of the true rate. This happens because when there are no or very few 

substitutions on expected short branches close to the true root, it does not matter from 

which exact topological point on the tree one estimates XI and X2 , such short branches 

may mislead the exact rooting but not the overall evolutionary rate. 
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In a real situation, when we reconstruct a phylogeny from sequence data, we may never 

know if we have found the true tree, and thus the true root may be impossible to find. It is 

well known that tree reconstruction and rooting is especially difficult in cases where there 

is a combination of short and long branches. This may be due to the effect of long branch 

attraction (Bruno et al., 1999; Felsenstein, 1978) to misspecification of the substitution 

model (Ho et al., 2004; Kolaczkowski et al., 2004; Mar et al., 2005), or to limitations of the 

heuristic used to explore alternative branching patterns. Similarly, rooting has been shown 

to be particularly difficult in trees displaying rapid radiations (Shavit et al., 2007). Thus, in 

addition to when there is too little information on some branches to resolve the tree, in real 

situations when trees are reconstructed, topologies, branch lengths and roots may also be 

mislead due to methodological artifacts and inaccurate substitution models. Importantly, 

our method was robust to inaccurately reconstructed trees (Fig 3). The simulated trees were 

reconstructed using NJ, and it is possible that our ~d estimates would have been even better 

if we had used ML (as in the HIV inferences) to reconstruct the topology and, in this 

context more importantly, the branch lengths. 

Estimating root-to-tip distances from a non-star tree does not give independent data 

(Felsenstein, 1985; Felsenstein, 2004), and thus this may bias the true variances of the 

distances in the samples. This is because branches deeper into the tree are reused and can 

influence several root-to-tip distances up or down. In comparative studies it has been 

clearly shown that hierarchically structured phylogenies create statistical problems if traits 

of the taxa under study are treated as if drawn independently from the same distribution, 
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e.g., (Dessimoz et aI., 2008; Felsenstein, 1985; Ives et aI., 2007; Kelly et aI. , 2004; 

Symonds, 2002). For instance, the resulting covariance can be taken into account using the 

method of generalized least squares (GLS) while ordinary and weighted least squares 

methods (OLS and WLS), such as the well-known Fitch-Margoliash method (Felsenstein, 

1997; Fitch et aI., 1967) implemented in for instance PHYLIP and PAUP (Felsenstein, 

1993; Swofford, 2002), assume independent distance estimates. However, both OLS and 

GLS based methods yield unbiased estimates of regression coefficients (Pagel, 1993), and 

interestingly the deviations from OLS have been shown to be greater than from GLS, i.e., 

the variance was overestimated rather than underestimated when non-independence was not 

accounted for (Rohlf, 2006). Importantly, just as OLS is not biased, though less efficient 

than WLS and GLS, our rate estimation method does not systematically bias the choice of 

root. In any case, we find that when the root is incorrectly estimated, our rate estimate is 

still good and unbiased. 

In conclusion, we have evaluated a simple method that optimizes the root and evolutionary 

rate in a given tree. The taxa in the tree must have at least two timestamps and realistic 

branch lengths. The two samples of taxa can, for instance, come from two samples of a 

population separated by a time interval, but not divided into separate monophyletic groups. 

We have shown that this method performs well in estimating the evolutionary rate under a 

large interval of expected rates, sequence lengths, and limited number of taxa. The method 

was less efficient in finding the true root, but the evolutionary rate estimation was robust 

against rooting errors and inaccuracies in the tree topology. Applied to real HIV -1 data, we 

found that when changes occur in an epidemic, such as changes in the rate of spread of the 
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virus, or introduction of effective antiretroviral treatment, then the evolutionary rate of 

HIV-I at the population level reflects these changes. In addition, we show that the rate of 

evolution of HIV -I can differ in different stages of an epidemic, which may have 

implications on the estimations of the most recent common ancestor and the time of 

introduction of HIV -1 in a population. Thus, it is possible that the estimations on the time 

of introduction of HIV -1 into Homo Sapiens may have to be re-evaluated. 
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APPENDIX A. Alternative optimality criteria 

In this paper we evaluated 7 test statistics for the root and rate optimization (Fig S 1). The 

four best criteria to find the true root were minimizing the sum of the tip height variances of 

OTUs in both samples as in Eq. 1 (MSV), maximizing Welch's t-value, minimizing 

Welch's p-value (MWP) (Welch, 1947), and minimizing either of the two samples' 

variance. For Welch's t test, the t statistic is calculated as 
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where Xi is the mean distance to the root of sample i, (J"~ the sample variance, and Ni the 

sample size. Thus, this allows for unequal variances in sample J and 2. To calculate the p-

value for each root, the degrees of freedom v were estimated as 

where Vi is the degrees of freedom associated with the i'h variance estimate Ni-1. The p-

value calculations were done using R (R Development Core Team, 2003). While MWP 

performed well at higher ild and ildIH ratios, it was sensitive to total tree height (H). The t 

test statistic (MWP) had a bias at low ild, while our ild estimates were unbiased across all 

rates using MSV (Fig SJ and Fig 2). We compared MSV and MWP to the upper and lower 

boundaries (maximizing and minimizing ild, respectively), to minimizing either sample's 

variance, and to the theoretical limit of our simulations, i.e., the rate estimated at the true 

root. As we have noted previously, MWP overestimated ild when ild was below 0.003 

substitutions/site (MaUkovic Berry et aI. , 2007). While this is a very low rate, with only 3 

substitutions on average in a 1000 nt long sequence, MSV showed no bias even at very low 

rates (Fig S 1). In conclusion, MSV was found to be the best optimality criterion for finding 

the true root and rate in a given tree. 
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The difference between two Poisson distributed variables is skewed according to the 

Skellam distribution (Skellam, 1946). Qualitatively, this skewness has the same behavior as 

the MWP bias, i.e., more positive bias at lower ~d, but quantitatively it had an effect 50-

fold below what we observed. Thus, although the Skellam skewness is in effect, it drowns 

in the phylogenetic noise and has no practical effect on our ~d estimates. Interestingly, 

some obscure criteria performed well for specialized conditions, e.g., minimizing the 

average tip height to sample lOTUs displayed overall high performance maxima that 

depended on the relationship of ~d and H (data not shown), but using this for general 

purposes would be unpractical unless one knew what to expect and was able to collect 

samples in an optimal way. Also interesting to note was that neither minimizing nor 

maximizing ~d ever found the correct root (Fig S I). 

APPENDIX B. Supplementary results. 

Supplementary data associated with this article can be found in the online version at doi :. 
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FIGURE LEGENDS 

Figure 1. Definitions and examples of simulated trees. (A) An example of a randomly 

generated true tree, with perfect "clocklike" edges. H is the total tree height, and ~d is the 

true (expected) rate between sample I and 2 OTUs. This tree is at ~d/H=0.2 and 20 OTUs 

in each sample. Thus, this tree shows the definitions of ~d and H, and is the true tree on 

which the trees in panels Band C were simulated, allowing for comparison between 

estimated rate and expected rate (~d/~d). (B) The same tree topology with Poisson 

distributed edges, and scaled so that ~d = 0.1 substitutions/site. Xl is the average distance 

from the root to sample lOTUs, X2 is the average distance from the root to sample 2 

OTUs, and ~d is the estimated rate between the samples. (C) The same tree topology with 
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Poisson distributed edges, and scaled so that ~d = 0.001 substitutions/site. Note that many 

expected short edges become zero at this low rate, and samples 1 and 2 are not well 

separated. Open squares are sample lOTUs and filled squares sample 2 OTUs. Trees in B 

and C are examples of trees used in evaluating our method, scaled to the shown scale bars. 

The tree in A is of arbitrary length. 

Figure 2. Estimation of ~d as a function of ~d. 

The dashed line indicates perfect estimation of ~d, and colored lines show the average 

estimates of the MSV optimality criterion, simulated at 20 OTUs in each sample and at 

different ~dIH ratios. Open circles show the results from individual random trees (100 at 

each rate and ~dIH ratio). 

Figure 3. Estimation of ~d when the tree is uncertain. 

The level of uncertainty, i.e., our inability to find the true tree, was measured as symmetric 

tree-to-tree distances (y-axis) , at 11 evenly logarithmic distributed expected rates (~d ; x-

axis). The estimated rate was compared to the true rate (in the true tree) and the average 

~d/~d is indicated by the color scale at the right. The resulting heat maps are at ~d /H=0.2 

in A, ~d /H=0.5 in B, and ~d /H=0.8 in C. Each data point (colored block) is the average of 

100 random simulated and reconstructed trees with 20 OTUs in each sample. 

Figure 4. Comparison of HIV rate variance to Poisson variance. 

The lines show the real variances al
2 (blue) and a/ (red) that our root optimization was 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Maljkovic Berry, Athreya et at. Page 32 

based on compared to expected Poisson variances [a2
pOiS(I) (light blue) and a

2
pOiS(2)(orange)] 

for the optimized real heights XI and X2 of the HIV -I subtype B data at ~t=6 years. The 

expected Poisson variances were calculated from 1000 Monte Carlo simulated Xi ~ 

POiS(AI = XI) and J0 ~ Pois(A2= X2) per year (44,000 simulated root-to-tip heights). The real 

variances were proportional to the expected Poisson variances (scale factors 

75 and 79 for samples I and 2, respectively). 

Figure 5. Tracking the dynamics of "IV -1 epidemics. 

The change in the evolutionary rate of HI V-I on the population level (genetic divergence) 

dynamically tracked changes in the epidemics of subtype B in the U.S.A. (A) and subtype 

C in Ethiopia (B) . While the prevalence was stable in the U.S .A., the change in the HIV-I 

evolutionary rate coincided with the onset ofHAART. In Ethiopia a change in the HIV-l 

evolutionary rate indicated a dramatic change in the prevalence. An indicator variable (log 

Isl/s21 , where sl is the slope before the change and s2 after the change) was used to find the 

best breakpoint in the evolutionary rate trend, followed by a formal F-test. The best 

breakpoint is shown by the dashed line. Note that the indicator has a positive value when 

the slope changes to a less steep value, and negative when it becomes steeper after the 

breakpoint. All possible breakpoints were evaluated and at least 3 divergence data points 

were required to calculate a slope. The resulting slopes before and after the breakpoint are 

plotted in the divergence graph (in A, s 1 = 0.004 and s2= 0.0000 I; and in B, s I =-0.000 I and 

s2= 0.0 I substitutions site· 1 yea{I). Each divergence data point indicates the evolutionary 

rate calculated from a separate tree optimized by TreeRate. The divergence in both 
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epidemics was calculated from the earliest available sequence samples, 1978+1979 for 

subtype B in the U.S.A. and 1984+ 1985 for subtype C in Ethiopia. 
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Table 1. Comparison of results and computing time to other methods 

Dataset" MPDb BEASTccc BEASTlnskyd TreeRatee 

ER tcpu ER tcpu ER tcpu ER tcpu 
f tcpu Tot 

3s21 taxa 5.97 O.012s 4.82 2.72h 3.96 3.39h 3.37 34.94s 1.06m 
2s52taxa 1.22 0.036s 6.42g 4.79h 5.09g 6.76h 4.70 1.51m 1.94m 
29s887taxa 1.14 7.456s h h 4.94 1.63m 1.92m 

T ABLE FOOTNOTES 

ER, Evolutionary rate [10-3 substitutions site-I yea(l). tcpu, computer time for actual 

calculations [s, seconds; m, minutes; h, hours], not considering pre- and post-processing of 

data (which varies but is roughly similar for all methods). All calculations were done on a 

computer with dual dual-core (4 CPUs) Intel® Xeon™3 .20GHz CPUs with 4149768 kB 

memory running CentOS 5.2. 

a The datasets consisted of HIV -I subtype B env V3 region sequences (3s21 taxa=426nt, 

2s52taxa=282nt, 29s887taxa=324nt). The number of longitudinal samples is indicated 

before the "s" and the number of OTUs before "taxa". The ER was calculated between time 

points 1981 and 2000 for MPD and TreeRate with dataset 3s2ltaxa and 1985-1999 for 

MPD and TreeRate with dataset 29s887taxa; for 2s52taxa all OTU data was used by all 

methods; and BEAST used all time points available in each dataset. These datasets are 

available upon request from the authors; 3s21 taxa is also the "Sample Input" on our web 

interface. 

b MPD, mean pairwise differences among relevant OTUs calculated using PAUP* 

(Swofford, 2002). Distances were calculated using a general-time-reversible model with 

invariable sites and gamma distributed variable sites (GTR-IG). 
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C BEASTcc, BEAST estimate using default parameters with a constant clock and constant 

population size (Dnunmond et aI., 2007) with a GTR-IG substitution model. 

d BEASTlnsky, BEAST estimate using default parameters with a lognormal distributed 

relaxed clock and a skyline coalescent population growth model (Dnunmond et aI., 2005) 

with a GTR-IG substitution model. 

e TreeRate, the method described in this paper. 

f tcpu Tot, the total CPU time for calculating a PhyML tree with a GTR-IG substitution 

model (Guindon et aI., 2003) plus the TreeRate root and ER optimization. 

g These values came from BEAST runs with effective sample size <20. 

h We were not able to get these runs started, possibly due to the large data file. 
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The evolutionary rate dynamically tracks changes in HIV-1 epidemics: 
application of a simple method for optimizing the root in phylogenetic trees 
with longitudinal data 
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APPENDIX B. SUPPLEMENTARY RESULTS 

C\I 

0 
..- ~ 

"0 
~ 

<"0 
:S. co 
c 0 ro 
Q) 

E 

CD 
0 

v 
c:i 

-3.0 -2.5 -2.0 -1.5 

• mlns,2 
C mins~ 
.. max I 

• min p 

• min I!d 
• maxM 
• mbl (s (..sj) 

lrue rool 

-1.0 

Figure S1. Comparison of different test statisti~s estimating the evolutionary rate. 
The dashed line indicates perfect estimation of !!.d and the true root line shows the 
average estimated evolutionary rate at the true root, i.e., the theoretical limit of our 
simulations. All lines are simulations at !!.dIH=0.5, and each data point is the average of 
100 random simulated trees with 20 OTUs in each sample. Note that while the t and p 
value optimizations appear to be similar on average, in individual trees the best t value is 
not always the best p value because of how the degrees of freedom are calculated in 
Welch's t test (see Appendix A). 
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Figure 52. The ability to find the true root. Comparison of minimizing the sum of tip 
height variances of sample 1 and 2 (MSV) and minimizing Welch's p-value (MWP) as 
methods to find the true root. The different lines indicate different i1dJH ratios. Each data 
point is calculated as the number of times the true root was found out of 100 random 
simulated trees with 20 OTUs in each sample. Each tree was simulated with a defined 
root, then treated as unrooted, and run through our root and rate optimization to estimate 
the rooting point. 
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Figure S3. ThAe effect of number of OTUs in sample 1 and 2. The colored lines show 

the average ild estimates of the MSV optimality criterion, and open circles show the 
results from individual random trees (100 at each rate and OTU ratio). Simulations were 
done at three different expected rates (ild=O.OOl, 0.01 and 0.1 substitutions/site), and at 
ildIH=0.5. In panel A the number of OTUs in sample 1 varied according to the x-axis 
while the number was constant in sample 2 (N=20), and vise versa in panel B. 
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Figure S4. The effect of sequence length on the estimated rate Ad. Since there was no 
bias in the MSV method, we show only the variance of the rate estimates as a function of 
sequence length. The different lines show the mean variance from 100 simulations in 
each data point at 6 different expected rates Ad, see inset box for color coding. Trees with 
20 OTUs in each sample were used. Panel A is at Ad!H=0.2, B Ad!H=0.5, and C 
Ad!H=0.8. 
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Figure ss. Tracking the dynamics of HIV -1 subtype Band C epidemics. 
The temporal trend of the evolutionary rate on the population level (genetic divergence) 
of HIV -I subtype C in Africa (A) was more variable than the temporal trend of HIV-I 
subtype B in Europe and North America (B). Each divergence data point indicates the 
evolutionary rate calculated from a separate tree optimized by TreeRate. The divergence 
in both epidemics was calculated from the earliest available sequence samples, 
1978+ 1979 for subtype Band 1984 for subtype C. HIV -I prevalence data for countries 
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included in this study was derived from UNAIDS. Observe that the prevalence reflects all 
subtypes in the respective country, and mayor may not be representative for subtypes B 
and C. 


