LA-UR- 97 A

Approved for public release;
distribution is unlimited.

Bter | e evolutionary rate dynamically tracks changes in HIV-1

epidemics

Irina Maljkovic Berry, Z#: 203158, T-6/T Division
Gayathri Athreya, Z#: 218561, T-6/T Division
Marcus Daniels, Z#: 211500, T-6/T Division
William J. Bruno, Z#: 107647, T-6/T Division
Bette Korber, Z#: 108817, T-6/T Division

Carla Kuiken, Z#: 111147, T-6/T Division

Ruy M. Ribeiro, Z#: 171295, T-6/T Division

Author(s):

Intended for: Journal: Epidemics

ﬂv
Los Alamos

NATIONAL LABORATORY
= EST 1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this arlicle as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)



Elsevier Editorial System(tm) for Epidemics
Manuscript Draft

Manuscript Number:

Title: The evolutionary rate dynamically tracks changes in HIV-1 epidemics

Article Type: Original Research

Keywords: Viral evolution
Molecular epidemiology
Phylogeny

TreeRate

Corresponding Author: Dr Thomas Leitner,

Corresponding Author's Institution: Los Alamos National Laboratory

First Author: Irina Maljkovic Berry

Order of Authors: Irina Maljkovic Berry; Gayathri Athreya; Moulik Kothari; Marcus Daniels; William J
Bruno; Bette Korber; Carla Kuiken; Ruy M Ribeiro; Thomas Leitner

Abstract: Large sequence datasets provide an opportunity to investigate the dynamics of pathogen
epidemics. Thus, a fast method to estimate the evolutionary rate from large and numerous
phylogenetic trees becomes necessary. Based on minimizing tip height variances, we optimize the
root in a given phylogenetic tree, to estimate the most homogenous evolutionary rate between
samples from at least two different time points. Simulations showed that the method had no bias in
the estimation of evolutionary rates, and that it was robust to tree rooting and topological errors. We
show that the evolutionary rates of HIV-1 subtype B and C epidemics have changed over time, with
the rate of evolution inversely correlated to the rate of virus spread. For subtype B the evolutionary
rate slowed down and tracked the start of the HAART era in 1996. Subtype C in Ethiopia showed

an increase in the evolutionary rate when the prevalence increase markedly slowed down in 1995.



Thus, we show that the evolutionary rate of HIV-1 on the population level dynamically tracks
epidemic events.

Suggested Reviewers: Ron Swanstrom

risunc@med.unc.edu

Angela McLean

angela.mclean@zoo.0x.ac.uk

Opposed Reviewers: Alexei Drummond
conflict of interest

Andrew Rambaut
conflict of interest

Marc Suchard

conflict of interest

Philippe Lemey
conflict of interest



Cover Letter
>

Dear Sir,

Please find enclosed manuscript titled “A simple method for optimizing the root and
evolutionary rate in phylogenetic trees with taxa collected at a minimum of two different
time points” by Irina Maljkovic Berry, Gayathri Athreya, Moulik Kothari, Marcus
Daniels, Bette Korber, Carla Kuiken, and Thomas Leitner, that we would like to submit
for possible publication in Epidemics.

This paper describes a fast and accurate method to root and estimate evolutionary rates in
a given phylogenetic tree. While there are several methods that estimate rates and that
can root trees, no method combines them into a fast and simple strategy. Thus, our
method can take a tree calculated with any tree building method and optimize the root
and rate in it. It is especially useful for large analyses, with either many taxa or many
datasets. We have evaluated our method on simulated data that aimed at investigating the
performance under many limiting situations, and found it to perform very good under
situations that are typical in biological systems.

We have used this method to analyze the HIV-1 subtype B and C epidemics. We show
that our method is able to track dynamic changes in these epidemics, and thus that it may
be applicable to infer and predict changes in epidemics involving pathogens that evolve
during their spread. We believe these results and this method are of great interest to your
readers.

The paper has not been sent to any other journal, and there are no other papers that
currently are under consideration and relate to this paper from us. None of the authors
have any conflicts of interest to delclare.

Sincerely,
Thomas Leitner, PhD
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ABSTRACT

Large sequence datasets provide an opportunity to investigate the dynamics of pathogen
epidemics. Thus, a fast method to estimate the evolutionary rate from large and numerous
phylogenetic trees becomes necessary. Based on minimizing tip height variances, we
optimize the root in a given phylogenetic tree, to estimate the most homogenous
evolutionary rate between samples from at least two different time points. Simulations
showed that the method had no bias in the estimation of evolutionary rates, and that it was
robust to tree rooting and topological errors. We show that the evolutionary rates of HIV-1|
subtype B and C epidemics have changed over time, with the rate of evolution inversely
correlated to the rate of virus spread. For subtype B the evolutionary rate slowed down and
tracked the start of the HAART era in 1996. Subtype C in Ethiopia showed an increase in
the evolutionary rate when the prevalence increase markedly slowed down in 1995, Thus,
we show that the evolutionary rate of HIV-1 on the population level dynamically tracks

epidemic events.

Keywords: Viral evolution, Molecular epidemiology, Phylogeny, TreeRate



O~ O Uk Wb

Maljkovic Berry, Athreya et al. Page 3

INTRODUCTION

The rate of evolution is a fundamental quantity in the field of molecular biology and
evolution, and has often been measured as the rate of nucleotide substitutions. Estimating
the rate of substitutions is especially effective when there are known dates not only at the
tips of a phylogenetic tree, but also deeper into the tree. This situation exists when there are
either fossil data that can date historic events, or when the organism under study evolves
fast enough to accumulate mutations for a researcher to sample it within reasonable time.
The latter is the case among many viruses, where samples taken only a few years apart may
display as much evolution as higher organisms do in millions of years (Leitner, 2002;
Leitner and Albert, 1999). For example, HIV-1 evolution has been estimated at rates
between 1x107 and 17x107 substitutions site” year'1 in env (Korber et al., 2000; Leitner et

al., 1999; Maljkovic Berry et al., 2007; Salemi et al., 2001).

Various methods have been proposed to estimate the rate of substitutions over time, i.e., the
molecular clock. Originally, the molecular clock was estimated as a constant accumulation
of substitutions over time (Kimura, 1980; Zuckerkandl et al., 1965) but that simplifying
assumption may not always be appropriate (Gillespie, 1984; Gillespie, 1988; Takahata,
1987) and more recently several Bayesian methods have been suggested on how to relax
the strict molecular clock (Drummond et al., 2006; Huelsenbeck et al., 2000; Kishino et al.,
2001; Sanderson, 2002; Thorne et al., 1998; Yang et al., 2006). Some other recent methods
also allow for samples with different collection dates (Rodrigo et al., 2003), and yet other
methods have investigated and incorporated uncertainties in the time stamps (Korber et al.,

2000; Leitner et al., 1999; Yang et al., 2006). Furthermore, local molecular clocks that can
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accommodate higher levels of rate heterogeneity than the Bayesian approaches have been
developed (Aris-Brosou, 2007; Yoder et al., 2000). While the relaxed clocks in many cases
appear to be more realistic and improve the rate estimates, they become more complex,
requiring more assumptions to be made and more parameters to be estimated, and slow to
run on computers. Also, a tree reconstructed under a fully unrestricted rate model, i.e., a
tree with no clock assumption, may still have a better fit than a tree assuming a particular
clock model. For these reasons, we have developed a fast and simple method to find the
root that gives the most homogeneous rate in a given tree with samples from at least two
different time points. The tree can be calculated by any method, and as long as the branch
lengths are realistic measures of divergence, an average rate can be estimated for the time

interval between the samples.

We apply this method to the epidemics of HIV-1 subtypes B and C, from Europe and North
America, and Africa, respectively. We show that, for subtype B, the evolutionary rate is
constant until 1997, after which a significant decrease in the rate is observed. Interestingly,
this decrease coincides with the global onset of HAART in 1996. Furthermore, we did not
observe a low evolutionary rate of the virus in the early epidemic, indicating that the period
of exponential growth in the U.S.A. precedes most of the early documented sequences.
Subtype C displayed large fluctuations. As in the subtype B epidemic, different countries in
the subtype C epidemic had very different prevalence dynamics. Analyses of the Ethiopian
subtype C sub-epidemic revealed an inverse correlation between virus spread and the
evolutionary rate of HIV-1, where the evolutionary rate increased after 1995 when the rate

of spread slowed down. Thus, we show that changes in HIV-1 epidemic can be revealed by
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consecutively estimating the evolutionary rate.

METHODS

Root optimization
A standard Newick formatted tree is the input. The operational taxonomic units (OTUs) in
the tree can be divided into two longitudinal samples, each with an average distance to the

root X, and separated by a time interval At. The distance between these samples is

calculated as Ad = X, — X, (Fig 1). It is also possible to use an additional discard group,

where one can put sequences not to be considered in the Ad calculation. In that way,
OTUs in one phylogenetic tree can be rearranged and reanalyzed in several different ways.
This also allows for trees constructed with samples from more than two time points to be
analyzed, e.g., OTUs from a third (or many) time point(s) can be put in the discard group
while Ad is calculated between time points one and two, then OTUs from time point one
are put in the discard group and Ad is calculated between OTUS of time points two and
three. Similarly, the method could be extended to optimize the tip height variances from all
time points simultaneously (Eq.1). Thus, the method we propose measures the distance
(amount of evolution) between OTUs in sample 1 and sample 2. It is primarily intended to
estimate the evolutionary rate of a population sampled at (at least) two time points. For this
calculation to be most reliable, sample 1 and 2 OTUs should preferably not be separated
into two monophyletic groups but rather intermixed. This is because if the two samples

were monophyletically divided then 1) biologically and epidemiologically, one could not be
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certain that the two samples came from the same population or outbreak, and 2)
mathematically, there would be no information on where to root the tree along the branch
that separated the two samples because the variance would not change along it. Since Ad
between the samples can differ depending on how the tree is rooted, Ad is calculated at all
nodes. Further, because the best root may not be at a node, we optimize the root along the
branch that gives the best test statistic, and thus find the best distance between sample 1 and

2 OTUs.

We evaluated several test statistics for the root and rate optimization (see further Appendix
A), including the simple, and best performing, test statistic of summing the variances of

sample (s) 1 and 2 as

2 - ] Ny . ] Ny _
go} _|:-N_ I(X.-'_"YI):|+|:_'A?'Z(XJ—X1)' (1)

1= 2 j=I

Our method can handle both unrooted and rooted Newick trees. A web version of this

method is available at the Los Alamos HIV sequence database (www.hiv.lanl.gov), and is

named TreeRate. The output gives f,, )?2, s|2 and szz Essz, and Ac} for every node in the

tree and the best rooting point. The web tool also allows the user to input the time points at
which each sequence was sampled, in which case the evolutionary rate, ER-—-Ac?fAt, is also

calculated for every rooting node. The time interval A¢ is calculated as the arithmetic mean

of the sequences with an associated time point.
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Simulations

To evaluate how the rate and root optimization performed when data was limited, we tested
the method under several limiting conditions, including different expected distances (Ad),
fraction of the tree that contained the expected distance (Ad/H), number of taxa, sequence

length, and uncertainty in the tree topology.

Random tree topologies were generated using MacClade (Maddison et al., 2003). Branch
lengths were added to simulate different genetic distances from the root as well as between
sample | and 2. Branch lengths were randomly Poisson distributed around the expected
values. At distances smaller than 0.001 substitutions/site trees will become uninformed
because there will be very few substitutions between taxa, and conversely at very high
distances alignments become a serious limitation. Therefore, we simulated trees in a
biologically typical range where the expected distance between sample | and 2 (Ad) ranged
from 0.001 to 0.1 substitutions/site in 10 even logarithmic steps. This expected distance
occurred at ratios 0.2, 0.5 and 0.8 of the total tree height (Ad/H) (Fig |). The number of
OTUs varied from 2 to 20 in sample | with sample 2 constant at 20, and 2 to 20 in sample 2
with sample | constant at 20. In all simulations the sequence length was 1000 nt, except for
when the effect of sequence length was investigated, where it was varied from 100 to
100000 nt. To include uncertainty in the topology, i.¢., dealing with incorrectly
reconstructed trees, we generated sequences (1000 nt) using Seq-Gen (Rambaut et al.,
1996), under a general-time-reversible model with Gamma distributed variation across sites

according to a realistic HIV-1 situation (Leitner et al., 1997). Subsequently, a neighbor
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joining (BioNJ) tree was reconstructed using PAUP* (Gascuel, 1997; Swofford, 2002) with
the identical model as used to generate the sequences. Note that the tree uncertainty tests do
not depend on how the trees were reconstructed; all we wanted to measure is the effect of
not perfectly reconstructed trees. In all simulations 100 random trees were investigated at

each setting and the root was optimized using the above test statistic (MSV). The inferred

root and Ad were registered and compared to the true root and Ad.

Comparison to other methods

We compared the accuracy and the computing time of our method to two alternative
strategies for estimating the evolutionary rates from longitudinal data (Table 1).

The mean pairwise distance (MPD), which is the fastest way to calculate genetic
differences between two (or more) samples; and 2) Bayesian Markov Chain Monte Carlo
(BMCMC) simulations assuming explicit clock and population growth models (Drummond
et al., 2006), which is one of the perhaps most rigorous ways to estimate genetic
differences. The MCMC analyses were performed using BEAST (Drummond et al., 2007),
with the substitution rates generated using a general-time reversible substitution model with
gamma distribution and invariable rates among sites, and Markov Chain Monte Carlo runs
of 10,000,000 steps sampled every 1,000 steps and analyzed with Tracer
(beast.bio.ed.ac.uk/Tracer) with a discarded burn-in of 10%. The three methods were
compared using three different subtype B HIV-1 datasets consisting of U.S.A. sequences
covering the V3 region. Dataset | contained 52 sequences sampled at two time points, 1986

and 1997, dataset 2 contained 887 sequences sampled between 1978 and 2006, and dataset
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3 contained 21 sequences sampled at three different time points, 1981, 1990, and 2000.

Reconstruction of HIV trees and TreeRate analyses

HIV-1 subtype B and C phylogenies were inferred using PhyML (Guindon et al., 2003),
with a general-time-reversible DNA substitution model with invariable sites and Gamma
distributed variable site rates. Starting trees for the heuristic search were derived by the
BioNJ method and refined by SPR and NNI improvements. Viral divergence was
calculated using TreeRate by calculating Ad between sequences sampled in 1978+1979 and
all other sampling times for the subtype B epidemic in Europe and North America and B
epidemic in U.S.A., and between sequences sampled in 1984+1985 and all other sampling
time points from the subtype C epidemic and C sub-epidemic in Ethiopia, respectively. We
performed linear regression analyses of this data, and tested for the difference in slopes
before and after all sampling time points using Im in R (R Development Core Team, 2003),
testing for the interaction of a dummy variable "before" and "after" a possible breaking
point in time showing change in the slope. The change in the slope was assessed with an
indicator, log |s1/s2|, where s is the slope “before” and s2 “after” the breakpoint, followed

by a F-test for significance.

RESULTS

Identifying the optimality criterion
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In the case when all branches were perfect, i.e., there was no variation in tip heights in each
sample, the correct root and rate were always recovered (data not shown). Such a situation
may be the case when sequences are infinitely long, but will never occur in real data.
Therefore, to evaluate our method and its capacity to infer the correct genetic distance (Ad),
and thus the rate of evolution, we simulated 25350 trees that aimed at limiting the
information about the distance from the root to the OTUs. For the best root the distance
between the two samples ( A&) was estimated and compared to the correct genetic distance

as Ad/Ad.

We evaluated several test statistics to optimize the root and evolutionary rate in a given
tree. Overall, the best rooting was found with the minimum sum of tip height variances
(MSV) (Fig S1). This criterion performed well at low Ad, increased its rooting accuracy at
higher Ad, and was not sensitive to H. The best criterion to find the optimal rate was also

MSYV which showed no bias to over or underestimate at any rate investigated (Fig 2 & 3).

Effect of low rates

The MSV optimality criterion showed no bias in its average estimate of the evolutionary
rate at different Ad/H ratios (Fig 2). At low Ad, however, stochastic effects on branch
lengths may cause individual trees to display quite a large variation and thus over- or
underestimate the rate by a factor of 2 (at 0.001 substitutions/site and low Ad/H ratio).
Trees reconstructed from sequences that are expected to only have moved apart 0.001

substitutions/site are not very reliable in the first place, and thus it is no surprise that the
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rate may be off by a factor 2 in such cases. In fact, at this low rate we observed cases where
sample 2 had evolved less than sample 1, giving negative rate values. The dispersion
decreased with higher Ad and Ad/H ratios, and in general the expected error in the estimate
from a single tree was less than 10% at rates when Ad>0.01 substitutions/site at all Ad/H

ratios.

Effect of few taxa

With few OTUs in either sample the Ad estimation became more uncertain, but the effect of
few OTUs was not as severe as one might have expected (Fig S2). At Ad=0.01
substitutions/site, only 2 OTUs in either sample caused Ad/ Ad tree ratios to be off by a
factor 2 or worse, but at higher rates even this sparse representation gave reasonable
estimates in individual trees. There was a trend suggesting that fewer OTUs in sample |

was worse than fewer in sample 2, explained by sample 2 having accumulated more
substitutions and thus being more informative about its average height than sample 1. With
more than 4 OTUs in either sample there was only slight improvement in the dispersion
when more OTUs were added, and at Ad/H =0.8 even 2 OTUs gave very little variation

around the average.

Effect of sequence length
Longer sequences means more information about branch lengths and less stochastic error,

and thus more defined height estimates. When the part of the tree that informs about Ad is
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small (Ad/H=0.2), sequence length becomes more important (Fig S3). This situation occurs
when one is investigating recent events in a deep phylogeny. Hence, at Ad=0.001
substitutions/site and Ad/H=0.2 close to a sequence length of 3000 characters was required

to lower the variation around Ad to within 10% of the true rate. At higher Ad and Ad/H
ratios the precision got much better. Many biological studies involve sequence lengths in
the 300-10000 range (average length in GenBank is approximately 1000 nt

(Benson et al., 2007)), and at the lower end of this range (/=300-1000) our Ad estimates
had good precision (var [ Ac;'f{\d]'( 1.0) at all Ad’s for Ad/H =0.8 and at roughly Ad>0.0063

substitutions/site for Ad/H 20.2).

Effect of uncertain tree topology

To assess the case when we do not have the correct tree, but rather a reasonable tree, we
investigated trees that were reconstructed from DNA sequence data generated on random
trees with 20 OTUs in each of two longitudinal samples. There was a clear correlation
between the accuracy of the tree reconstruction and Ad, i.e., at low Ad the trees were less
accurately reconstructed (Fig 3). As expected, finding an accurate rate was easier at higher
expected rates. In general, at Ad>0.003 substitutions/site the estimated rate was within 10%
of the true rate, regardless of how inaccurate the reconstructed tree was. Interestingly, at
higher Ad/H ratios the trees were more inaccurate, because H was smaller, but the estimated
rates were still good. Thus, the rate estimation was robust to errors in the (topological) tree

reconstruction, which is important for real situations.
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Finding the correct root

Strictly, finding the correct root requires the true tree to be recovered. Thus, we

investigated the probability of finding the correct root given the true tree. The likelihood of
finding the correct root increased with higher Ad, sequence length and number of OTUs in
samples 1 and 2, but decreased with higher Ad/H ratios. At Ad/H=0.2, the success of
finding the correct root was 24% at Ad=0.001 substitutions/site, then increased to 83% at
Ad=0.1 substitutions/site, while at Ad/H =0.8 the success went from 6 to 26% (Fig S2).
Similarly, increased sequence length had a stronger positive effect on the success of finding
the correct root when Ad/H was low. Finally, when there were limitations in the number of

OTUs in either sample (N<20), the root was more often found in the correct location when

Ad was high.

Comparison to other methods: TreeRate is both accurate and fast

We compared the accuracy and the computing time of our method to two alternative
strategies for estimating the evolutionary rates from longitudinal data, MPD and BMCMC
(Table 1). As expected, the MPD was very fast and the BMCMC very slow. In scientific
context accuracy is often more important than speed, however. Thus, considering accuracy
in the evolutionary rate estimation first and speed second, our method gave accurate
estimates at fast calculation speed, even when including tree building using ML (our
method was >200 times faster than BMCMC on a 52 taxa set). The MPD gave inaccurate

rates; with no homoplasy it is expected to seriously overestimate the differences, but with



WOl Wb

Maljkovic Berry, Athreya et al. Page 14

HIV data which has a high degree of homoplasy the overestimation will be gradually
compensated for so that with larger number of taxa the differences become underestimated

(Table 1). Thus, our method is well suited for analysis of large and numerous datasets.

Application to real HIV-1 data

We collected HIV-1 DNA sequences that covered the env V3 region with at least 324 and
285 nt in the HIV database (hiv.lanl.gov) from the subtype B and C epidemics, respectively
(B, 887 and C, 744 sequences). We confirmed that the sequences came from the same
general respective epidemic by reconstruction of large phylogenetic trees (data not shown).
For instance, only subtype C sequences from the African C epidemic were included and not
Indian C which form a distinct cluster, indicating a separate epidemic. Similarly, subtype B
sequences from North America and Europe were confirmed to belong to the same

epidemic.

Figure 4 shows the real variances o;” and o,” that our root optimization is based on (MSV)
compared to the expected Poisson variances for the optimized heights X, and X, of the

subtype B data. Three observations justify the assumption of a fairly constant rate in each

time interval: 1) The real variances were proportional to the expected Poisson variances
(R*~0.76). 2) As X, and X, grew over time, so did o,” and ©,°, suggesting a Poisson
process. 3) Samples from time point two generally had larger variance than those of time
point one in each comparison (p<0.01, t test), which would be expected if X', and fz ~

Pois(l)) and X, < X,. Note that the assumption of a constant rate only applies to each
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investigated time interval, and that this makes it possible to find rate changes over time, as
we show below. This also allows to test at which time interval a constant rate is robustly

inferred (here that was at At>3years).

Subtype B and C epidemics display complex evolutionary rates

Both subtype B and C displayed evolutionary rates with relatively large fluctuations over
time (Fig S5). When comparing our results to HIV-] prevalence data (www.unaids.org), it
became clear that both epidemics consisted of sub-epidemics with different dynamics in the
countries involved, i.e., while the prevalence increased in one country the prevalence went
down in another. Thus, the uneven sampling from sub-epidemics that progress with
different dynamics may explain a large portion of the fluctuations. Subtype C showed
larger fluctuations over time than subtype B, agreeing with the fact that the epidemic
dynamics in African countries are much more diverse than those in European and North

American countries.

Dynamics in an epidemic are reflected in the evolutionary rate

To decipher the complex overall pattern of the larger subtype B and C epidemics, we
analyzed the two countries we had most data from; U.S.A. (subtype B) and Ethiopia
(subtype C). The HIV-1 subtype B epidemic in the U.S.A. showed a significant decrease
(p<0.001, F-test) in the rate of evolution after 1997 (Fig 5A). Interestingly, while the
prevalence kept stable at 0.6% this change in the rate of evolution coincided with the onset
of HAART in the U.S.A. (and Europe) in 1996. The overall subtype B epidemic in North

America and Europe showed the same result (p<0.001, F-test). The subtype C epidemic in
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Ethiopia had a clear stagnation in prevalence around 1995-1996 (Fig 5B). While we had
much more limited longitudinal sequence data available for this epidemic, the decrease in
the epidemic rate was tracked by an increase in the evolutionary rate (p>0.05, F-test). Thus,
when the epidemic rate changes, then the evolutionary rate of the virus inversely reflects
that in a dynamic way. These results indicate that a sudden change in an epidemic may be

reflected in the rate of evolution of the virus on the population level.

DISCUSSION

Large DNA sequence datasets with longitudinal samples have become common, especially
for rapidly evolving organisms such as HIV. With the recent development of ultra-high
throughput sequencing these already large datasets will become even larger. Large datasets
from epidemics may inform about the rate of spread, and thus signal about outbreaks and
other changes in the epidemic. Since our method is both fast and accurate, it may be used to

efficiently analyze such data.

We used TreeRate to assess the evolutionary rate and epidemiological history of HIV-1
subtypes B and C. It has previously been suggested that there are subtype-specific
differences in the patterns of epidemic growth of subtypes B and C (Walker et al., 2005).
Our results showed that the evolutionary rate of both subtypes displayed relatively large
fluctuations over time, with subtype C having larger fluctuations than subtype B, agreeing

with the fact that the epidemic dynamics in African countries are much more diverse than
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those in European and North American countries. When compared to HIV-1 prevalence
data from countries that the samples for subtype C were derived from, it became clear that
this epidemic consisted of several sub-epidemics with different dynamics, explaining the

fluctuations in the evolutionary rate over time.

Thus, we investigated the evolutionary rates for two sub-epidemics from countries we had
most data from: Ethiopia for subtype C, and U.S.A. for subtype B. In Ethiopia, subtype C is
the most dominating subtype, and the introduction of HIV-1 into this country has been
estimated to 1983 (1980-1984) (Abebe et al., 2001). By analyzing the divergence of HIV-1
from 1984+1985 (the earliest available sequences in the LANL HIV database) to all
subsequent sampling time points up to 2005, we observed an indication of a dynamic
inverse correlation between virus spread and the evolutionary rate. Prevalence data from
Ethiopia show that HIV-1 prevalence increased until about 1995, from which point it
started to slowly decrease. Although the change in the slope was borderline significant,
likely due to sparse data, this trend indicates that it is possible to study epidemic dynamics

by consecutively estimating the rate of evolution of HIV-1 on the population level.

For subtype B, there was a significant decrease in the rate of evolution at the time of
introduction of HAART in U.S.A. (and Europe). If antiretroviral therapy is successful, the
viral replication within a host will be diminished, and there would be no measurable
accumulation of substitutions in env. It has previously been shown that effective
antiretroviral treatment can slow down and even totally abolish the evolution of HIV-1 in

the envelope region (Drummond et al., 2001; Nijhuis et al., 1998; Rodrigo et al., 2003). It is
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possible that this effect is reflected in the decrease of the evolutionary rate of subtype B on
the population level. However, it is also possible that HAART effectively diminishes the
number of HIV-1 transmissions in the chronic stage of infection due to successful reduction
of viral load, thus skewing the transmissions of the virus to the acute phase of infection. We
have previously shown that the rate of evolution of HIV-1 is lower if it is spread rapidly in
a population, when most of the individuals are still in the acute phase of infection, before
the HIV-1-specific immune system has a chance to exert pressure on the virus to change
(Maljkovic Berry et al., 2007). The exact mechanism of successful antiretroviral treatment
on the rate of evolution of HIV-1 needs to be further evaluated, as the use of HAART is
increasing throughout the world and will affect other subtypes than B. By studying the
effect of HAART on subtype B we might thus be able to predict the effect of HAART on

the HIV-1 pandemic as a whole.

Several studies have indicated that HIV-| subtype B had spread rapidly in the initial stages
of the epidemic in the U.S.A. (Gilbert et al., 2007; Robbins et al., 2003; Selik et al., 1984;
Walker et al., 2005), with a slow-down of the rate of new infections in the beginning of the
1990s. With this data, we would expect to see a lower evolutionary rate of subtype B before
1990. This trend is not observed in our analysis, agreeing with a suggestion that the period
of exponential growth of US subtype B precedes most of the early documented cases
(Robbins et al., 2003). Introduction of HIV-1 subtype B into the US has been estimated to
have occurred in or around 1969 (1962-1970) (Gilbert et al., 2007). This suggests that the
virus circulated in the country for about 12 years before recognition of AIDS in 1981. Since

there are essentially no HIV sequences for this period, it is impossible to tell how fast the
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virus was spreading in the US population during this time. However, data on increase of
STDs and other rare infections among men who have sex with men (MSM), the risk group
initially affected by HIV subtype B in the U.S.A., suggest that the virus might have been
spreading rapidly during this silent period. For instance, in the MSM risk group, between
1974 and 1979 amebiasis cutis ulcers increased by 250%, hepatitis A case reports doubled,
and hepatitis B cases tripled (Garrett, 1995). In 1981, a study was published showing that
the number of active cytomegalovirus (CMV) cases jumped in less then a decade from 10%
to over 94% among MSM (Drew et al., 1981). CMV has been associated with AIDS since
the first reports of the epidemic in the MSM risk group. Thus, although it is possible that
HIV-1 spread rapidly in the initial silent phase of the epidemic, our results indicate that the

rate of spread had slowed down by the time of sampling of first HIV-1 sequences.

It is well known that HIV recombines during its evolution (Leitner et al., 1995; Robertson
et al., 1995; Sabino et al., 1994). If recombination occurs in phylogenetic trees, this
undermines the fundamental assumption of a binary structure, and thus topology and
branch lengths may become inaccurate. However, it is possible that HIV-1 recombination
may have a larger effect on the population level. In fast spread of the virus, such as in
standing social IDU networks, the chances of superinfection, and thus recombination, are
greater, suggesting that fast epidemics may have a higher rate of virus recombination. This
may affect the assessment of the evolutionary rate on the population level, and is something
that should be analyzed in the future, and is out of scope for this paper. Furthermore, it is
unlikely that the amount of recombination will drastically change during an individual

epidemic such as in our analyses of subtypes B and C over time, making recombination a
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contributing but constant factor in these analyses.

The HIV trees were inferred using a maximum likelihood method with no assumption of a
molecular clock, i.e., all branches were free to vary. Thus, the variance we estimate will
inform how “clocklike” a tree is. A fairly strict clock is likely to hold for closely related
species or, as the primary intent of our method, for within-population estimates (Kishino et
al., 1990; Rambaut et al., 1998; Yoder et al., 2000). In the HIV data investigated here, we
found that the rate in one time interval can follow a Poisson distributed clock quite well
(Fig 4), but that temporal changes in the evolutionary rate may occur as the result of

epidemic dynamics (Fig 5).

Although we were able to find the correct root in 100% of our simulations when the
sequence length was very high (100,000 nt) and Ad >0.006 substitutions/site at Ad/H=0.2, it
appeared that our method in general was not very efficient at finding the correct root.

This is not surprising because there will be very few, if any, substitutions on expected short
branches, making it impossible to resolve the whole tree and thus to find the true topology
and the correct root (e.g., Fig 1C). In spite of this, the rate estimates were generally good,
within 10% of the true rate. This happens because when there are no or very few
substitutions on expected short branches close to the true root, it does not matter from
which exact topological point on the tree one estimates X, and X, such short branches

may mislead the exact rooting but not the overall evolutionary rate.
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In a real situation, when we reconstruct a phylogeny from sequence data, we may never
know if we have found the true tree, and thus the true root may be impossible to find. It is
well known that tree reconstruction and rooting is especially difficult in cases where there
is a combination of short and long branches. This may be due to the effect of long branch
attraction (Bruno et al., 1999; Felsenstein, 1978) to misspecification of the substitution
model (Ho et al., 2004; Kolaczkowski et al., 2004; Mar et al., 2005), or to limitations of the
heuristic used to explore alternative branching patterns. Similarly, rooting has been shown
to be particularly difficult in trees displaying rapid radiations (Shavit et al., 2007). Thus, in
addition to when there is too little information on some branches to resolve the tree, in real
situations when trees are reconstructed, topologies, branch lengths and roots may also be
mislead due to methodological artifacts and inaccurate substitution models. Importantly,
our method was robust to inaccurately reconstructed trees (Fig 3). The simulated trees were
reconstructed using NJ, and it is possible that our Ad estimates would have been even better
if we had used ML (as in the HIV inferences) to reconstruct the topology and, in this

context more importantly, the branch lengths.

Estimating root-to-tip distances from a non-star tree does not give independent data
(Felsenstein, 1985; Felsenstein, 2004), and thus this may bias the true variances of the
distances in the samples. This is because branches deeper into the tree are reused and can
influence several root-to-tip distances up or down. In comparative studies it has been
clearly shown that hierarchically structured phylogenies create statistical problems if traits

of the taxa under study are treated as if drawn independently from the same distribution,
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e.g., (Dessimoz et al., 2008; Felsenstein, 1985; Ives et al., 2007; Kelly et al., 2004;
Symonds, 2002). For instance, the resulting covariance can be taken into account using the
method of generalized least squares (GLS) while ordinary and weighted least squares
methods (OLS and WLS), such as the well-known Fitch-Margoliash method (Felsenstein,
1997; Fitch et al., 1967) implemented in for instance PHYLIP and PAUP (Felsenstein,
1993; Swofford, 2002), assume independent distance estimates. However, both OLS and
GLS based methods yield unbiased estimates of regression coefficients (Pagel, 1993), and
interestingly the deviations from OLS have been shown to be greater than from GLS, i.e.,
the variance was overestimated rather than underestimated when non-independence was not
accounted for (Rohlf, 2006). Importantly, just as OLS is not biased, though less efficient
than WLS and GLS, our rate estimation method does not systematically bias the choice of
root. In any case, we find that when the root is incorrectly estimated, our rate estimate is

still good and unbiased.

In conclusion, we have evaluated a simple method that optimizes the root and evolutionary
rate in a given tree. The taxa in the tree must have at least two timestamps and realistic
branch lengths. The two samples of taxa can, for instance, come from two samples of a
population separated by a time interval, but not divided into separate monophyletic groups.
We have shown that this method performs well in estimating the evolutionary rate under a
large interval of expected rates, sequence lengths, and limited number of taxa. The method
was less efficient in finding the true root, but the evolutionary rate estimation was robust
against rooting errors and inaccuracies in the tree topology. Applied to real HIV-1 data, we

found that when changes occur in an epidemic, such as changes in the rate of spread of the



OO -JuU b W

Maljkovic Berry, Athreya et al. Page 23

virus, or introduction of effective antiretroviral treatment, then the evolutionary rate of
HIV-1 at the population level reflects these changes. In addition, we show that the rate of
evolution of HIV-1 can differ in different stages of an epidemic, which may have
implications on the estimations of the most recent common ancestor and the time of
introduction of HIV-1 in a population. Thus, it is possible that the estimations on the time

of introduction of HIV-1 into Homo Sapiens may have to be re-evaluated.
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APPENDIX A, Alternative optimality criteria

In this paper we evaluated 7 test statistics for the root and rate optimization (Fig S1). The
four best criteria to find the true root were minimizing the sum of the tip height variances of
OTUs in both samples as in Eq. 1 (MSV), maximizing Welch’s t-value, minimizing
Welch’s p-value (MWP) (Welch, 1947), and minimizing either of the two samples’

variance. For Welch’s t test, the t statistic is calculated as
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where v; is the degrees of freedom associated with the i" variance estimate N-1. The p-
value calculations were done using R (R Development Core Team, 2003). While MWP

performed well at higher Ad and Ad/H ratios, it was sensitive to total tree height (H). The t

test statistic (MWP) had a bias at low Ad, while our Ad estimates were unbiased across all
rates using MSV (Fig S1 and Fig 2). We compared MSV and MWP to the upper and lower
boundaries (maximizing and minimizing Ad, respectively), to minimizing either sample’s
variance, and to the theoretical limit of our simulations, i.e., the rate estimated at the true
root. As we have noted previously, MWP overestimated Ad when Ad was below 0.003
substitutions/site (Maljkovic Berry et al., 2007). While this is a very low rate, with only 3
substitutions on average in a 1000 nt long sequence, MSV showed no bias even at very low
rates (Fig S1). In conclusion, MSV was found to be the best optimality criterion for finding

the true root and rate in a given tree.
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The difference between two Poisson distributed variables is skewed according to the
Skellam distribution (Skellam, 1946). Qualitatively, this skewness has the same behavior as
the MWP bias, i.e., more positive bias at lower Ad, but quantitatively it had an effect 50-
fold below what we observed. Thus, although the Skellam skewness is in effect, it drowns
in the phylogenetic noise and has no practical effect on our Ad estimates. Interestingly,
some obscure criteria performed well for specialized conditions, e.g., minimizing the
average tip height to sample | OTUs displayed overall high performance maxima that
depended on the relationship of Ad and H (data not shown), but using this for general
purposes would be unpractical unless one knew what to expect and was able to collect
samples in an optimal way. Also interesting to note was that neither minimizing nor

maximizing Ad ever found the correct root (Fig S1).

APPENDIX B. Supplementary results.

Supplementary data associated with this article can be found in the online version at doi:.
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FIGURE LEGENDS

Figure 1. Definitions and examples of simulated trees. (A) An example of a randomly
generated true tree, with perfect “clocklike” edges. H is the total tree height, and Ad is the
true (expected) rate between sample | and 2 OTUs. This tree is at Ad/H=0.2 and 20 OTUs
in each sample. Thus, this tree shows the definitions of Ad and H, and is the true tree on
which the trees in panels B and C were simulated, allowing for comparison between
estimated rate and expected rate (Ac}!Ad). (B) The same tree topology with Poisson
distributed edges, and scaled so that Ad = 0.1 substitutions/site. X, is the average distance
from the root to sample 1 OTUs, X, is the average distance from the root to sample 2

OTUs, and Ad is the estimated rate between the samples. (C) The same tree topology with
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Poisson distributed edges, and scaled so that Ad = 0.001 substitutions/site. Note that many
expected short edges become zero at this low rate, and samples 1 and 2 are not well

separated. Open squares are sample 1 OTUs and filled squares sample 2 OTUs. Trees in B
and C are examples of trees used in evaluating our method, scaled to the shown scale bars.

The tree in A is of arbitrary length.

Figure 2. Estimation of Ad as a function of Ad.

The dashed line indicates perfect estimation of Ad, and colored lines show the average
estimates of the MSV optimality criterion, simulated at 20 OTUs in each sample and at
different Ad/H ratios. Open circles show the results from individual random trees (100 at

each rate and Ad/H ratio).

Figure 3. Estimation of Ad when the tree is uncertain.

The level of uncertainty, i.e., our inability to find the true tree, was measured as symmetric
tree-to-tree distances (y-axis), at 11 evenly logarithmic distributed expected rates (Ad; x-
axis). The estimated rate was compared to the true rate (in the true tree) and the average
Ad/Ad is indicated by the color scale at the right. The resulting heat maps are at Ad /H=0.2
in A, Ad /H=0.5 in B, and Ad /H=0.8 in C. Each data point (colored block) is the average of

100 random simulated and reconstructed trees with 20 OTUs in each sample.

Figure 4. Comparison of HIV rate variance to Poisson variance.

The lines show the real variances 012 (blue) and oy’ (red) that our root optimization was
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based on compared to expected Poisson variances [0 poiscyy (light blue) and o” pois(zy(Orange)]
for the optimized real heights X, and X, of the HIV-1 subtype B data at At=6 years. The
expected Poisson variances were calculated from 1000 Monte Carlo simulated X; ~
Pois(A;=X,) and X; ~ Pois(A,= X,) per year (44,000 simulated root-to-tip heights). The real
variances were proportional to the expected Poisson variances (scale factors

75 and 79 for samples | and 2, respectively).

Figure 5. Tracking the dynamics of HIV-1 epidemics.

The change in the evolutionary rate of HIV-1 on the population level (genetic divergence)
dynamically tracked changes in the epidemics of subtype B in the U.S.A. (A) and subtype
C in Ethiopia (B). While the prevalence was stable in the U.S.A., the change in the HIV-]
evolutionary rate coincided with the onset of HAART. In Ethiopia a change in the HIV-1
evolutionary rate indicated a dramatic change in the prevalence. An indicator variable (log
[s1/s2|, where sl is the slope before the change and s2 after the change) was used to find the
best breakpoint in the evolutionary rate trend, followed by a formal F-test. The best
breakpoint is shown by the dashed line. Note that the indicator has a positive value when
the slope changes to a less steep value, and negative when it becomes steeper after the
breakpoint. All possible breakpoints were evaluated and at least 3 divergence data points
were required to calculate a slope. The resulting slopes before and after the breakpoint are
plotted in the divergence graph (in A, s1=0.004 and s2= 0.00001; and in B, s1=-0.0001 and
s2=0.01 substitutions site” year"). Each divergence data point indicates the evolutionary

rate calculated from a separate tree optimized by TreeRate. The divergence in both
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epidemics was calculated from the earliest available sequence samples, 1978+1979 for

subtype B in the U.S.A. and 1984+1985 for subtype C in Ethiopia.
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Table 1. Comparison of results and computing time to other methods

Dataset” MPD" BEASTcc®  BEASTInsky!  TreeRate®

ER tpu ER  ty  ER ey ER  tgu  teuTot'
3s2Itaxa 597 0012s 482 2.72h 396 3.3% 337 34.94s 1.06m
2s52taxa 1.22  0.036s 6.42°% 4.79h 5.09° 6.76h 470 1.5lm 1.94m
29s887taxa  1.14 7.456s " h 494 1.63m 192m
TABLE FOOTNOTES

ER, Evolutionary rate [107 substitutions site” year™]. tepu, cOmputer time for actual
calculations [s, seconds; m, minutes; h, hours], not considering pre- and post-processing of
data (which varies but is roughly similar for all methods). All calculations were done on a
computer with dual dual-core (4 CPUs) Intel® Xeon™3.20GHz CPUs with 4149768 kB
memory running CentOS 5.2.

* The datasets consisted of HIV-1 subtype B env V3 region sequences (3s2 | taxa=426nt,
2s52taxa=282nt, 29s887taxa=324nt). The number of longitudinal samples is indicated
before the “s” and the number of OTUs before “taxa”. The ER was calculated between time
points 1981 and 2000 for MPD and TreeRate with dataset 3s21taxa and 1985-1999 for
MPD and TreeRate with dataset 29s887taxa; for 2s52taxa all OTU data was used by all
methods; and BEAST used all time points available in each dataset. These datasets are
available upon request from the authors; 3s21taxa is also the “Sample Input” on our web
interface.

® MPD, mean pairwise differences among relevant OTUs calculated using PAUP*
(Swofford, 2002). Distances were calculated using a general-time-reversible model with

invariable sites and gamma distributed variable sites (GTR-IG).
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“BEASTcc, BEAST estimate using default parameters with a constant clock and constant
population size (Drummond et al., 2007) with a GTR-IG substitution model.

¢ BEASTInsky, BEAST estimate using default parameters with a lognormal distributed
relaxed clock and a skyline coalescent population growth model (Drummond et al., 2005)
with a GTR-IG substitution model.

¢ TreeRate, the method described in this paper.

f tepuTot, the total CPU time for calculating a PhyML tree with a GTR-1G substitution
model (Guindon et al., 2003) plus the TreeRate root and ER optimization.

£ These values came from BEAST runs with effective sample size <20.

" We were not able to get these runs started, possibly due to the large data file.
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The evolutionary rate dynamically tracks changes in HIV-1 epidemics:
application of a simple method for optimizing the root in phylogenetic trees
with longitudinal data
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APPENDIX B. SUPPLEMENTARY RESULTS

o
=
e
p— - 1T = =
2
-
— 0
§ © 7
£ —
@ mins?
©w O mins?
. B max|
= | minp
B min &
: max Ad
min {
= o m;ﬁ;sa
o
1 I 1 I LI
-3.0 -2.5 -2.0 -1.5 -1.0

log,, Ad

Figure S1. Comparison of different test statistics estimating the evolutionary rate.
The dashed line indicates perfect estimation of Ad and the true root line shows the
average estimated evolutionary rate at the true root, i.e., the theoretical limit of our
simulations. All lines are simulations at Ad/H=0.5, and each data point is the average of
100 random simulated trees with 20 OTUs in each sample. Note that while the t and p
value optimizations appear to be similar on average, in individual trees the best t value is
not always the best p value because of how the degrees of freedom are calculated in
Welch’s t test (see Appendix A).
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Figure S2. The ability to find the true root. Comparison of minimizing the sum of tip
height variances of sample 1 and 2 (MSV) and minimizing Welch’s p-value (MWP) as
methods to find the true root. The different lines indicate different Ad/H ratios. Each data
point is calculated as the number of times the true root was found out of 100 random
simulated trees with 20 OTUs in each sample. Each tree was simulated with a defined
root, then treated as unrooted, and run through our root and rate optimization to estimate
the rooting point.
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Figure S3. The effect of number of OTUs in sample 1 and 2. The colored lines show
the average Ad estimates of the MSV optimality criterion, and open circles show the
results from individual random trees (100 at each rate and OTU ratio). Simulations were
done at three different expected rates (Ad=0.001, 0.01 and 0.1 substitutions/site), and at
Ad/H=0.5. In panel A the number of OTUs in sample 1 varied according to the x-axis
while the number was constant in sample 2 (N=20), and vise versa in panel B.
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Figure S4. The effect of sequence length on the estimated rate Ad. Since there was no
bias in the MSV method, we show only the variance of the rate estimates as a function of
sequence length. The different lines show the mean variance from 100 simulations in
each data point at 6 different expected rates Ad, see inset box for color coding. Trees with
20 OTUs in each sample were used. Panel A is at Ad/H=0.2, B Ad/H=0.5, and C
Ad/H=0.8.
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Figure S5. Tracking the dynamics of HIV-1 subtype B and C epidemics.

The temporal trend of the evolutionary rate on the population level (genetic divergence)
of HIV-1 subtype C in Africa (A) was more variable than the temporal trend of HIV-1
subtype B in Europe and North America (B). Each divergence data point indicates the
evolutionary rate calculated from a separate tree optimized by TreeRate. The divergence
in both epidemics was calculated from the earliest available sequence samples,
1978+1979 for subtype B and 1984 for subtype C. HIV-1 prevalence data for countries
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included in this study was derived from UNAIDS. Observe that the prevalence reflects all
subtypes in the respective country, and may or may not be representative for subtypes B
and C.



