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Abstract Recently, there have been a number of experimental studies suggesting that
a suspension of self-propelled bacteria (microswimmers in general) may have an ef-
fective viscosity significantly smaller than the viscosity of the ambient fluid. This is
in sharp contrast with suspensions of hard passive inclusions, whose presence always
increases the viscosity. Here we present a 2D model for a suspension of microswim-
mers in a fluid and analyze it analytically in the dilute regime (no swimmer-swimmer
interactions) and numerically using a Mimetic Finite Difference discretization. Qur
analysis shows that in the dilute regime the effective shear viscosity is not affected
by self-propulsion. But at the moderate concentrations (due to swimmer-swimmer in-
teractions) the effective viscosity decreases linearly as a function of the propulsion
strength of the swimmers. These findings prove that (i) a physically observable de-
crease of viscosity for a suspension of self-propelled bacteria can be explained purely
by hydrodynamic interactions and (71) self-propulsion and interaction of swimmers are
both essential to the reduction of the effective shear viscosity.

We performed a number of numerical experiments analyzing the dynamics of swim-
mers resulting from pairwise interactions. The numerical results agree with the phys-
ically observed phenomena (e.g., attraction of swimmer to swimmer and swimmer to
the wall). This is viewed as an additional validation of the model and the numerical
scheme.
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1 Introduction

In recent years there have been a number of experimental studies suggesting that self-
propulsion can significantly change the rheological properties of suspensions.

In [32] it was shown that self-propelled bacteria (Escherichia coli; 1um wide and
2-3um long; concentration of swimmers around 10%. by volume) by a factor of 2-3
enhanced the diffusion of tracer particles (1-10um in size) in the quasi-two-dimensional
setting of a freely suspended soap film.

More recently, in [29] it was demonstrated that self-propelled bacteria (Bacillus
subtilis; .Tpm wide and 5um long; concentration of swimmers around 10% by vol-
ume) could reduce the viscosity of the suspension (depending on how actively they
are swimming) by up to five times when compared to passive/dormant bacteria. Here
the experiments were, also, performed in a thin flm. The activity of the bacteria was
controlled by changing the supply of oxygen. Since bacteria rely on oxygen to convert
the chemical energy obtained from the dissolved nutrients into the kinetic energy of
swimming, this is an efficient way of controlling the activity of bacteria.

The above experiments demonstrate that suspensions of active inclusions (swim-
mers) may have drastically different properties than suspensions of passive inclusions.
Exploiting these properties may lead to new or improved engineering solutions (e.g.,
self-replicating micromixers). Explaining and quantifying the changing viscosity for a
suspension of swimmers is the goal of this paper.

The effect of self-propulsion on the effective viscosity of the fluid is the major
focus of this paper. We identify the following key features affecting the viscosity of a
suspension of swimmers and the difficulties related to their modeling and analysis: (1)
inhomogeneity of the fluid due to inclusions, (i) elongated shape of the inclusions, (iii)
particle-particle interactions, and the new feature — (iv) self-propulsion.

The rheological properties of passive suspensions (suspensions of passive particles)
have been studied extensively for over a century. The analysis of the effective viscosity
for passive suspensions dates back to the famous work of Einstein [12], where he com-
puted the linear (in volume fraction ¢) correction to the viscosity for a suspension of
neutrally buoyant inert hard spheres in a Newtonian fluid in the dilute limit (¢ — 0).

Jeffery [19] extended the analysis from spherical to ellipsoidal neutrally buoyant
inert hard inclusions, where he demonstrated the dependence of the viscosity on the
distribution of orientations of the inclusions. Hinch and Leal [21,22] analyzed the lim-
iting distribution of orientations of ellipsoids in a shear flow in the presence of a rota-
tional Brownian motion and used this to obtain the effective viscosity for a suspension
of ellipsoids.

Batchelor and Green [2] were the first to consider pairwise particle interactions in
order to find the O(¢?) correction to Einsteins result [12]. Up to this point, all works
have involved formal asymptotics.

In the 1980s, rigorous homogenization results were first obtained for moderate
concentrations of particles by Levy and Sanchez-Palencia in [23] and Nunan and Keller
in [26] for periodic distributions of inclusions. Results for the densely-packed regime
were more recently proven in [7,6,5].

One of the earlier works in modeling the swimming at low Reynolds number was
done by Purcell [27]. The modeling of swimmers can be divided into two categories
based on whether the model swimmers change their shape or not. Examples of models
of swimmers changing their shape are a three-linked sphere swimmer [24,14] and a
swimmers with a rotating tail [25]. These models are attractive because the real-world



swimmers (bacteria, fish, etc.) swim due to shape changes (rotation of flagella, waving of
the tail, etc.). Unfortunately, the analysis of these models is difficult and at the moment
we are not aware of a rheological analysis being done for suspensions of such swimmers,
although the dynamics of such swimmer due to their interaction was analyzed in a
number of papers (e.g., [25]).

The other category of models are those where the swimmers do not change shape.
The propulsion here is either due to a prescribed effective force or an effective relative
velocity of the fluid on a part of the surface of the swimmer. Self-propulsion is enforced
by equating to zero the total force and torque on each of the swimmers.

Ishikawa and Pedley (18], modeling bacteria as spheres (no elongated body) with
a prescribed relative velocity (leads to self-propulsion) on the surface of the spheres,
observed a decrease in viscosity only in the presence of a gravitational field. In [18]
the results are obtained simulating the dynamics of swimmers using boundary integral
methods.

Shelley and Saintillan [28] modeled swimmers as slender rods with tangential trac-
tions prescribed on part of the boundary, for which they observed (in the numerical sim-
ulations) behavior reminiscent of that observed in the physical experiment for Bacillus
subtillis [30]. In particular they observed local nematic ordering of rod-like swimmers
that had a significant impact on the mean swimming speed of the swimmers.

In [9] authors consider a phenomenological model of active gels, treating them
from the perspective of liquid cristals. In particular they are interested in the effective
viscosity of active gels near “nematic” phase. They view suspension of bacteria as one of
examples of active gels. In our view attainability of “nematic” phase, understood as an
almost perfect ordering in suspesions of swimming bacteria is debatable. On the other
hand “nematic” phase may be feasible for suspensions of engineered microswimmers
that swim due to externally applied alternating magnetic field (e.g. [10]) and, therefore,
could be synchronized to swim in the same direction.

In the recent work [16] Haines, Aranson, Berlyand and Karpeev observed a de-
crease of the effective viscosity in the dilute limit for slightly elongated spheroids with
self-propulsion resulting from a point force in the fluid (attached to the body). They
considered two types of background flow: extensional and oscillatory shear Hows. In
both cases the decrease of viscosity was attributed to swimmers aligning with the Aow,
supporting the background flow.

In this paper we present a 2D mathematical model of the swimmer-fluid system.
The elongated body of the swimmer is modeled by an ellipse. The “front” half of the
ellipse represents the solid surface and the “back” half represents the surface covered
with flagella that exert the propulsion force onto the fAuid.

We consider two concentration regimes: dilute and moderate concentration. In the
dilute regime (no swimmer-swimmer interactions) we demonstrate that self-propulsion
has no effect on the effective viscosity. Therefore, we show that the elongated shape
of the swimmers and the propulsion force are not sufficient to change the effective
viscosity as compared to the passive suspensions.

On the other hand decrease of the effective viscosity is observed numerically if all
of the above features (i-ii¢) are present: the elongated shape of the swimmers, the
propulsion force and the swimmer-swimmer interactions.

To further reflect the settings of the physical experiments in [29] and [32], we
studied the suspension at moderate concentrations (approximately 10% by volume).
At such concentrations the numerical analysis appears to be the only available tool.
The major difficulty in the analysis is the dependence of the apparent viscosity on



the distribution of the swimmers in the fluid domain. The distribution changes with
time due to interaction of the swimmers with the ambient flow and other swimmers.
Hence, we use the Monte-Carlo approach for measuring the effective viscosity. That is,
we solve for the dynamics of the swimmers in the shearing flow, measure the apparent
instantaneous viscosity at each time step and average over all time steps.

First, to verify the predictive power of the model and the accuracy of the method
we performed a number of tests for the dynamics of swimmers in the proximity of a
wall or another swimmer.

Here we observed the attraction of a swimmer to another swimmer and a swimmer
to the wall. Heuristically, each swimmer acts as a force-dipole, forcing the Auid away
ahead and behind itself and “sucking” the fluid on the sides (due to incompressibility
of the fluid). Therefore, the presence of an obstacle to the side of a swimmer forces the
swimmer and the obstacle closer to one another due to this “suction”.

I'he attraction in both cases is only short term. A swimmer next to a wall, while
getting closer to the wall due to suction, will slowly rotate and swim away form the
wall. ‘T'wo nearby swimmers will swim away from one another once they become offset
from the mirror image configuration (see figure 6).

The results, obtained numerically, agreed with the physical observations for Bacillus
subtillis [30]. At the same time, the results shed light on the details of the swimmer-
swimmer and swimmer-wall interactions.

Next we performed a numerical experiment where we measured the effective shear
viscosity of a suspension of swimmers in a layer between two solid walls undergoing
a shearing motion with relative velocity 2v. We analyzed the dependence of the mea-
surements of the effective viscosity on the magnitude v of the shearing motion and
the propulsion strength of the swimmers, fp. Using an analytical scaling argument we
demonstrated that the effective viscosity depends only on the ratio of the propulsion
strength to the magnitude of the shearing motion for a fixed shape of the domain and
the swimmers. We call the above ratio the propulsion-shear ratio.

Our numerical simulations performed at the moderate concentrations (~ 10% by
volume) indicate that the effective shear viscosity decays linearly as a function of the
propulsion-shear ratio of fp/v. This continues to hold for negative values of the propul-
sion strength, which corresponds to swimmers swimming in the opposite direction, i.e.
pullers instead of pushers. For larger values of the propulsion-shear ratio a deviation
from the linear trend was observed and explained.

In section 2 we present a mathematical model for a swimmer in a fluid. Here we
write down a complete PDE formulation and motivate each of the choices. In section
2.3 we demonstrate a scaling invariance of the solutions of the PDE, which proves the
dependence of the effective shear viscosity on the propulsion-shear ratio. In section
3.1 we introduce the definitions for instantaneous apparent viscosity and the effective
shear viscosity, which are the same for homogeneous fluids and generally different for
inhomogeneous ones. In section 4 we briefly describe the numerical method, technical
difficulties and their solutions followed by the computational results for dynamics of
interacting swimmers and the effective shear viscosity for a suspension of swimmers.
Finally, in section 5 we summarize the results of our analysis. In appendixes A and B we
present the variational formulation for the model and demonstrate the well-posedness
of this problem.
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2 Mathematical model of a swimmer

In this section we first present the PDE model for a microswimmer in a Stokesian fluid
and then motivate every part of the model in section 2.2. The model is written in two
dimensions but it can be readily extended to three dimensions.

2.1 The PDE model for the swimmer

Let £2 C R? be a bounded domain with a smooth boundary representing the container
of the fluid with swimmers. Each swimmer is modeled as an ellipse 8", i = 1,..., N with
the center at xi, and the orientation d', see Figure 1. Here and below the superscript
i indicates the index of the swimmer.

membrane is
impenetrable

‘Propeller” “Head”

prescribed
tangential component no-slip
of traction
(fluid is pushed backwards) (fluid sticks to the surface)

Fig. 1 Illustration of an i-th swimmer with two parts of the boundary: I'}; and I'h. On the
front part T‘f_f of the swimmer (H stands for “head”) the fluid sticks to the surface. On the back
part of the swimmer Iy (P stands for “propeller”) the fluid cannot penetrate the boundary
of the swimmer. Also, on P}. the fluid is pushed backwards due to a prescribed tangential
component of traction.

The motion of the fluid surrounding the swimmers is governed by the incompressible
stationary Stokes equation

{ ‘d‘i‘?(‘;;vé’ in 2p = 2\|Js" (1)

On the boundary of the fluid domain 2¢ (includes boundaries of the swimmers and
the boundary of the container) the following boundary conditions are imposed (in part
illustrated in Figure 1):

u(x) = g(x), for x € 812, (2)
u(x):ui,-i—wi)((x—x:_.), ForxGF:;,, (3)

{ (u(x) - [ul +w’ x (x = x‘('_,)]) -n=0
ro(u,p)n = —f((x - x..)-d*) (r-d)

Fi. -{—F?D =0, balance of forces, (5)
T T =0; balance of torques. (6)

for x € Fﬁ,, (4)



Here u}, and w' are unknown (that need to be found) instantaneous translational
and rotational velocities of the i-th swimmer; n and 7 are the unit normal and unit
tangent to the surface at the point. T'he stress tensor o(u, p) is defined by

liafi= gD —5L  Dla)= % (Vu+(vu)7); )

f(:) and g(-) are the known scalar and vector functions defining the tangential compo-
nent 7o (u, p)n of the traction on I', (see e.g., (14)) and the velocity of the boundary
012, respectively. The viscous forces F, F. and the viscous torques T, , T}, on I,
and I',, are defined by

F, ;:fr_ o(u,p)n dx, F ;:]I o(u,p)n dx (8)
H

Fp

and

T = f (x —x%.) x o(u,p)n dx, Tt f (x— x..) x o(u,p)n dx.  (9)
T L
The PDE problem (1-6) defines the so-called instantaneous problem. That is, at
any time t the PDE problem (1-6) defines the relation between the positions xz (t) and
orientations d(t) of the swimmers and their translational u’,(t) and rotational (1)
velocities

uh(t) = UL (X6 @), x5 (0 d'(8),....,aV(®), (10)
wi(t) = Q"(x(‘,(t),...,xi.(t);d"(t),...,d”(:)), (11)

The values of functions Ui_. and 02! are computed by solving the PDE problem (1-6) for
the given positions and orientations of the swimmers. The existence and uniqueness
of the solution to the problem (1-6) for the given positions and orientations of the
swimmers is outlined in Appendix B.

The dynamics of the swimmers, defining the evolution of the fluid domain 2g(t) =
2\, §'(t), is given by the ODE (i = 1,...,N)

4l ()= ul.(t) = UL (x(‘,(t),...,xg(t);df(t),...,d*"'(z)), -
4di(t)= d'(t) x w'(t)= d(t) x 2 (x;}: (1), ..., xL(t):d'(2), ... ,dN(t})
with the initial conditions
x,(0) =%, di(0)=d¥’, |4’ =1 (13)

2.2 Discussion and motivation for the PDE model

Here we present the motivation for the above PDE model and discuss some issues
related to modeling.

First of all, the modeling of the fluid motion by an incompressible stationary Stokes
equation (1) is a fairly standard reduction from the Navier-Stokes PDE for small
Reynolds number, Re := %1 < 1. Here p is the density of the fluid (p =~ lg/cmz),
V and L are representative velocities and sizes in the problem. For instance, on the



scale of self-propelled bacteria, such as Bacillus Subtilis (5pum in length and .7pum in
width, swimming with the velocity up to 100um/sec) Re ~ 1079 <« 1.

Next we discuss the boundary conditions for the incompressible Stokes equation.
The boundary condition (2) indicates that the fluid sticks to the walls of the container
2, which are moving with velocity g(x). This is a standard boundary condition for
solid walls. It can also be applied to the case of bacteria in a thin film. The boundary
312 of the container 2, here, would be the fluid-air interface. The reason for using the
no-slip boundary condition would be the fact that bacteria produce a surfactant that
solidifies the interface [30].

The boundary condition (3) is similar to the condition (2) in that the fluid sticks to
the surface I'!,. But unlike 812, the boundary I'}, is moving with translational velocity
u!. and rotational velocity w* that are not known a priori and need to be found in the
process of solving (1-6).

The boundary condition (4a) indicates that the fluid cannot flow through the sur-
face I'’, of the swimmer, moving with translational velocity u’. ‘and rotational velocity
w'. Also, there is a force acting on the fluid on the surface I'), that pushes the fluid
backward, as a result propelling the swimmer forward. Since there is a condition of
“no flow through I'." (4a), one can only prescribe the tangential component of the
traction ¢(u,p)n on [‘f This is done by (4b).

Note that the form of the RHS of (46) indicates that the propulsion of the swimmer
is coordinate invariant, since it is given in terms of the coordinate invariant operators:
scalar and vector products. More precisely, the propulsion is invariant under rotation
and translation of coordinate system.

An example of the tangential component of traction defined by (4b) is the “uniform”
distribution over I'p

ro(u,p)n = —f((x = x%.)-d*) (7-d') = |}f-”] (r-dY, (14)
P
where fp is the “total force of the propulsion” (directed backward):

fo = /r f((x—x)-d") dz. (15)

Boundary conditions (5) and (6) indicate that all swimmers are self-propelled as
opposed to moving due to an external force (e.g., gravity). One can obtain equations
(5)-(6) from Newton'’s second law, noting that in the Stokes regime the inertial forces
are negligible compared to the viscous forces (for more details see [15]).

2.3 Scaling observation

The following observation will be important to simplify the future analysis. Consider
two initial value problems (1-12), with the same initial data (i.e., positions of the

swimmers {xf.:?((]), d‘(O)} and the same domain {2) but different boundary conditions,
related by a scaling:

g'(t,x) and  fl(s). (16)



g'l(t,x) =2g' (t/Ax) and  f1(s)=Af(s). (17)

Denote the solutions of problem I above (i.e., the motion of swimmers and the
velocity of the fluid at time ¢t and point x) by

xﬁ};(t).d“!(t) withi=1,...,N and u'f(t, x). (18)
Then the following scaling holds for the solution of problem /7.
Lemma 1 (Scaling) Function
u’l(t,x) == au’ (1/), %) (19)

and the motion of the swimmers
' = (3), @l =a" (5 (20)
A A
solve problem 11.
Proof Let’s check that u”(t,x)‘ as defined by (19), is, indeed, a solution of the time-
dependent, problem 17,

It is easy to check that u”(t,x) is a solution of the instantaneous problem (1-6)
with boundary data given by (16) and the velocities of the swimmers

ui}”(t) - )\u:;‘r (;) . wi'ff(t) = awh! (%) . (21)

Since (18) is a solution of problem I the motion of the swimmers (20) satisfies the
following ODE

d 41T d- Tttt frt 0117
Fxe () =Agxa’ (%) =g’ (x) = ue (1), (2
{ac't_:_dz.”(i):‘xdi,.’ (%): d:,." (i)le‘f (i):d:,ﬂ (i)xw"”(t). )

This is exactly the ODE (12) for the motion of the swimmers in the problem /1.

We summarize the above observation as follows:
Remark 1 Simullaneously increasing the propulsion force f(-) of the swimmers and
the velocity of the fluid g(x) on the boundary 012 by a factor of A leads to swimmers

moving on the same trajectories but A times faster. The corresponding wviscous forces,
also, increase by a factor A.



3 Effective viscosity

In the theory of fluid dynamics one of the primary objects of interest is the relation
between the applied forces (stress) and the observed fluid flow (strain rate). For New-
tonian fluids this relationship is linear

1

0y(X) = péy(x)  forx € Qp, i#j,  &(x):= (Vu+(Vu)T) (23)

(]|

and is defined by a scaling constant g, called viscosity.

For non-Newtonian fluids (23) does not hold with the same value of u. Hence,
assuming that one still desires to characterize the relation between the stress and the
strain rate in the form similar to (23), the viscosity p should be permitted to vary.
What should i depend on?

In the most general case, u will depend on the form of the flow (i.e. on the strain
rate: pu(e)). This is not very informative, as in this case the relation o = u(£)¢ is
equivalent to & = f(¢), where f(-) is some function. So, to answer the question about
the relation between the stress and the strain rate, one should specify the function f(-).

‘l'o avoid this problem, accept the fact that the general relation between the bulk
stress and the bulk strain rate greatly depends on the type of the fluid Aow. Thus
we will limit ourselves to a rather specific, but very experimentally intuitive definition
along the lines, proposed by G.K. Batchelor [1):

We shall consider here only the important and representative case in which
the suspension is confined between two parallel rigid planes in steady relative
shearing motion, with the stress being observed as the force per unit area on
a section of one boundary with linear dimensions large compared with particle
spacing.

Our definition of the effective shear viscosity will be similar to the above one.

3.1 Definition of effective viscosity and instantaneous apparent viscosity

Consider a fuid (or a complex fluid, such as a suspension of active or passive particles
in the Auid) between two solid plates a distance 2H apart, see Figure 2. We induce a
shearing motion on the boundary by moving the top plate (right) with velocity ve;
and the bottom plate (left) with velocity —wve;. For completeness of the definition of
the motion on the boundary we prescribe the periodic conditions on the left and right
boundary. The effective shear viscosity fi(v), being a measure of friction in the fluid,
then should be defined in terms of the total viscous forces Fp and F g, acting on the
top and the bottom plates, respectively. In case of suspensions, the viscous forces may
depend on the distribution of inclusions and, hence, be functions of time. Also, the
effective shear viscosity should scale correctly with the dimensions of the domain

B(wi) = 1o (Pr() - Fa(0) e, (20

where L is the length of the plate.

The definition (24) makes a perfect sense for homogeneous fluids, where viscous
forces F and Fg do not change with time. For non-homogeneous fluid there are
additional challenges. For instance, for a suspension of passive or active inclusions the
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Fig. 2 Schematic illustration of shear flow between two plates.

value of fi(v) in (24) will be different depending on the concentration and distribution
of inclusions. For a suspension of active inclusions, such as swimmers, it will also
depend on the propulsion strength of the swimmers. Moreover, changing the propulsion
strength from fp to — fp, in general, will change fi(v) in (24) in a nontrivial way: (i) it
will not remain the same and (i) it will not just change sign. For this reason, we do
not call the quantity in (24) — effective viscosity. Instead, (24) is called instantaneous
apparent viscosity. Here, instantaneous indicates that the quantity (24) is computed
instantly and depends on a particular configuration. The word apparent indicates the
nontrivial dependence on the propulsion strength. This dependence will be analyzed
later in section 3.2.1.

We wish to define the effective viscosity as a maferial property independent of the
configuration of swimmers. Thus, we define the effective viscosily as a time average of
the instantaneous apparent viscosity

)= [ * At dt. (25)

We assume that this time-averaged quantity does not depend on the initial configura-
tion of swimmers.

3.2 Estimates and observations for the apparent viscosity

Here we make some analytic observations regarding the instantaneous apparent mea-
surements of effective viscosity. First, we make use of the scaling observation, Remark
1. 'I'his observation tells us that the apparent viscosity, as defined by (24), takes the




same value for problems I and /7, (16-17), at times {/A and ¢:

Ao, Mfpit/2) = E[:_v (Fﬁ'ﬂ’ (%) -Fy (f\)) o1 =

= 2 (Fh0) - F0) o1 = ' (0 Syi0)

(26)

Hence the effective viscosities, being time averages of the instantaneous apparent vis-
cosities, also, match for the problems / and //:

T
;1”()\1:,)\_{,,) = lim l/ fx”(,\v,}\fp;t/,\} dt =
T—oo T 0 (2?)

T—ro0

1 T..r I
= lim T/o [ (v, fpit) dt = o (v, fp).

This means that the effective viscosity of a suspension of swimmers depends only
on the ratio of propulsion strength of the swimmers f, to the shear rate defined by v,

() =2 (50)-+(-%)

Due to its importance we call the ratio fp/v — the propulsion-shear ratio.

32.2.1 The apparent viscosity for the instantaneous problem

In this section we consider the instantaneous problem (1-6) in the fluid domain Q2p =
2\ U;S;. We want to identify the dependence of the instantaneous apparent viscosity
on the propulsion strength fp of the swimmers for a given distribution of swimmers.

We will consider three instantaneous problems A-C given by (1-6) with the same
fluid domain 2, but different boundary conditions:

A. Active swimmers + Shear: The shear velocity v® = v and the propulsion strength
of the swimmers fg‘ = [p are non-zero.

A is non-zero,

B. Passive/dormant swimmers + Shear: The shear velocity WB=v
but the propulsion strength of the swimmers IE is zero.
C. Active swimmers + No shear: The shear velocity vC = 0 is zero, but the

propulsion strength of the swimmers _{'E = ff;\ is nonzero.

Due to the linearity of the Stokes equation (1) the solution (u®,p®) of the problem
A is a sum of the solutions (u®, pB) and (u®,p®) to the problems B and C:
) =uBx) +ul(x) and  pP(x) = pB(x) +pC(x). (29)

We have a similar relation for the forces on the top and bottom plates, the expression
that enters the definition (24) of the instantaneous apparent viscosity:

(FH . fo) ~FB(v.fy)) = (FR() - FB()) + (FEUR) - FEUR) .  (30)

Here we explicitly indicated that the forces depend on the shear velocity v and the
propulsion strength of the swimmers.
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Using the definition (24), we get

B, 1) = 1 (P, o) = F (0, 1)) o1 =
= L (PR - FB) -er + L (BE() ~FG() 1= (3D
= B () + o)
where
%ﬁ(fn) = % (F'?'(fp) = F%(fp)) ‘e (32)

is the contribution to the instantaneous apparent viscosity due to self-propulsion.
Note that if (F%(fp) . F%(fp)) -ey # 0, the RHS blows up in the limit of small
shear rates (constant f, # 0), i.e.

lim 4*(v) = 0. (33)

V=

On the other hand for large shear rates (constant fp) the apparent viscosity at
approaches the apparent viscosity fxB of passive/dormant swimmers

Jim 5 (v) = 4% (v). (34)

3.3 Effective shear viscosity for a suspension of swimmers in the dilute regime

Consider a suspension of swimmers in the dilute regime: the fluid domain is sufficiently
large and swimmers are sufficiently far apart from one another. Thus, the dilute as-
sumptions consist of the following: (1) individual swimmers interact only with the
background flow and do not interact with one another, (i) positions of the swimmers
are not important, only their orientations play any role in the effective viscosity.

A consequence of (i), (ii) and the decomposition of the instantaneous problem (1-6)
in section 3.2.1 are the following.

Lemma 1 The rotational velocity of swimmers 1s an even function of 6, i.e.
w(B) = w(-6). (35)

Proof Indeed, the rotation of swimmers is entirely due to the background flow and
does not depend on the propulsion strength f, of the swimmers. That is the rotational
velocity w = w(#) is a function of the orientation of the swimmer. Due to the symmetry
of the Aow we get (35).

Let p(#) be the density function for the portion of time that a swimmer spends at

the angle 8,
™
[ p(A) df = 1.

-

Lemma 2 The density function p(f) is an even function of 8, v.e.

p(0) = p(—8). (36)
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Proof The statement (36) follows from Lemma 1 and the conservation of Hux condition
p(0)w(8) = constant for all 6.

Now consider the contribution to the instantaneous apparent viscosity 7( fp; t) due
to self-propulsion as introduced in (31) and (32).

Lemma 3 The total contribution 7 fp) to the effective viscosity due to self propulsion,
defined as the time average of the contribution 7( fp;t) Lo the instantaneous apparent
viscosily due lo self-propulsion is zero:

i) = [ it de= [ (FFUn0 ~FEUpin) e dt=0. (@7

Proof The contribution of the swimmers 7(fp;t) due to self-propulsion is a sum of
contributions due to each each swimmer

N
A(fpit) = Zﬂi(fpse)'
i=1
which are completely determined by their orientations (N is total number of swimmers).
Also, from the symmetry of the flow the contribution to the instantaneous apparent
viscosity 7(6) due to self-propulsion of a swimmer having angle # is minus that of a
swimmer having angle —6:
7(8) = —7(—6)
Hence, the total contribution to the instantaneous apparent viscosity due to self-
propulsion of all swimmers is

. g 0 s
f_ p(6)71(6) db = f p(6)71(6) db + /0 p(6)7(6) db =

=] " p(6)7(0) db + i " p(0)7(6) b = 0.
0 0

From the definition of the effective viscosity (25), decomposition of instantaneous
apparent viscosity (31), independence of the dynamics of the orientation of swimmers
on the propulsion strength and, finally, Lemma (3) we get the following statement.

Theorem 1 The effective viscosity of a suspension of swimmers interacting only with
the background shear flow is the same as the effective viscosity of a suspension of passive
inclusions.

4 Numerical modeling and analysis

We solve the ODE (12) using forward Euler method with variable time step Atn (see
more on the choice of the time-step in section 4.2). On each time step ¢n for known
positions xf,(tn) and orientations di{tn) we find velocities of the swimmers (that is
evaluate the implicit functions U, and £2.) by solving the PDE problem (1-6). Using
the newly obtained translational and rotational velocities, we update the positions of
the swimmers, assuming constant velocities on the time interval (in, tn + Aty),

X (tns1) = X5 (tn) + Atnvi. (tn). (38)
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4.1 Solution of the instantaneous problem

Solution of the PDE problem (1-6) on each time step is the key for obtaining the
dynamics of swimmers and for computing the viscosity of the suspension. To solve the
PDE problem (1-6) we use the recently developed Mimetic Finite Difference (MFD)
method [3]. Since MFD method for the Stokes problem is a new method, below we give
short comparison description between this method and some other popular methods.

4.1.1 Short description of MFD method

The MFD method combines mesh flexibility of the Finite Volume (FV) methods with
analytical power of Finite Element (FE) methods. To some extend it can be viewed as
an extension of FE methods to unstructured polygonal (polyhedral in three dimensions)
meshes. The mesh flexibility simplifies mesh generation around swimmers that may
have complicated shapes. ‘I'he major difference between the MFD and FE methods
lies in definition of basis functions. The FE methods define then explicitly everywhere
in the computational domain. The MFD method specifies the basis functions only
on mesh edges. This reduction of topological complexity has a number of important
consequences for numerical modeling of complex phenemona.

First, the MFD method minimizes the number of discrete unknowns (compared to
the FE method) (a) by partitioning of the computation domain into smaller number of
elements that are polygons and (b) by using velocity and pressure degrees of freedom
only where they are needed for accuracy and stability of the discretization. For example,
the MFD method on a square mesh with N mesh vertices uses about 2.5N velocity
and N pressure unknowns. The FE methods on the same mesh and with roughly the
same accuracy uses about 4N velocity and N pressure unknowns.

Second, the MFD method is build the same way on general polygonal meshes as on
triangular meshes. Thus, the MFD method can be used on locally refined meshes with
hanging nodes and on moving meshes with non-convex elements that are frequently
used in numerical modeling. It was shown in [8] that the MFD method can be employed
even when the mesh elements have curved faces. In this work, we use polygonal meshes
near boundary of the swimmers (see section 4.1.2) and make the computational mesh
coarser far away from the swimmers. This approach increases accuracy in the areas of
interest. T"he MFD method we employ is the second-order accurate (with respect to
the local mesh size) for the velocity and the first-order accurate for the pressure.

4.1.2 Mesh construction

In the simulations performed for this paper we used the following mesh construction.
Since the intricate part of the mesh construction is around swimmers, we divided
the whole process into three parts: constructing the “background” mesh, overlapping
the “background” mesh with the swimmers, and coarsening the mesh away from the
swimmers and the walls.

First we construct a “background” mesh, which we chose to be uniform square
mesh, i.e. the square domain of size 1 by 1 is divided into N? squares with sides
h=1/N.

We then overlap the “background” mesh with the ellipses representing swimmers.
For this we find the points of intersection of the ellipses with the edges of the “back-
ground” mesh. These points are connected by straight edges and added to the new



Fig. 3 A sample mesh near a swimmer. The computational domain is around the swimmer
and is colored light blue. The mesh is coarsened away from the swimmer. Notice that the mesh
elements adjacent to the swimmer are polygons with 3, 4 and 5 vertices.

mesh. The mesh elements inside the ellipses are then thrown out. As a result, the
boundary of the ellipses is approximated by polygons based on the points of intersec-
tion of the ellipses with the background mesh (see Figure 3).

Since the boundary of the ellipses is approximated using polygons it is important
to have a fine mesh around the ellipses. Also, the spacial variations of the flow for
the solutions are largest around the boundaries. Hence, to capture these variations
mesh size should be smaller next to the boundaries. On the other hand away from the
boundaries we may coarsen the mesh without significuntly increasing the numerical
error. We coarsen the mesh by grouping the mesh elements with centers at least 2h
away from the boundary into square mesh elements with sides 2h. This process can
be perfored again, grouping the mesh elements with centers at least 4h away from the
boundary into square mesh elements with sides 4h.

4.2 Choosing the time step

There are several factors that determine the size of the time step Atn. For moderate
concentrations of swimmers (~ 10% by volume) the crucial point here is to avoid col-
lisions of swimmers. For this, the relative displacements of the swimmers on each time
step should be small compared to their pairwise distances. Due to the hydrodynamic
attraction of swimmers it is common to see pairs of swimmers arbitrarily close to one
another. This requires to have “arbitrarily small” time step. This is not practical as
there is no lower bound on the time step (i.e., there is no a priori estimate on the
amount of computer time to simulate 1 second of “real” time).

We implemented a balanced algorithm for choosing the time step. We decide on
the upper Atypper and the lower Atjgwer bounds for the time step (e.g. Atupper i= .01,
Atjgwer := 001 for f, = 1). Then at each time step, after computing the translational



16

and rotational velocities we pick the size of the time step /At
Atupper 2> At 2 Dtigwer

s0 as to avoid swimmers getting closer than the mesh size h to one another.

It may not be possible to chose At < At)gyer S0 as to avoid collisions. If this is the
case, we choose the time step At := Atj,ye, and adjust the positions of the overlapping
swimmers.

Numerical experiments show that choosing the upper and lower bounds for the
time steps Atypper := .01, Atjgyer == .001 for the propulsion strength of swimmers

p = 1 and the shear rate 4 = 1 leads to smooth changes in the apparent viscosity (see
figure 7).

The choice of the time step for the cases of larger values of the propulsion strength of
the swimmers f; > 1 is based on the scaling observation (see Remark 1). Due to Remark
1 the trajectories of swimmers obtained numerically for the case with 4 = 1,fp = fg and
At = AtV will be the same as in the case with 4 = 1/A,fp = fg/;\ and At = At/\. We
choose the scaling constant A = [}, i.e. we fix the propulsion strength of the swimmers.
This leads to smaller values of the shear rate than in the base case. Therefore, our
choice of the upper and lower bounds for the time step for ¥ = 1 and f, > 1 is
Atypper 1= .01/ fp, Atjgwer := 001/ fp.

4.3 Implementing collisions of swimmers

We attempt to avoid the collisions between swimmers through dynamically changing
the time step. Still, this only minimizes the chances of collisions and does not completely
eliminate the possibility of them happening. Thus, we need to have a numerical block
that handles the collisions.

To avoid any additional difficaulties with the accuracy of the method, we consider
a small exclusion region around each swimmers (roughly, all points distance h away
from the swimmer). The exclusion region for the swimmer represented by an ellipse
with major semi-axis @ and b is taken to be an ellipse with major semi-axis a + h and
b + h, respectively. Therefore, if the exlusion regions of two swimmers do not overlap
then these swimmers are guaranteed not to have a common mesh element adjacent
to both. The collision is implemented as a soft collision of eclusion regions, where the
place of mass is taken by the viscous drag coefficients of the ellipses.

Consider two ellipses in contact. The force of their interaction is directed along the
normal to their surfaces at the point of the contact. T'he force Fj 2 of the first swimmer
S; onto the second swimmer S» is equal in magnitude and opposite in direction to Fg j,
the force of S5 onto S

Fi12=—-Fa;. (39)

To observe the effect of the interaction force F3 ; on the motion of the swimmer
S1, we compute the net force and the net torque produced on the swimmer:

Fhee=F21 and  Tie = Fa; x (x —x1). (40)

The force Fa ; will be acting on swimmer S; as long as 51 and S are in contact. In
the Stokes regime (where inertia is negligible compared to the viscous forces) the forces
F2; and Fi 2 will be only as strong as necessary to prevent penetration of swimmer
by the other.



(a) (b)

Fig. 4 Two ellipsoidal swimmers in contact (a) and two overlapping ellipsoidal swimmers (b).

Also, in the Stokes regime the role of the mass (since inertia forces are dominated by
viscous forces) is played by the viscous drag coefficients. We have three drug coefficients:
Ya,Yh, and g, two for translational motions — (74) along major and (4;) along minor
axis, and g for the rotational motion.

If 7 is the direction of the major axis and 7 is the direction of the minor axis,
write F = far + fp7) . We write the motion of the ellipse as vg = fa7 + fp7) and w.
Then the drag coefficients relate the forces acting on the ellipse with the motion of the
ellipse as follows

fa = Yava, fo = up, T = ypw. (41)

Now, suppose at time fg we solved the Stokes problem for two swimmers S and
So and found their velocities v; and w;, i = 1,2. We wish to adjust the positions of the
swimmers according to this velocities to compute the positions at time t; = tg + Af.
We compute these positions and orientations as

X(1) = X{(g) + Ot VEO)
and similarly for the orientations.

Suppose, the time step At > Atjwer cannot be chosen so as to avoid overlap of
the exclusion regions. Then we take At = At)gwer-

For two overlapping ellipses, as on Fig. 4(b), in general there will be two points
of intersection Py, P;. Find the midpoint M := (P} + P)/2. his midpoint will be
considered as the point of the interaction. The interaction force will be assumed to act
perpendicular to the line (P1,P2): n(p; py) on S! and —n(pj pyy ON §%. Based on
this information we can compute the correction velocities of the swimmers

1 = -
Va = Ya lfa = Ya l"'ﬁ “Npy P2y,
§ oo =1 ;
v =% fo=" Tb:0(p1,P2) (42)
. -1 |
w' =7 T =2 np1pz % (M-x.).



‘I'he question now is “How big should be the displacements (Ax, A#)?" Since we
already computed the direction of the displacements the above question is reduced to
the question of scaling “How big should be the scaling §, for (Ax, Af) = (v, w)?”

We should take d; so that swimmers are “slightly” out of contact.

For this we find the points O' and O? on the boundary of S' and 52 that are
between P| and P;. For example take O! to be the point on the surface of St (that is
inside SE), where the tangent line is parallel to the line through (P, P2). Choose 02
in a similar fasion. Compute the projection of 0'0? onto n(p, p,)- Find the velocities
voi, vz of the points O! and 02. Take

!
(0" - 0%) 'n(p,py)
(vor = vp2) - n(p, p,)

0= (1+a)

Here a > 0 is an analogue of a restitution coefficient (measure of bounce, i.e. elastic
vs inelastic collision). It can, also, serve as a “reserve” to guaranty that after the
procedure the ellipses do not overlap. We choose the coefficient @ = .1 to be small.
T'his coerresponds to making collisions of the eclusion regions soft collisions.

4.4 Dynamics: Interaction of swimmers

Here we present two numerical experiments for the hydrodynamic interaction of swim-
mers at the intermediate distances (distances of order of the size of the swimmer): a
swimmer nex{ to a wall (see figure 5a4) and two side-by-side swimmers (see figure 5b).
In both cases attraction due to a hydrodynamic interaction was observed.

‘I'his behavior can be explained, heuristically, by the fact that each swimmer acts
as a force dipole (5) — it pushes fluid forward ahead of itsell (due to no-slip condition
on I';) and back behind itself (due to the thrust condition on I7.). Since the Auid is
incompressible, it is being forced towards the swimmer on its sides (creating lateral
suction of sorts).

4.4.1 A swimmer nezt to a wall

In the case of a swimmer next to the wall (see figure 5a) the swimmer was positioned
parallel to a wall a distance .1 away from the wall. The lengths of the semi-axes of the
swimmer were a = 0.048 by b = 0.024. The propulsion force is given by (14) with the
propulsion strength fp = 1.

At the initial time the translational and rotational velocities of the swimmer was
found to be

= | -0.0166068

o

The vertical component of the swimmer’s velocity (due to the interaction with the
wall) is roughly 1/4 of its forward component of the velocity (i.e. interaction with the
wall is rather strong).

With time the swimmer approaches the wall, simultaneously rotating away from
it. When rotated sufficiently far away from the wall, it starts swimming away.

‘I'herefore, it was observed that a swimmer parallel to the wall is attracted to the
wall, spending significant amount of time next and nearly parallel to it. But it will not
remain next to the wall indefinitely. 1'he whole time when near the wall, the swimmer
rotates away from the wall and after a certain time swims away.

g [0.0651970], w! = 0.06120. (43)
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4.4.2 Two adjacent “murror wmage” sunmmers

Here we consider two swimmers with the length of the semi-axes a = 0.048 and b =
0.024, initially positioned parallel to the z-axes, with the centers on the same vertical

line (see figure 5b):
1 B 2 B
X =14 and xc=|gl"

The swimmers 1 and 2 are mirror images of one another relative to the horizontal line
y = .5 (hence the name “mirror image”).
At the initial time the velocities of the swimmers were found to be

12 _ [ 0.066246

12
¢" = | +0.014600]> @ = FO0203. )

With time the swimmers approach one another, simultaneously rotating away from one
another. This dynamics of two side-by-side swimmers is reminiscent of the dynamics
of two well-separated “external pushers” in a similar configuration [15]. There is a
difference between the well-separated and moderately separated regimes, however. In
the well separated regime the swimmers have enough time to rotate sufficiently away
from one another for the translational correction (to swimming straight) due to the
suction to be dominated by the vertical component of the velocity for a free swimmer
(i.e., the velocity of the swimmer in the absence of the other swimmer). In the moderate
regime the suction is too strong and the swimmers do not have enough time to rotate

(a) (b)

Fig. 5 Digure (a) shows the fluid flow for a single microswimmer next to a wall. Figure (b)
shows the fluid flow for two swimmers side by side. The bold blue arrows indicate the direction
of the fiuid that pushes the swimmer closer to the wall {a) and the two swimmers closer to one
another (b). The bold red lines with arrows indicate the trajectories that each of the swimmers
will follow. Both (a) and (b) show the initial period of attraction (red line getting closer to the
wall and two red lines getting closer to one another). The two swimmers in the mirror image
configuration remain close to one another after this. The swimmer next to the wall rotates
away from the wall to eventually get further and further away from it.
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sufficiently outwards for the vertical component of the velocity due to a free swimmer
to dominate the velocity due to suction.

One can also compare the velocities (44) and (45). While the translational velocities
in both cases are almost the same, the rotational velocity in (45) is roughly three times
larger than in (44). This may explain the difference in the dynamics between swimmer
next to a wall and two “mirror image” swimmers.

In figure 5(b) one can clearly see the trajectories of the swimmers converge and
experience a sharp turn after which they become parallel. In the case of swimmers
positioned perfectly symmetrically (relative to a middle line between them) the swiin-
mers would always remain in the symmetrical configuration ad remain and distance
.0664 between their centers and at the angles .28 (turned somewhat outwards) with
the z-axes.

In case of the swimmers not in a perfectly symmetric configuration, the swim-
mers cventually separate and swim away from one another. This type of dynamics is
illustrated by the “offset” configuration, presented below.

4.4.3 Two adjacent “offset” swimmers

Here we consider two swimmers parallel to the z-axes with the centers offset from the
same vertical line (hence, the name “offset”):

.5b 45
xfl.'_:['qj| and XE.:[’61|.

This initial configuration of swimmers can be thought of as a perturbation ol the
“mirror image” configuration.
At the initial time the velocities of the swimmers were found to be

. _ [0.062681 -

= [0.004727]' ¢ o
2 | 0.0740155 2.

2 _ [_0.006436], w? = —0.1113.

In this configuration, initially, both of the swimmers rotate in the same direction (clock-
wise). The direction of the rotation is determined by which of the two swimmers is
ahead of the other one. Here it is the first (bottom) swimmer. So, the second (top)
swimmer rotates towards the first one (see the streamlines in Figure 6).

Eventually, swimmer two will cross the axes of the first swimmer behind it and
will swim away, see figure 6. ‘This demonstrates that there is no stable configuration of
swimmers where they stay close to one another indefinitely.

4.5 Relation between the time and size scales in the physical and numerical
experiments

In an attempt to relate the numerical unit of time to the physical unit of time we
note the physical parameters of bacteria such as Bacillus subtillis. The length of the
bacteria is around 5pm and (if they have enough oxygen) they swim with the speed of
~ 100pm/sec.

e
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Fig. 6 Figure illustrates the fluid flow for two “offset” parallel microswimmer. Bold red lines
show the trajectories each of the swimmers will follow.

The length of a swimmer in these numerical experiments next to a wall and next
to another swimmer is 2a = 0.096. In these experiments, (45) and (44), the typical
forward component of the velocity of a swimmer is

_. 2 swimmer body length

ey computer unit of time’

(46)

Since the typical speed of bacteria (having enough oxygen) is 20 body lengths per
second, the unit of computer time for fp = 1 corresponds to
: . 2/3
(unit of computer time forf, = 1) = 50 S6¢ = 1/30 sec. (47)
Now we compute the physical analog of the shear rate for the computational ex-
periment with f; = 1. The total size of the domain is 1/.096 = 10 lengths of a
swimmer, which corresponds to 50um. The speed of each (top and bottom) plates
is 179ame: = 1.5 The shear rate is 30 sec™ .

4.6 Effective viscosity

For a homogeneous fluid, the instantaneous apparent viscosity defined by (24) and the
effective viscosity defined by (25) are the same thing. For an inhomogeneous fluid (e.g.,
suspensions) (24) will take different values depending on the distribution of inclusions.
Figure 7 illustrates a sample measurements of the instantaneous apparent viscosity for
a suspension of swimmers as a function of time.

Since in practice the instantaneous apparent viscosity is measured on a finite inter-
val of time it is important to produce an error estimate for the effective viscosity, which
is not trivial. Intuitively, it seams that the more measurements one makes (i.e., more
time steps) the more accurate is the estimate of the effective viscosity. This is true only
in part. The same number of measurements (time steps) can be done with small or
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Fig. 7 The green horizontal line indicates the viscosity of the ambient fluid (g = 1). The
blue (oscillating) line shows the instantaneous measurements of viscosity for the suspension
of swimmers, as defined by (24). The red horizontal line indicates the time average of the
instantaneous measurements of viscosity for the suspension of swimmers. The measurements
are performed for the suspension of 25 swimmers at 9% volume fraction in a 1 by 1 square
with 1-periodic boundary conditions in z-direction. The propulsion of each swimmer is defined
by (14) with the total propulsion strength f, = 1 as defined by (15).

large time step At. Small At is important for correctly capturing the dynamics of the
suspension. Long total time range of the measurements is important for the accuracy
of the overall estimate of the effective viscosity as the mean of the instantaneous appar-
ent viscosity. In the extremes, million measurements with time step 10~ 2 or hundred
measurements with time step 10 may be equally poor at predicting the effective viscos-
ity. In the first case one would get a a very accurate dynamics of the suspension, but
would miss the range of values. In the second case one would get a rather broad range
of values for completely inaccurate dynamics of the suspension. Since the interaction
of swimmers is assumed to play a key role in the effective viscosity of the suspension
the last choice is not satisfactory as well.

In our analysis we begin by identifying an acceptable time step, which may be a
subjective quantity. As a criteria we set the condition that time step is much smaller
than the time required for significantly changing the instantaneous apparent viscosity
of the suspension. For the propulsion-shear ratio fp/v = 1 the appropriate time step
was chosen to be At; = .02. Based on this choice and the scaling argument 1 for
the propulsion-shear ratio fp/v = A > 0 the appropriate time step was chosen to be
Aty = Aty /N

A sample mean of N independent identically distributed random variables ap-
proaches normal distribution with the standard deviation s,va, where s is the stan-
dard deviation of the underlying distribution. In our analysis all measurements of the
instantaneous apparent viscosity do not represent independent sample. For example
the correlation between the values of instantaneous apparent viscosity on the adjacent
time steps is more than .8 for propulsion-shear ratio fp/v = 1. We find the smallest
lag njag when the autocorrelation equals to 0. For the case of propulsion-shear ration
fo/v = 1, figure 9, the zero-autocorrelation lag is nj,g = 58. This number indicates

S



that the measurements on time-step nj,, apart are essentially uncorrelated and may
be viewed as independent sample.

‘The total number of time steps divided by nj,4 is the sample size N. The error in
estimating the eflective viscosity is then assumed to have a normal distribution with
the standard deviation
standard deviation of the measurements

standard deviation = — —
vV NwtaI/”Iag

The standard deviation of the error computed according to (48) is sketched on Figure
8.

(48)

4.6.1 Effective viscosity as a function of propulsion-shear ratio

In this section we are looking for the dependence of the effective viscosity on the
propulsion-shear ratio fp/v. To compute the effective viscosity we make the following
numerical experiments. First, we fix the dimensions of the container to be 1 by 1 square
with appropriate boundary conditions. The shear velocity is taken to be 1. We fix the
size and number (hence volume fraction) of swimmers and vary only the propulsion
strength f, of the swimmers. For each value of the propulsion strength we simulate
the dynamics of the swimmers, computing the pressure and the velocity of the fluid
and swimmers. Knowing the velocity and pressure solutions allows us to compute the
viscous forces acting on the top and bottom plates, and hence the instantaneous value
of the instantaneous apparent viscosity as defined by (24).

The effective viscosity as a function of the propulsion strength is shown on Figure
8. One can notice that the standard deviation of the estimates for the eflective viscos-
ity on Figure 8 generally is much larger for larger values of the propulsion-shear ratio
fp/v. This is due to the fact that the standard deviation of the instantaneous appar-
ent viscosity is proportional to the propulsion strength of the swimmers. Therefore,
according to the error estimate (48) to compute the effective viscosity for fp/v = 10
with the same accuracy as for fp/v =1 it requires not 10 but 102 more time steps.

The red line on Figure 8 is given by

i ft) = efp + B, a = —0.0351 4 = 1.1407, (49)
and represents the waited least square fit to the data. It minimizes
; (i — afy - B)?
—_— 50
kS W (50)

where f; are the values for which the estimate of the effective viscosity ji; is computed.

The estimates of the effective viscosity for the propulsion-shear ratio fp/v =
-1,0,1,2,3,4,5 is consistent with the linear decrease of the effective viscosity. For
the values of the propulsion-shear ratio f,/v > 5 the linear trend seams to change. We
explain this change by the finite size of the Auid domain. To illustrate that the trend
changes around the value of the propulsion-shear ratio f,/v ~ 6 we show the dynamics
of a single swimmer for the propulsion-shear ratios of f,/v = 1 and 6, see Figure 77.
Since the shear background flow rotates a swimmer and a swimmer by itself swims on
a straight line, a single swimmer in a shear background Aow will have an ellipse as
the trajectory. The larger is the the propulsion-shear ratio the larger is the ellipse-like
trajectory of the swimmer. For the propulsion-shear ratio of f,/v ~ 6 the ellipse-like
trajectory of the swimmer cannot fit into the fluid domain any more.
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Fig. 8 Circles indicate the numerically obtained values of the effective viscosity for a given
propulsion-shear ratio f,/v. The points are combined into two groups: A and B. Points in group
A exhibit linear trend. Points in group B exhibit finite domain effects. The solid horizontal
line shows the viscosity of the ambient fluid (4 = 1). The dashed horizontal line shows the
effective viscosity of a suspension of passive inclusions (f, = 0). The decline straight line shows
the weighted linear interpolation to the data.

4.6.2 Distribution of swimmers in the domain

‘The distribution of swimmers in the domain and their orientations plays a crucial role
in determining the instantaneous apparent viscosity.

In physical experiments [17,31,4] it was observed that swimmers tend to aggregate
near the walls. In our numerical cxperiments we observed this aggregation through
computing the time averaged volume density of swimmers as a function of distance
from the bottom wall (see figure 10). That is, given a number d we drew a horizontal
line distance d from the bottom wall and computed the portion of the line covered
by swimmers. This number is the volume fraction of swimmers at depth d and it
fluctuates as swimmers move within the domain. 1o get rid of the fluctuations we take
a time average of the volume fractions for the same depth d. Due to the top-bottom
symmetry of the PDE and the random initial conditions, the graph of the distribution
is symmetric under transformation d «— (1 — d), as expected.

For instance in [16] it was demonstrated that in the absence of pairwise interactions,
shear flow leads to a distribution of swimmers by the angles that decreases the viscosity.
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Fig. 10 The figure on the right shows a sample distribution of swimmers in the domain. The
figure on the left shows that time-averaged volume fraction of swimmers as a function of the
depth (distance from the bottom wall). Here we took 25 swimmers with the propulsion strength
fp = 1 with the overall volume fraction of swimmers .09. One can observe the increase of the
density near the top and bottom walls.

In the presence of the pairwise interactions and swimmer-wall interactions the dynamics
of the swimmers is much more complex.
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5 Summary

In this work we formulated a well-posed PDE model for the suspension of swimmers,
which includes the propulsion strength f, of the swimmers as a parameter.

Using the symmetries of the model we demonstrated that in the dilute regime
(each swimmer interacts only with the background flow) the effective shear viscosity of
a suspension of swimmers does not depend on the propulsion strength. This argument is
not specific to our choice of a swimmer and can be applied to a large class of swimmers
without significant changes. In particular it can be applied to the swimmers in [18,28,
16].

Using the invariance of the PDE model under scaling we observed the dependence
of the effective shear viscosity on the ratio of the propulsion strength to the shear rate
of the background flow, called propulsion-shear ratio.

Our numerical simulations performed at the moderate concentrations (~ 10% by
volume) indicate that the effective shear viscosity decays linearly as a function of the
propulsion-shear ratio of f,/v. This continues to hold for negative values of the propul-
sion strength, which corresponds to swimmers swimming in the opposite direction, i.e.
pullers instead of pushers. Performing the experiment in a finite container places an up-
per bound on the propulsion-shear ratio for which the effective shear viscosity changes
linearly. The value of propulsion-shear ratio is such that a single swimmer following
an ellipse-like trajectory (due to rotation by the background flow) will “touch” both
upper and lower boundaries of the domain. The numecrical experiments in the moder-
ate concentration indicate that the decrease of the effective viscosity observed in the
physical experiments can be explained entirely from a point of view of hydrodynamies.
This is an important observation, since biological system are very complex and include
a variety of processes (chemotaxis, oxygen taxis, etc.) that could be hard to isolate in
physical experiments. On the other hand our matheimatical model does not contain all
the excess phenomena and focuses on on the hydrodynamics.

Comparing the results for the effective shear viscosity in the dilute and moderate
concentration regimes shows changes (increase or decrease) in effective shear viscosity
are not just due to self-propulsion but crucially depend on the swimmer-swimmer inter-
actions. For this reason and as an additional validation of the model and the numerical
approach we performed a number of simulation for two nearby swimmers and for a
swimmer next to a wall. The observed results matched with the physically observed
behavior for bacteria. In all cases swimmers attract one another due to lateral suction
of Auid, resulting from self propulsion. But neither two swimmers nor a swimmer next
to a wall have a steady state in terms of relative positions.
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A Variational formulation for the instantaneous problem (1-6)

There are a number of questions that are easier answered working with the variational formu-
lation of the problem instead of the PDE. Here we refer to the instantaneous PDE problem



27

(1-6). The questions that plan to answer are well-posedness of the problem (existence and
uniqueness of the solution) and construction of the numerical scheme for approximating the
solution to (1-6).

For simplicity of presentation, we will derive the variational formulation for a single swim-
mer. Obtaining the variational formulation for multiple swimmers after that will be straight-
forward.

First, we specify the admissibie class Ag of solutions u and then the space Ag of variations
v. The admissible class of velocity fields u is defined as

Ag = {ue HY(2.)

u(x) = g(x) for x € 802,
u(x) =u,. +wy X (X —x.) for xe 'y, (51)

u(x)=u, 4wy X (x—x.)+78 for x € I’}.}.

Here 7 is a unit tangent to the surface and @ is an unknown scalar function.
The linear space Ag of variations for the admissible class A4 is

Ap = {veHl(Q,,) v(x) =0 for x € 892,

v(x) = v, 4wy X (x—x.) for xe Iy, (52)

vix) =v, twe X (x—x.)+ 78 for xEF,,}.

Rewrite the Stokes equation (1) by adding to its LHS
pdiv(Vu)? = pV(divu) = 0.

We obtain
2udiv (D(u)) = Vp. (53)

This is done to obtain symmetrized gradient D(u) (and later a stress tensor o(u,p)) in place
of Vu. Multiply (53) by v € Ag and integrate over 12,

f (2pdiv (D(u)) — Vp) - v dx = 0. (54)
2
Integrate (54) by parts (here n is a unit outward normal to the boundary)

—2u D(u) : Vv dx + 2pf nD(u)v dx +
24 ang

+ pdiv(v) dx — [ pvn dx = 0. (55)
25 aan

Combining the second and forth terms in (55), using the definition of
o(u,p) :=2uD(u) — pl, (56)

and rearranging the remaining terms
pr D(u): Vv dx-—[ pdiv(v) dx =[ nou,p)v dx. (57)
240 QF ang

Consider the last integral [, no(u,p)v dx and note that
ar =8N UAB, where 9B =I',, U I},

Due to the boundary conditions (3-6)on the solution u and the boundary conditicns (52) on
the test function v we have

[ no(u,p)v dx =0, (58)
an
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The integral over the surface of bacteria can be written as
] no(u, p)v dx =f no(u, p)(ve +wy % (x —X.) +78) dx =
o8B o8

=W / no(u, p) dx +w.,f (x = x.) X na(u,p) dx+
88 T

(59)
+f no(u,p)To dx =
rp
¢ (Fy +Fu) +we(T, +T,) +/ no(u,p)ri dx.
r
Since
(Fy +Fp)=0, Ve (Fy +Fp) =0
Since
(T, +T,)=0, wy(Ty +Tp)=0.
Since
fp
no(u,p)r = — T, J(d 7),
the integral takes form
f no(u,p)r ¥ dx = —f Jo (d-7)0 dx =
r, 1T
=-—-—d [f Tvdx+[ Ve dx+[ wY x (x—x(,)dx]+
rp r,
v dx + wY x(x~x)dx:|:
|Fn [/ “ Ty “
= v dx + v dx],
IP, [ fr T
which is a known linear functional of v.
Introduce the notations
a(u,v) = ,u[ D(u): Vv dx = p/ D(u) : D(v) dx, (60)
2 Qi
(praiv(v)) i= [ pdiv(y) dx, (61)
2
L(v) := —de-[—/ vdx+/ vdx:l. (62)
el r r

P H
Here 7 is a unit tangent to the boundary, pointing forward relative to d on I, and backward
relative to d on Iy,
In the notations (60-62) equation (57) takes form
2a(u, v) — (p,divv) = L(v), Vv € Ag. (63)

Take the incompressibility equaLlon in (1), multiply by g € Lg(ﬁp} and integrate over the
fluid domain 25 to get

/ div(u)g dx = (g,divu) =0, Yg € L3(2F). (64)
2,

Combining equations (63-64) we have a complete variational formulation:
Find a pair (u,p), u € Ag and p € L3(f2¢), such that

2a(u,v) — (p,divv) = L(v), Vv € Aa‘ (65)
(g.divu) =0, vg € L3(RF).
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The minimization problem, corresponding to the variational problem (65) is:

min  Eful, where Eu] := a{u,u) — L(u) (66)
UEAgi"zu ‘.

and AZV=0 consists of divergence free functions from Ag.

B Well posedness of the instantaneous PDE problem (1-6)
The minimization problem corresponding to the variational formulation (635) is to minimize
E[u] := a(u,u) — L(u) (67)

over all
ue .Ag U Hyjv=0. (68)

The existence and uniqueness of minimizers of (67) is proved in a standard way provided
that the coercivity of the bilinear form a(-,-) can be shown. The coercivity proof, using Korn's
inequality, is essentially contained in [11] as we now explain.

Theorem 1 The bilinear form a(-, -} is coercive on V with respect to the norm || -||1 induced
from HY(2g). In particular, a(-,-) defines an equivalent inner product on V.

Proof Coercivity of a(:, -) relies in an essential way on Korn's inequality:
a(u, u) + [[ul|® > c|lull3, (69)

for some ¢ > 0 (here || - || denotes the Lz norm). The proof of (69) found in [11] applies to
the case for any subspace U C H'!(f2g)) consisting of functions with a zero trace on a part
of the boundary with nonzero two-dimensional measure. This applies to V as its elements
vanish on 82 — the no-slip boundary conditions on the outer boundary of 2. In particular,
a(-, -) is nondegenerate, since the nontrivial kernel of D{u), consisting of the rigid motions
u(x) = ug + wo X x, is excluded from V due these boundary conditions. The result (69) is
nontrivial, since the left-hand side contains only symmetric combinations of the derivatives of
u.
The coercivity proof is completed by showing the existence of the following bound:

a(u, u) > d||ul]?, (70)

for some d > 0. This replaces Poincare’s inequality in the case of the symmetrized gradient. It
can be proved for V as is done in [11], using the compactness of the embedding V — La(2g).
This embedding is induced from the usual compact embedding H'(2g) — La(2g), since V,
being a closed subspace of H1(2fp) is also weakly closed (see, e.g.. [20]).

With the coercivity of a(., -) proved, the existence of minimizers for (67) can be proved
by standard techniques. Since each minimizer satisfies (55), the difference of any two of them
is a(-, -)-orthogonal to a dense subset of V, hence is zero, which proves uniqueness.

Finally, the unique field u that solves (67) is a weak solution of the Stokes equation on
a regular bounded domain. Therefore, once again by the standard theory (e.g., [13]), there
exists a unique pressure field p € L2(f2g), which together with u satisfies the a priori La
estimates [13]. Since the boundary of 25 and the is smooth, these estimates imply that (u, p)
are smooth too. By reversing the steps leading to the weak formulation (55), we now see that
{u, p) form a strong solution of the full system.
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