skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effective shear viscosity and dynamics of suspensions of micro-swimmers at moderate concentrations

Journal Article · · J. Mathematical Biology
OSTI ID:970958
 [1];  [2];  [3];  [2]
  1. Los Alamos National Laboratory
  2. PENNSYLVANIA STATE UNIV.
  3. ANL

Recently, there have been a number of experimental studies suggesting that a suspension of self-propelled bacteria (microswimmers in general) may have an effective viscosity significantly smaller than the viscosity of the ambient fluid. This is in sharp contrast with suspensions of hard passive inclusions, whose presence always increases the viscosity. Here we present a 2D model for a suspension of microswimmers in a fluid and analyze it analytically in the dilute regime (no swimmer-swimmer interactions) and numerically using a Mimetic Finite Difference discretization. Our analysis shows that in the dilute regime the effective shear viscosity is not affected by self-propulsion. But at the moderate concentrations (due to swimmer-swimmer interactions) the effective viscosity decreases linearly as a function of the propulsion strength of the swimmers. These findings prove that (i) a physically observable decrease of viscosity for a suspension of self-propelled bacteria can be explained purely by hydrodynamic interactions and (ii) self-propulsion and interaction of swimmers are both essential to the reduction of the effective shear viscosity. We performed a number of numerical experiments analyzing the dynamics of swimmers resulting from pairwise interactions. The numerical results agree with the physically observed phenomena (e.g., attraction of swimmer to swimmer and swimmer to the wall). This is viewed as an additional validation of the model and the numerical scheme.

Research Organization:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC52-06NA25396
OSTI ID:
970958
Report Number(s):
LA-UR-09-06018; LA-UR-09-6018; TRN: US201003%%302
Journal Information:
J. Mathematical Biology, Journal Name: J. Mathematical Biology
Country of Publication:
United States
Language:
English

Similar Records

Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations.
Journal Article · Sun May 01 00:00:00 EDT 2011 · J. Math. Biol. · OSTI ID:970958

A three-dimensional model for the effective viscosity of bacterial suspensions.
Journal Article · Thu Jan 01 00:00:00 EST 2009 · Phys. Rev. Lett. · OSTI ID:970958

Effective viscosity of bacterial suspensions: a three-dimensional PDE model with stochastic torque.
Journal Article · Sun Jan 01 00:00:00 EST 2012 · Communications on Pure and Applied Analysis · OSTI ID:970958