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Abstract Recently, there have been a number of experimental studies suggesting that 
a suspension of self-propelled bacteria (microswimmers in general) may have an ef­
fective viscosity significantly smaller than the viscosity of the ambient fluid. This is 
in sharp contrast with suspensions of hard passive inclusions, whose presence always 
increases the viscosity. Here we present a 2D model for a suspension of microswim­
mers in a fluid and analyze it analytically in the dilute regime (no swimmer-swimmer 
interactions) and numerically using a Mimetic Finite Difference discretization. Our 
analysis shows that in the dilute regime the effective shear viscosity is not affected 
by self-propulsion. But at the moderate concentrations (due to swimmer-swimmer in­
teractions) the effective viscosity decreases linearly as a function of the propulsion 
strength of the swimmers. These findings prove that (i) a physically observable de­
crease of viscosity for a suspension of self-propelled bacteria can be explained purely 
by hydrodynamic interactions and (ii) self-propulsion and interaction of swimmers are 
both essential to the reduction of the effective shear viscosity. 

We performed a number of numerical experiments analyzing the dynamics of swim­
mers resulting from pairwise interactions. The numerical results agree with the phys­
ically observed phenomena (e.g., attraction of swimmer to swimmer and swimmer to 
the wall). This is viewed as an additional validation of the model and the numerical 
scheme. 
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1 Introduction 

In recent years there have been a number of experimental studies suggesting that self­
propulsion can ·significantly change the rheological properties of suspensions. 

In [32J it was shown that self-propelled bacteria (Escherichia coli; Ittm wide and 
2-3ttm long; concentration of swimmers around 10% by volume) by a factor of 2-3 
enhanced the diffusion of tracer particles (1-1Ottm in size) in the quasi-two-dimensional 
setting of a freely suspended soap film. 

More recently, in [29] it was demonstrated that self-propelled bacteria (Bacillus 
subtilis; .7ttm wide and 5ttm long; concentration of swimmers around 10% by vol­
ume) could reduce the viscosity of the suspension (depending on how actively they 
are swimming) by up to five times when compared to passive/dormant bacteria. Here 
the experiments were, also , performed in a thin film. The activity of the bacteria was 
controlled by changing the supply of oxygen. Since bacteria rely on oxygen to convert 
the chemical energy obtained from the dissolved nutrients into the kinetic energy of 
swimming, this is an efficient way of controlling the activity of bacteria. 

The above experiments demonstrate that suspensions of active inclusions (swim­
mers) may have drastically different properties than suspensions of passive inclusions. 
Exploiting these properties may lend to new or improved engineering solutions (e.g., 
self-replicating micromixers). Explaining and quantifying the changing viscosity for a 
suspension of swimmers is the goal of this paper. 

The effect of self-propulsion on the effective viscosity of the fluid is the major 
focus of this paper. We identify the following key features affecting the viscosity of a 
suspension of swimmers and the difficulties related to their modeling and analysis: (i) 
inhomogeneity of the fluid due to inclusions, (ii) elongated shape of the inclusions, (iii) 
particle-particle interactions, and the new feature - (iv) self-propulsion. 

The rheological properties of passive suspensions (suspensions of passive particles) 
have been studied extensively for over a century. The analysis of the effective viscosity 
for passive suspensions dates back to the famous work of Einstein [12], where he com­
puted the linear (in volume fraction ¢) correction to the viscosity for a suspension of 
neutrally buoyant inert hard spheres in a Newtonian fluid in the dilute limit (¢ -- 0). 

Jeffery [19J extended the analysis from spherical to ellipsoidal neutrally buoyant 
inert hard inclusions, where he demonstrated the dependence of the viscosity on the 
distribution of orientations of the inclusions. Hinch and Leal [21, 22J analyzed the lim­
iting distribution of orientations of ellipsoids in a shear flow in the presence of a rota­
tional Brownian motion and used this to obtain the effective viscosity for a suspension 
of ellipsoids. 

Batchelor and Green [2] were the first to consider pairwise particle interactions in 
order to find the O(¢2) correction to Einsteins result [12J. Up to this point, all works 
have involved formal asymptotics. 

In the 1980s, rigorous homogenization results were first obtained for moderate 
concentrations of particles by Levy and Sanchez-Palencia in [23J and Nunan and Keller 
in [26J for periodic distributions of inclusions. Results for the densely-packed regime 
were more recently proven in [7,6,5J. 

One of the earlier works in modeling the swimming at low Reynolds number was 
done by Purcell [27]. The modeling of swimmers can be divided into two categories 
based on whether the model swimmers change their shape or not. Examples of models 
of swimmers changing their shape are a three-linked sphere swimmer [24,14] and a 
swimmers with a rotating tail [2!":ij. These models are attractive because the real-world 
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swimmers (bacteria, fish, etc.) swim due to shape changes (rotation of flagella, waving of 
the tail , etc. ). Unfortunately, the analysis of these models is difficult and at the moment 
we are not aware of a rheological analysis being done for suspensions of such swimmers , 
although the dynamics of such swimmer due to their interaction was analyzed in a 
number of papers (e.g., [25]) . 

The other category of models are those where the swimmers do not change shape. 
The propulsion here is either due to a prescribed effective force or an effective relative 
velocity of the fluid on a part of the surface of the swimmer. Self-propulsion is enforced 
by equating to zero the total force and torque on each of the swimmers. 

Ishikawa and Pedley [18], modeling bacteria as spheres (no elongated body) with 
a prescribed relative velocity (leads to self-propulsion) on the surface of the spheres, 
observed a decrease in viscosity only in the presence of a gravitational field . In [18] 
the results are obtained simulating the dynamics of swimmers using boundary integral 
methods. 

Shelley and Saintillan [28] modeled swimmers as slender rods with tangential trac­
tions prescribed on part of the boundary, for which they observed (in the numerical sim­
ulations) behavior reminiscent of that observed in the physical experiment for Bacillus 
subtillis [30]. In particular they observed local nematic ordering of rod-like swimmers 
that had a significant impact on the mean swimming speed of the swimmers. 

In [91 authors consider a phenomenological model of active gels , treating them 
from the perspective of liquid cristals. In particular they are interested in the effective 
viscosity of active gels near "nematic" phase. They view suspension of bacteria as one of 
examples of active gels. In our view attainability of "nematic" phase, understood as an 
almost perfect ordering in suspesions of swimming bacteria is debatable. On the other 
hand "nematic" phase may be feasible for suspensions of engineered microswimmers 
that swim due to externally applied alternating magnetic field (e.g. [10]) and, therefore, 
could be synchronized to swim in the same direction. 

In the recent work [16] Haines, Aranson, Berlyand and Karpeev observed a de­
crease of the effective viscosity in the dilute limit for slightly elongated spheroids with 
self-propulsion resulting from a point force in the fluid (attached to the body). They 
considered two types of background flow: extensional and oscillatory shear flows. In 
both cases the decrease of viscosity was attributed to swimmers aligning with the flow , 
supporting the background flow. 

In this paper we present a 2D mathematical model of the swimmer-fluid system. 
The elongated body of the swimmer is modeled by an ellipse. The "front" half of the 
ellipse represents the solid surface and the "back" half represents the surface covered 
with flagella that exert the propulsion force onto the fluid . 

We consider two concentration regimes: dilute and moderate concentration. In the 
dilute regime (no swimmer-swimmer interactions) we demonstrate that self-propulsion 
has no effect on the effective viscosity. Therefore, we show that the elongated shape 
of the swimmers and the propulsion force are not sufficient to change the effective 
viscos ity as compared to the passive suspensions. 

On the other hand decrease of the effective viscosity is observed numerically if all 
of the a bove features (i-iii) are present: the elongated shape of the swimmers, the 
propulsion force and the swimmer-swimmer interactions. 

To further reflect the settings of the physical experiments in [29] and [32], we 
studied the suspension at moderate concentra tions (approximately 10% by volume). 
At such concentrations the numerica l analysis appears to be the only available tool. 
The major difficulty in the analysis is the dependence of the apparent viscosity on 
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the distribution of the swimmers in the fluid domain. The distribution changes with 
time due to interaction of the swimmers with the ambient flow and other swimmers. 
Hence, we use the Monte-Carlo approach for mea .. suring the effective viscosity. That is, 
we solve for the dynamics of the swimmers in the shearing flow, measure the apparent 
instantaneous viscosity at each time step and average over all time steps. 

First, to verify the predictive power of the model and the accuracy of the method 
we performed a number of tests for the dynamics of swimmers in the proximity of a 
wall or another swimmer. 

Here we observed the attraction of a swimmer to another swimmer and a swimmer 
to the wall. Heuristically, each swimmer acts as a force-dipole, forcing the fluid away 
ahead and behind itself and "sucking" the fluid on the sides (due to incompressibility 
of the fluid). Therefore, the presence of an obstacle to the side of a swimmer forces the 
swimmer and the obstacle closer to one another due to this "suction". 

The attraction in both cases is only short term. A swimmer next to a wall, while 
getting closer to the wall due to suction, will slowly rotate and swim away form the 
wall. Two nearby swimmers will swim away from one another once they become offset 
from the mirror image configuration (see figure 6) . 

The results, obtained numerically, agreed with the physical observations for Bacillus 
subtillis [30]. At the same time, the results shed light on the details of the swimmer­
swimmer and swimmer-wall interactions. 

Next we performed a numerical experiment where we measured the effective shear 
viscosity of a suspension of swimmers in a layer between two solid walls undergoing 
a shearing motion with relative velocity 2v. We analyzed the dependence of the mea­
surements of the effective viscosity on the magnitude v of the shearing motion and 
the propulsion strength of the swimmers, fp. Using an analytical scaling argument we 
demonstrated that the effective viscosity depends only on the ratio of the propulsion 
strength to the magnitude of the shearing motion for a fix ed shape of the domain and 
the swimmers. We call the above ratio the propulsion-shear ratio. 

Our numerical simulations performed at the moderate concentrations (~ 10% by 
volume) indicate that the effective shear viscosity decays linearly as a function of the 
propulsion-shear ratio of fp/v. This continues to hold for negative values of the propul­
sion strength, which corresponds to swimmers swimming in the opposite direction, i.e. 
pullers instead of pushers. For larger values of the propulsion-shear ratio a deviation 
from the linear trend was observed and explained. 

In section 2 we present a mathematical model for a swimmer in a fluid. Here we 
write down a complete PDE formulation and motivate each of the choices. In sectioll 
2.3 we demonstrate a scaling invariance of the solutions of the PDE, which proves the 
dependence of the effective shear viscosity on the propulsion-shear ratio. In section 
3.1 we introduce the definitions for instantaneous apparent viscosity and the effective 
shear viscosity, which are the same for homogeneous fluids and generally different for 
inhomogeneous ones. In section 4 we briefly describe the numerical method, technical 
difficulties alld their solutions followed by the computational results for dynamics of 
interacting swimmers and the effective shear viscosity for a suspension of swimmers. 
Finally, in section 5 we summarize the results of our analysis. In appendixes A and B we 
present the variational formulation for the model and demonstrate the well-posed ness 
of this problem. 



5 

2 Mathematical model of a swimmer 

In this section we first present the PDE model for a microswimmer in a Stokesian fluid 
and then motivate every part of the model in section 2.2. The model is written in two 
dimensions but it can be readily extended to three dimensions. 

2.1 The PDE model for the swimmer 

Let Q C ]R2 be a bounded domain with a smooth boundary representing the container 
of the fluid with swimmers. Each swimmer is modeled as an ellipse Si, i = 1, ... , N with 
the center at x~ and the orientation d i

, see Figure 1. Here and below the superscript 
i indicates the index of the swimmer. 

X i ... i----~ 
c: 

prescribed 
tangential cOlJ'lponent 

of tractIOn 
(fluid i pushed backwards) (fluid sticks to the surface) 

Fig. 1 Illustration of an i-th swimmer with two parts of the boundary: rf.t and r},. On the 
front part rf.t of the swimmer (H stands for "head") the fluid sticks to the surface. On the back 
part of the swimmer r}, (P sta.nds for "propeller" ) the fluid cannot penetrate the boundary 
of the swimmer. Also, on rj, the fluid is pushed backwards due to a prescribed tangential 
component of traction. 

The motion of the fluid surrounding the swimmers is governed by the incompressible 
stationary Stokes equation 

{ 
J.l6.u = \lp 
div(u) = 0 

(1 ) 

On the boundary of the fluid domain Q F (includes boundaries of the swimmers and 
the boundary of the container) the following boundary conditions are imposed (in part 
illustrated in Figure 1): 

u(x) = g(x), for x E aQ, (2) 

u(x) = u~/ + wi X (x - x~:l, for x E r~, (3) 

{(U(X) - [u~ +w
i x (x-x~)]).n =0 

TO'(u,p)n = - f((x - x~)· d i
) (r· d) 

for x E r~, ( 4) 

F~, +F~ = 0, balance of forces, (5) 

T:, +T~ = 0, balance of torques. (6) 
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Here u~; and wi are unknown (that need to be found) instantaneous translational 
and rotational velocities of the i-th swimmer; nand T are the unit normal and unit 
tangent to the surface at the point. The stress tensor a(u,p) is defined by 

a(u,p) := J1.D(u) - pI, (7) 

f (-) and gO are the known scalar and vector functions defining the tangential compo­
nent Ta(u,p)n of the traction on rp (see e.g., (14» and the velocity of the boundary 
an, respectively. The viscous forces F~, ,F~ and the viscous torques T~, ,T~ on r H 

and rp are defined by 

and 

F~, := /, . a(u,p)n dx, 
r;, 

T~ := /, . (x - x~) x a(u,p)n dx, 
r' 

H 

F:,:= /' . a(u ,p)n dx 
Jr' p 

T~ := /, . (x - x~J x a(u,p)n dx. 
. r~ 

(8) 

(9) 

The PDE problem (1-6) defines the so-called instantaneous problem. That is, at 
any time t the PDE problem (1-6) defines the relation between the positions x::'(t) and 
orientations di(t) of the swimmers and their translational u~:.(t) and rotational witt) 
velocities 

(10) 

(11) 

The values of functions U~ and ni are computed by solving the PDE problem (1-6) for 
the given positions and orientations of the swimmers. The existence and uniqueness 
of the solution to the problem (1-6) for the given positions and orientations of the 
swimmers is outlined in Appendix B. 

The dynamics of the swimmers, defining the evolution of the fluid domain nF(t) = 
n \ Ui Si(t), is given by the ODE (i = 1, ... , N) 

{ 

ft x~, (t) = u~,. (t) = U~ (x~, (t), ... ,x~ (t); d i (t), ... , d N (t») , 
(12) 

ftdi(t)= di(t) x wi(t)= di(t) x ni(x~(t), ... ,x~(t) ; di(t), ... ,dN(t») 

with the initial conditions 

(13) 

2.2 Discussion and motivation for the PDE model 

Here we present the motivation for the above PDE model and discuss some issues 
related to modeling. 

First of all, the modeling of the fluid motion by an incompressible stational'y Stokes 
equation (1) is a fairly standard reduction from the Navier-Stokes PDE for small 
Reynolds number, Re := P~ L 1 « l. Here p is the density of the fluid (p ~ Ig/cm2

), 

V and L are representative velocities and sizes in the problem. For instance, on the 
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scale of self-propelled bacteria, such as Bacillus Subtilis (5J.Lm in length and .7 J.Lm in 
width, swimming with the velocity up to 100J.Lm/sec) Re ~ 10-4 « 1. 

Next we discuss the boundary conditions for the incompressible Stokes equation. 
The boundary condition (2) indicates that the fluid sticks to the walls of the container 
n, which are moving with velocity g(x). This is a standard boundary condition for 
solid walls. It can also be applied to the case of bacteria in a thin film. The boundary 
an of the container n, here , would be the fluid-air interface. The reason for using the 
no-slip boundary condition would be the fact that bacteria produce a surfactant that 
solidifies the interface [30]. 

The boundary condition (:3) is similar to the condition (2) in that the fluid sticks to 
the surface r;,. But unlike an, the boundary r~ is moving with translational velocity 
u~ and rotational velocity wi that are not known a priori and need to be found in the 
process of solving (1-6). 

The boundary condition (4a) indicates that the fluid cannot flow through the sur­
face r~ of the swimmer, moving with translational velocity u~; and rotational velocity 
wi. Also, there is a force acting on the fluid on the surface r~ that pushes the fluid 
backward, as a result propelling the swimmer forward. Since there is a condition of 
"no flow through r~" (4a) , one can only prescribe the tangential component of the 
tract.ion a(u,p)n on r;,. This is done by (4b). 

Note that the form of the RHS of (4b) indicates that the propulsion of the swimmer 
is coordinate invariant, since it is given in terms of the coordinate invariant operators: 
scalar and vector products . . More precisely, the propulsion is invariant under rotation 
and translation of coordinate system. 

An example of the tangential component of traction defined by (4b) is the "uniform" 
distribution over rp 

(14) 

where jp is the "total force of the propulsion" (directed backward): 

( 15) 

Boundary conditions (5) and (6) indicate that all swimmers are self-propelled as 
opposed to moving due to an external force (e.g., gravity). One can obtain equations 
(5)-(6) from Newton's second law, noting that in the Stokes regime the inertial forces 
are negligible compared to the viscous forces (for more details see [15]). 

2.3 Scaling observation 

The following observation will be important to simplify the future analysis. Consider 
two initial value problems (1-12), with the same initial data (i.e., positions of the 

swimmers {x~ (0), di(O) } and the same domain n) but different boundary conditions, 

related by a scaling: 
Problem J: The boundary data 

and I j (8). (16) 
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Problem II: The boundary data 

IT ) I g (t, x = Ag (tf A, x) and (17) 

Denote the solutions of problem f above (i.e., the motion of swimmers and the 
velocity of the fluid at time t and point x) by 

x~/ (t), d i ,l (t) with i = 1, .. . , N and u I (t , x). (18) 

Then the following scaling holds for the solution of problem f f. 

Lemma 1 (Scaling) Function 

(19) 

and the motion of the swimmers 

i,I I (t) = i,l (!) 
Xc Xc A ' (20) 

solve problem f f. 

Proof Let 's check that u I I (t, x) , as defined by (19), is, indeed, a solution of the time­
dependent problem f f. 

It. is easy to check that u I [(t, x) is a solution of the instantaneous problem (1-6) 
with boundary data given by (16) and the velocities of the swimmers 

'i, II(t) = \ i,I (!) 
U c "ue A ' (21) 

Since (18) is a solution of problem f the motion of the swimmers (20) satisfies the 
followin g ODE 

(22) 

This is exactly the ODE (12) for the motion of the swimmers in the problem f f. 

We summarize the above observation as follows: 

Remark 1 Simultaneously increasing the propulsion force f(·) of the swimmers and 
the velocity of the fluid g(x) on the boundary an by a factor of A leads to swimmers 
moving on the same trajector'ies but A times fast er. The cor-responding viscous forces , 

also, increase by a factor A. 
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3 Effective viscosity 

In the theory of fluid dynamics one of the primary objects of interest is the relation 
between the applied forces (stress) and the observed fluid flow (strain rate). For New­
tonian fluids this relationship is linear 

for x E rlF, i =1= j , (23) 

and is defined by a scaling constant p" caJJed viscosity. 
For non-Newtonian fluids (23) does not hold with the same value of p,. Hence, 

assuming that one still desires to characterize the relation between the stress and the 
strain rate in the form similar to (23) , the viscosity p, should be permitted to vary. 
What should p, depend on? 

In the most general case, p, will depend on the form of the flow (i.e. on the strain 
rate: p,(€)). This is not very informative, as in this case the relation cr = p,(i)i is 
equivalent to cr = f( i ), where fO is some function . So, to answer the question about 
the relation between the stress and the strain rate , one should specify the function fO· 

To avoid this problem, accept the fact that the general relation between the bulk 
stress and the bulk strain rate greatly depends on the type of the fluid flow. Thus 
we will limit ourselves to a rather specific, but very experimentally intuitive definition 
along the lines, proposed by C.l<. Batchelor [lJ: 

We shall consider here only the important and representative case in which 
the suspension is confined between two parallel rigid planes in steady relative 
shearing motion, with the stress being observed as the force per unit area on 
a section of one boundary with linear dimensions large compared with particle 
spacing. 

Our definition of the effective shear viscosity will be similar to t.he above one. 

3.1 Definition of effective viscosity and instantaneous apparent viscosity 

Consider a fluid (or a complex fluid, such as a suspension of acti ve or passive particles 
in the fluid) between two solid plates a distance 2H apart, see Figure 2. We induce a 
shearing motion on the boundary by moving the top plate (right) with velocity vel 
and the bottom plate (left) with velocity -vel. For completeness of the definition of 
the motion on the boundary we prescribe the periodic conditions on the left and right 
boundary. The effective shear viscosity il(v), being a measure of friction in the fluid, 
then should be defined in terms of the total viscous forces FT and F B, acting on the 
top and the bottom plates, respectively. In case of suspensions, the viscous forces may 
depend on the distribution of inclusions and, hence, be functions of time. Also, the 
effective shear viscosity should scale correctly with the dimensions of the domain 

H 
p,(v;t):= Lv (FT(t) -FB(t)) · el, (24) 

where L is the length of the plate. 
The definition (24) makes a perfect sense for homogeneous ft.uids, where viscous 

forces FT and F B do not change with time. For non-homogeneous fluid there are 
additional challenges. For instance, for a suspension of passive or active inclusions the 
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S.C: U= [ ~] 

~ 
~ .9 .9 u :a u 

0 :a 
'1: 0 

2H (1) .t:: 
p.. (1) 
I 9-; 
~ ~ 

L 
( 

Fig. 2 Schematic illustration of shear flow between two plates. 

value of {lev) in (24) will be different depending on the concentration and distribution 
of inclusions. For a suspension of active inclusions, such as swimmers, it will also 
depend on the propulsion strength of the swimmers. Moreover , changing the propulsion 
strength from [p to - [p, in general, will change {lev) in (24) in a nontrivial way: (i) it 
will not remain the same and (ii) it will not just change sign. For this reason, we do 
not call the quantity in (24) - effective viscosity. Instead, (24) is called instantaneous 
apparent viscosity. Here, instantaneous indicates that the quantity (24) is computed 
instantly and depends on a particular configuration. The word apparent indicates the 
nontrivial dependence on the propulsion strength. This dependence will be analyzed 
later in section 3.2.1. 

We wish to define the effective viscosity as a material property independent of the 
configuration of swimmers. Thus, we define the effective viscosity as a time average of 
the instantaneous apparent viscosity 

{lev) := 10
00 

jj(v ; t) dt. (25) 

We assume that this time-averaged quantity does not depend on the initial configura­
tion of swimmers. 

3.2 Estimates and observations for the apparent viscosity 

Here we make some analytic observations regarding the instantaneous apparent mea­
surements of effective viscosity. First, we make use of the sca1ing observation, Remark 
1. This observation tells us that the apparent viscosity, as defined by (24), takes the 
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same value for problems J and 11, (16-17), at times t/)., and t: 

rP().,v , ).,!r ;t/ ).,) = L~V (F¥ (±) -FY (±)) ·ej = 

H ( I I) .1 = Lv FT(t) - F a(t) . ej = fJ.. (v, Ip ; t) 
(26) 

Hence the effective viscosities, being time averages of the instantaneous apparent vis­
cosities, also, match for the problems J and J J: 

(27) 

This means that the effective viscosity of a suspension of swimmers depends only 
on the ratio of propulsion strength of the swimmers Ip to the shear rate defined by v, 
i.e . 

. (~) .- . (~ 1) - . (1 !r) fJ.. I .- fJ.. I' -fJ.., . 
p p v 

(28) 

Due to its importance we call the ratio Ip/ v - the propulsion-shear ratio. 

3.2.1 The apparent viscosity lor the instantaneous problem 

In this section we consider the instantaneous problem (1-6) in the fluid domain [2F = 
[2 \ UiSi. We want to identify the dependence of the instantaneous apparent viscosity 
on the propulsion strength Ip of the swimmers for a given distribution of swimmers. 

We will consider three instantaneous problems A-C given by (1-6) with the same 
fluid domain [2F, but different boundary conditions: 

A. Active swimmers + Shear: The shear velocity vA = v and the propulsion strength 
of the swimmers If: = Ip are non-zero. 

B. Passive/dormant swimmers + Shear: The shear velocity vB = vA is non-zero, 
but the propulsion strength of the swimmers I: is zero. 

C. Active swimmers + No shear: The shear velocity vC = 0 is zero, but the 
propulsion strength of the swimmers I~ = If: is nonzero. 

Due to the linearity of the Stokes equation (1) the solution (u A , pA) of the problem 
A is asum of the solutions (uB,pB) and (uC,pC) to the problems Band C: 

and (29) 

We have a similar relation for the forces on the top and bottom plates, the expression 
that enters the definition (24) of the instantaneous apparent viscosity: 

Here we explicitly indicated that the forces depend on the shear velocity v and the 
propulsion strength of the swimmers. 
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Using the definition (24) , we get 

(31) 

where 

(32) 

is the contribution to the instantaneous apparent viscosity due to self-propulsion. 

Note that if (F~(Jp) - F~(Jp)) . ej =I 0, the RHS blows up in the limit of small 

shear rates (constant fp =I 0), i.e. 

(33) 

On the other hand for large shear rates (constant fp) the apparent viscosity p,A 
approaches the apparent viscosity p,B of passive/dormant swimmers 

(34) 

3.3 Effective shear viscosity for a suspension of swimmers in the dilute regime 

Consider a suspension of swimmers in the dilute regime: the fluid domain is sufficiently 
large and swimmers are sufficiently far apart from one another . Thus, the dilute as­
sumptions consist of the foHowing: (i) individual swimmers interact only with the 
background flow and do not interact with one another, (ii) positions of the swimmers 
are not important, only their orientations play any role in the effective viscosity. 

A consequence of (i), (i.i) and the decomposition of the instantaneous problem (1-6) 
in section 3.2.1 are the following. 

Lemma 1 The rotational velocity of swimmers is an even function of 8, i. e. 

w(8) = w( -8). (35) 

Proof Indeed, the rotation of swimmers is entirely due to the background flow and 
does not depend on the propulsion strength fp of the swimmers. That is the rotational 
velocity w = w(8) is a fun ction of the orientation of the swimmer. Due to the symmetry 
of the flow we get (35). 

Let p(8) be the density function for the portion of time that a swimmer spends at 
the angle 8, 

LJr

7r p(8) de = 1. 

Lemma 2 The density function p(8) is an even function of 8, i. e. 

p(8) = p( -8). (36) 
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Proof The statement (36) follows from Lemma 1 and the conservation of flux condition 

p(e)w(e) = constant for all e. 

Now consider the contribution to the instantaneous apparent viscosity 'l](Jp; t) due 
to self-propulsion as introduced in (31) and (32). 

Lemma 3 The total contribution i)(Jp) to the effective viscosity due to self propulsion, 
defined as the time average of the contribution ij(Jp; t) to the 'instantaneous apparent 
viscosity due to self-propulsion is zero: 

Proof The contribution of the swimmers ij(Jp ; t) due to self-propulsion is a sum of 
contributions due to each each swimmer 

IV 

ij(Jp; t) = L iji(JP' e), 
i=1 

which are completely determined by their orientations (N is total number of swimmers), 
Also, from the symmetry of the flow the contribution to the instantaneous apparent 

viscosity ij(e) due to self-propulsion of a swimmer having angle e is minus that of a 
swimmer having angle -e: 

ij( e) = -ij( -e) 

Hence, the total contribution to the instantaneous apparent viscosity due to self­
propulsion of all swimmers is 

[rrrr p(e)ij(e) de = [Orr p(e)ij(e) de + !orr p(e)ij(e) de = 

= - !orr p( e)ij( e) de + !orr p( e)ij( e) de = o. 

From the definition of the effective viscosity (25), decomposition of instantaneous 
apparent viscosity (31), independence of the dynamics of the orientation of swimmers 
on the propulsion strength and, finally, Lemma (3) we get the following statement. 

Theorem 1 The effective viscosdy of a suspension of swimmers interacting only with 
the background shear flow is the same as the effective viscosity of a suspension of passive 
inclusions. 

4 Numerical modeling and analysis 

We solve the ODE (12) using forward Euler method with variable time step f.':..tn (see 
more on the choice of the time-step in section 4.2). On each time step tn for known 
positions x~; (tn) and orientations di(tn) we find velocities of the swimmers (that is 
evaluate the implicit functions U~: and n~) by solving the PDE problem (1-6). Using 
the newly obtained translational and rotational velocities, we update the positions of 
the swimmers , assuming constant velocities on the time interval (t", t" + 6t,,) , 

(38) 
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4.1 Solution of the instantaneous problem 

Solution of the POE problem (1-6) on each time step is the key for obta.ining the 
dynamics of swimmers and for computing the viscosity of the suspension. To solve the 
POE problem (1-6) we use the recently developed Mimetic Finite Difference (MFD) 
method [3). Since MFD method for the Stokes problem is a new method , below we give 
short comparison description between this method and some other popular methods. 

4·1.1 Short description of MFD method 

The MFD method combines mesh flexibility of the Finite Volume (FV) methods with 
analytical power of Finite Element (FE) methods. To some extend it can be viewed as 
an extension of FE methods to unstructured polygonal (polyhedral in t.hree dimensions) 
meshes. The mesh flex ibility simplifies mesh generation around swimmers t.hat may 
have complicated shapes. The major difference between the MFD a nd FE methods 
lies in definition of basis functions. The FE methods define then explicitly everywhere 
in the computational domain. The ~/IFD method specifies the basis functions only 
on mesh edges . This reduction of topological complexity has a number of important 
consequences for numerical modeling of complex phenemona. 

First , the MFD method minimizes the number of discrete unknowns (compared to 
the FE method) (a) by partitioning of the computation domain into smaller number of 
element.s that are polygons and (b) by using velocity and pressure degrees of freedom 
only where they are needed for accuracy and stability of the discretization. For example, 
the MFD method on a square mesh with N mesh vertices uses about 2.5N velocity 
and N pressure unknowns. The FE methods on the same mesh and with roughly the 
same accuracy uses about 4N velocity and N pressure unknowns . 

Second, the MFD method is build the same way on general polygonal meshes as on 
triangular meshes. Thus, the jVIFD method can be used on locally refined meshes with 
hanging nodes and on moving meshes with non-convex elements that are frequently 
used in numerica l modeling. It was shown in [8) that the MFD method can be employed 
even when the mesh elements have curved faces . In this work, we use polygonal meshes 
near boundary of the swimmers (see section 4.1.2) and make the comput.at.ional mesh 
coarser far away from the swimmers. This approach increases accuracy in the areas of 
interest. The MFD method we employ is the second-order accurate (with respect to 
the local mesh size) for the velocity and the first-order accurate for the pressure. 

4.1.2 Mesh construction 

In the simulat ions performed for this paper we used the following mesh construction . 
Since the intricate part of the mesh construction is around swimmers, we divided 
the whole process into three parts: cons tructing the "background" mesh, overlapping 
the "backgro und " mesh with the swimmers, and coarsening the mesh away from the 
swimmers and the walls. 

First we construct a "background" mesh, which we chose to be uniform square 
mesh, i.e. the square domain of size 1 by 1 is divided into N 2 squares with sides 

h = l iN. 
We then overlap the "background" mesh with the ellipses representing swimmers. 

For this we find the points of intersection of the ellipses with the edges of the "back­
ground" mesh. These points are connected by straight edges and added to the new 
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Fig. 3 A sample mesh near a swimmer. The computational domain is around the swimmer 
and is colored light blue. The mesh is coarsened away from the swimmer. Notice that the mesh 
elements adjacent to the swimmer are polygons with 3, 4 and 5 vertices. 

mesh. The mesh elements inside the ellipses are then thrown out. As a result, the 
boundary of the ellipses is approximated by polygons based on the points of intersec­
tion of the ellipses with the background mesh (see Figure 3). 

Since the boundary of the ellipses is approximated using polygons it is important 
to have a fine mesh around the ellipses. Also , the spacial variations of the flow for 
the solutions are largest around the bOllildaries . Hence, to capture these variations 
mesh size should be smaller next to the boundaries. On the other hand away from the 
boundaries we may coarsen the mesh without significuntiy increasing the numerical 
error. We coarsen the mesh by grouping the mesh elements with centers at least 2h 
away from the boundary into square mesh elements with sides 2h. This process can 
be perfored again, grouping the mesh elements with centers at least 4h away from the 
boundary into square mesh elements with sides 4h. 

4.2 Choosing the time step 

There are several factors that determine the size of the time step 6.tn . For moderate 
concentrations of swimmers (~ 10% by volume) the crucial point here is to avoid col­
lisions of swimmers. For this, the relative displacements of the swimmers on each time 
step should be small compared to their pairwise distances. Due to the hydrodynamic 
attraction of swimmers it is common to see pairs of swimmers arbitrarily close to one 
another. This requires to have "arbitrarily small" time step. This is not practical as 
there is no lower bound on the time step (i.e., there is no a priori estimate on the 
amount of computer time to simulate 1 second of "real" time). 

We implemented a balanced algorithm for choosing the time step. We decide on 
the upper 6.tupper and the lower 6.t\owe,· bounds for the time step (e.g. 6.tupper := .01, 
6.t\ower := .001 for fp = 1). Then at each time step, after computing the translational 
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and rotational velocities we pick the size of the time step 6t 

6 tupper ?: 6t ?: 6 t\ower 

so as to avoid swimmers getting closer than the mesh size h to one another . 
It may not be possible to chose 6t S 6t\ower so as to avoid collisions. If this is the 

case, we choose the time step 6t := 6t\ower and adjust the positions of the overlapping 
swimmers. 

Numerical experiments show that choosing the upper and lower bounds for the 
time steps 6tupper := .01, 6 t\ower := .001 for the propulsion strength of swimmers 
fp = 1 and the shear rate "r = 1 leads to smooth changes in the apparent viscosity (see 
figure 7). 

The choice of the time step for the cases oflarger values of the propulsion strength of 
the swimmers fp > 1 is based on the scaling observat.ion (see Remark 1). Due to Remark 
1 t.he trajectories of swimmers obtained numerically for the case with "r = l,fp = f2 and 
6 t = 6 tO will be the same as in the case with "r = 1/ >..,fp = f2 / >.. and 6t = 6tO / >.. . We 
choose the scaling constant>.. = f p , i.e. we /L"{ the propulsion strength of the swimmers. 
This leads to smaller values of the shear rate than in the base case. Therefore, our 
choice of the upper and lower bounds for the time step for "r = 1 and fp > 1 is 
6tupper := .01/ fp, 6t\ower := .001 / fp· 

4.3 Implementing collisions of swimmers 

We at.tempt to avoid the collisions between swimmers through dynamically changing 
the time step. Still, this only minimizes the chances of collisions and does not completely 
eliminate the possibility of them happening. Thus, we need to have a numerical block 
that handles the collisions. 

To avoid any additional difficaulties with the accuracy of the method, we consider 
a small exclusion region around each swimmers (roughly, all points distance h away 
from the swimmer). The exclusion region for the swimmer represented by an ellipse 
with major semi-axb a and b is taken to be an ellipse with major semi-axis a + hand 
b + h, respectively. Therefore, if the exlusion regions of two swimmers do not overlap 
then these swimmers are guaranteed not to have a common mesh element adjacent 
to both. The collision is implemented as a soft collision of eclusion regions, where the 
place of mass is taken by the viscous drag coefficients of the ellipses. 

Consider two ellipses in contact. The force of their interaction is directed along the 
normal to their surfaces at the point of the contact . The force F} ,2 of the first swimmer 
S1 onto the second swimmer S2 is equal in magnitude and opposite in direction to F2,1, 

the force of S2 onto Sl 
(39) 

To observe the effect of the interaction force F2,1 on the motion of the swimmer 
Sl, we compute the net force and the net torque produced on the swimmer: 

and (40) 

The force F2,1 will be acting on swimmer Sl as long as Sl and S2 are in contact. In 
the Stokes regime (where inertia is negligible compared to the viscous forces) the forces 
F2 ,1 and F1,2 will be only as strong as necessary to prevent penetration of swimmer 
by the other. 
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(a) (b) 

Fig. 4 Two ellipsoidal swimmers in contact (a) and two overlapping ellipsoidal swimmers (b). 

Also, in the Stokes regime the role of the mass (since inertia forces are dominated by 
viscous forces) is played by the viscous drag coefficients. We have three drug coefficients: 
,a" b, and Ie, two for translational motions - (Ta) along major and (Tb) along minor 
axis, and ,e for the rotational motion. 

If T is the direction of the major axis and T -1. is the direction of the minor axis, 
write F = faT + fbT-L- We write the m?tion of the ellipse as vc = faT + fbT-1. and w. 
Then the drag coefficients relate the forces acting on the ellipse with the motion of the 
elli pse as follows 

fa = laVa , T=,ew . (41 ) 

Now , suppose at time to we solved the Stokes problem for two swimmers SI and 
S2 and found their velocities Vi and Wi , i = 1,2. We wish to adjust the positions of the 
swimmers according to this velocities to compute the positions at time tl = to + D.t. 
We compute these positions and orientations as 

and similarly for the orientations. 
Suppose, the time step D.t 2: D.t!ower cannot be chosen so as to avoid overlap of 

the exclusion regions. Then we take D.t = D.t!ower' 
For two overlapping ellipses, as on Fig. 4 (b), in general there will be two points 

of intersection PI, P2. Find the midpoint M := (PI + P2)/2. This midpoint will be 
considered as the point of the interaction. The interaction force will be assumed to act 
perpendicular to the line (PI , P2): n(PI ,P2) on SI and -n(PI,P2) on S2. Based on 
this information we can compute the correction velocities of the swimmers 

I -If -1 
Va = la a = la Ta' n(Pl ,P2), 

1 -J f -1 
Vb = lb b = l b Tb' n(PI,P2), (42) 

I -IT -J (I) 
W = Ie = Ie n ( PI,P2) x M - x ... . 
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The question now is "How big should be thf' dbplacements (6x, 68)'1" Since we 
already computed the direction of the displacements the above question is reduced to 
the question of scaling "How big should be the scaling Ot for (6x, 6B) = 01 (v, w)?" 

VYe should take Ot so thaL swimmers are "slightly" out of contact. 
For this we find the points 0 1 and 0 2 on the boundary of S1 and S2 that are 

between PI and P2. For example take 0 1 to be the point on the surface of S1 (that is 
inside S2), where the tangent line is parallel to the line through (P1, P2). Choose 0 2 

in a similar fasion. Compute the projection of 0 10 2 onto n(P
1 
,P,). Find the velocities 

VOl, V02 of the points 0 1 and 0 2
. Take 

(0 1 02) n 
J: (1 ) - . (P1 ,P,) 
Ut: = + a . 

(V01 - V02) . nCP1 ,p,) 

Here a :::: 0 is an analogue of a restituLion coefficient (measure of bounce, i.e. elastic 
vs inelastic collision). It can, also, serve as a "reserve" to guaranty that after t.he 
procedure the ellipses do not overlap. We choose the coefficient a = .1 to be small. 
This coerresponds to making collisions of the ecIusion regions soft collisions. 

4.4 Dynamics: Interaction of swimmers 

Here we present two numerical experiments for the hydrodynamic interaction of swim­
mers at. the intermediate distances (distances of order of the size of the swimmer): a 
swimmer next to a wall (see figure 5a) and two side-by-side swimmers (see figure 56). 
In both cases attraction due to a hydrodynamic interaction was observed. 

This behavior can be explained, heuristically, by the fact. that each swimmer acts 
as a force dipole (5) - it pushes fluid forward ahead of itself (due to no-slip condition 
on TH ) and back behind it.self (due to the thrust condition on Tv). Since t.he fluid is 
incompressible, it is being forced towards the swimmer on its sides (creating lateral 
suction of sorts). 

-4.-4. 1 A swimmer next to a wall 

In the case of a swimmer next to the wall (see figure 5a) the swimmer was positioned 
parallel to a wall a distance .1 away from the wall. The lengths of the semi-axes of the 
swimmer were a = 0.048 by b = 0.024. The propulsion force is given by (14) with the 
propulsion strength f p = 1. 

At the initial time the translational and rotational velocities of the swimmer Wi:lS 

found to be 
1 [0.0651970] 

U c = -0.0166068 ' 
w 1 = 0.06120. (43) 

The vertical component of the swimmer 's velocity (due to the interaction with the 
wall) is roughly 1/4 of its forward component of the velocity (i.e. interaction with the 
wall is rather strong). 

With lime the swimmer approaches the wall , simultaneously rotating away from 
it. \Nhen rotated sufficiently far away from the wall, it starts swimming away. 

Therefore, it was observed that a swimmer parallel to the wall is attracted to the 
wall, spending significant amount of time next and nearly parallel to it. But it will not 
remain next to the wall indefinitely. The whole time when near the wall, the swimmer 
rotates away from the wall and after a certain time swims away. 
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4.4.2 Two adjacent "mirror image" swimmers 

Here we consider two swimmers with the length of the semi-axes a = 0.048 and b = 
0.024, initially positioned parallel to the x-axes, with the centers on the same vertical 
line (see figure 5b): 

1 [.5] 
Xc; = .4 and 2 [.5] 

X c = .6 . 

The swimmers 1 and 2 are mirror images of one another relative to the horizontal line 
y = .5 (hence the name "mirror image" ). 

At the initial time the velocities of the swimmers were found to be 

1 2 [0.066246] 
uc;' = ±0.0l4640 ' W 1•

2 = =j=0.0203. (44) 

With time the swimmers approach one another, simultaneously rotating away from one 
another. This dynamics of two side-by-side swimmers is reminiscent of the dynamics 
of two well-separated "external pushers" in a similar configuration [15]. There is a 
difference between the well-separated and moderately separated regimes, however. In 
the well separated regime the swimmers have enough time to rotate sufficiently away 
from one another for the translational correction (to swimming straight) due to the 
suction to be dominated by the vertical component of the velocity for a free swimmer 
(i .e ., the veloci ty of the swimmer in the absence of the other swimmer). In the moderate 
regime the suction is too strong and the swimmers do not have enough time to rotate 

(a) ( b) 

Fig. 5 Figure (a) shows the fluid flow for a single microswimmer next to a wall. Figure (b) 
shows the fluid flow for two swimmers side by side. The bold blue arrows indicate the direction 
of the fluid that pushes the swimmer closer to the wall (a) and the two swimmers closer to one 
another (b). The bold red lines with arrows indica te the trajectories that each of the swimmers 
will follow . Both (a) and (b) show the initial period of a ttraction (red line getting closer to the 
wall and two red lines getting closer to one another). The two swimmers in the mirror image 
configuration remain close to one another after this. The sw immer next to the wall rotates 
away from the wall to eventually get furth er and further away from it. 
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sufficiently outwards for the vertical component of the velocity due to a free swimmer 
to dominate the velocity due to suction. 

One can also compare the velocities (44) and (45). While the translational velocities 
in both cases are almost the same, the rotational velocity in (45) is roughly three times 
larger than in (44). This may explain the difference in the dynamics between swimmer 
next to a wall and two "mirror image" swimmers. 

In figure 5(b) one can clearly see the trajectories of the swimmers converge and 
experience a sharp turn after which they become parallel. In the case of swimmers 
positioned perfectly symmetrically (relative to a middle line between them) the swim­
mers would always remain in the symmetrical configuration ad remain and distallce 
.0664 between their centers and at the angles 1".28 (turned somewhat outwards) with 
the x-axes. 

In case of the swimmers not in a perfectly symmetric configuration, the swim­
mers eventually separate and swim away from one another. This type of dynamics is 
illustrated by the "offset" configuration, presented below. 

4.4·3 Two adjacent "offset" swimme'rs 

Here we consider two swimmers parallel to the x-axes with the centers offset from the 
same vertical line (hence, the nallle "offset"): 

1 = [.55] Xc .4 and 2 = [.45] 
Xc .6' 

This initial configuration of swimmers can be thought of as a perturbation of the 
"mirror image" configuration. 

At the initial time the velocities of the swimmers were foulld to be 

1 [0,062681 ] 1 = -0.1226, U c = 
0.004727 ' 

w 

[ 0.0740155] 
(45) 

2 2 = -0.1113. U c = -0.006436 
w 

In this configuration, initially, both of t.he swimmers rotate in the same direction (clock­
wise). The direction of the rotation is determined by which of t.he two swimmers is 
ahead of the other one. Here it is the first (bottom) swimmer. So, the secolld (t.op) 
swimmer rotates towards the first one (see the streamlines in Figure 6). 

Eventually, swimmer two will cross the axes of the first swimmer behind it. and 
will swim away, see figure 6, This demonstrates that t.here is no stable configuration of 
swimmers where they stay close to one another indefinitely, 

4.5 Relation between the time and size scales in the physical and numerical 
experiments 

In an attempt to relate the numerical unit of time to the physical unit of lime we 
note the physical parameters of bacteria such as Bacillus subtillis, The length of the 
bacteria is around 5J.Lm and (if they have enough oxygen) they swim with the speed of 
~ 100J.Lm/ sec. 
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Fig. 6 Figure illustrates the fluid flow for two "offset" parallel microswimmer. Bold red lines 
show the trajectories each of the swimmers will follow. 

The length of a swimmer in these numerical experiments next to a wall and next 
to another swimmer is 2a = 0.096. In these experiments, (45) and (44), the typical 
forward component of the velocity of a swimmer is 

.065 ~ ~ swimmer body length. 
3 computer unit of time 

(46) 

Since the typical speed of bacteria (having enough oxygen) is 20 body lengths per 
second, the unit of computer time for fp = 1 corresponds to 

(unit of computer time for fp = 1) = 210
3 

sec. = 1/30 sec. (47) 

Now we compute the physical analog of the shear rate for the computational ex­
periment with fp = 1. The total size of the domain is 1;'096 ~ 10 lengths of a 
swimmer, which corresponds to 50j.tm. The speed of each (top and bottom) plates 
. ~ 15 mm Th h . 30 -1 IS 1/30sec = . sec' e s ear rate IS sec . 

4.6 Effective viscosity 

For a homogeneous fluid, the instantaneous apparent viscosity defined by (24) and the 
effective viscosity defined by (25) are the same thing. For an inhomogeneous fluid (e.g., 
suspensions) (24) will take different values depending on the dislribution of inclusions. 
Figme 7 illustrates a sample measurements of the instantaneolls apparent viscosity for 
a suspension of swimmers as a function of time. 

Since in practice the instantaneous apparent viscosity is measured on a finite inter­
val of time it is important to produce an error estimate for the effective viscosity, which 
is not trivial. Intuitively, it seams that the more measurement;; one makes (i.e., more 
time steps) the more accurate is the estimate of the effective viscosity. This is true only 
in part. The same number of measurements (time steps) can be done with small or 
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Fig. 7 The green horizontal line indicates the viscosity of the ambient fluid (/1. = 1). The 
blue (oscillating) line shows the instantaneous measurements of viscosity for the suspension 
of swimmers, as defined by (24). The red horizontal line indicates the time average of the 
instantaneous measurements of viscosity for the suspension of swimmers. The measurements 
are performed for the suspension of 25 swimmers at 9% volume fraction in a 1 by 1 square 
with I-periodic boundary conditions in x-direction. The propulsion of each swimmer is defined 
by (14) with the total propulsion strength /p = 1 as defined by (15). 

large time step I'::.t. Small I'::.t is important for correctly capturing the dynamics of the 
suspension. Long total time range of the measurements is important for the accuracy 
of the overall estimate of the effective viscosity as the mean of the instantaneous appar­
ent viscosity. In the extremes, million measurements with time step 10- 12 or hundred 
measurements with time step 10 may be equally poor at predicting the effective viscos­
ity. In the first case one would get a a very accurate dynamics of the suspension , but 
would miss the range of values. In the second case one would get a rather broad range 
of values for completely inaccurate dynamics of the suspension . Since the interaction 
of swimmers is assumed to playa key role in the effective viscosity of the suspension 
the last choice is not satisfactory as well. 

In our analysis we begin by identifying an acceptable time step , which may be a 
subjective quantity. As a criteria we set the condition that time step is much smaller 
than the time required for significantly changing the instantaneous apparent viscosity 
of the suspension. For the propulsion-shear ratio /p / v = 1 the appropriate time step 
was chosen to be I'::.tl = .02. Based on this choice and the scaling argument 1 for 
the propulsion-shear ratio /p / v = ).. > 0 the appropriate time step was chosen to be 
I'::.t), = I'::.t1l)... 

A sample mean of N independent identically distributed random variables ap­
proaches normal distribution with the standard deviation s/ IN, where s is the stan­
dard deviation of the underlying distribution. In our analysis all measurt?ments of the 
instantaneous apparent viscosity do not represent independent sample. For example 
the correlation between the values of instantaneous apparent viscosity on the adjacent 
time steps is more than .8 for propulsion-shear ratio /P/v = 1. We find the smallest 
lag nlag when the autocorrelation equals to O. For the case of propulsion-shear rat.ion 
/p/v = 1, figure 9, the zero-autocorrelation lag is nlag = 58. This number indicates 

t 
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that the measurements on time-step nlag apart are essentially uncorrelated and may 
be viewed as independent sample. 

The total number of time steps divided by nlag is the sample size N. The error in 
estimating the effective viscosity is then assumed to have a normal distribution with 
the standard deviation 

d d d 
.. standard deviation of the measurements 

stan ar eVlatlOn = . 
J N total / nlag 

(48) 

The standard deviation of the error computed according to (48) is sketched on Figure 
8. 

4.6.1 Effective viscosity as a function of pTOpulsion-shear ratio 

In this section we are looking for the dependence of the effective viscosity on the 
propulsion-shear ratio fp/v. To compute the effective viscosity we make the following 
numerical experiments. First, we fix the dimensions of the cont.ainer to be 1 by 1 square 
with appropriate boundary conditions. The shea.r velocity is taken to be 1. We fix the 
size and number (hence volume fraction) of swimmers and vary only the propulsion 
strength fp of the swimmers. For each value of the propulsion strength we simulate 
the dynamics of the swimmers, computing the pressure and the velocity of the fluid 
and swimmers. Knowing the velocity and pressure solutions allows us to compute the 
viscous forces acting on the top and bottom plates, and hence the instantaneous value 
of the instantaneous apparent viscosity as defined by (24). 

The effective viscosity as a function of the propulsion strength is shown on Figure 
8. One can notice that the standard deviation of the estimates for the effective viscos­
ity on Figure 8 generally is much larger for larger values of the propulsion-shear ratio 
fp/v. This is due to the fact that the standard deviation of the instantaneous appar­
ent viscosity is proportional to the propulsion strength of the swimmers. Therefore, 
according to the error estimate (48) to compute the effective viscosity for fp/v = 10 
with the same accuracy as for fp/v = 1 it requires not 10 but 102 more time steps. 

The red line on Figure 8 is given by 

0: = -0.0351 {3 = 1.1407, (49) 

and represents the waited least square fit to the data. It minimizes 

(50) 

where f~ are the values for which the estimate of the effective viscosity /1i is computed. 
The estimates of the effective viscosity for the propulsion-shear ratio fp /v = 

-1,0,1,2,3,4, 5 is consistent with the linear decrease of the effective viscosity. For 
the values of the propulsion-shear ratio fp / v > 5 the linear trend seams to change. We 
explain this change by the finite size of the fluid domain. To illustrate that the trend 
changes around the value of the propulsion-shear ratio fp/v ~ 6 we show the dynamics 
of a single swimmer for the propulsion-shear ratios of fp / v = 1 and 6, see Figure ?? 
Since the shear background flow rotates a swimmer and a swimmer by itself swims on 
a straight line, a single swimmer in a shear background flow will have an ellipse as 
the trajectory. The larger is the the propulsion-shear ratio the larger is the ellipse-like 
trajectory of the swimmer. For the propulsion-shear ratio of fp/v ~ 6 the ellipse-like 
trajectory of the swimmer cannot fit into the fluid domain any more. 
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Fig. 8 Circles indicate the numerically obtained values of the effective viscosity for a given 
propulsion-shear ratio fp/v. The points are combined into two groups: A and B. Points in group 
A exhibit linear trend. Points in group B exhibit finite domain effects. The solid horizontal 
line shows the viscosity of the ambient fluid (IJ- = 1). The dashed horizontal line shows the 
effective viscosity of a suspension of passive inclusions Up = 0). The decline straight line shows 
the weighted linear interpolation to the data. 

4·6.2 Distdbution of swimmer·s in the domain 

The distribution of swimmers in the domain and their orientations plays a crucial role 
in determining the instantaneous apparent viscosity. 

In physical experiments [17,31,4] it was observed that swimmers tend to aggregate 
near the walls. In our numerical experiments we observed this aggregation through 
computing the time averaged volume density of swimmers as a function of distance 
from the bottom wall (see figure 10). That is, given a number d we drew a horizontal 
line distance d from the bottom wall and computed the portion of the line covered 
by swimmers. This number is the volume fraction of swimmers at depth d and it 
fluctuates as swimmers move within the domain. To get rid of the fluctuations we take 
a time average of the volume fractions for the same depth d. Due to the top-bottom 
symmetry of the PDE and the random initial conditions, the graph of the distribution 
is symmetric under transformation d....., (1 - d), as expected. 

For instance in [16] it was demonstrated that in the absence of pairwise interactions , 
shear Row leads to a distribution of swimmers by the angles that decreases the viscosity. 
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Fig. 10 The figure on the right shows a sample distribution of swimmers in the domain. The 
figure on the left shows that time-averaged volume fraction of swimmers as a function of the 
depth (distance from the bottom wall). Here we took 25 swimmers with the propulsion strength 
fp = 1 with the overall volume fraction of swimmers .09. One can observe the increase of the 
density near the top and bottom walls. 

In the presence of the pairwise interactions and swimmer-wall interactions the dynamics 
of the swimmers is much more complex. 

d 
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5 Summary 

In this work we formulated a well-posed POE model for the suspension of swimmers , 
which includes the propulsion strength ip of the swimmers as a parameter. 

Using the symmetries of the model we demons trated tha t in the dilute regime 
(each swimmer interacts only with the background flow) the effective shear viscosity of 
a suspension of swimmers does not depend on the propulsion strength. This argument is 
not specific to our choice of a swimmer and call be applied to a large class of swimmers 
without significant changes. In particula r it can be applied to the swimmers in [18,28, 
16J. 

Using the invariance of the POE model under scaling we observed the dependence 
of the effective shear viscosity on the ra tio of the propulsion strength to the shear rate 
of the background flow, ca lled propulsion-shear ratio. 

Our numerical simulations performed at the modera te concentrations (rv 10% by 
volume) indicate tha t the effective shear viscosity decays linearly as afunction of the 
propulsion-shear ratio of ip/v. This continues to hold for nega tive values of the propul­
sion strength , which corresponds to swimmers swimming in the opposite direct ion, i.e. 
pullers instead of pushers . Performing the experiment in a finite container places a n up­
per bound on t he propulsion-shear ratio for which the effective shear viscosity changes 
linea rly. The value of propulsion-shear ratio is such that a single swimmer followin g 
an eUipse-like t.raject.ory (due to rota tion by the background flow) will "touch" both 
upper a nd lower boundaries of the domain. The numerical experiments in the moder­
ate concentrat ion indicate that the decrease of the effective viscosity observed in the 
physical experiments can be explained entirely from a point of view of hydrodynamics. 
This is an important observation , since biological sys t.em are very complex and include 
a variety of processes (chemotaxis, oxygen taxis, etc.) that could be hard to isolate in 
physical experiments. On the other hand our mathema tical model does not contain a.ll 
the excess phenomena and focuses on on the hydrodynamics. 

Comparing the results for the effect ive shear viscosity in the dilute and moderate 
concentration regimes shows changes (increase or decrease) in effective shear viscosity 
are not just due to self-propulsion but crucially depend on the swilllmer-swimmer inter­
ac t. ions . For this reason and as an additional validat ion of the model and the numerical 
approach we performed a number of simulat ion for two nearby swimmers and for a 
swimmer next to a wall. The observed results matched with the physically observed 
behavior for bacteria. In all cases swimmers at tract one another due to la teral suction 
of fluid , resulting from self propulsion. But neither two swimmers nor a swimmer next 
to a wall have a steady state in terms of relative positions. 
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A Variational formulation for the instantaneous problem (1-6) 

There are a number of questions that are easier answered working with the variational formu­
lation of the problem instead of the PDE. Here we refer to the instantaneous PDE problelll 
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(1-6). The questions that plan to answer are well-posed ness of the problem (existence and 
uniqueness of the solution) and construction of the numerical scheme for approximating the 
solution to (1-6). 

For simplicity of presentation, we will derive the variational formulation for a single swim­
mer. Obtaining the variational formulation for multiple swimmers after that will be straight­
forward. 

First, we specify the admissible class Ag of solutions u and then the space Ao of variations 
v. The admissible class of velocity fields u is defined as 

Ag: == {u E H1(D( .. ) I u(x) == g(x) for x E aD, 

u(x) == U c +wu x (x - x c) for x E T H , (51) 

u(x)==uc+wux(X-XC)+TU for XETe}. 

Here T is a unit tangent to the surface and 11. is an unknown scalar function. 
The linear space Ao of variations for the admissible class A is 

Ao:== {v E H1(D, •. ) I v(x) == 0 for x E aD, 

v(X) == vc+WvX(X-Xc) for xETH , (52) 

v(x)==vc+wvx(X-XC )+TV for XETp}. 

Rewrite the Stokes equation (1) by adding to its LHS 

/idiv(\7uf == /i\7(div u) == o. 

We obtain 
2/idiv (D(u)) == \7p. (53) 

This is done to obtain symmetrized gradient D(u) (and later a stress tensor a(u,p)) in place 
of \7u. Multiply (53) by v E Ao and integrate over DI' 

In,. (2/idiv (D(u)) - \7p) . v dx == O. (54) 

Integrate (54) by parts (here n is a unit outward normal to the boundary) 

-2/i r D(u): \7v dx + 2/i r nD(u)v dx + 
In,, JonI' 

+ r pdiv(v) dx - r pvn dx == O. 
Jnr Jan p 

(55) 

Combining the second and forth terms in (55), using the definition of 

a(u,p) :== 2/iD(u) - pI , (56) 

and rearranging the remaining terms 

2/i r D(u): \7v dx - r pdiv(v) dx == r na(u, p)v dx. 
In,.. .InF JonI' (57) 

Consider the last integral Jan
p 

na(u,p)v dx and note that 

aDF == aD U oB, where oB == Til U Tp. 

Due to the boundary conditions (3-6)on the solution u and the boundary conditions (52) on 
the test function v we have 

r na(u , p)v dx == O. 
Jan (58) 
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The integral over the surface of bacteria can be written as 

Since 

Since 

Since 

r n a( u ,p)vdx= r na(u,p)(VC +WvX(X-Xc)+Tv)dx= 
JoB .loB 

=vc: r na(u,p) dx+ wv r (x-xC)xna(u,p)dx+ 
Jo B JoB 

+J na(u,p)Tvdx= 
rp 

= v" . (F II + F,,) + wv( T Ii + T IJ) + J na(U ,p )TV dx. 
r p 

th e in tegral takes form 

which is a known linear function a.l of v. 
Introduce the notations 

a(u,v) :=J1.J D(U ): 'VvdX=J1.J D(u):D(v)dx, 
n F n F 

(p, div (v) ) := J pdiv(v) dx, 
n p 

L(v):= J.E..... d . [- J vdx+ J VdX]. 
IFpi rp r H 

(59) 

(60) 

(61) 

(62) 

Here T is a unit tangent to the boundary, pointing forward relative to d on r," a nd backwa rd 
re lative to d on rp . 

In the notations (60-62) equation (57) takes form 

2a (u,v ) - (p,divv) = L(v), 'Iv E Ao· (63) 

Ta ke the incompressibility equation in (1) , mUlt iply by q E Lij(DF ) and integrate over the 
fluid domain DF to get 

r div(u)qdx= (q,divu) = 0 , 
In, .. 

Combining equations (63-64) we have a complete var iat io nal formulation: 
Find a pair (u , p) , u E Ag a nd p E Lij(DF), such that 

{ 
2a(u, v) - (p, div v) = L(v), 
(q, div u) = 0, 

'Iv E Ao, 
Vq E Lij (DF )' 

(64) 

(65) 
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The minimization problem, corresponding to the variational problem (65) is: 

min E[u ], 
UEA~jv=O 

where E[u] := a(u, u) - L(u) (66) 

and A~i\'=o consists of divergence free functions from A g . 

B Well posed ness of the instantaneous PDE problem (1-6) 

The minimization problem corresponding to the variational formulation (65) is to minimize 

E[u] := a(u, u) - L(u) (67) 

over all 

u E Ag U Hdiv=O ' (68) 

The existence and uniqueness of minimizers of (67) is proved in a standard way provided 
that the coercivity of the bilinear form a(-,·) can be shown. The coercivity proof, using Korn's 
inequality, is essentially contained in [11] as we now explain. 

Theorem 1 The bilinear form a(-, .) is coercive on V with r-espect to the norm 11·111 induced 
from Hl (ft F). In par-tieular, a(-, .) defines an equivalent inner- product on V. 

Pr-oof Coercivity of a(-, .) relies in an essential way on Korn 's inequality: 

a(u, u) + lIull 2 > ellull~, (69) 

for some e > 0 (here II· II denotes the L2 norm). The proof of (69) found in [11] applies to 
the case for any subspace U C Hl (ftF» consisting of functions with a zero trace on a part 
of the boundary with nonzero two-dimensional measure. This applies to V as its elements 
vanish on aft - the no-slip boundary conditions on the outer boundary of ftF. In particular, 
a(· , .) is nondegenerate, since the nontrivial kernel of D(u), consisting of the rigid motions 
u(x) = Uo + wo X x , is excluded from V due these boundary conditions. The result (69) is 
nontrivial, since the left-hand side contains only symmetric combinations of the derivatives of 
u. 

The coercivity proof is completed by showing the existence of the following bound: 

(70) 

for some d > O. This replaces Poincare's inequality in the case of the symmetrized gradient. It 
can be proved for V as is done in [11], using the compactness of the embedding V '--+ L2(ftF). 
This embedding is induced from the usual compact embedding Hl(ftF) '--+ L2(ftF), since V, 
being a closed subspace of Hl(ftF) is also weakly closed (see, e.g., [20)). 

With the coercivity of a(-, .) proved, the existence of minimizers for (67) can be proved 
by standard techniques. Since each minimizer satisfies (55), the difference of any two of them 
is a(-, ·) -orthogonal to a dense subset of V, hence is zero, which proves uniqueness. 

Finally, the unique field u that solves (67) is a weak solution of the Stokes equation on 
a regular bounded domain, Therefore, once again by the standard theory (e.g., [1 3]), there 
exists a unique pressure field p E L2(ftF), which together with u satisfies the a priori L2 
estimates [13]. Since the boundary of ft F and the is smooth, these estimates imply that (u, p) 
are smooth too. By reversing the steps leading to the weak formulation (55), we now see that 
(u, p) form a strong solution of the full system. 
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