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Abstract 

Botnets, which are responsible for many email sparnming and DDoS (Distributed Denial of Service) 
attacks in the current Internet, have emerged as one of most severe cyber-threats in recent years. To evade 
detection and improve resistance against countermeasures, botnets have evolved from the first generation 
that relies on IRC chat channels to deliver commands to the current generation that uses highly resilient 
P2P (Peer-to-Peer) protocols to spread their C&C (Command and Control) information. It is, however, 
revealed that P2P botnets, although relieved from the single point of failure that IRC botnets suffer, can 
be easily disrupted using pollution-based mitigation schemes [15]. 

In this paper, we play the devil's advocate and propose a new type of hypothetical botnets called 
AntBot, which aim to propagate their C&C information to individual bots even though there exists an 
adversary that persistently pollutes keys used by seized bots to search the command information. The 
key idea of AntBot is a tree-like structure that bots use to deliver the command so that captured bots 
reveal only limited information. To evaluate effectiveness of AntBot against pollution-based mitigation 
in a virtual environment, we develop a distributed P2P botnet simulator. Using extensive experiments, 
we demonstrate that AntBot operates resiliently against pollution-based mitigation. We further present a 
few potential defense schemes that could effectively disrupt AntBot operations. 

1 Introduction 

Botnets, which are networks of compromised machines sharing the same command and control (C&C) 
infrastructure, have emerged as one of the most severe threats to Internet security in the past few years . To 
improve resilience to node failures, the new generation of botnets leverage the self-organized structure of 
P2P networks. Under the umbrella of decentralized P2P network architectures, these botnets can scale up to 
a large number of nodes but still do not suffer a single point of failure as traditional IRC-based botnets do. 

Moreover, these P2P botnets can hide their communications among normal P2P traffic: the botmaster 
publishes some information (e.g., a command asking every bot to send TCP SYN packets to a target web­
server) in a normal P2P network, and each bot, which is also part of the P2P network, regularly retrieves 
such information with certain features. This technique has been adopted by the recent Storm Worm to hide 
its communication traffic inside the Overnet network. Under the disguise of normal P2P traffic, botnet C&C 
communications are much hard to detect at the network layer, given the fact that P2P traffic comprises a 
large portion of Internet traffic nowadays. 

Fortunately, P2P botnets do have their own Achilles' heel. As their C&C communications are based on 
P2P protocols, they are not immune to those attacks inherent in popular file-sharing P2P networks, where 
strong authentication is commonly lacked. In [15], Holz et al. explored techniques to mitigate the Stonn 
botnet. They first used honeypots to capture Stonn bot executables spread through spamming emails, and 
then ran these executables in a controlled sandbox. After successfully hooking the controlled bot instances 
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onto the Stonn botnet, they obtained keys that were used by those bots to search the current command issued 
by the botmaster. It was found that only 32 keys were used every day for the purpose of communications 
in the Store botnet. By simply overwriting infonnation associated with these 32 keys, the communication 
of the Stonn botnet can be effectively disrupted. This pollution-based technique has been widely used as a 
sabotage technique to damage the usability of copyrighted contents in file sharing P2P networks [19]. 

Their results seem promising: P2P botnets, although enjoying the high resilience of decentralized P2P 
architectures, can be infiltrated and then easily disrupted by pollution-based mitigation schemes. The ques­
tion, then, is: can P2P botnets be intelligently designed to defeat pollution-based mitigation schemes? In 
this paper, we play the devil's advocate and design a type of hypothetical P2P botnets called AntBot that 
significantly enhance the resilience of P2P botnets against pollution-based mitigation. In a nutshell, our 
key contributions made in this paper are summarized as follows: (1) We design a distributed protocol for 
AntBot, which uses a tree-like structure for AntBot to propagate botnet commands in P2P networks. The 
key idea of AntBot is that there are far more low-level bots that are closer to the bottom of the tree than 
high-level bots so that if a bot is seized by the adversary, it is highly likely that it is a low-level bot and 
polluting the keys that this bot uses to search or publish the command affects only a small number ofbots at 
lower levels. (2) We analytically study three important properties of AntBot: reachability, resilience against 
pollution, and scalability. Through numerical analysis, we perfonn sensitivity study of AntBot against its 
key input parameters. The results provide guidelines for how to configure these parameters in a practical 
setting. (3) We implement AntBot using actual development code of a popular P2P client, aMule, which is 
based on the KAD protocol, a variant of Kademlia. To evaluate perfonnance of AntBot, we develop a dis­
tributed P2P botnet simulator that replaces system calls related to time and socket in the original aMule code 
with simulated functions. We also implement a crawling-based index pollution scheme in the simulator. (4) 
We perfonn extensive simulation studies to investigate how resilient AntBot is against pollution-based mit­
igation schemes. To achieve greater realism in these experiments, we model the churn phenomenon and 
time zone effects of both regular P2P users and bot activities, using previous measurement results collected 
from the KAD network and the Stonn botnet. The simulation results reveal that AntBot indeed greatly im­
proves the resilience of the P2P botnet against pollution-based mitigation. (5) We propose a few potential 
defense schemes that could effectively disrupt AntBot operations of AntBot and also present challenges that 
researchers need to address when developing each of these mitigation techniques. 

The remainder of this paper is organized as follows. Section 2 presents previous work related to AntBot. 
In Section 3, we provide details on how to design the protocol for AntBot and use an example to illustrate 
its operation . In Section 4, we mathematically analyze the perfonnance of AntBot from three different per­
spectives: reachability, resilience against pollution, and scalability, and also provide numerical results on the 
effects of different input parameters. Section 5 elaborates on how we develop AntBot using the implemen­
tation code of an existing P2P client on a distributed simulation platfonn. We evaluate the perfonnance of 
AntBot in 6 and suggest some potential countenneasures in Section 7. Finally, we draw concluding remarks 
in Section 8. 

2 Related Work 
As botnets emerge as one of the most severe threats to Internet security, there have been a plethora of 
works dedicated to botnet research in the past few years. One line of research is focused on analyzing 
behaviors of real-world bot executables obtained through spamming emails, honeypots, etc. In [2], Barford 
and Yegneswaran compared four IRC-based botnets, including Agobot, SDBot, SpyBot, and GTBot, from 
several different perspectives. Behaviors of a few HTTP-based bots, including Rustock, BlackEnergy, and 
Clickbot.A, have been investigated in [6, 22, 8]. Porras et al. perfonned static analysis of the Stonn wonn 
executable [23], Holz et al. analyzed the propagation mechanism of the Stonn wonn and its behaviors at 
both system and network levels [15], and Kanich et al. unraveled a few interesting myths about the Stonn 
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ovemet [17]. Our work was motivated by the observation made in [15] that using a strong pollution scheme, 
it is possible to disrupt operations of real-world P2P botnets like Storm, but from our work we conclude that 
a P2P botnet, if carefully designed, could still operate resiliently against pollution-based mitigation. 

There are also several measurement studies on existing botnets. Rajab et al. used a honeypot to track 
192 IRC-based bot nets and made some interesting observations on their spreading and growth patterns [1]. 
The Torpig botnet was hijacked and it was found that this botnet, estimated at consisting of about 182,000 
compromised machines, posed severe threats including financial data stealing, DoS attacks, and password 
leakage [30]. Dagon et al. used a DiNS redirection technique to capture botnet traffic and by analyzing 
such traffic, they found that botnet growth exhibited strong time zone effects [7]. Botnet-based spamming 
campaigns have been studied by analyzing similarity of email texts [38] and embedded URLs [36]. In this 
work, when we evaluate resilience of AntBot against pollution-based mitigation, we use results from these 
previous measurement studies to build realistic models that characterize important aspects of bot activities, 
such as time zone effects and diurnal patterns. 

Many bot and botnet detection techniques have been developed recently. Gu et al. developed detec­
tion approaches that hinge on IDS(lntrusion Detection System)-driven dialog correlation [12] and strong 
spatial-temporal correlation and similarity of bot activities in the same botnet [13][11]. Liu et al. proposed 
an approach based on virtual machines to detect bot-like activities on individual hosts [20]. Transport­
layer communication records have been used to detect botnet behaviors in large Tier-lISP networks [18]. 
Ramachandran et al. developed a botnet detection scheme that relies on passive analysis of DNS-based 
blackhole list (DNSBL) lookup traffic [25]. Signature-based botnet detection schemes have also been pro­
posed, including Rishi [10] and AutoRE [36]. TAMD is developed by Yen and Reiter that detects stealthy 
malware, including bots, in an enterprise network by mining communication aggregates in which traffic 
flows share common characteristics [37]. Our work is orthogonal to these botnet detection efforts and it 
remains as our future work how to develop effective countermeasures against intelligently designed botnets 
such as AntBot. 

We are not alone in exploring hypothetical botnets that are hard to detect or disrupt. Vogt et al. proposed 
Super-Botnet, which divides a large botnet into networks of smaller independent botnets to make it more 
resistant to countermeasures [31]. AntBot, although designed specifically for P2P botnets, can be applied 
to both large and small botnets to improve their resilience. Overbot, another botnet protocol built on the 
Kademlia-based P2P networks, aims to hide membership information of the botnet so that a captured bot 
does not reveal any information about other bots [27]. Chen et al. discussed design of delay-tolerant botnets, 
which add random delays to command propagation to evade detection [5]. Wang et al. proposed a hybrid 
P2P botnet with heterogeneous compromised machines (e.g., based on whether they have static IP addresses 
and whether they are behind firewalls) [32]. Hund et al. provided some guidelines on how to design next­
generation botnets that are hard to track and shut down [16]. All these efforts bear different design goals 
from AntBot, which specifically aims to improve resilience of P2P botnets against pollution-based mitiga­
tion. Wang et al. performed a thorough study on P2P botnets in [33], including analyzing effectiveness 
of index poisoning on mitigating botnet operation. They, however, did not consider how to design botnets 
intelligently to prevent operation disruption by pollution-based mitigation. 

3 Protocol Design of AntBot 

P2P Network Model. In this work, we consider the following type of P2P networks. First, each peer has 
a globally unique (or almost unique) identifier. This is applicable to most existing P2P networks because 
node IDs in them are often randomly generated in a large ID space (e.g. , Kademlia, Tapestry, and Pastry), 
hashed from IP addresses to a large ID space (e.g., Chord), or simply IP addresses of the peers in the network 
(e.g., Gnutella). Second, the P2P network provides two basic primitive operations: putO and getO. The 
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putO operation publishes a data item with a certain key in the network so that other peers can obtain it, 
and the getO operation instead retrieve a data item with a certain key from the network. In a typical DHT 
(Distributed Hash Table )-based P2P network, a putO operation stores a data item at a different node whose 
ill is close to that of the data item; by contrast, in an unstructured P2P network, a putO operation can simply 
make a local data item accessible to other peers. On the other hand, a getO operation in a DHT-based P2P 
network searches a data item with a certain ID either iteratively or recursively so that the distance to the 
target node decreases monotonically. A getO operation in an unstructured P2P network typically involves 
flooding to get a response, hopefully, from a peer that owns the searched data items. Third, there is no strong 
authentication scheme deployed so that pollution attacks can take place. In such an open network, every peer 
can publish data items with whatever keys or descriptive strings. This holds for the majority of popular P2P 
networks these days but not for Freenet, which employs personal namespaces to prevent pollution attacks: 
storing a data item in a personal namespace requires the private key of its owner, and other peers use the 
public key of the owner of a namespace to access data items in it. Fourth, the P2P network has the chum 
phenomenon: peers can join or leave the network dynamically. 

Algorithm Description. In our design, we assume that the botmaster and all the bots share the same 
secret key K. We assume that this key is unknown to the adversaryl. To thwart efforts to obtain key K by 
static code analysis, this key is changed regularly by updating the bot executable. The bot executable can 
also apply sophisticated obfuscation techniques such as polymorphism to complicate static code analysis. 

Commands issued by the botmaster are stored as data objects in the P2P network. The keys used to 
search these data objects are called command keys. These command keys are changed regularly every {) time 
units. For instance, command keys in the Storm botnet change every day. Similar to the Storm botnet, all 
bots in AntBot use the Network Time Protocol (NTP) to synchronize the time. Without loss of generality, 
we assume that all bots have the knowledge of a global time t. This global time, for example, can be the 
Greenwich Mean Time (GMT). Moreover, the global time is discretized into equal periods of length {) time 
units, which are denoted as {6.dli=1,2, .... The starting time of period 6.i is denoted as T(6. i ). 

In contrast to the Storm botnet, however, bots in AntBot do not use the same set of keys to search the 
current command within each period. Let set B = {bd Ik=1,2, ... ,m denote the entire set of bots in a botnet 
with m bots, and h denote the identifier of bot bk. For the current time period 6. i , each bot bk computes its 

signature Ski) as follows: 

(1) 

where II is the concatenation operation and function fe) is a hashing function that maps the input string 
into a space of size 21. That is to say, the output of function f(·) is an l-bit binary number. For AntBot, it 
is not required to have a fixed l. Instead, as more bots are recruited into the botnet, the bot executable can 
be updated to adopt a larger l. Under such circumstance, hash function f should be able to produce digests 
with a variable length. In this work, we simply use the first l bits from the output of MD5 hash function. 

Based on the signature of each bot, we further define its rank as follows. First, we define a set of numbers 

{h j }IO:Sj:Sr>nax+1> where hj is called a landmark and 

(2) 

If the signature of a bot falls within [hj, hj+d, its rarlk is j + 1. Counterintuitively, we say that rank Tl is 
higher than rank T2 if Tl < T2. All the landmarks are defined in the bot executable. 

Let Ci denote the command issued by the botmaster within period 6.i . To issue the command, the 
botmaster can remotely login to any compromised machine in the botnet, possibly through multiple step 
stones to evade detection. He then creates a data object with contents as EK[Ci II T(6. i )], where EdX] 

I Throughout this paper, we use an adversary to refer to a white-hat security expert attempting to disrupt botnet operation. 
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denotes encrypting X with key K using a symmetric encryption algorithm (e.g., DES). We call this data 
object a command object. We further define function 9 as follows: 

(3) 

where both d and s are integers, 0 :::; d < 21, and 0 :::; S < Smax. The command object is published every w 

time units by the botmaster using the putO operation with command keys in set A, where 

(4) 

We say that S is the slot number ofthe command key g(T(!:J. i ), d, s). Obviously, hI . Smax command keys 
are initially generated by the botmaster. The behavior of the botmaster is illustrated in Algorithm I. 

Algorithm 1 Botmaster's behavior during period !:J.i 
I: Login to any bot-controlled machine 
2: Create command Ci for the current period !:J. i 
3: Create the command object as E,dCi II T(!:J. i )] 

4: A <--- (/) 

5: for d = ho to hI - 1 do 
6: for S = 0 to Smax - 1 do 
7: Create a command key g(T(!:J. i ), d, s) as in Eq. (3) 
8: A <--- Au g(T(!:J. i ), d, s) 
9: end for 

10: end for 
II: for every w time units do 
12: If it is not in period !:J.i, exit 
13: Publish the command object with command keys in set A 
14: Sleep until the next cycle 
15: end for 

On the other hand, a bot first computes its signature and then its rank r within period !:J.i. The behavior 
of a bot during period !:J. i is given in Algorithm 2. The bot randomly chooses q distinct numbers from 
[hr-l , hr), which are denoted as Xl, X2, ... , x q. For each Xj, where 1 :::; j :::; q, the bot randomly chooses a 
slot number Yj from [0, Smax - 1], and then creates the corresponding command key g(T(!:J.i ) , Xj, Yj). Note 
that the landmarks hI through hrTnax-1 are chosen in such a way that hr+l - hr, where 0 :::; r :::; rmax - 1, 
must be no smaller than q. This ensures that each active bot be able to use q command keys to search the 
command object. 

The bot iteratively uses the getO operation to search the command object with command keys in set 
B = {g(T(!:J.i ), Xj, Yj)}ll~j~q. When it finds the data object, it decrypts this object with key K and checks 
whether the decrypted time matches the starting time of the current period. If they do not match, the bot 
keeps waiting for the next searched result; otherwise, it obtains the current command Ci and stops searching. 
It is noted that time checking in AntBot provides a level of authentication: If the data item is corrupted, say, 
due to pollution, it is highly likely that the two times do not match and the bot simply ignores the command 
decrypted from the corrupted data item. 

Moreover, an active bot may not be able to find the command object because it has not been published 
by bots of higher ranks. The bot thus keeps searching the command object with the same set of command 
keys within period !:J.i. The rationale behind such a design is that within period !:J. i , at most q command keys 
are used by each bot to search the command, thereby limiting the impact of pollution if a bot is seized. 



Algorithm 2 Behavior of bot bk during period b. i 

1: Compute Ski) as in Eq. (1) and decide its rank as r 
2: Randomly choose q distinct signatures from [hr - l , hr ), denoted as Xl, X2, ... , Xq 
3: B ,- f/J 

4: for j = 1 to q do 
5: Randomly choose a slot number Yj from 0, 1, ... , Smax - 1 
6: Bf-BUg(T(b.i ), Xj ,Yj) 
7: end for 
8: 

9: 

10: 

II: 

for every w time units do 
If it is not in period b.i , exit 
Search the command object with command keys in B 
SLEEP-MODE: 

12: Sleep until the next cycle; during this period, if a search result arrives, go to SEARCH-RESULT 
13: end for 
14: 

15: {Do the following when a search result arrives} 
16: SEARCH-RESULT: 
17: V f- data object returned 
18: Use key K to decrypt V and get command Ci and time ti 
19: if time ti matches T (b. i ) then 
20: Execute command Ci 

21: Goto COMMAND-FOUND 
22: else 
23: Goto SLEEP-MODE 
24 : end if 
25: 

26: {The command is found} 
27: COMMAND-FOUND: 
28: C f- 0 
29: for each d that satisfies the condition in Eq. (6) do 
30: Randomly choose an integer S from 0, 1, .. . , Smax - 1 
31: C f- C U g(T(b.i ), d, S) 
32: end for 
33 : for every w time units do 
34: If it is not in period b. i , exit 
35: Publish V with command keys in set C 
36: Sleep until the next cycle 
37: end for 

6 
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After a bot of rank r successfully derives the current command, it executes this command and publishes 
it for bots of rank r + l. These two things can be done in parallel, especially when executing the command 
takes a significant amount of time to finish. Note that there are hr+1 - hr unique signatures of rank r . To 
explain the publishing behavior of a bot, we define "((r), the branchingfactor from rank r, as follows: 

if a < r < rmax 

ifr = rmax 
(5) 

Consider a bot of rank r whose signature is x. Ifr < r max , it publishes the command object with a command 
key for each signature d of rank r + 1 that satisfies the following condition: 

hr + "((r)(x - hr-d ~ d < hr + "((r)(x - hr- I + 1) (6) 

For each signature d that satisfies the above condition, the bot randomly chooses a slot number s from 
[0, Smax - 1], creates a command key g( r(tl i ), d, s), and then uses it to publish the command object. It is 
noted that each bot uses the same set of command keys to publish the command object within period tl i . 

This also helps reduce the impact if this bot is seized by the adversary. 
Discussion. In practice, the landmarks are set in such a way that branching factors I (r) are greater than 

I except for the lowest level. That is to say, commands are delivered to bots through a tree-like structure, in 
which commands are relayed by bots at the top to those at the bottom. This is crucial to preventing pollution­
based mitigation: because there are more bots with low ranks than those with high ranks, the adversary is 
more likely to catch a low-rank bot than a high-rank one, thus limiting the impact if he pollutes the keys 
used by this bot to search or publish the command object. Moreover, each bot uses multiple command keys 
to search the command object. Although this enables the adversary to pollute more than one command keys 
if it is caught, the probability that the adversary can catch so many other bots that all command keys used 
by this bot (if it is not caught) to search the command object are corrupted is also low. Similarly, having 
multiple slots for each signature reduces the impact of pollution if a bot is caught and all the command keys 
that it uses to publish the command object are corrupted by the adversary. 

Example. We use a simple example, illustrated in Figure I and Table I, to explain the algorithm. In this 
example, we have: l = 4, q = 2, hI = 2, h2 = 6, and h3 = 14. The branching factors from both ranks I 
and 2 can be easily computed as 2; the branching factors from ranks 3 and 4 are 0.25 and 0, respectively. In 
Steps 1-4 shown in Table I, the botmaster publishes the command with four command keys, A-D. Bot I, by 
randomly choosing a signature from [0, hI - IJ and a slot number between 0 and 1, creates command key 
D and then uses it to get the command (Step 5). Bot 1 further publishes the command with command keys 
E and F (Steps 6 and 7). Bot 2, on the other hand, generates two command keys Land F and use them to 
search the command object. Only with command key F can it get the command object (Steps 8 and 9). Bot 
2, thereafter, publishes the command object with two other keys, G and H (Steps 10 and 11). 

4 Analysis 

In this previous section, we have described the algorithm for the botnet operation. We proceed to analyze its 
performance in this section, particularly from three perspectives: reachability, resilience to pollution, and 
scalability. Throughout these analysis, we will understand how sensitively AntBot performs under different 
parameter settings. In our analysis, we consider a botnet with n bots, among which the fraction of active 
bots within period tli is ai. Hence, the number of active bots within period tli is ain. 

We also need to know the distribution of the active bots over the 21 signatures, which is decided by 

the choice of hash function f. A reasonable assumption might be that an active bot is distributed to each 
signature with an equal probability. Define vector IV as follows: IV = (WQ,WI" :,, W21_1)' where Wd 
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Figure 1: High-level illustration of the algorithm 

Entity Operation Key Signature s Results 
1 Botmaster putO A 0000 0 Succeed 
2 Botrnaster putO B 0000 1 Succeed 
3 Botmaster putO C 0001 0 Succeed 
4 Botrnaster putO D 0001 Succeed 
5 Bot 1 getO D 0001 Succeed 
6 Bot 1 put 0 E 0100 1 Succeed 
7 Bot 1 put 0 F 0101 0 Succeed 
8 Bot2 getO L 0011 0 Fail 
9 Bot2 getO F 0101 0 Succeed 
10 Bot2 put 0 G 1100 0 Succeed 
11 Bot 2 put 0 H 1101 Succeed 

Table 1: Steps of spreading a command (the steps are not necessarily sequential) 

(0 :s d :s 2l-1) denotes the number of active bots that are associated with signature d. Given the fact that the 
number of distributions of i identical objects to j distinct recipients is (i+~-l), the number of combinations 

for W is thus (Q:n~;l-l). This number grows at least as fast as 8((an)21-1) when an » 2l - 12. With 

a typical botnet with thousands or tens of thousands of active bots and a reasonable I (e.g., I = 10), the 
number of combinations renders our analysis computationally prohibitive. To simplify our analysis, we 
assume that each signature corresponds to the same number of active bots3, which is an/2l. Hence, we 
have wo = WI = ... = W21_1 = an/2l. Also, we assume that each active bot of the same rank r publishes 
the command with the same number of command keys except the case when r = r max - 14. That is to say, 

(hr+l - hr ) mod (hr - hr-d equals 0 for all r: 1 :s r :s rmax - 2. 
Let /3 denote the reachability of an existing data item, which is defined as the probability that it can be 

obtained by any peer in the P2P network . It is noted that actual P2P networks are dynamic due to arrival 

2For (r;:), it grows as 8(m k) when k is small; when k = L m / 2 J, its growth rate is the fastest, which is 8(2= / rm) · 
3Without loss of generality, we ignore the trivial cases in which am mod 21 of. O. 
4Here, we cannot assume this holds when r = r m.ax - 1 because h rma% is fixed at 2I 
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and departure of peers and each bot attempts multiple times to retrieve the command object. Modeling 
such dynamics, however, is difficult. In our analysis, we ignore these details by simply assuming that (3 is 
constant throughout each period 6 i . 

4.1 ReacbabiJity 

An active bot may not retrieve successfully the command issued by the botmaster due to the following 
reasons. First, even if the data item searched by the bot is available in the P2P network, it may not be reached 
because of limited flooding in unstructured P2P networks or no paths to it in structured P2P networks. 
Second, when a bot of rank r randomly searches a command key generated with signature d and slot number 
s (0 ::; S ::; Smax - 1), it is possible that no bots of rank r - 1 publish the command with this command 
key at all. Suppose that bots of rank r - 1 with signature d' are responsible for using this command key 
to publish the command. Two cases are possible: active bots with signature d' fail to get the command 
by themselves, or active bots with signature d' get the command successfully but they do not publish the 
command object with command keys generated from slot number s. Considering both possibilities, we can 
establish the following theorem (proof is provided in Appendix A): 

Theorem 1. Suppose that there is a botnet with n bots and the fraction of active ones is a. If the following 
conditions hold: (1) an mod 2l = 0 and the number of active bots associated with each signature is 
an/2l, (2) (hr+l - hr ) mod (hr - hr-d equals 0 for all r: 1 ::; r ::; rmax - 2, and (3) the reachability of 
an existing data item is 13, then the expected number of active bots that successfully executes the botmaster's 
command after running the protocol as described is: 

(7) 

where: 
(l-13)q ifr=l 

(1 - 13(1 - (Or-l + (1-6r-l)(8max-l») ~7))q ifr > 1 
STJ'l.ax 

(8) 

4.2 Resilience against Pollution 

Suppose that an adversary has captured the bot executable and created m bot instances, each of which runs in 
a controlled environment. For clarity, we call these bots under control ofthe adversary subversive bots, and 
as opposed to them are loyal bots. The adversary monitors all the command keys that subversive bots use 
to either search or publish some data objects in the P2P 'network, and then publishes corrupted information 
with each of these command keys that have been observed. A loyal bot fails to execute the command if all 
the command keys it uses to search the command have been corrupted by the adversary. 

We assume that there are n loyal bots and the fraction of active ones among them is a. Moreover, the 
signature of a subversive bot is uniformly distributed over the 21 ones. Let Cp and Cs denote the set of 
command keys that subversive bots use to publish and search the command data object in the P2P network, 
respectively. In our analysis, we assume that all command keys in Cp U Cs are corrupted by the adversary. 

Now consider any command key k~r) that is searched by loyal bots of rank r. The probability that it is 
searched by a subversive bot is given as follows: 

(9) 
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As there are m subversive bots, we thus can derive the probability that command key k~r) is searched by 
any of the m subversive bots is: 

(10) 

On the other hand, the probability that command key kc is published by a subversive bot is given by: 

_ { 0 ifr = 1 
pp(r) = -k. _1_ ifr> 1 

2 Sma x 

(11) 

Note that command keys of rank 1 are published only by the botmaster and thus cannot be published by 
subversive bots. Similarly, the probability that command key kc is corrupted because at least one subversive 
bot uses it to publish the command data object is given as follows: 

(12) 

Let (; be max{O, 1 -1P'{kt) E Cs} _1P'{k~r) E Cp }}, where 1 ::; r ::; r max , and we have the following 
theorem (proof provided in Appendix B): 

Theorem 2. Suppose that there is a botnet with n loyal bots and the fraction of active ones is a. Also 
suppose that there are m subversive bots from which command keys that are used to search and publish the 
command object are corrupted If the following conditions hold: (1) an mod 21 = 0 and the number of 
active loyal bots associated with each signature is an/21, (2) (hr±l - hr) mod (hr - hr-d equals Of or 
all r: 1 ::; r ::; rmax - 2, and (3) the reachability of an existing data item is (3, then the expected number of 
active loyal bots that successfully executes the botmaster 's command after running the protocol as described 
is: 

(13) 

where 8~ is computed as follows: 

(1 - (3(1 - ps(1))m)Q ifr = 1 

(l- (Y' ·(1-(8" +(1-{/' ).~)~I))Q Iifr > l , "r-I r-1 r-l Sm.ax 

(14) 

4.3 Scalability 

As mentioned earlier, the rationale behind the tree-like command distribution in the proposed scheme is to 
enhance operational resilience to pollution-based botnet mitigation. One however may argue that a much 
simpler solution may achieve the same goal: the botmaster publishes the command object with a command 
key that is uniquely generated for each bot. With this scheme, pollution incurs minimal damage to the 
botnet operation because bots search for the command with different command keys. Albeit being simple, 
this scheme obviously has scalability issues, as the botmaster of a big botnet has to publish the command 
object with a large number of command keys. Moreover, this simple solution also renders traceback easier. 

The protocol proposed in Section 3 distributes the task of publishing the command object to the anny of 
bots themselves. Based on the protocol description of AntBot, we can easily establish the following theorem 

regarding the workload of the botmaster and each bot: 

Theorem 3. If the protocol is executed as described, the botmaster publishes the command with hI . Smax 

command keys, and each bot searches for the command with q command keys and publishes the command 
with at most maxr~ax -1 r hrtl-hr 1 command keys. 

r-I hr-hr - l 
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4.4 Sensitivity Analysis 

We now study the effects of different protocol parameters on botnet behaviors. Let IL denote the number of 
active loyal bots that fall into each signature. The following scenario will be treated as the baseline case: 
Smax = 4, q = 10, hl = 64, (3 = 0.8, IL = 10, the branch factor is 4 for all ranks except the lowest one, 
and T is 10. To understand the impact of each of these parameters, we vary it among a set of values while 
keeping the others fixed. Moreover, given a specific combination of parameter settings, we derive both ne in 
Eq. (7) when no subve.rsive bots exist and n~ in Eq. (13) when m, the number of subversive bots is 2i X 40, 
where i = 0,1 , ... , 8. 

Effect of Smax. We vary Smax between 2 and 20 and the ne and n~ as derived are illustrated in Figure 2. 
Note that the curve corresponding m = ° actually gives n e , which is the same in Figures 3-7. We observe 
that generally speaking, increasing Smax helps increase the number of active loyal bots that successfully 
obtain the command, especially when there are a significant num ber of subversive bots. This is unsurprising 
because a larger Smax means that there are more command keys used to publish the command, thus reducing 
the adverse effect of polluting the command keys observed from a fixed number of subversive bots. This 
can also be observed from both Eq. (9) and (11). 

The negative impact of increasing Smax is that when it is larger than the number of active loyal bots per 
signature, some command key slots become empty, thus reducing the probability that the command can be 
accessed successfully, regardless of whether there are subversive bots or not. Hence, we observe that when 
m:::; 640 in Figure 2, increasing Smax beyond 10 actually decreases both ne and n~. 

Effect of q. We vary q among 1, 5, 10, 15, 20, 25 and 30, and the ne and n~ as derived are illustrated 
in Figure 3. Increasing parameter q has two effects. On one hand, a larger q means that an active loyal bot 
can have more opportunities to obtain the command when it is not accessible via some command keys due 
to reachability issues inherent in P2P networks or content corruption by the adversary. On the other hand, 
a larger q means that when the adversary uses a fixed number of subversive bots, he will be able to corrupt 
more command keys. Hence, we observe mixed effects of increasing parameter q in Figure 3. 

Effects of hl and the branch factor. Figure 4 shows the effect of varying hl, the number of signatures 
of rank 1, among 2i where i = 0,1, ... , 10, and Figure 5 gives the ne and n~ when we change the branch 
factor from 2 to 30. The general trend is that increasing either hl or the branch factor helps increase 
the number of active loyal bots that obtain the command successfully. This is because a larger hI or branch 
factor makes the total number of ranks smaller, thus reducing the average n umber of times needed to forward 
the command by bots of higher ranks. In Figure 5, when the branch factor is larger than 16, the fraction of 
active bots that successfully execute the command remains stable, because Tmax is always 2. 

From Theorem 3, we however know that the number of command keys published by the botmaster 
increases linearly with hI> and the number of command keys published by each bot is the branch factor 
(except those bots of the lowest rank). Hence, a larger h 1 leads to heavier workload for the botmaster, and a 
larger branch factor means that each bot has to publish the command with more command keys. 

Effect of (3. We also vary reachability parameter (3 from 0.2 and 1, and the results are illustrated in 
Figure 6. Unsurprisingly, a higher (3 always leads to a higher number of active loyal bots that successfully 
obtain the command. 

Effect of parameter IL. Figure 7 presents the effect of varying parameter IL among 1, 10,20, 30, and 40. 
The general trend is that a larger IL leads to a higher guaranteed fraction of active loyal bots that successfully 
obtain the command. Recall that an active loyal bot, after getting the command, publishes it at a random 
command key slot for each of the children signatures. When IL is larger, the probability that a command key 
slot at a rank other than 1 is published is higher. The effect of increasing parameter IL, however, becomes 
less prominent as IL becomes significantly larger than Smax, which is 4 for all data points in Figure 7. 
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In the previous section, we analyzed performance of AntBot under some simplifying assumptions. For in­
stance, we assume that if a command key is polluted by a subversive bot, none of the bots using this key 
to query the command object are able to receive the command. In reality, this may not be true because 
the command object stored on some peers may not be polluted by subversive bots. This is confirmed by 
measurements in [15], which show that even under strong pollution by exhaustive search, a small fraction of 
Storm bots could still retrieve the command object successfully. To gain a better understanding of AntBot 
behaviors in a practical setting, we developed a high-fidelity botnet simulator that used actual implementa­
tion code of a popular P2P client, aMule5. aMule implements the KAD protocol, which is a variant of the 
original Kademlia protocol proposed by Maymounkov and Mazieres [21]. It is noted thatthe first version of 
the Storm botnet used the Ovemet P2P routing protocol, which is also based on Kademlia. In the following 
discussion, we first present a brief introduction to Kademlia and KAD; after that, we provide more details 
on how we implement AntBot with the aMule code base in our distributed simulation testbed. 

5.1 Kademlia and KAD 
Kademlia is a DHT-based P2P routing protocol, in which each data object or peer is identified by a 160-bit 
ID. The distinguishing feature of Kademlia is its XOR metric that measures the distance between any two 
160-bit identifies x and y: d(x, y) = x EB y. Data objects are usually stored at those peers whose IDs are 
close to their owns. Routing in Kademlia is conducted in an iterative manner: when a peer searches for a 
(node or data object) ID, it queries its neighbors for new peers whose IDs are closer to the target ID; this 
process repeats until no closer peer IDs can be found. 

Although KAD descends from Kademlia, there are some slight distinctions between them. Besides us­
ing 128 bits for its node and data object IDs and supporting more diverse messages, KAD uses a two-phase 
search process. In the first phase, the searching KAD node iteratively queries for peers closer to the target ID 
but at any time, at most three peers are contacted simultaneously. In this phase, messages of types KADEM­
LlA..REQUEST and KADEMLlA..RESPONSE are used. After a certain period of time, the search node 

5The version we used in our study is aMule 2.1.3. 
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enters the second phase, in which it chooses a few nodes that responded in the first phase and contacts them 
for the target ID using messages of types KADEMLIA_SEARCH.REQ and KADEMLIAYUBLISH.REQ. 
We refer interested readers to [21] and [4] for more details about Kademlia and KAD. 

5.2 AntBot Implementation 
The basic skeleton of the botmaster's behavior is shown in Algorithm 16. On Line 12, the botmaster needs 
to publish the command object periodically. In our implementation, we Ilse the metadata publishing scheme 
in KAD to publish the command object. KAD uses a two-level publishing scheme which divides files into 
two types: metadata and location information. The first level provides references (i.e., location infonnation) 
to the real data file and the second level uses keywords (i.e., metadata) to fetch location infonnation of real 
data files. Associated with metadata is a list of tags, such as file names and sizes. Like the Stonn botnet, we 
encode the command object in the filename. 

It is, however, noted that the standard KAD protocol allows only one simultaneous metadata publishing 
at the same time [4]. This is controlled by the KADEMLIATOTALSTOREKEY parameter. Although the 
bot executable can remove this limitation, our implementation is compliant with the KAD protocol so that 
it is harder to detect bots by monitoring their behavior. This is done as follows: when publishing metadata, 
KAD creates a search object with type STOREKEYWORD. As the timeout value of such a search object 
is 140 seconds, we let the botmaster publish the command object with different command keys every 150 
second on Line 13 of Algorithm 1 before going to the sleeping mode. The parameters are properly set so 
that the number of command keys to publish the command object by the botmaster (i.e., hI - ho) does not 
exceed l w/150 J (we assume that a time unit is a second here, without loss of generality). 

This also applies to the bot behavior shown on Line 35 of Algorithm 2. A bot publishes data object 
V using different command keys every 150 second. In Algorithm 2, we show that a bot of rank r only 
publishes ,(r) where we recall ,(r) denotes the branching factor from rank r (see Eq. (5)). If ,(r) is 
much smaller than w /150, the bot publishes for only a short period of time every w time units. From the 
analytical results in Section 4.1, we know that a bot of a lower rank (i.e., a larger rank number) is less likely 
to receive the command object because it has to go through more levels of publishing and searching. To 
improve reachabi1ity of the command object to the low-level bots, we slightly modify Algorithm 2 and let 
each bot publish command objects using command keys in bot sets Band C in the algorithm. 

That is to say, a bot also publishes the command object with the command keys that it generated to 
search the command object. It is easy to see that this does not increase the vulnerability of these command 
keys: if the bot is seized and thus a subversive bot, the command keys it used to search the command key 
are known to the adversary anyway. To ensure that a bot has time to publish the command object using 
command keys in bot sets Band C in Algorithm 2, the bot parameters are set to satisfy: q + ,(r) S; w /150. 

5.3 Pollution 
To study how AntBot responds to pollution-based mitigation, we need to implement some pollution mecha­
nisms. Originally, we developed a passive pollution scheme: for each subversive bot, the adversary regularly 
uses the standard KAD protocol to publish junk information (i.e., a random filename in the tag) for each 
command key that the bot generated to search the command object. This approach, however, does not 
effectively prevent many loyal bots from obtaining the command object if they persistently search for it. 

We thus adopt a more aggressive pollution scheme similar to the one proposed by Holz et al. in [15]. 
There are two components involved in this approach: crawlers and polluters. A crawler regularly crawls 
the whole P2P network to obtain a list of active peers. During a crawling cycle, after every three seconds, 
the crawler sends a route request to 50 new different peers, asking each of them for paths to 16 carefully 
designed destinations. Once a peer responds to the query by sending a list of peers, the crawler updates its 
knowledge of current active peers. Polluters regularly obtain a list of active peers from the crawlers. To 

6Here, note that the botrnaster's operation can be automatically performed using a script. 
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prevent overloading a polluter, we let each polluter pollute only a portion of active peers. Every 30 seconds, 
each polluter selects 100 distinct active peers and publishes on them with junk information using a set of the 
command keys that the adversary captures using the following two schemes. 

Early pollution scheme: When a subversive bot becomes online, the adversary obtains all the command 
keys it uses to search the command object and sends the command keys immediately to each polluter. 

Late pollution scheme: Similar to the early pollution scheme, the adversary monitors the command 
keys that each subversive bot uses to search the command object. For each subversive bot, the adversary 
waits for it to get the command object and generate command keys to publish the command object for lower 
level bots. Once the adversary obtains all command keys that the subversive bot uses to search and publish 
the command object, it sends them immediately to each polluter. 

5.4 Distributed Simulation Testbed 
Despite the great realism obtained by using the actual implementation code of a popular P2P client, simulat­
ing a large P2P botnet at such a high resolution demands intensive computation. Moreover, the aggressive 
pollution scheme further significantly increases the number of messages ( or traffic) in the network because 
each crawler exhaustively searches for active peers in the network and each polluter needs to regularly 
provide junk information for captured command keys. To improve simulation scalability, we develop our 
simulator on a distributed computing platform. The simulator is a component of MIlTS, a local distributed 
simulation framework for simulating large-scale communication networks [34]. MIlTS is built on PRIME 
SSF, a distributed simulation engine using conservative synchronization techniques [24]. When porting the 
aMule code into MIlTS, we intercept all time-related system calls (e.g., gettimeofday) and replace them 
with simulated time function calls. Similarly, we substitute socket API calls in the original code for network 
functions developed in MIlTS. Moreover, as IP-level routing is not important in this simulation study, we 
do not model routers on the paths between peers in the P2P network. Previously, we used this simulator to 
perform a preliminary study ofP2P-based botnets and we refer interested readers to [14] for more details. 

6 Experimental Evaluation 

In this section, we first describe how to model online active durations for both regular peers and bot ma­
chines. After providing details of parameter settings in our experiments, we present simulation results that 
reveal AntBot performance under different scenarios. 

6.1 Active Durations of Regular Peers and Bots 
To model when a peer or bot joins and departs from the P2P network, we consider both the time zone effect 
and diurnal patterns observed from previous measurement studies. 

Time zone. Time zone effects have been observed from behaviors of normal P2P users [29] and bot 
activities [7]. To characterize time zone effects in our simulation, we first consider the geographic distribu­
tion of the peers in the network. For normal P2P users, we use the following distribution obtained from [29] 
(Countries are shown as their two-letter country codes defined in ISO 3166-1): 

Country 
Dist. 

0.03 

GB 
0.01 

We assign a country to each normal peer or bot according to the above two tables. If a peer belongs to a 
country that has mUltiple time zones (e.g., US), we randomly choose one time zone for it. 
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Active duration. Once the time zone of each peer has been decided, we further determine its active 
duration. When a peer is active, it stays in the P2P network and is thus visible to other peers. For the normal 
peers, we let a small fraction to be always online and active in the P2P network; we call such peers persistent 
peers, as opposed to transient peers that join and leave the P2P network regularly. To model behaviors of 
transient peers, we adopt a model developed in [28] for its active duration. We define the activity cycle of 
a regular normal peer to be I2:00pm-Il :59am. We assume that a regu~ar normal peer is active once in an 
activity cycle. Its starting time is generated using a Gaussian distribution with mean at 7:00pm and standard 
deviation as 2 hours. Once the starting time of a normal peer is decided, its active duration is generated 
using a three-parameter Weibull distribution with the following probability density function: 

{ 
!£(x-O)k-le-(X-O/>.Y 

f( x' A k B) = >. >. , , , 0 
x 2:: 0 
x<O 

(15) 

According to measurement results in [28], we set the parameters as follows: location parameter B = 19.3929, 
scale parameter A = 169.5385, and shape parameter k = 0.61511. With these parameters, the mean active 
duration is 266.5358 seconds, the same as observed in [28]. 

Despite observed diurnal patterns of bot activities in the literature [7, 1], no statistical model is ready yet 
for characterizing active durations of bots. In this study, we use a simple diurnal model mirroring people's 
normal work hours. We define the activity cycle of a bot machine to be 12:00am-II :59pm. Its starting time 
is drawn from a Gaussian distribution with its peak at 8:00am and standard deviation as one hour. Similarly, 
its ending time is drawn from a Gaussian distribution with its peak at 6:00pm and standard deviation also as 
one hour. Both the starting and ending times of an active duration fall within the current activity cycle. 

6.2 Experimental Setup 
In our experiments, we study a P2P network with 10,000 peers among which 1000 are bots, either subversive 
or loyal bots. Among the 9,000 normal peers, there are 1,000 persistent peers that always stay online. As 
the P2P network takes time to populate the routing table of each peer, we simulate the botnet for three days. 
The botmaster controls five bot machines, from each of which he sends out a command at the beginning of 
the third day7. For w in both Algorithms 1 and 2, we let it be 3600 seconds. 

In our experiments, we consider three different types of bots. The first type of bots (baseline-passive) 
mirrors behaviors of traditional P2P bots such as Storm bots. When the botmaster uses a machine to release 
the command, he uses 24 command keys to publish the command object. Each bot randomly chooses three 
of these command keys to search the command object. A bot does not publish the command object using the 
command keys it has used to search the command object. The second type ofbots (baseline-active) differ 
from baseline-passive bots only for a baseline active bot publishes the command object using the three 
command keys that it has generated to search the command object. As mentioned earlier, a baseline-active 
bot does not expose more command keys to the adversary. The third type of bots are AntBot as described 
in Section 5.2. The landmarks defined for AntBot are: 0, 8, 48, and 128. The number of slots for each 
signature (i.e., smax) is 3 and each bot searches for the command object with 3 command keys. It is noted 
that the botmaster publishes the command object using the same number of command keys as in the two 
baseline cases. 

We use both the early and late pollution schemes (see Section 5.3) in our experiments. Note that these 
two pollution schemes are the same for both two baseline cases because a bot does not need to publish 
the command object for lower level bots. In all our experiments, we assume that the adversary uses two 
crawlers and five polluters. Also, crawlers and polluters stay online all the time and every half an hour, a 
crawler sends the peer information it has collected in the past hour to each polluter. We vary the number of 

7From other experiments, we observe that having more than one machine to send out the command can significantly improve 
its reachability when there is no pollution: 
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subversive bots among 0, 10,20, and 30. Subversive bots, like crawlers and polluters, are always online, 
and like nonnal bots, gets activated every 3600 seconds. Each subversive bot sends the revealed command 
keys to all the polluters when it gets active (early pollution) or gets the command object successfully (late 
pollution). 

For each scenario, we perform five simulation runs with different random number generation seeds. For 
each simulation run, we use 300 processors on a high-perfonnance cluster and typically a run (if pollution is 
involved) takes about 13 hours to finish. Crawling-based pollution introduces a significant amount of extra 
computation time because if no pollution is involved, a simulation run can finish within four hours. 

6.3 Experimental Results 
In Figure 8, we present the number ofbots that successfully receives the command under different simulation 
scenarios. It is worth noting that in the graph we do not have data points for baseline-passive bots when the 
number of subversive bots is 10 or 30; hence, the first bar is missing in these two cases. 
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Figure 8: Number ofbots that successfully received the command 

It is clear from the graph that for the baseline bot, either baseline-passive or baseline-active, when we 
increase the number of subversive bots in the network, the number of bots that received the command de­
creases significantly. For instance, when there are 20 subversive bots, only 11 % of the baseline-passive bots 
and 36% of the baseline-active bots can obtain the command successfully; when there are 30 subversive 
bots, only 14% of the baseline-active bots can get the command. This suggests that pollution-based mitiga­
tion indeed adversely affects operation of traditional P2P botnets. On the other hand, having bots publish 
the command object with command keys that they use to search the command helps deliver the command 
successfully to individual bots. We can conclude this from the difference in the number of bots receiving 
the command between baseline-passive and baseline-active bots. 

By contrast, AntBot perfonns much more resiliently against pollution-based mitigation, regardless of the 
pollution scheme. Even when there exist 30 subversive bots in the network, 66% of bots get the command 
successfully if the adversary uses the early pollution scheme, and 79% of bots receive the command if the 
late pollution scheme is applied. In either case, much more bots can get the command than baseline bots. 
Moreover, although the early pollution scheme pollutes a fewer number of command keys than the late 
pollution scheme, it obtains the command keys used by subversive bots to search the command immediately 
after they become active and thus lets polluters to pollute these keys at an earlier time than the late pollution 
scheme. Therefore, the early pollution scheme seems to be more effective than the late pollution scheme in 
reducing the number ofbots that receive the command , as observed from Figure 8. 
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The resilience of AntBot comes at a price: under normal circumstances where there are no or few 
subversive bots, a small fraction of bots cannot obtain the command due to its multi-level command relay 
mechanism. For instance, even if there is no subversive bot, only 84% ofbots can get the command success­
fully, as opposed to 100% of baseline-active bots and 89% of baseline-passive bots. There are two ways to 
further improve AntBot. In the first approach, the botmaster may want to switch the botnet operation mode 
to AntBot only when it is found that there exist some subversive bots in the botnet. A bot, when discovering 
some corrupted messages, reports the situation to the botmaster. This information can be delivered through 
a data item retrievable by a predefined command key. Obviously, this solution poses another problem: the 
adversary can pollute this special command key as well. In the second approach, both the baseline-active 
and AntBot command delivery mechanisms are implemented. Normally, each bot uses the baseline-active 
approach to obtain the command object. Once a bot observes that some command keys have been corrupted 
by the adversary, it switches to the AntBot mechanism for command propagation. Evaluating performance 
of such a hybrid mechanism remains as our future work. 

7 Countermeasures 
From the experimental results shown in Section 6, we know that AntBot functions more effectively than 
traditional P2P botnets when the adversary pollutes the command keys revealed by subversive bots. In 
this section, we present three potential countermeasures that can disrupt AntBot operation and also discuss 
possible challenges when developing these countermeasures. 

First, AntBot relies on a secret key shared by both the botmaster and all bots to check whether a data item 
is the command object or has been corrupted. With ever-improving software reverse engineering techniques, 
it is possible that the adversary can successfully discover this shared secret key by statically analyzing bot 
executables. It is, however, another cat-and-mouse game that while the adversary improves his static code 
analysis skills, the botmaster applies more sophisticated obfuscation techniques such as metamorphism 
and virtualization [35] to generate bot executables. The botmaster may also apply more advanced PKI 
(Public Key Infrastructure) techniques (e.g., the Waledac P2P botnet [26]) to prevent botnet disruption due 
to revelation of shared secrets in bot executables. 

Second, as observed from Figure 8, when we increase the number of subversive bots in the network, the 
fraction of bots that successfully obtains the command still decreases even for AntBot. This is also evident 
from our analysis in Section 4. Hence, a potential countermeasure against AntBot is to increase the number 
of subversive bots and thus the number of command keys to pollute. It is easy to mitigate AntBot if each 
bot, when it runs in a virtual environment, randomly generates its identifier. I f this is the case, the adversary 
can simply run the bot executable in a controlled environment for many times so that a large number of 
command keys can be revealed. As a response, however, the botmaster may respond by letting each bot 
executable carry a unique identifier for the bot so that the adversary has to capture many bot executables to 
derive enough command keys for dismantling AntBot. But this obviously increases the complexity of bot 
distribution during the propagation process. 

Third, given the fact that AntBot is specifically designed against pollution-based mitigation, another 
possible way of disrupting' it is using Sybil-based mitigation. In this approach, the adversary can insert a 
large number of fake peers (i.e., sybils). These fake peers do not conform to the standard P2P protocol; 
instead, they attempt to obtain a disproportionately large influence in the P2P network (e.g., they are more 
likely to be included in the contact list when a peer responds to a KADEMLIA.REQUEST message in 
KAD). Through these sybils, the adversary can infer bot identities by analyzing which peers search data 
items with suspicious command keys. The adversary can further provide fake messages to these bots to 
disrupt botnet operation. Some insights have been provided on how to use sybil-based mitigation to disrupt 
Storm-like botnets in the literature [9] and it remains as our future work how to use sybil-based mitigation 
to disrupt AntBot operations. 
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8 Conclusions 
P2P botnets have emerged as a new generation of botnets, whose robustness against one point of failure 

has significantly improved compared with earlier IRe-based botnets. It is, however, revealed that P2P 

botnets can be easily disrupted using pollution-based mitigation techniques. In this paper, we play the devil 's 

advocate by exploring possible solutions to improve resilience ofP2P botnets against pollution. We propose 

a new type of hypothetical P2P botnet called AntBot and using extensive simulation, show that AntBot 

functions well even though the adversary persistently pollutes the command with keys revealed by seized 

bots. We further present a few potential countermeasures that can effectively disrupt AntBot operations. 
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Appendix A: Proof of Theorem 1 

Let ~r denote the probability that the command object is available with a command key that is generated from a 
signature of rank r and any random slot number between 0 and Srnax - 1. Note that this probability is the same for 
all such command keys, regardless of the signature and the slot number that are used to generate them, because all 
signatures of rank r are symmetric and all slot numbers corresponding to the same signature are also symmetric. As 
the botrnaster publishes the command with every signature of rank 1 and every s from 0 to Smax - 1, we obviously 
have ~l = 1. 

Let Or denote the probability that an active bot of rank r cannot find any command. It can be simply computed as: 

(16) 
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Consider any slot of a signature of rank r + 1. Potentially, there are an/21 active bots of rank r that uses 
a corresponding command key to publish the command. The probability that each of these bots fails to do so is 
6r + (1 - 6r ) . ~. Hence, ~r+ 1, the probability that a slot of rank r + 1 is not empty, is given by: 

Sma:r 

~r+l 

With Equations (16) and (17), we can compute 6r recursively as follows : 

ifr = 1 

ifr> 1 

(17) 

(18) 

Note that there are in total hr - hr - 1 signatures with rank r, and there are cm/21 active bots associated with 
each of these signatures . As each active bot of rank r successfully executes the command with probability 6r , we can 
establish Theorem I. 

Appendix B: Proof of Theorem 2 

Let ~~ denote the probability that k~r) is available and not corrupted, and 6~ denote the probability that an active loyal 
bot of rank r cannot execute the command successfully. Similar to 6r in Section 4.1, we have: 

6~ = (1 - (3~~)9. (19) 

Note that pp(l) = 0 and lP{k~l) E Cp} = O. We thus have: 

(20) 

Hence, we can calculate 6~ as follows: 
(21 ) 

Different from Equation (17), the calculation of ~r+l needs to consider the probability of a command key being 
polluted. We have the following: 

(1 - (6~ + (1 - 8~) . Smax - 1) ~l) x (1 -lP{k~r) E Cs U Cp }) 

S'max 

:2: (~. (1 - (6~ + (1 _ 6~) . Smax - 1) ~~ ) 
S1nax 

Hence, for r ~ 1, 6~+1 satisfies the following condition based on Equations (19) and (22): 

s - 1 0'" 

6~+1 ::; (1 - (3(~. (1- (6~ + (1 - 6~)· ~ax )7))9. 
max 

Consider 8~, which is defined as follows: 6~ = 6~, and when r > 1, 

6~ = (1 - (3(;-1 ' (1 - (6~-1 + (1 - 6~_1)' Smax - \~f ))9. 
Smax 

Note that for r ~ 1, if 6~ ~ 6~, then 

By induction, we conclude that 6: ~ 8~ for all r : 1 ::; r::; rmax . Therefore, we thus have: 

n' e 

and Theorem 2 follows . 

• 

~7' rf:(1- 8~)(hr - hr - 1 ) 

r=l 

r m ax 

> n~ = ~~ L (1- 8~)(hr - hr - 1 ) . 

r=l 

(22) 

(23) 

(24) 

(25) 

(26) 


