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Abstract

Botnets, which are responsible for many email spamming and DDoS (Distributed Denial of Service)
attacks in the current Internet, have emerged as one of most severe cyber-threats in recent years. To evade
detection and improve resistance against countermeasures, botnets have evolved from the first generation
that relies on IRC chat channels to deliver commands to the current generation that uses highly resilient
P2P (Peer-to-Peer) protocols to spread their C&C (Command and Control) information. It is, however,
revealed that P2P botnets, although relieved from the single point of failure that IRC botnets suffer, can
be easily disrupted using pollution-based mitigation schemes [15].

In this paper, we play the devil’s advocate and propose a new type of hypothetical botnets called
AntBot, which aim to propagate their C&C information to individual bots even though there exists an
adversary that persistently pollutes keys used by seized bots to search the command information. The
key idea of AntBot is a tree-like structure that bots use to deliver the command so that captured bots
reveal only limited information. To evaluate effectiveness of AntBot against pollution-based mitigation
in a virtual environment, we develop a distributed P2P botnet simulator. Using extensive experiments,
we demonstrate that AntBot operates resiliently against pollution-based mitigation. We further present a
few potential defense schemes that could effectively disrupt AntBot operations.

1 Introduction

Botnets, which are networks of compromised machines sharing the same command and control (C&C)
infrastructure, have emerged as one of the most severe threats to Internet security in the past few years. To
improve resilience to node failures, the new generation of botnets leverage the self-organized structure of
P2P networks. Under the umbrella of decentralized P2P network architectures, these botnets can scale up to
a large number of nodes but still do not suffer a single point of failure as traditional IRC-based botnets do.

Moreover, these P2P botnets can hide their communications among normal P2P traffic: the botmaster
publishes some information (e.g., a command asking every bot to send TCP SYN packets to a target web-
server) in a normal P2P network, and each bot, which is also part of the P2P network, regularly retrieves
such information with certain features. This technique has been adopted by the recent Storm Worm to hide
its communication traffic inside the Overnet network. Under the disguise of normal P2P traffic, botnet C&C
communications are much hard to detect at the network layer, given the fact that P2P traffic comprises a
large portion of Internet traffic nowadays.

Fortunately, P2P botnets do have their own Achilles’ heel. As their C&C communications are based on
P2P protocols, they are not immune to those attacks inherent in popular file-sharing P2P networks, where
strong authentication is commonly lacked. In [15], Holz et al. explored techniques to mitigate the Storm
botnet. They first used honeypots to capture Storm bot executables spread through spamming emails, and
then ran these executables in a controlled sandbox. After successfully hooking the controlled bot instances



onto the Storm botnet, they obtained keys that were used by those bots to search the current command issued
by the botmaster. It was found that only 32 keys were used every day for the purpose of communications
in the Store botnet. By simply overwriting information associated with these 32 keys, the communication
of the Storm botnet can be effectively disrupted. This pollution-based technique has been widely used as a
sabotage technique to damage the usability of copyrighted contents in file sharing P2P networks [19].

Their results seem promising:. P2P botnets, although enjoying the high resilience of decentralized P2P
architectures, can be infiltrated and then easily disrupted by pollution-based mitigation schemes. The ques-
tion, then, is: can P2P botnets be intelligently designed to defeat pollution-based mitigation schemes? In
this paper, we play the devil’s advocate and design a type of hypothetical P2P botnets called AntBot that
significantly enhance the resilience of P2P botnets against pollution-based mitigation. In a nutshell, our
key contributions made in this paper are summarized as follows: (1) We design a distributed protocol for
AntBot, which uses a tree-like structure for AntBot to propagate botnet commands in P2P networks. The
key idea of AntBot is that there are far more low-level bots that are closer to the bottom of the tree than
high-level bots so that if a bot is seized by the adversary, it is highly likely that it is a low-level bot and
polluting the keys that this bot uses to search or publish the command affects only a small number of bots at
lower levels. (2) We analytically study three important properties of AntBot: reachability, resilience against
pollution, and scalability. Through numerical analysis, we perform sensitivity study of AntBot against its
key input parameters. The results provide guidelines for how to configure these parameters in a practical
setting. (3) We implement AntBot using actual development code of a popular P2P client, aMule, which is
based on the KAD protocol, a variant of Kademlia. To evaluate performance of AntBot, we develop a dis-
tributed P2P botnet simulator that replaces system calls related to time and socket in the original aMule code
with simulated functions. We also implement a crawling-based index pollution scheme in the simulator. (4)
We perform extensive simulation studies to investigate how resilient AntBot is against pollution-based mit-
igation schemes. To achieve greater realism in these experiments, we model the churn phenomenon and
time zone effects of both regular P2P users and bot activities, using previous measurement results collected
from the KAD network and the Storm botnet. The simulation results reveal that AntBot indeed greatly im-
proves the resilience of the P2P botnet against pollution-based mitigation. (5) We propose a few potential
defense schemes that could effectively disrupt AntBot operations of AntBot and also present challenges that
researchers need to address when developing each of these mitigation techniques.

The remainder of this paper is organized as follows. Section 2 presents previous work related to AntBot.
In Section 3, we provide details on how to design the protocol for AntBot and use an example to illustrate
its operation. In Section 4, we mathematically analyze the performance of AntBot from three different per-
spectives: reachability, resilience against pollution, and scalability, and also provide numerical results on the
effects of different input parameters. Section 5 elaborates on how we develop AntBot using the implemen-
tation code of an existing P2P client on a distributed simulation platform. We evaluate the performance of
AntBot in 6 and suggest some potential countermeasures in Section 7. Finally, we draw concluding remarks
in Section 8.

2 Related Work

As botnets emerge as one of the most severe threats to Internet security, there have been a plethora of
works dedicated to botnet research in the past few years. One line of research is focused on analyzing
behaviors of real-world bot executables obtained through spamming emails, honeypots, etc. In [2], Barford
and Yegneswaran compared four IRC-based botnets, including Agobot, SDBot, SpyBot, and GTBot, from
several different perspectives. Behaviors of a few HTTP-based bots, including Rustock, BlackEnergy, and
Clickbot.A, have been investigated in [6, 22, 8]. Porras et al. performed static analysis of the Storm worm
executable [23], Holz et al. analyzed the propagation mechanism of the Storm worm and its behaviors at
both system and network levels [15], and Kanich et al. unraveled a few interesting myths about the Storm



overnet [17]. Our work was motivated by the observation made in [15] that using a strong pollution scheme,
it is possible to disrupt operations of real-world P2P botnets like Storm, but from our work we conclude that
a P2P botnet, if carefully designed, could still operate resiliently against pollution-based mitigation.

There are also several measurement studies on existing botnets. Rajab et al. used a honeypot to track
192 IRC-based botnets and made some interesting observations on their spreading and growth patterns [1].
The Torpig botnet was hijacked and it was found that this botnet, estimated at consisting of about 182,000
compromised machines, posed severe threats including financial data stealing, DoS attacks, and password
leakage [30]. Dagon et al. used a DNS redirection technique to capture botnet traffic and by analyzing
such traffic, they found that botnet growth exhibited strong time zone effects [7]. Botnet-based spamming
campaigns have been studied by analyzing similarity of email texts [38] and embedded URLSs [36]. In this
work, when we evaluate resilience of AntBot against pollution-based mitigation, we use results from these
previous measurement studies to build realistic models that characterize important aspects of bot activities,
such as time zone effects and diurnal patterns.

Many bot and botnet detection techniques have been developed recently. Gu et al. developed detec-
tion approaches that hinge on IDS(Intrusion Detection System)-driven dialog correlation [12] and strong
spatial-temporal correlation and similarity of bot activities in the same botnet [13][11]. Liu et al. proposed
an approach based on virtual machines to detect bot-like activities on individual hosts [20]. Transport-
layer communication records have been used to detect botnet behaviors in large Tier-1 ISP networks [18].
Ramachandran et al. developed a botnet detection scheme that relies on passive analysis of DNS-based
blackhole list (DNSBL) lookup traffic [25]. Signature-based botnet detection schemes have also been pro-
posed, including Rishi [10] and AutoRE [36]. TAMD is developed by Yen and Reiter that detects stealthy
malware, including bots, in an enterprise network by mining communication aggregates in which traffic
flows share common characteristics [37]. Our work is orthogonal to these botnet detection efforts and it
remains as our future work how to develop effective countermeasures against intelligently designed botnets
such as AntBot.

We are not alone in exploring hypothetical botnets that are hard to detect or disrupt. Vogt et al. proposed
Super-Botnet, which divides a large botnet into networks of smaller independent botnets to make it more
resistant to countermeasures [31]. AntBot, although designed specifically for P2P botnets, can be applied
to both large and small botnets to improve their resilience. Overbot, another botnet protocol built on the
Kademlia-based P2P networks, aims to hide membership information of the botnet so that a captured bot
does not reveal any information about other bots [27]. Chen et al. discussed design of delay-tolerant botnets,
which add random delays to command propagation to evade detection [5]. Wang et al. proposed a hybrid
P2P botnet with heterogeneous compromised machines (e.g., based on whether they have static IP addresses
and whether they are behind firewalls) [32]. Hund et al. provided some guidelines on how to design next-
generation botnets that are hard to track and shut down [16]. All these efforts bear different design goals
from AntBot, which specifically aims to improve resilience of P2P botnets against pollution-based mitiga-
tion. Wang et al. performed a thorough study on P2P botnets in [33], including analyzing effectiveness
of index poisoning on mitigating botnet operation. They, however, did not consider how to design botnets
intelligently to prevent operation disruption by pollution-based mitigation.

3 Protocol Design of AntBot

P2P Network Model. In this work, we consider the following type of P2P networks. First, each peer has
a globally unique (or almost unique) identifier. This is applicable to most existing P2P networks because
node IDs in them are often randomly generated in a large ID space (e.g., Kademlia, Tapestry, and Pastry),
hashed from IP addresses to a large ID space (e.g., Chord), or simply IP addresses of the peers in the network
(e.g., Gnutella). Second, the P2P network provides two basic primitive operations: put() and get(). The



put() operation publishes a data item with a certain key in the network so that other peers can obtain it,
and the get() operation instead retrieve a data item with a certain key from the network. In a typical DHT
(Distributed Hash Table)-based P2P network, a put() operation stores a data item at a different node whose
ID is close to that of the data item; by contrast, in an unstructured P2P network, a put() operation can simply
make a local data item accessible to other peers. On the other hand, a get() operation in a DHT-based P2P
network searches a data item with a certain ID either iteratively or recursively so that the distance to the
target node decreases monotonically. A get() operation in an unstructured P2P network typically involves
flooding to get a response, hopefully, from a peer that owns the searched data items. Third, there is no strong
authentication scheme deployed so that pollution attacks can take place. In such an open network, every peer
can publish data items with whatever keys or descriptive strings. This holds for the majority of popular P2P
networks these days but not for Freenet, which employs personal namespaces to prevent pollution attacks:
storing a data item in a personal namespace requires the private key of its owner, and other peers use the
public key of the owner of a namespace to access data items in it. Fourth, the P2P network has the churn
phenomenon: peers can join or leave the network dynamically.

Algorithm Description. In our design, we assume that the botmaster and all the bots share the same
secret key KC. We assume that this key is unknown to the adversary'. To thwart efforts to obtain key K by
static code analysis, this key is changed regularly by updating the bot executable. The bot executable can
also apply sophisticated obfuscation techniques such as polymorphism to complicate static code analysis.

Commands issued by the botmaster are stored as data objects in the P2P network. The keys used to
search these data objects are called command keys. These command keys are changed regularly every ¢ time
units. For instance, command keys in the Storm botnet change every day. Similar to the Storm botnet, all
bots in AntBot use the Network Time Protocol (NTP) to synchronize the time. Without loss of generality,
we assume that all bots have the knowledge of a global time ¢. This global time, for example, can be the
Greenwich Mean Time (GMT). Moreover, the global time is discretized into equal periods of length J time
units, which are denoted as {A;}};—1 2. The starting time of period A, is denoted as 7(A;).

In contrast to the Storm botnet, however, bots in AntBot do not use the same set of keys to search the
current command within each period. Let set B = {bg}|k=12, . denote the entire set of bots in a botnet
with m bots, and Ij, denote the identifier of bot b. For the current time period A;, each bot by, computes its

signature S,(:) as follows:
SO = F(I || 7(A)), )

where || is the concatenation operation and function f(-) is a hashing function that maps the input string
into a space of size 2!. That is to say, the output of function f(-) is an [-bit binary number. For AntBot, it
is not required to have a fixed [. Instead, as more bots are recruited into the botnet, the bot executable can
be updated to adopt a larger [. Under such circumstance, hash function f should be able to produce digests
with a variable length. In this work, we simply use the first [ bits from the output of MD5 hash function.
Based on the signature of each bot, we further define its rank as follows. First, we define a set of numbers
{1 }(0<j<rmas+1> Where hj is called a landmark and
O0=ho<hy <hp< o€ hppcy < by, =2 @)

Tmaz

If the signature of a bot falls within [h;, hj41), its rank is j + 1. Counterintuitively, we say that rank 7 is
higher than rank 72 if 71 < r2. All the landmarks are defined in the bot executable.

Let ¢; denote the command issued by the botmaster within period A;. To issue the command, the
botmaster can remotely login to any compromised machine in the botnet, possibly through multiple step
stones to evade detection. He then creates a data object with contents as Ex[c; || 7(A;)], where Ex[X]

"Throughout this paper, we use an adversary to refer to a white-hat security expert atlempling to disrupt botnet operation.



denotes encrypting X with key K using a symmetric encryption algorithm (e.g., DES). We call this data
object a command object. We further define function g as follows:

9(1(84),d,s) = Ex[7(Aq) || d || 5], 3)

where both d and s are integers, 0 < d < 2!, and 0 < 5 < Syaz. The command object is published every w
time units by the botmaster using the put() operation with command keys in set A, where

A= {g(1(A)),d,s) |Vd: hg <d < h1,¥5:0 < 8 < Smaz}- )]

We say that s is the slot number of the command key g(7(A;),d, s). Obviously, A1 - Smaez command keys
are initially generated by the botmaster. The behavior of the botmaster is illustrated in Algorithm 1.

Algorithm 1 Botmaster’s behavior during period A;
1: Login to any bot-controlled machine
Create command ¢; for the current period A;
Create the command object as Ex[c; || 7(4A;)]
A—1D
ford = hotoh; — 1do
for s = 010 Sypae — 1 do
Create a command key g(7(A;), d, s) as in Eq. (3)
A— Aug(r(Ay),d,s)
end for
: end for
: for every w time units do
12:  Ifitis not in period A, exit
13:  Publish the command object with command keys in set A
14:  Sleep until the next cycle
15: end for

o e R AR

_ 0

On the other hand, a bot first computes its signature and then its rank » within period A;. The behavior
of a bot during period A; is given in Algorithm 2. The bot randomly chooses ¢ distinct numbers from
|hr-1, hr), which are denoted as z1, z2, ..., 4. For each z;, where 1 < j < g, the bot randomly chooses a
slot number y; from [0, S;mqez — 1], and then creates the corresponding command key g(7(A;), z;, y;). Note
that the landmarks h, through h,_ . are chosen in such a way that h, 41 — h,, where 0 < r < 70, — 1,
must be no smaller than ¢. This ensures that each active bot be able to use ¢ command keys to search the
command object.

The bot iteratively uses the get() operation to search the command object with command keys in set
B = {g(7(A:),2j,Yj) }1<j<q- When it finds the data object, it decrypts this object with key X and checks
whether the decrypted time matches the starting time of the current period. If they do not match, the bot
keeps waiting for the next searched result; otherwise, it obtains the current command ¢; and stops searching.
It is noted that time checking in AntBot provides a level of authentication: If the data item is corrupted, say,
due to pollution, it is highly likely that the two times do not match and the bot simply ignores the command
decrypted from the corrupted data item.

Moreover, an active bot may not be able to find the command object because it has not been published
by bots of higher ranks. The bot thus keeps searching the command object with the same set of command
keys within period A;. The rationale behind such a design is that within period A;, at most ¢ command keys
are used by each bot to search the command, thereby limiting the impact of pollution if a bot is seized.



Algorithm 2 Behavior of bot by, during period 4;

: Compute S,(:) as in Eq. (1) and decide its rank as r

: Randomly choose ¢ distinct signatures from [h,_1, h;), denoted as z1, 2, ..., 7,
: B9

: for j =1togdo

Randomly choose a slot number y; from 0, 1, ..., Spaz — 1

B — BU Q(T(Ai))xj;yj)

: end for

: for every w time units do

If it is not in period A;, exit

Search the command object with command keys in B

SLEEP-MODE:

Sleep until the next cycle; during this period, if a search result arrives, go to SEARCH-RESULT
13: end for

bl B
bl B e

15: {Do the following when a search result arrives}

16: SEARCH-RESULT:

17: V « data object returned

18: Use key K to decrypt V' and get command ¢; and time ¢;
19: if time t; matches 7(A;) then

20:  Execute command ¢;

21:  Goto COMMAND-FOUND

22: else

23:  Goto SLEEP-MODE

24: end if

26: {The command is found}

27: COMMAND-FOUND:

28: C 0

29: for each d that satisfies the condition in Eq. (6) do
30:  Randomly choose an integer s from 0, 1, ..., Smaz — 1
31:  C«« CUg(T(A;),d,s)

32: end for

33: for every w time units do

34:  Ifitis notin period A;, exit

35:  Publish V with command keys in set C

36:  Sleep until the next cycle

37: end for




After a bot of rank r successfully derives the current command, it executes this command and publishes
it for bots of rank r + 1. These two things can be done in parallel, especially when executing the command
takes a significant amount of time to finish. Note that there are k-1 — h, unique signatures of rank r. To
explain the publishing behavior of a bot, we define (r), the branching factor from rank r, as follows:

hf—h:-—-l
0 ifr =%mus

)

hrtizhe 30 < 1 < Pnas
v(r) =

Consider a bot of rank  whose signature is . If 7 < 7mqz, it publishes the command object with a command
key for each signature d of rank r + 1 that satisfies the following condition:

hy + v(r)(@ — hr—1) <d < e + y(7)(x — hy—1 + 1) (6)

For each signature d that satisfies the above condition, the bot randomly chooses a slot number s from
[0, $maz — 1], creates a command key g(7(A;), d, s), and then uses it to publish the command object. It is
noted that each bot uses the same set of command keys to publish the command object within period A;.
This also helps reduce the impact if this bot is seized by the adversary.

Discussion. In practice, the landmarks are set in such a way that branching factors () are greater than
1 except for the lowest level. That is to say, commands are delivered to bots through a tree-like structure, in
which commands are relayed by bots at the top to those at the bottom. This is crucial to preventing pollution-
based mitigation: because there are more bots with low ranks than those with high ranks, the adversary is
more likely to catch a low-rank bot than a high-rank one, thus limiting the impact if he pollutes the keys
used by this bot to search or publish the command object. Moreover, each bot uses multiple command keys
to search the command object. Although this enables the adversary to pollute more than one command keys
if it is caught, the probability that the adversary can catch so many other bots that all command keys used
by this bot (if it is not caught) to search the command object are corrupted is also low. Similarly, having
multiple slots for each signature reduces the impact of pollution if a bot is caught and all the command keys
that it uses to publish the command object are corrupted by the adversary.

Example, We use a simple example, illustrated in Figure | and Table 1, to explain the algorithm. In this
example, we have: | = 4,g = 2, hy = 2, hy = 6, and hy = 14. The branching factors from both ranks 1
and 2 can be easily computed as 2; the branching factors from ranks 3 and 4 are 0.25 and 0, respectively. In
Steps 1-4 shown in Table 1, the botmaster publishes the command with four command keys, A-D. Bot 1, by
randomly choosing a signature from [0, h; — 1] and a slot number between 0 and 1, creates command key
D and then uses it to get the command (Step 5). Bot | further publishes the command with command keys
E and F' (Steps 6 and 7). Bot 2, on the other hand, generates two command keys L and F' and use them to
search the command object. Only with command key F can it get the command object (Steps 8 and 9). Bot
2, thereafter, publishes the command object with two other keys, G and H (Steps 10 and 11).

4 Analysis

In this previous section, we have described the algorithm for the botnet operation. We proceed to analyze its
performance in this section, particularly from three perspectives: reachability, resilience to pollution, and
scalability. Throughout these analysis, we will understand how sensitively AntBot performs under different
parameter settings. In our analysis, we consider a botnet with n bots, among which the fraction of active
bots within period A; is «;. Hence, the number of active bots within period A; is a;n.

We also need to know the distribution of the active bots over the 2! signatures, which is decided by
the choice of hash function f. A reasonable assumption might be that an active bot is distributed to each
signature with an equal probability, Define vector W as follows: W = (wo, w1, ..., War_;), where wy



Botmaster

O signature & command key s: random number chosen from 0 and 1

Figure 1: High-level illustration of the algorithm

Entity Operation Key Signature s Results
1 Botmaster  put() A 0000 0 Succeed
2 Botmaster  put() B 0000 1 Succeed
3  Botmaster put() ¢ 0001 0 Succeed
4 Botmaster  put() D 0001 1 Succeed
5 Bot 1 get() D 0001 1 Succeed
6 Bot 1 put() E 0100 I Succeed
7 Bot 1 put() F 0101 0 Succeed
8§  Bot2 get() L 0011 O  Fail
9 Bot 2 get() F 0101 0 Succeed
10 Bot 2 put() G 1100 0 Succeed
11 Bot 2 put() H 1101 1 Succeed

Table 1: Steps of spreading a command (the steps are not necessarily sequential)

(0 < d < 2'—1) denotes the number of active bots that are associated with signature d. Given the fact that the
number of distributions of i identical objects to j distinct recipients is (**7 1), the number of combinations

for W is thus (“‘"J;f:_l). This number grows at least as fast as ©((an)2~1) when an > 2! — 12. With
a typical botnet with thousands or tens of thousands of active bots and a reasonable [ (e.g., I = 10), the
number of combinations renders our analysis computationally prohibitive. To simplify our analysis, we
assume that each signature corresponds to the same number of active bots®, which is an/2!. Hence, we
havewg =w; = ... =wy_; = an/2'. Also, we assume that each active bot of the same rank 7 publishes
the command with the same number of command keys except the case when 7 = 7'qer — 1%. That is to say,
(hr41 — hy) mod (hy — hy—1) equals O forall 7: 1 < 7 < 7ypap — 2.

Let 3 denote the reachability of an existing data item, which is defined as the probability that it can be
obtained by any peer in the P2P network. It is noted that actual P2P networks are dynamic due to arrival

*For (), it grows as ©(m") when k is small; when k = |m/2], its growth rate is the fastest, which is ©(2™ //m).
*Without loss of generality, we ignore the trivial cases in which an mod 2' # 0.
“Here, we cannot assume this holds when r = r.x — 1 because h..,,. is fixed at 2'.



and departure of peers and each bot attempts multiple times to retrieve the command object. Modeling
such dynamics, however, is difficult. In our analysis, we ignore these details by simply assuming that 3 is
constant throughout each period A;.

4.1 Reachability

An active bot may not retrieve successfully the command issued by the botmaster due to the following
reasons. First, even if the data item searched by the bot is available in the P2P network, it may not be reached
because of limited flooding in unstructured P2P networks or no paths to it in structured P2P networks.
Second, when a bot of rank r randomly searches a command key generated with signature d and slot number
8 (0 € s € Symaz — 1), it is possible that no bots of rank 7 — 1 publish the command with this command
key at all. Suppose that bots of rank 7 — 1 with signature d’ are responsible for using this command key
to publish the command. Two cases are possible: active bots with signature d' fail to get the command
by themselves, or active bots with signature d' get the command successfully but they do not publish the
command object with command keys generated from slot number s. Considering both possibilities, we can
establish the following theorem (proof is provided in Appendix A):

Theorem 1. Suppose that there is a botnet with n bots and the fraction of active ones is . If the following
conditions hold: (1) an mod 2! = 0 and the number of active bots associated with each signature is
an/2, (2) (hr41 = hy) mod (hy — he—1) equals 0 for all v: 1 < 7 < Tmaz — 2, and (3) the reachability of
an existing data item is [3, then the expected number of active bots that successfully executes the botmaster'’s
command afier running the protocol as described is:

Tmaz

ne =37 (1= &)(hr = hy1), @
r=1
where:
5 (1-B) o ifr=1 ’
"7 (=B = (61 + Ue=llomesUySE YN0 rr sy =

4.2 Resilience against Pollution

Suppose that an adversary has captured the bot executable and created m bot instances, each of which runs in
a controlled environment. For clarity, we call these bots under control of the adversary subversive bots, and
as opposed to them are loyal bots. The adversary monitors all the command keys that subversive bots use
to either search or publish some data objects in the P2P network, and then publishes corrupted information
with each of these command keys that have been observed. A loyal bot fails to execute the command if all
the command keys it uses to search the command have been corrupted by the adversary.

We assume that there are n loyal bots and the fraction of active ones among them is .. Moreover, the
signature of a subversive bot is uniformly distributed over the 2' ones. Let C, and Cs denote the set of
command keys that subversive bots use to publish and search the command data object in the P2P network,
respectively. In our analysis, we assume that all command keys in C,, U C are corrupted by the adversary.

Now consider any command key ké") that is searched by loyal bots of rank r. The probability that it is
searched by a subversive bot is given as follows:

(hf---h;_l —1)

(")

hr = hr—l

ps(r) = T'(l*

1
) — =g ©)

Smaz 2 Smaz




As there are m subversive bots, we thus can derive the probability that command key kér) is searched by
any of the m subversive bots is:

P{k{) € C} =1~ (1 - ps(r))™. (10)
On the other hand, the probability that command key k. is published by a subversive bot is given by:

-, 0 ifr=1
Pp('-"):{ 1. 1 ifr>1 (11)

2r Smar

Note that command keys of rank 1 are published only by the botmaster and thus cannot be published by
subversive bots. Similarly, the probability that command key k. is corrupted because at least one subversive
bot uses it to publish the command data object is given as follows:

P{k{) € Cp} =1 - (1 — fp(r))™ (12)

Let ¢/ be max{0,1 — ]P{kc Jec s} — Il"{&(r) € Cp}}, where 1 < 7 < 74, and we have the following
theorem (proof provided in Appendix B):

Theorem 2. Suppose that there is a botnet with n loyal bots and the fraction of active ones is «. Also
suppose that there are m subversive bots from which command keys that are used to search and publish the
command object are corrupted. If the following conditions hold: (1) an mod 2' = 0 and the number of
active loyal bots associated with each signature is an/2', (2) (hr41 — hy) mod (h, — h,_1) equals 0 for
allr: 1 £ v £ Tmax — 2, and (3) the reachability of an existing data item is [3, then the expected number of
active loyal bots that successfully executes the botmaster's command afier running the protocol as described
is:

m 2l =28 (1= ) (hr — hro). (13)
r=1
where 8] is computed as follows:
8l = (1= B(1 = ps(1))™)* v =1 (14)
P =B O =g+ (0~8)- STy s )

4.3 Scalability

As mentioned earlier, the rationale behind the tree-like command distribution in the proposed scheme is to
enhance operational resilience to pollution-based botnet mitigation. One however may argue that a much
simpler solution may achieve the same goal: the botmaster publishes the command object with a command
key that is uniquely generated for each bot. With this scheme, pollution incurs minimal damage to the
botnet operation because bots search for the command with different command keys. Albeit being simple,
this scheme obviously has scalability issues, as the botmaster of a big botnet has to publish the command
object with a large number of command keys. Moreover, this simple solution also renders traceback easier.

The protocol proposed in Section 3 distributes the task of publishing the command object to the army of
bots themselves. Based on the protocol description of AntBot, we can easily establish the following theorem
regarding the workload of the botmaster and each bot:

Theorem 3. If the protocol is executed as described, the botmaster publishes the command with hy - Smax
command keys, and each bot searches for the command with q command keys and publishes the command

with at most max; 3" =3 I'—"'“f | command keys.



4.4 Sensitivity Analysis

We now study the effects of different protocol parameters on botnet behaviors. Let 12 denote the number of
active loyal bots that fall into each signature. The following scenario will be treated as the baseline case:
Smaz = 4, ¢ = 10, hy = 64, 8 = 0.8, p = 10, the branch factor is 4 for all ranks except the lowest one,
and 7 is 10. To understand the impact of each of these parameters, we vary it among a set of values while
keeping the others fixed. Moreover, given a specific combination of parameter settings, we derive both n, in
Eq. (7) when no subversive bots exist and n, in Eq. (13) when m, the number of subversive bots is 2 % 40,
where 1 =10,1, ..., 8.

Effect of s,,4,. We vary s;q, between 2 and 20 and the n. and n;, as derived are illustrated in Figure 2.
Note that the curve corresponding m = 0 actually gives n., which is the same in Figures 3-7. We observe
that generally speaking, increasing smq. helps increase the number of active loyal bots that successfully
obtain the command, especially when there are a significant number of subversive bots. This is unsurprising
because a larger s,,q, means that there are more command keys used to publish the command, thus reducing
the adverse effect of polluting the command keys observed from a fixed number of subversive bots. This
can also be observed from both Eq. (9) and (11).

The negative impact of increasing $;q. is that when it is larger than the number of active loyal bots per
signature, some command key slots become empty, thus reducing the probability that the command can be
accessed successfully, regardless of whether there are subversive bots or not. Hence, we observe that when
m < 640 in Figure 2, increasing $,,4- beyond 10 actually decreases both n. and n/.

Effect of g. We vary g among 1, 5, 10, 15, 20, 25 and 30, and the 7. and n/ as derived are illustrated
in Figure 3. Increasing parameter g has two effects. On one hand, a larger ¢ means that an active loyal bot
can have more opportunities to obtain the command when it is not accessible via some command keys due
to reachability issues inherent in P2P networks or content corruption by the adversary. On the other hand,
a larger ¢ means that when the adversary uses a fixed number of subversive bots, he will be able to corrupt
more command keys. Hence, we observe mixed effects of increasing parameter ¢ in Figure 3.

Effects of hy and the branch factor. Figure 4 shows the effect of varying h;, the number of signatures
of rank 1, among 2° where ¢ = 0, 1,..., 10, and Figure 5 gives the n, and n/ when we change the branch
factor from 2 to 30. The general trend is that increasing either h; or the branch factor helps increase
the number of active loyal bots that obtain the command successfully. This is because a larger h; or branch
factor makes the total number of ranks smaller, thus reducing the average number of times needed to forward
the command by bots of higher ranks. In Figure 5, when the branch factor is larger than 16, the fraction of
active bots that successfully execute the command remains stable, because 7,4, 1s always 2.

From Theorem 3, we however know that the number of command keys published by the botmaster
increases linearly with hy, and the number of command keys published by each bot is the branch factor
(except those bots of the lowest rank). Hence, a larger h; leads to heavier workload for the botmaster, and a
larger branch factor means that each bot has to publish the command with more command keys.

Effect of 8. We also vary reachability parameter 3 from 0.2 and 1, and the results are illustrated in
Figure 6. Unsurprisingly, a higher § always leads to a higher number of active loyal bots that successfully
obtain the command.

Effect of parameter p. Figure 7 presents the effect of varying parameter x among 1, 10, 20, 30, and 40.
The general trend is that a larger 1 leads to a higher guaranteed fraction of active loyal bots that successfully
obtain the command. Recall that an active loyal bot, after getting the command, publishes it at a random
command key slot for each of the children signatures. When p is larger, the probability that a command key
slot at a rank other than | is published is higher. The effect of increasing parameter u, however, becomes
less prominent as p becomes significantly larger than s,,,5, which is 4 for all data points in Figure 7.
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5 Implementation

In the previous section, we analyzed performance of AntBot under some simplifying assumptions. For in-
stance, we assume that if a command key is polluted by a subversive bot, none of the bots using this key
to query the command object are able to receive the command. In reality, this may not be true because
the command object stored on some peers may not be polluted by subversive bots. This is confirmed by
measurements in [15], which show that even under strong pollution by exhaustive search, a small fraction of
Storm bots could still retrieve the command object successfully. To gain a better understanding of AntBot
behaviors in a practical setting, we developed a high-fidelity botnet simulator that used actual implementa-
tion code of a popular P2P client, aMule’. aMule implements the KAD protocol, which is a variant of the
original Kademlia protocol proposed by Maymounkov and Mazieres [21]. It is noted that the first version of
the Storm botnet used the Overnet P2P routing protocol, which is also based on Kademlia. In the following
discussion, we first present a brief introduction to Kademlia and KAD; after that, we provide more details
on how we implement AntBot with the aMule code base in our distributed simulation testbed.

5.1 Kademlia and KAD

Kademlia is a DHT-based P2P routing protocol, in which each data object or peer is identified by a 160-bit
ID. The distinguishing feature of Kademlia is its XOR metric that measures the distance between any two
160-bit identifies = and y: d(z,y) = = @ y. Data objects are usually stored at those peers whose IDs are
close to their owns. Routing in Kademlia is conducted in an iterative manner: when a peer searches for a
(node or data object) 1D, it queries its neighbors for new peers whose 1Ds are closer to the target ID; this
process repeats until no closer peer IDs can be found.

Although KAD descends from Kademlia, there are some slight distinctions between them. Besides us-
ing 128 bits for its node and data object IDs and supporting more diverse messages, KAD uses a two-phase
search process. In the first phase, the searching KAD node iteratively queries for peers closer to the target ID
but at any time, at most three peers are contacted simultaneously. In this phase, messages of types KADEM-
LIA_REQUEST and KADEMLIA RESPONSE are used. After a certain period of time, the search node

5The version we used in our study is aMule 2.1.3.



enters the second phase, in which it chooses a few nodes that responded in the first phase and contacts them
for the target ID using messages of types KADEMLIA_SEARCH REQ and KADEMLIA_PUBLISH REQ.
We refer interested readers to [21] and [4] for more details about Kademlia and KAD.

5.2 AntBot Implementation

The basic skeleton of the botmaster’s behavior is shown in Algorithm 16, On Line 12, the botmaster needs
to publish the command object periodically. In our implementation, we use the metadata publishing scheme
in KAD to publish the command object. KAD uses a two-level publishing scheme which divides files into
two types: metadata and location information. The first level provides references (i.e., location information)
to the real data file and the second level uses keywords (i.e., metadata) to fetch location information of real
data files. Associated with metadata is a list of tags, such as file names and sizes. Like the Storm botnet, we
encode the command object in the filename. '

It is, however, noted that the standard KAD protocol allows only one simultaneous metadata publishing
at the same time [4]. This is controlled by the KADEMLIATOTALSTOREKEY parameter. Although the
bot executable can remove this limitation, our implementation is compliant with the KAD protocol so that
it is harder to detect bots by monitoring their behavior. This is done as follows: when publishing metadata,
KAD creates a search object with type STOREKEYWORD. As the timeout value of such a search object
is 140 seconds, we let the botmaster publish the command object with different command keys every 150
second on Line 13 of Algorithm 1 before going to the sleeping mode. The parameters are properly set so
that the number of command keys to publish the command object by the botmaster (i.e., by — hg) does not
exceed |w/150] (we assume that a time unit is a second here, without loss of generality).

This also applies to the bot behavior shown on Line 35 of Algorithm 2. A bot publishes data object
V using different command keys every 150 second. In Algorithm 2, we show that a bot of rank 7 only
publishes y(7) where we recall y(r) denotes the branching factor from rank r (see Eq. (5)). If y(r) is
much smaller than w /150, the bot publishes for only a short period of time every w time units. From the
analytical results in Section 4.1, we know that a bot of a lower rank (i.e., a larger rank number) is less likely
to receive the command object because it has to go through more levels of publishing and searching. To
improve reachability of the command object to the low-level bots, we slightly modify Algorithm 2 and let
each bot publish command objects using command keys in bot sets B and C' in the algorithm.

That is to say, a bot also publishes the command object with the command keys that it generated to
search the command object. It is easy to see that this does not increase the vulnerability of these command
keys: if the bot is seized and thus a subversive bot, the command keys it used to search the command key
are known to the adversary anyway. To ensure that a bot has time to publish the command object using
command keys in bot sets B and C' in Algorithm 2, the bot parameters are set to satisfy: g +y(r) < w/150.

5.3 Pollution

To study how AntBot responds to pollution-based mitigation, we need to implement some pollution mecha-
nisms. Originally, we developed a passive pollution scheme: for each subversive bot, the adversary regularly
uses the standard KAD protocol to publish junk information (i.e., a2 random filename in the tag) for each
command key that the bot generated to search the command object. This approach, however, does not
effectively prevent many loyal bots from obtaining the command object if they persistently search for it.
We thus adopt a more aggressive pollution scheme similar to the one proposed by Holz et al. in [15].
There are two components involved in this approach: crawlers and polluters. A crawler regularly crawls
the whole P2P network to obtain a list of active peers. During a crawling cycle, after every three seconds,
the crawler sends a route request to 50 new different peers, asking each of them for paths to 16 carefully
designed destinations. Once a peer responds to the query by sending a list of peers, the crawler updates its
knowledge of current active peers. Polluters regularly obtain a list of active peers from the crawlers. To

®Here, note that the botmasler’s operation can be automatically performed using a script.



prevent overloading a polluter, we let each polluter pollute only a portion of active peers. Every 30 seconds,
each polluter selects 100 distinct active peers and publishes on them with junk information using a set of the
command keys that the adversary captures using the following two schemes.

Early pollution scheme: When a subversive bot becomes online, the adversary obtains all the command
keys it uses to search the command object and sends the command keys immediately to each polluter.

Late pollution scheme: Similar to the early pollution scheme, the adversary monitors the command
keys that each subversive bot uses to search the command object. For each subversive bot, the adversary
waits for it to get the command object and generate command keys to publish the command object for lower
level bots. Once the adversary obtains all command keys that the subversive bot uses to search and publish
the command object, it sends them immediately to each polluter.

5.4 Distributed Simulation Testbed

Despite the great realism obtained by using the actual implementation code of a popular P2P client, simulat-
ing a large P2P botnet at such a high resolution demands intensive computation. Moreover, the aggressive
pollution scheme further significantly increases the number of messages (or traffic) in the network because
each crawler exhaustively searches for active peers in the network and each polluter needs to regularly
provide junk information for captured command keys. To improve simulation scalability, we develop our
simulator on a distributed computing platform. The simulator is a component of MIITS, a local distributed
simulation framework for simulating large-scale communication networks [34]. MIITS is built on PRIME
SSF, a distributed simulation engine using conservative synchronization techniques [24]. When porting the
aMule code into MIITS, we intercept all time-related system calls (e.g., gettimeofday) and replace them
with simulated time function calls. Similarly, we substitute socket API calls in the original code for network
functions developed in MIITS. Moreover, as IP-level routing is not important in this simulation study, we
do not model routers on the paths between peers in the P2P network. Previously, we used this simulator to
perform a preliminary study of P2P-based botnets and we refer interested readers to [14] for more details.

6 Experimental Evaluation

In this section, we first describe how to model online active durations for both regular peers and bot ma-
chines. After providing details of parameter settings in our experiments, we present simulation results that
reveal AntBot performance under different scenarios.

6.1 Active Durations of Regular Peers and Bots
To model when a peer or bot joins and departs from the P2P network, we consider both the time zone effect
and diurnal patterns observed from previous measurement studies.

Time zone. Time zone effects have been observed from behaviors of normal P2P users [29] and bot
activities [7]. To characterize time zone effects in our simulation, we first consider the geographic distribu-
tion of the peers in the network. For normal P2P users, we use the following distribution obtained from [29]
(Countries are shown as their two-letter country codes defined in 1SO 3166-1):

Country | CN | ES | FR | IT | DE | PL | IL | BR | US | TW | KR | AR | PT | GB
Dist. | 0.24 | 0.18 | 0.12 | 0.10 | 0.06 | 0.04 | 0.03 | 0.03 | 0.03 A 0.02 H 0.02 | 0.02 | 0.02 | 0.01

The geographic distribution of bots is generated from the statistics of Storm botnet IP distribution [3]:

Country | US | RU | MX | IN | TR | BR | PL | 'KR"'MAF?R RO | UA
: 0.04

VN
Dist. | 0.22 | 0.15 | 0.11 | 0.09 | 0.08 | 0.06 | 0.05 | 0.05 | 0.05 | 0.04 0.04 | 0.03

We assign a country to each normal peer or bot according to the above two tables. If a peer belongs to a
country that has multiple time zones (e.g., US), we randomly choose one time zone for it.



Active duration. Once the time zone of each peer has been decided, we further determine its active
duration. When a peer is active, it stays in the P2P network and is thus visible to other peers. For the normal
peers, we let a small fraction to be always online and active in the P2P network; we call such peers persistent
peers, as opposed to transient peers that join and leave the P2P network regularly. To model behaviors of
transient peers, we adopt a model developed in [28] for its active duration. We define the activity cycle of
a regular normal peer to be 12:00pm-11:59am. We assume that a regular normal peer is active once in an
activity cycle. Its starting time is generated using a Gaussian distribution with mean at 7:00pm and standard
deviation as 2 hours. Once the starting time of a normal peer is decided, its active duration is generated
using a three-parameter Weibull distribution with the following probability density function:

k z—o)k—18~(z—em* z>0

f(sc;A.k‘G):{ A 5 e (15)

According to measurement results in [28], we set the parameters as follows: location parameter § = 19.3929,
scale parameter A = 169.5385, and shape parameter k = 0.61511. With these parameters, the mean active
duration is 266.5358 seconds, the same as observed in [28]. _

Despite observed diurnal patterns of bot activities in the literature [7, 1], no statistical model is ready yet
for characterizing active durations of bots. In this study, we use a simple diurnal model mirroring people’s
normal work hours. We define the activity cycle of a bot machine to be 12:00am-11:59pm. Its starting time
is drawn from a Gaussian distribution with its peak at 8:00am and standard deviation as one hour. Similarly,
its ending time is drawn from a Gaussian distribution with its peak at 6:00pm and standard deviation also as
one hour. Both the starting and ending times of an active duration fall within the current activity cycle.

6.2 Experimental Setup

In our experiments, we study a P2P network with 10,000 peers among which 1000 are bots, either subversive
or loyal bots. Among the 9,000 normal peers, there are 1,000 persistent peers that always stay online. As
the P2P network takes time to populate the routing table of each peer, we simulate the botnet for three days.
The botmaster controls five bot machines, from each of which he sends out a command at the beginning of
the third day’. For w in both Algorithms 1 and 2, we let it be 3600 seconds.

In our experiments, we consider three different types of bots. The first type of bots (baseline-passive)
mirrors behaviors of traditional P2P bots such as Storm bots. When the botmaster uses a machine to release
the command, he uses 24 command keys to publish the command object. Each bot randomly chooses three
of these command keys to search the command object. A bot does not publish the command object using the
command keys it has used to search the command object. The second type of bots (baseline-active) differ
from baseline-passive bots only for a baseline active bot publishes the command object using the three
command keys that it has generated to search the command object. As mentioned earlier, a baseline-active
bot does not expose more command keys to the adversary. The third type of bots are AntBot as described
in Section 5.2. The landmarks defined for AntBot are: 0, 8, 48, and 128. The number of slots for each
signature (i.e., Smaz) 18 3 and each bot searches for the command object with 3 command keys. It is noted
that the botmaster publishes the command object using the same number of command keys as in the two
baseline cases.

We use both the early and late pollution schemes (see Section 5.3) in our experiments. Note that these
two pollution schemes are the same for both two baseline cases because a bot does not need to publish
the command object for lower level bots. In all our experiments, we assume that the adversary uses two
crawlers and five polluters. Also, crawlers and polluters stay online all the time and every half an hour, a
crawler sends the peer information it has collected in the past hour to each polluter. We vary the number of

"From other experiments, we observe that having more than one machine to send out the command can significantly improve
its reachability when there is no pollution.



subversive bots among 0, 10, 20, and 30. Subversive bots, like crawlers and polluters, are always online,
and like normal bots, gets activated every 3600 seconds. Each subversive bot sends the revealed command
keys to all the polluters when it gets active (early pollution) or gets the command object successfully (late
pollution).

For each scenario, we perform five simulation runs with different random number generation seeds. For
each simulation run, we use 300 processors on a high-performance cluster and typically a run (if pollution is
involved) takes about 13 hours to finish. Crawling-based pollution introduces a significant amount of extra
computation time because if no pollution is involved, a simulation run can finish within four hours.

6.3 Experimental Results

In Figure 8, we present the number of bots that successfully receives the command under different simulation
scenarios. It is worth noting that in the graph we do not have data points for baseline-passive bots when the
number of subversive bots is 10 or 30; hence, the first bar is missing in these two cases.
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Figure 8: Number of bots that successfully received the command

It is clear from the graph that for the baseline bot, either baseline-passive or baseline-active, when we
increase the number of subversive bots in the network, the number of bots that received the command de-
creases significantly. For instance, when there are 20 subversive bots, only 11% of the baseline-passive bots
and 36% of the baseline-active bots can obtain the command successfully; when there are 30 subversive
bots, only 14% of the baseline-active bots can get the command. This suggests that pollution-based mitiga-
tion indeed adversely affects operation of traditional P2P botnets. On the other hand, having bots publish
the command object with command keys that they use to search the command helps deliver the command
successfully to individual bots. We can conclude this from the difference in the number of bots receiving
the command between baseline-passive and baseline-active bots.

By contrast, AntBot performs much more resiliently against pollution-based mitigation, regardless of the
pollution scheme. Even when there exist 30 subversive bots in the network, 66% of bots get the command
successfully if the adversary uses the early pollution scheme, and 79% of bots receive the command if the
late pollution scheme is applied. In either case, much more bots can get the command than baseline bots.
Moreover, although the early pollution scheme pollutes a fewer number of command keys than the late
pollution scheme, it obtains the command keys used by subversive bots to search the command immediately
after they become active and thus lets polluters to pollute these keys at an earlier time than the late pollution
scheme. Therefore, the early pollution scheme seems to be more effective than the late pollution scheme in
reducing the number of bots that receive the command, as observed from Figure 8.



The resilience of AntBot comes at a price: under normal circumstances where there are no or few
subversive bots, a small fraction of bots cannot obtain the command due to its multi-level command relay
mechanism. For instance, even if there is no subversive bot, only 84% of bots can get the command success-
fully, as opposed to 100% of baseline-active bots and 89% of baseline-passive bots. There are two ways to
further improve AntBot. In the first approach, the botmaster may want to switch the botnet operation mode
to AntBot only when it is found that there exist some subversive bots in the botnet. A bot, when discovering
some corrupted messages, reports the situation to the botmaster. This information can be delivered through
a data item retrievable by a predefined command key. Obviously, this solution poses another problem: the
adversary can pollute this special command key as well. In the second approach, both the baseline-active
and AntBot command delivery mechanisms are implemented. Normally, each bot uses the baseline-active
approach to obtain the command object. Once a bot observes that some command keys have been corrupted
by the adversary, it switches to the AntBot mechanism for command propagation. Evaluating performance
of such a hybrid mechanism remains as our future work.

7 Countermeasures

From the experimental results shown in Section 6, we know that AntBot functions more effectively than
traditional P2P botnets when the adversary pollutes the command keys revealed by subversive bots. In
this section, we present three potential countermeasures that can disrupt AntBot operation and also discuss
possible challenges when developing these countermeasures.

First, AntBot relies on a secret key shared by both the botmaster and all bots to check whether a data item
is the command object or has been corrupted. With ever-improving software reverse engineering techniques,
it is possible that the adversary can successfully discover this shared secret key by statically analyzing bot
executables. It is, however, another cat-and-mouse game that while the adversary improves his static code
analysis skills, the botmaster applies more sophisticated obfuscation techniques such as metamorphism
and virtualization [35] to generate bot executables . The botmaster may also apply more advanced PKI
(Public Key Infrastructure) techniques (e.g., the Waledac P2P botnet [26]) to prevent botnet disruption due
to revelation of shared secrets in bot executables.

Second, as observed from Figure 8, when we increase the number of subversive bots in the network, the
fraction of bots that successfully obtains the command still decreases even for AntBot. This is also evident
from our analysis in Section 4. Hence, a potential countermeasure against AntBot is to increase the number
of subversive bots and thus the number of command keys to pollute. It is easy to mitigate AntBot if each
bot, when it runs in a virtual environment, randomly generates its identifier. 1f this is the case, the adversary
can simply run the bot executable in a controlled environment for many times so that a large number of
command keys can be revealed. As a response, however, the botmaster may respond by letting each bot
executable carry a unique identifier for the bot so that the adversary has to capture many bot executables to
derive enough command keys for dismantling AntBot. But this obviously increases the complexity of bot
distribution during the propagation process.

Third, given the fact that AntBot is specifically designed against pollution-based mitigation, another
possible way of disrupting it is using Sybil-based mitigation. In this approach, the adversary can insert a
large number of fake peers (i.e., sybils). These fake peers do not conform to the standard P2P protocol;
instead, they attempt to obtain a disproportionately large influence in the P2P network (e.g., they are more
likely to be included in the contact list when a peer responds to a KADEMLIA _REQUEST message in
KAD). Through these sybils, the adversary can infer bot identities by analyzing which peers search data
items with suspicious command keys. The adversary can further provide fake messages to these bots to
disrupt botnet operation. Some insights have been provided on how to use sybil-based mitigation to disrupt
Storm-like botnets in the literature [9] and it remains as our future work how to use sybil-based mitigation
to disrupt AntBot operations.
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Conclusions

P2P botnets have emerged as a new generation of botnets, whose robustness against one point of failure
has significantly improved compared with earlier IRC-based botnets. It is, however, revealed that P2P
botnets can be easily disrupted using pollution-based mitigation techniques. In this paper, we play the devil’s
advocate by exploring possible solutions to improve resilience of P2P botnets against pollution. We propose
a new type of hypothetical P2P botet called AntBot and using extensive simulation, show that AntBot
functions well even though the adversary persistently pollutes the command with keys revealed by seized
bots. We further present a few potential countermeasures that can effectively disrupt AntBot operations.
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Appendix A: Proof of Theorem 1

Let

&, denote the probability that the command object is available with a command key that is generated from a

signature of rank 7 and any random slot number between 0 and $,,,,> — 1. Note that this probability is the same for
all such command keys, regardless of the signature and the slot number that are used to generate them, because all
signatures of rank 7 are symmetric and all slot numbers corresponding to the same signature are also symmetric. As
the botmaster publishes the command with every signature of rank 1 and every s from 0 to 5,0, — 1, we obviously
have & = 1.

Let &, denote the probability that an active bot of rank 7 cannot find any command. It can be simply computed as:

6. = (1 — BE,). (16)
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Consider any slot of a signature of rank r + 1. Potentially, there are an/2' active bots of rank r that uses
a corresponding command key to publish the command. The probability that each of these bots fails to do so is
6+ (1-=6,)- ﬁlgﬁ:—l Hence, &1, the probability that a slot of rank = + 1 is not empty, is given by:

m '_1 L
€1 = 1= (0, +(1-4,) Tme= )5 (17)
mal
With Equations (16) and (17), we can compute &, recursively as follows:
s (1-p)4 ifr=1
°‘" *{ (1= B(1 = (8p—y + A=besdlemez=U)3Fy)a i 5 1 (18)

Note that there are in total h, — h,_ signatures with rank r, and there are an/2" active bots associated with
each of these signatures. As each active bot of rank r successfully executes the command with probability ., we can
establish Theorem 1.

Appendix B: Proof of Theorem 2

Let £, denote the probability that .fc.(:r) is available and not corrupted, and &, denote the probability that an active loyal
bot of rank r cannot execute the command successfully. Similar to 4, in Section 4.1, we have:

8. = (1-B¢.)1. (19)
Note that p,(1) = 0 and P{k) € Cp} = 0. We thus have:
& = 1-P{k) eC}=(1-ps(1)™ (20)
Hence, we can calculate 8] as follows:
& =(1-p6(1-ps(1))") 1)
Different from Equation (17), the calculation of £, needs to consider the probability of a command key being

polluted. We have the following:

far = (1= (6 +(1-8) Z==0)%) x 1 PED €€, UG,

mar

S glotlefBl 4 (@ =iy~ 2mar =Ly 2)

- sfna:z
Hence, for r > 1, /., ; satisfies the following condition based on Equations (19) and (22):

-1

Brai on
wid S(1—ﬁC;'(l—(5:-+(1—5:-)‘m—;—3?))q- (23)
mazxr
Consider 6/, which is defined as follows: 6{ = 4], and whenr > 1,
—1 oan
5 = (1= By - (1= (8 + (1= 8_y) - 2me==2) 5 ))e. (24)
Smax
Note that for r > 1, if 6!/ > 4., then
. Smaz — 1, mn -

Yo 2 (1-BG-(1-(@+0-8) =) 28, (25)

maxr
By induction, we conclude that 6/ > 4. forall 7 : 1 < r < rp,aq. Therefore, we thus have:

Tmox Tmazx

o= S (=)~ he) ng =35 > (1=8)(hr = hra). (26)
r=1

r=1

IV

and Theorem 2 follows.



