

Second Topical Meeting on Tritium Technology in Fission, Fusion, and Isotopic Applications, Dayton, Ohio, 30 April - 2 May 1985; also Fusion Technology, Special Supplement, September, 1985

This document is
PUBLICLY RELEASABLE

James Kagan 6511
Authorizing Official
Date: 7-6-09

ISOTOPE EFFECTS AND HELIUM RETENTION BEHAVIOR IN VANADIUM TRITIDE

R. C. Bowman, Jr.,^a A. Attalla, and B. D. Craft
Monsanto Research Corporation
Mound
Miamisburg, Ohio 45342
513-865-4020

ABSTRACT

The relaxation times of the H, T, and ³He nuclei have been measured in vanadium hydride and tritide samples. Substantial isotope effects in both the phase transition temperatures and diffusion parameters have been found. When compared to hydrides, the tritide samples have lower transition temperatures and faster mobilities. The differences in the occupancies of the interstitial sites are largely responsible for these isotope effects. Most of the helium atoms generated by tritium decay remain trapped in microscopic bubbles formed within the VT_x lattice. Evidence is presented for the gradual growth of the helium bubbles over periods of hundreds of days.

INTRODUCTION

The vanadium-hydrogen phases exhibit unusually large isotope effects with respect to phase compositions, crystal structures, and diffusion properties. Although most previous studies have been on the vanadium hydrides and deuterides,¹⁻³ some results for the tritide phases are now available.⁴⁻⁷ The present paper summarizes extensive nuclear magnetic resonance (NMR) measurements on the two tritide compositions VT_{0.50} and VT_{0.75} as well as the corresponding hydrides VH_{0.50} and VH_{0.76}. Isotope effects in the phase transitions and diffusion properties were

obtained from the temperature dependences of the proton and triton relaxation times. Furthermore, the relaxation times of the tritium decay product (i.e., ³He -- the light helium isotope) have been monitored for several years in both VT_{0.50} and VT_{0.75}. The age dependences of the ³He relaxation times are very similar to the behavior previously observed in several other metal tritides.⁸⁻¹⁰ The rather substantial quantities of helium that are retained in the VT_x samples are believed to be in the form of very high pressure microscopic gas bubbles.⁸⁻¹⁰ This conclusion is consistent with recent transmission electron microscopy (TEM) studies¹¹ in VT_x. The ³He relaxation times have also indicated that the mean radius of the helium bubbles in VT_x has increased by a factor of about three between 100 and 1600 days.

EXPERIMENTAL SECTION

All of the V(H,T)_x samples had been prepared from the same rod of zone-refined vanadium metal that was purchased from Materials Research Corporation, Orangebury, New York. Synthesis details as well as summaries of various properties of the VH_x and VT_x samples have been published.⁴ The powders were sealed in 7-mm and 9-mm o.d. evacuated glass tubes for the NMR measurements. The pulsed NMR techniques and spectrometer that were used to measure the

^aPresent address: Chemistry and Physics Laboratory, The Aerospace Corporation, Los Angeles, CA 90009
(213)-648-5051

spin-lattice (T_1) and spin-spin (T_{2m}) relaxation times have also been previously described.^{4,5,8} Although some T_1 values were determined at several resonance frequencies,^{4,5} most of the proton and triton relaxation time data were obtained at 34.5 MHz. In order to minimize deleterious effects from helium generation, all of the triton data were collected within a few weeks after synthesis. All of the ^3He NMR experiments were performed at a resonance frequency of 45.7 MHz and ^3He data were obtained only at room temperature. After the completion of the NMR studies, each VT_x sample was analyzed for its final composition. Portions of the powders were thermally decomposed by induction heating to a nominal maximum temperature of about 1000°C in a calibrated volumetric system based upon an all metal Töpler pump. The compositions of the evolved gases were determined by mass spectrographic analysis.

RESULTS AND DISCUSSIONS

Summaries of the phase transitions for $\text{V}(\text{H},\text{D},\text{T})_{0.50}$ and $\text{V}(\text{H},\text{D},\text{T})_{0.75}$ are presented in Table I where the phase compositions and transition temperatures are based upon previous resistivity, thermal analysis, x-ray and neutron diffraction, microscopy, and NMR measurements.¹⁻⁴ Detailed descriptions of the various phases are available in Refs. 1-4. The α -phases are body-centered cubic where the hydrogen isotopes predominantly occupy the tetrahedral interstitial sites in a statistically random fashion.¹ All of the other $\text{V}(\text{H},\text{D},\text{T})_x$ phases result from at least partial ordering on either octahedral sites (i.e., β_{H} , β_{D} , β_{T} , δ_{H} , and ϵ_{H}) or tetrahedral sites (i.e., γ_{D} , δ_{D} , ζ_{D} , and presumably analogous phases for $\text{VT}_{0.75}$) which generate tetragonal or orthorhombic distortions of the vanadium lattice.^{1,4} The low-temperature phase compositions of $\text{VT}_{0.50}$ and $\text{VT}_{0.75}$ have not been definitely established but are based⁴ upon the character of the triton relaxation times and expected analogies to the VD_x phases. Further work is needed to complete the VT_x phase diagram.

Table I.¹ Summary of phase transitions for several isotopic vanadium-hydrogen compositions. Transition temperatures correspond to a heating sequence. Descriptions of various phases are given in References 1-4.

$\beta_{\text{H}}-\text{VH}_{0.50}$	$\frac{446 \text{ K}}{407 \text{ K}}$	$\epsilon_{\text{H}}-\text{VH}_{0.50}$	$\frac{470 \text{ K}}{455 \text{ K}}$	$\alpha_{\text{H}}-\text{VH}_{0.50}$
$\beta_{\text{D}}-\text{VD}_{0.50}$		$\alpha_{\text{D}}-\text{VD}_{0.50}$		
$\beta_{\text{T}}-\text{VT}_{0.50}$	$\frac{372 \text{ K}}{210 \text{ K}}$	$\alpha_{\text{T}}-\text{VT}_{0.50}$		
$\delta_{\text{H}}-\text{VH}_{0.75}$		$\epsilon_{\text{H}}-\text{VH}_{0.75}$	$\frac{455 \text{ K}}{211 \text{ K}}$	$\alpha_{\text{H}}-\text{VH}_{0.75}$
$\alpha_{\text{D}}-\text{VD}_{0.75}$	$\frac{151 \text{ K}}{217 \text{ K}}$	$\delta_{\text{D}}-\text{VD}_{0.75}$	$\frac{211 \text{ K}}{\alpha_{\text{D}}-\text{VD}_{0.75}}$	$\zeta_{\text{D}}-\text{VD}_{0.75}$
$\delta_{\text{T}}-\text{VT}_{0.75}$	$\frac{?}{225 \text{ K}}$	$\zeta_{\text{T}}-\text{VT}_{0.75}$	$\frac{225 \text{ K}}{\alpha_{\text{T}}-\text{VT}_{0.75}}$	

Since the NMR relaxation times for $\text{VH}_{0.50}$ and $\text{VT}_{0.50}$ have been previously compared in some detail,⁵ the temperature dependent behavior of the relaxation times for $\text{VH}_{0.76}$ and $\text{VT}_{0.75}$ is emphasized in the present paper. Figures 1 and 2 present the T_1 and T_{2m} data for these samples. Within experimental accuracy all the T_1 magnetization recoveries were exponential throughout the measured temperature ranges for both samples in contrast to the regions of nonexponential T_1 behavior previously found^{4,5} for $\text{VT}_{0.50}$.¹² The frequency dependent T_1 minima indicate¹² that diffusion is the primary spin relaxation process for both systems. The temperature behavior of the T_{2m} parameters is also consistent¹² with substantial proton and triton mobilities for temperatures above 150 K. However, the temperatures of the T_1 minima are significantly different (i.e., 282 K for $\text{VH}_{0.76}$ and 217 K for $\text{VT}_{0.75}$ at 34.5 MHz) which implies isotopic differences in the proton and triton diffusion parameters. This view is supported by the activation energies (E_a) obtained from conventional analyses^{5,12} of the proton and triton relaxation times. The available E_a values for several $\text{V}(\text{H},\text{D},\text{T})_x$ compositions are compared in Table II along with the expected phase and interstitial site occupancy. The results for $\text{V}(\text{H},\text{D},\text{T})_{\sim 0}$ are

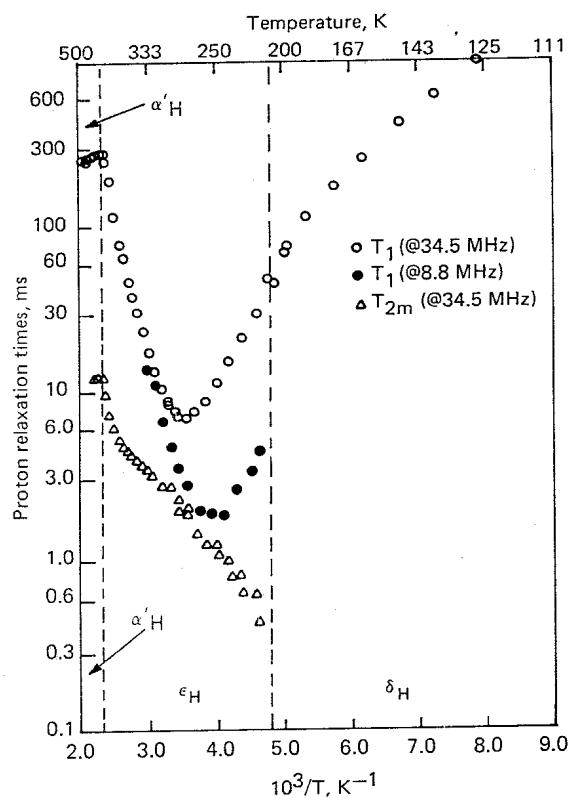


Fig. 1. Proton relaxation times for $VH_{0.76}$ that were obtained during cooling sequences. The vertical dashed lines indicate the transitions between the hydride phases from References 1-3.

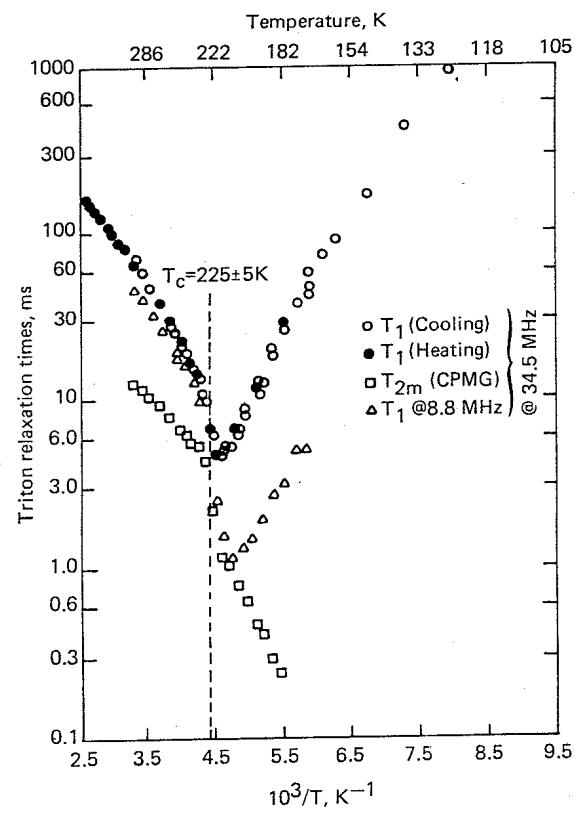


Fig. 2. Triton relaxation times for $VT_{0.75}$ obtained during heating and cooling cycles. A phase transition from the high temperature α_T phase is indicated at 225 ± 5 K; however, no significant changes in the T_1 and T_{2m} data are observed at the expected $T_1 \rightarrow \delta_T$ phase transitions that would be analogous to $VD_{0.75}$ behavior.

Table II - Comparison of isotope effects in diffusion activation energy (E_a) for vanadium-hydrogen phases.

Sample Composition	Phase	Hydrogen Site Occupancy	E (meV)	Temperature Range	Method
$VH_{\sim 0}$	αH	Tetrahedral	45 ± 3	140 K-570 K	Gorsky ^a
$VD_{\sim 0}$	αD	Tetrahedral	73 ± 3	175 K-570 K	Gorsky ^a
$VT_{\sim 0}$	αT	Tetrahedral	94 ± 7	133 K-373 K	Gorsky ^a
$VH_{0.50}$	βH	Octahedral	410 ± 20	320 K-400 K	NMR(T_1)
$VT_{0.50}$	βT	Octahedral	310 ± 30	290 K-345 K	NMR(T_1)
$VH_{0.76}$	ϵH	Octahedral	260 ± 15	280 K-450 K	NMR(T_1)
$VH_{0.76}$	ϵH	Octahedral	180 ± 10	210 K-280 K	NMR(T_1)
$VT_{0.75}$	αT	Tetrahedral	160 ± 10	230 K-380 K	NMR(T_1)
$VT_{0.75}$	$\delta T(?)$	Tetrahedral	185 ± 15	150 K-210 K	NMR(T_1)

^aReference 6.

from Grosky effect measurements⁶ while the E_a values for $VH_{0.50}$ and $VT_{0.50}$ are from the previous NMR studies.⁵

Several interesting isotope effects for the diffusion activation energies are apparent in Table II. First, E_a increases rapidly with isotope mass in the low limit concentrations, whereas the opposite trend is observed for $x = 0.50$ and $x \approx 0.75$. Neither semi-classical nor current quantum theories can provide a satisfactory and quantitative description of the hydrogen diffusion processes in the bcc metals V, Nb, or Ta although polaron models¹³ do give qualitative understanding for much of the experimental results.⁶ For $x = 0.50$, the smaller E_a for the tritide has been attributed⁵ to increased disorder of the tritons among the interstitial sites of the β_T -phase which is reflected in more rapid mobilities and lower effective diffusion activation energies than are observed in the more highly ordered β_H -phase of $VH_{0.50}$. The smaller E_a for ϵ_H - $VH_{0.76}$ is also consistent with a direct correlation between more rapid motion (i.e., smaller E_a values) and increased disorder since the protons in the ϵ_H -phase are randomly distributed over all the Oz octahedral sites but the protons are ordered¹ on a subset of octahedral sites (i.e., Oz_1) in β_H - $VH_{0.50}$. From the phase boundaries given in Figure 1, it is clear that E_a values for the $VH_{0.76}$ sample correspond to the diffusion behavior in the ϵ_H -phase. The different E_a values obtained above and below the T_1 minima for ϵ_H - $VH_{0.76}$ are believed to reflect complications that arise from the simultaneous presence of short-range and long-range jump processes with differing activation energies.¹⁴ However, the E_a values for $VT_{0.75}$ correspond to diffusion in the disordered α -phase above 225 K and one or more of the ordered phases for temperatures below 210 K. The relatively small E_a values and rapid triton mobilities observed for the $VT_{0.75}$ phases are probably consequences of preferred triton occupancies on tetrahedral sites. Similar diffusion parameters have been

reported^{6,15} for hydrogen isotopes in NbH_x and TaH_x where tetrahedral interstitial site occupancy is also dominant.¹ From the E_a values in Table II, we conclude that disorder among the tetrahedral sites in $VT_{0.75}$ has only minor influence on diffusion activation energies in contrast to the large effects found for diffusion among the octahedral interstitial sites of the β and ϵ_H phases. The effect of hydrogen isotope concentration can be ascertained only for α -phase VT_x where E_a increases by a factor of 1.7 between $x = 0$ and $x = 0.75$. Similar comparisons of the published data^{6,15} for α - NbH_x and α - TaH_x yield increases of 1.6 and 1.3, respectively. These larger values of E_a are probably related to the contributions of hydrogen-hydrogen repulsive interactions to the diffusion process.¹⁵ Consequently, the systematic reduction of this effect with the increased mass of the host metal is particularly intriguing and warrants further detailed study for all the hydrogen isotopes in these three metals.

The room temperature 3 He relaxation times T_1 and T_{2m} for the two VT_x samples are summarized in Figure 3. Although both parameters increase with age (i.e., helium content), T_{2m} increases roughly twice as fast as T_1 while both parameters are essentially constant after about 1800 days. Similar behavior for the 3 He relaxation times has been previously observed^{8,10} in the tritides of Ti, Li, and U and has been related⁸ to the formation and growth of microscopic (i.e., mean diameters ≤ 10 nm) bubbles of very high pressure helium gas. The present 3 He relaxation times in VT_x are completely consistent with this model. In fact, recent high-resolution TEM measurements¹¹ on β - VT_x have detected large concentrations of 1-2 nm diameter helium bubbles after only 100 days of tritium decay. From the increases in the 3 He relaxation times, it is estimated that the mean bubble diameters in both VT_x samples increase by approximately a factor of three

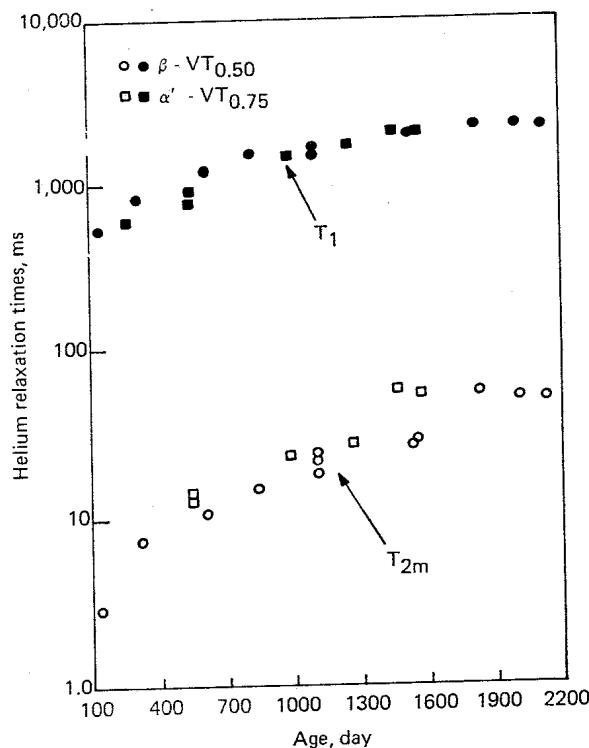


Fig. 3. Room temperature ^3He relaxation times T_1 (closed symbols) and T_{2m} (open symbols) for the VT_x samples.

between 100 and 1500 days but remain essentially constant at about 5-6 nm after 1800 days for $\text{VT}_{0.50}$. This latter behavior probably reflects the irreversible rupture of the largest bubbles to release the helium from the solid as was originally proposed⁸ for helium retention in UT_3 .

The ^3He contents in VT_x , obtained from non-destructive NMR spin counts as well as thermal desorption experiments, are compared in Figure 4 to the predicted amount of ^3He generated by tritium decay. Both techniques yielded ^3He contents below the predictions although the uncertainty of the spin counts is about 10 to 20%. Because the ^3He relaxation times had been constant for the previous several hundred days (i.e., corresponding to the continual rupture of the largest helium bubbles), the substantial release of ^3He gas observed after 2000 days at

room temperature is not particularly surprising. However, the absence of significant ^3He contents in the gases evolved from 600-day old $\text{VT}_{0.50}$, and the very low quantity of ^3He obtained from the $\text{VT}_{0.75}$ after 1320 days is inconsistent with the essentially normal NMR signal amplitudes observed during the ^3He relaxation time experiments performed over this time period. Consequently, it is strongly suspected that not all of the helium is being released at the highest temperatures (i.e., approximately 1000°C) of the thermal desorption experiments on the younger samples. Because helium should be much more deeply trapped in isolated defects (e.g., vacancies) or very small clusters (i.e., bubble precursors), the presence of larger bubbles would facilitate helium release at lower temperatures for the older samples. This explanation qualitatively reconciles the NMR spin count and thermal desorption results in Figure 4, and it is consistent with the ^3He increasing bubble size implied by the ^3He relaxation times in Figure 3. However, it is

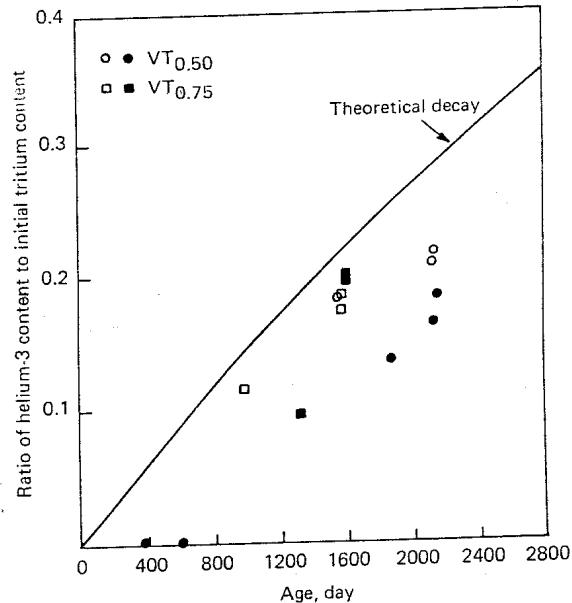


Fig. 4. Normalized helium-3 contents in VT_x samples from ^3He NMR spin-counts (open symbols) and thermal desorption measurements (closed symbols). The solid curve represents helium generated in VT_x from tritium radioactive decay.

presently impossible to estimate quantitatively how much of the helium not detected by the thermal desorption experiments was actually deeply trapped. From comparisons of the spin count and thermal desorption data in Figure 4, it appears that the VT_{0.75} sample had released some (i.e., about 10 to 15%) of its helium content after 1600 days at room temperature, and subsequently released essentially all of its helium when heated to 1000°C. On the other hand, 2100-day old VT_{0.50} has apparently released about 25% of its helium at room temperature, but it had also retained more helium (i.e., roughly 10%) during the 1000°C desorption. Because VT_{0.75} generates helium at a rate about 1.5 times faster than VT_{0.50} (where the small differences⁴ in lattice volumes are ignored), nominally identical quantities of helium had been formed and the above differences cannot be readily attributed to any major variation in total helium concentration. Furthermore, the ³He relaxation times from Figure 3 indicate the mean bubble radii are also comparable. Hence, other factors, which currently remain unidentified, can also influence the specific mechanisms for helium release. More information on the effects of stoichiometry, phase composition, etc., on the distribution of helium bubbles and other defects will be required to resolve this issue.

ACKNOWLEDGEMENTS

The assistance of W. E. Tadlock, R. L. Yauger, R. H. Steinmeyer, and N. L. Hoseus with the preparation and analysis of the materials is appreciated. MRC-Mound is operated by Monsanto Research Corporation for the U. S. Department of Energy under Contract No. DE-AC04-76DP00053.

REFERENCES

1. T. SCHÖBER and H. WENZL, "The Systems NbH(D), TaH(D), VH(D): Structures, Phase Diagrams, Morphologies, Methods of Preparation," in Hydrogen in Metals II, G. Alefeld and J. Volkl, eds., Springer-Verlag, Berlin (1978), p. 2.
2. M. W. PERSHING, G. BAMBAKIDIS, J. F. THOMAS, JR., and R. C. BOWMAN, JR., "Resistometric Determination of Phase Transformations in VH and VD," J. Less-Common Met., 75, 207 (1980).
3. W. PESCH, T. SCHÖBER, and H. WENZL, "A TEM Study of the Phase Diagrams VH and VD," Scripta Met., 17, 307 (1982).
4. R. C. BOWMAN, JR., A. ATTALLA, W. E. TADLOCK, D. B. SULLINGER, and R. L. YAUGER, "NMR Study of Phase Transitions in VT_{0.50} and VT_{0.75}," Scripta Met., 16, 933 (1982).
5. R. C. BOWMAN, JR., A. ATTALLA, and B. D. CRAFT, "Unusual Isotope Effects for Diffusion in VH_{0.50} and VT_{0.50}," Scripta Met., 17, 937 (1983).
6. Z. QI, J. VOLKL, R. LASSE, and H. WENZL, "Tritium Diffusion in V, Nb, and Ta," J. Phys. F: Met. Phys., 13, 2053 (1983).
7. R. LASSE and K. BICKMANN, "Determination of the Terminal Solubility of Tritium in Vanadium," J. Nucl. Mater., 126, 234 (1984).
8. R. C. BOWMAN, JR., and A. ATTALLA, "NMR Studies of the Helium Distribution in Uranium Tritide," Phys. Rev. B, 16, 1828 (1977).
9. R. C. BOWMAN, JR., "Distribution of Helium in Metal Tritides," Nature, 271, 531 (1978).
10. A. ATTALLA and R. C. BOWMAN, JR., "Effects of Time and Temperature on the Retention and Distribution of Helium in Metal Tritides," Proc. Tritium Tech. In Fission, Fusion, and Isotopic Applications, U. S. DOE Document No. CONF-800427, p. 108 (1980).
11. W. JÄGER, R. LASSE, T. SCHÖBER, and G. J. THOMAS, "Formation of Helium Bubbles and Dislocation Loops in Tritium-Charged Vanadium," Radiation Effects, 78, 165 (1983); T. SCHÖBER, R. LASSE, W. JÄGER, and G. J. THOMAS, "An Electron Microscopy Study of Tritium Decay in Vanadium," J. Nucl. Mater., 122 and 123, 571 (1984).
12. R. C. BOWMAN, JR., "Hydrogen Mobility at High Concentrations," in Metal Hydrides, B. Bambakidis, ed., Plenum, New York (1981), p. 109.
13. D. EMIN, M. I. BASKES, and W. D. WILSON, "Small-Polaronic Diffusion of Light Interstitials in bcc Metals," Phys. Rev. Lett., 42, 791 (1979).

14. F. E. SPADA, H. OESTERREICHER, R. C. BOWMAN, JR., and M. P. GUSE, "Hydrogen Site Occupancy and Hydrogen Diffusion in $\text{LaNi}_4\text{BH}_{1.5}$," Phys. Rev. B, 30, 4909 (1984).

15. P. E. MAUGER, W. D. WILLIAMS, and R. M. COTTS, "Diffusion and NMR Spin Lattice Relaxation of ^1H in α' TaH_x and NbH_x ," J. Phys. Chem. Solids, 42, 821 (1981).