LA-UR- 092 5973

Approved for public release;
distribution is unlimited.

Title: | APPLICATIONS OF OPERATIONAL CALCULUS:
TRIGONOMETRIC INTERPOLATING EQUATION
FOR THE EIGHT-POINT CUBE

Author(s): | GARY L. SILVER

Intended for: | APPLIED MATHEMATICAL SCIENCES

e
/Lo2 Alamos

NATIONAL LABORATORY
EST.1943

Los Alamos National Laboratory, an affirmative aclion/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Depariment of Energy under contract DE-AC52-06NA25396. By acceplance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royaity-free license to publish or reproduce the
published form of this contribulion, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requesls
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publicalion or guarantee its technical correctness.

Form 836 (7/06)



(Applied Mathematical Sciences)

APPLICATIONS OF OPERATIONAL CALCULUS:
TRIGONOMETRIC INTERPOLATING EQUATION

FOR THE EIGHT-POINT CUBE

by

G. L. Silver
Los Alamos National Laboratory*
P.O. Box 1663, MS E502
Los Alamos, NM 87545
Tel.: 1-505-667-5656
FAX: 1-505-667-7966

gsilver(@lanl.gov

*Los Alamos National Laboratory is operated by the Los Alamos National Security,
LLC for the National Nuclear Security Administration of the U.S. Department of

Energy under Contract No. DE-AC52-06NA25396.



ABSTRACT

A general method for obtaining a trigonometric-type interpolating
equation for the eight-point cubical array 1s illustrated. It can often

be used to reproduce a ninth datum at an arbitrary point near the
center of the array by adjusting a variable exponent. The new method
complements operational polynomial and exponential methods for the

same design.

Mathematics subject classification: 65D07, 65D17
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1. Introduction

This paper describes a new method for interpolating eight data in a cubical array
by means of the circular or hyperbolic functions. It depends on reinterpreting the
identities of trigonometry as finite-difference equations by means of the shifting
operator, exp(x)F(x)=F(x+h) [1]. The operational polynomial- and exponential-type
equations for the eight-point array are invariant under data translation and rotation but
the trigonometric-types do not have the advantage of translational invariance [2,3,4].
Literature related to the interpolation of the eight-point cube is limited in scope. This
paper continues previous expositions on interpolation of data in geometric arrays by

shifting-operator derived equations.

2. The eight-point cube

A recent manuscript summarizes a trigonometric-type equation for interpolating
numbers arranged at the vertices of a cube [3]. It is based on the identities in Egs. (1a)
and (2a) and their operational interpretations in Egs. (1b) and (2b), respectively. Egs.
(1b) and (2b) yield Eq. (3). The three finite-difference equations (1b), (2b), (3) apply to
the 9-point rectangle in Fig. 1. A capital letter like A presently represents a location in

the rectangle as well as the datum at the same place. See Fig. 1.

(2)sin(x)cos(x)cos(x+y) — (2)sin(x+y)cos(x)* + sin(x+y) = sin(x—y) (1a)

(F-D)(F+D)(I+A) — (I-A)(F+D)? + 2EXI-A) = 2E*(C-G) (1b)



(2)sin(x)cos(x)cos(y—x) + (2)cos(x)%sin(y—x) — sin(y-x) = sin(x+y) (2a)
(F-D)(F+D)(G+C) + (F+D)*(G-C) = 2E(G-C+-A) (2b)

E? = [FD(I+G-A-C)-F*(A-G)-D*(C-1)] / [2(I-A-C+G)] (3)

The substitution D=F(A+G)/(I+C) simplifies Eq. (3) [3]. The simplified form
can be solved for F as in Eq. (4). See Fig. 1. Choose the positive solution because most
laboratory data are positive numbers. Eq. (4) can be re-interpreted as a relationship in
three dimensions as in Eq. (5). See Fig. 2. The notation BDIG denotes an estimate of the
center point of the right-hand face of the cube. In three dimensions, a single letter
represents a number at the corresponding vertex of the cube in Fig. 2. A double-letter

combination like AB represents the product of two vertex-point numbers.

F=E(C+D)SQRT[(A+C-G-1)/((A+C+G+I)(AC-GI))] 4)

BDIG = E(B + )SQRT[(A + B~ H~1)/ (A + B +H+I)(AB -HI))] (5)

Equation (5) has the disadvantage that it represents only five numbers in the
cube. However, the cube can be rotated through a right angle to obtain a second

representation of BDIG as illustrated by Eq. (6).

BDIG = E(G + D)SQRT[(F + G — C — D)/ ((F + G + C + D)(FG — CD))] (6)



The product of Egs. (5) and (6) generate a new representation of BDIG as in Eq.
(7). Eq. (8) is obtained in a similar manner or, more easily, by rotation of the cube in
Fig. 2. Similar expressions for the midpoints of the remaining faces of the cube appear

as Egs. (9)-(12). See also Egs. (29)-(37) in Ref. [3].

BDIG = E[(B+I)(D+G)Q,]""? (7
ACHF = E[(C+F)(A+H)Q,]""? (8)
ABGF = E[(A+G)(B+F)Qs]""? )
CDIH = E[(D+H)(C+1)Q5]"? (10)
ABDC = E[(B+C)(A+D)Qs]""? (11)
FGIH= E[(F+I)(G+H)Qs]""? (12)

Qi = (H+I-A-B)(F+G-C-D) / ((A+B+H+I)(HI-AB)(F+G+C+D)(FG-CD)))""®  (13)
Q; = ((F+H-B-D)(G+-A-C) / ((B+D+F+H)(FH-BD)(A+C+GH)(GI-AC)))'"?  (14)

Qs = ((C+H-B-G)(A+F-D-I) / ((B+G+C+H)(CH-BG)(D+I+A+F)(AF-DI)))"®  (15)

The scale of the three-dimensional (x,y,z) coordinate system in Fig. 2 is (-1 .. 1).
The effect of a change in a particular direction is reflected in the coefficient of the
corresponding parameter in the function representing the cube. The hyperbolic cosines
of the x-, y-, and z- coefficients are (BDIG + ACHF)/(2E), (CDIH + ABGF)/(2E), and

(FGIH + ABDC)/(2E), respectively. The letter E disappears from the three ratios.



In principle, many trigonometric-type equations for the eight-point cube could
be generated by seeking replacements for Egs. (1a) and (2a). In practice, a variety can
be generated more easily. Define new terms called T; and T,. A new series of six terms
denoted by W, are ratios of Ty and T, as in Egs. (16)-(18). Only W, is defined by T

and T, as they are presently written. NN in the exponent (NN/4) remains to be assigned.

T) = (AH+CF-IB-DG)*(I+B+D+G)"

/ [(4(F+1+A+C+G+H+D+B)*(F-I+A+C-G+H-D-B)%)] (16)
T, = (I+B)*(D+G)*(AH-IB)(CF-DG)

/ [(F+C+G+D)(F+C~G-D)(A-B-+H-I)(A+B+H+1)] (17)

W, = (T)/T)NNV9 (18)

In the preceding expressions, a double-letter combination (except NN) is the
product of two numbers at the corresponding vertices of the cube. See Fig. 2. Rearrange
the letters in W) in order to define W,. Where the letter A occurs in Wy, change it to D,
where the letter B occurs in W, change it to C, and so on according to Egs. (19)-(24).
That is, the sequence (A,B,C,D,F,G,H,I) in W, becomes the new sequence (D,C,B,A,

LH,G,F) in W,. Use the correspondences in Egs. (19)-(24) to define W, .. Wg.

Wi: (AB,C,D,F,G,H,]) — (A,B,C,D,F,GH,]) (19)
W»: (A,B,C,D,F,G,H,]) — (D,C,B,A,LH,G,F) (20)
Ws: (A,B,C,D,F,G,H,I) - (C,A,D,B,H,F,1,G) (21)



Ws: (A,B,C,D,F,GH,]) — (B,D,A,C,G,LLF,H) (22)
WS: (A,B,C,D,F,G,H,l) - (H,C,I,D,F,A,G,B) (23)

We: (A,B,C,D,F,GH,I) — (D,I,C;H,B,G,A,F) (24)

Egs. (25)-(30) are new expressions for the center points of the cube faces in Fig.
2. They are more versatile than the forms as in Eqs. (7)-(12). The letter E vanishes (see

above) on evaluating the arccosh function making the procedure an 8-point method.

BDIG = (W)E[(B+)(D+G)Qi]"? (25)
ACHF = (W,)E[(C+F)(A+H)Q;]"? (26)
ABGF = (W;)E[(A+G)(B+F)Q;]"? (27)
CDIH = (W4)E[(D+H)(C+)Qs]"? (28)
ABDC = (Ws)E[(B+C)(A+D)Qs]""? (29)
FGIH = (W¢)E[(F+I)(G+H)Qs]""? (30)

The left-hand members of Egs. (25)-(30) are used to generate new expressions
for the numerical coefficients of the x-, y-, and z-parameters in the interpolating
equation. They are listed as Eqs. (31)-(33), respectively. If the argument of an arccosh
function is less than unity, replace it with the arccos notation so that p, ¢, and r are real
numbers. Then replace sinh and cosh by sine and cosine, respectively, in the
interpolating equation. Choose another method if the arguments of the arcos or arccosh

functions are complex numbers that do not represent artifacts of calculation precision.



p = arccosh((BDIG+ACHF)/(2E)) (31)
q = arccosh((CDIH+ABGF)/(2E)) (32)

r = arccosh((FGIH+ABDC)/(2E)) (33)

Use Eq. (28) in Ref. [3] to determine the numerical interpolating equation for
the eight-point cube in Fig. 2. Note that p, g, and » in Egs. (31)-(33) replace p, g, and r
in the cited Eq. (28). The numerical coefficients denoted J, K, M, N, S, T, U, V are
explained in the text following the cited Eq. (28). The same coefficients also apply in
the present method. All the W coefficients are unity when positive trilinear numbers at

vertices A-1in Fig. 2 are arguments of functions such as 2%, sin(10x°), sinh(x/4).

For example, let trial data be 13,23, 3%, 4° at vertices A-D, and 6°, 73, 8%, and 9°
be the data at vertices F-I, respectively, in Fig. 2. Eq. (38) in Ref. [3] results when the
exponent NN is zero. Note that the cited Eq. (38) does not reproduce the center point
datum (R=53:125) when (x, y, z) are (0, 0, 0), respectively. Instead, it yields R=116.4,

nearly. A merit of the present method lies in the adjustable nature of exponent NN.

The introduction of exponent NN and six parameters denoted W yields a new
interpolating equation that has more flexibility than Eq. (28) in Ref. [3]. The exponent

NN can often be used to satisfy an arbitrary criterion. For example, let NN be



assigned a new value: NN=(-0.6142). The new interpolating equation, for the same trial
data, is equation is Eq. (34). At (x,y,2)=(0,0,0) it renders R=125.0, nearly. In this case,
Eq. (34) applies to the nine-point array in Fig. 2. The arbitrarily introduced criterion
(that E should be close to 53=125) was satisfied by means of generating a new
interpolating equation by changing the value of exponent NN. The value of NN is
adjusted until the prediction of Eq. (34) at (x,y,z) = (0,0,0) is satisfactorily close to the

datum at E.

R = (125.0)c0s(0.2747x)cosh(0.3673y)cosh(1.224z) +
(90.56)sin(0.2747x)cosh(0.3673y)cosh(1.224z) +
(142.9)c0s(0.2747x)sinh(0.3673y)cosh(1.224z) +
(133.0)c0s(0.2747x)cosh(0.3673y)sinh(1.224z) +
(79.65)sin(0.2747x)sinh(0.3673y)cosh(1.224z) +
(83.27)sin(0.2747x)cosh(0.3673y)sinh(1.224z) +
(133.5)c0s(0.2747x)sinh(0.3673y)sinh(1.224z) +

(47.36)sin(0.2747x)sinh(0.3673y)sinh(1.224z) (34)

Suppose it is desired to generate an equation that yields R=128.0 when
(x,y,2)=(0,0,0.1). The proper value of exponent NN is again found by trial and error. It
is NN=(0.2968), nearly. The illustrated method is versatile and easy to apply. The

present assignments for Ty, T;, and W, .. W are not the only possible choices.



A property of the present trigonometric form is that it predicts the center point
correctly whenever the data are derived from certain common functions with linear
numbers as their arguments. Those functions include 27, sin(x), cos(x), sinh(x), and
cosh(x). Egs. (16)-(18) have the merit of preserving this property for any value of the
exponent NN. Let the eight trial data be the sines of 10° .. 40° as A .. D and 50° ..90° as
F .. Tin Fig. 2, respectively. The equation representing the cube of sines is Eq. (35). It
has J~0.08727x, K~0.1745y, 1.~0.4363z. Eq. (35) is maintained no matter what number
is assigned to exponent NN. The described property is also maintained when the linear
numbers x=1 ... 4, and 6 ... 9 are assigned to 2" in order to generate new trial data at
vertices A .. D and F .. I, respectively. Equations such as Eq. (35) reproduce the original

data and are invariant under data rotation by not under data translation.

R = (0.7660)cos(J)cos(K)cos(L) + (0.6428)cos(J)cos(K)sin(L) +
(0.6428)cos(J)sin(K)cos(L) — (0.7660)cos(J)sin(K)sin(L) +
(0.6428)sin(J)cos(K)cos(L) — (0.7660)sin(J)cos(K)sin(L) —

(0.7660)sin(J)sin(K)cos(L) — (0.6428)sin(J)sin(K)sin(L) (35)

4. Discussion
As illustrated in this manuscript and the literature citations, the operational
method represents a new approach to interpolation of data in geometric arrays. Its

results are potentially useful in applications such as the estimation of curvature
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coefficients and other forms of data analysis. The literature citations refer solely to
shifting-operator methods because they are so new, because there are few alternative,
familiar approaches that are so versatile and easy to apply, and because shifting-

operator methodology is a new way to study problems in applied geometry.

The algorithm described in this paper may seem to be tedious to prepare. To
lessen the tedium, and illustrate the method, the author can supply a Maple® worksheet
that executes all of the calculations and delivers the trigonometric interpolating equation
[6]. The user must supply the eight data in cubical array and choose a value for NN.
Another way to adjust the algorithm to accommodate a ninth datum is by means of a

translating term. That method has been described in Ref. [7].

Table 1 illustrates the sums of squares of deviations of four equations for
interpolating the eight-point cube: (1) the trilinear equation, (2) the quadratic equation
appearing as Eq. (10) in Ref. [3], the cubic polynomial equation appearing as Eq. (1) in
Ref. [5], and (4) the trigonometric equation derived as illustrated in this paper. The
trigonometric equation uses NN=0. The trial data are generated by simple, monotonic
functions applied to the integers 1 .. 4,and 6 .. 9 as A .. D and F .. G, respectively, as in
Fig. 2. As can be observed by the tabulated results, the operational equations often have

lower sums of squares of deviations than the trilinear equation.
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Table 1. Approximate sums of squares of deviations of four modeling surfaces from
typical trial surfaces. The equations are based on different approaches to the eight-point
cube. The data are generated by applying the listed functions to the integers 1 .. 4 and 6
.. 9 atvertices A .. D and F .. I, respectively, as in Fig. 2. The coefficient NN in the

trigonometric equation is taken as NN=0 [3,5].

Function* Trilinear Quadratic Cubic Trigonometric
equation equation equation (this paper)
M* 229 0 0 17.6
M’ 52600 1200 0 3250
2 49600 10800 2540 0
sinh(M/2) 265 36.7 Tl2 0
tan(9M°) 4.89 155 0.418 0.443
cosh(M/2) 270 36.0 7.24 0
cosh(M/2) + M 270 36.0 7.24 1.47
(M)cosh(M/2) 28700 5180 1120 454
(5)sin(10M°) + 0.992 0.00670 0.00138 0
cos(10M°)

*M = (5+x/2+y+52/2)
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Fig. 1. The nine-point rectangle.
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Fig. 2. The eight-point cube.
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