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ABSTRACT 

A general method for obtaining a trigonometric-type interpolating 

equation for the eight-point cubical array is illustrated. It can often 

be used to reproduce a ninth datum at an arbitrary point near the 

center of the array by adjusting a variable exponent. The new method 

complements operational polynomial and exponential methods for the 

same design. 

Mathematics subject classification: 65D07, 65D 17 
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1. Introduction 

This paper describes a new method for interpolating eight data in a cubical array 

by means of the circular or hyperbolic functions. It depends on reinterpreting the 

identities of trigonometry as finite-difference equations by means of the shifting 

operator, exp(x)F(x)=F(x+h) [1]. The operational polynomial- and exponential-type 

equations for the eight-point array are invariant under data translation and rotation but 

the trigonometric-types do not have the advantage oftranslational invariance [2,3,4]. 

Literature related to the interpolation of the eight-point cube is limited in scope. This 

paper continues previous expositions on interpolation of data in geometric arrays by 

shifting-operator derived equations. 

2. The eight-point cube 

A recent manuscript summarizes a trigonometric-type equation for interpolating 

numbers arranged at the veltices of a cube [3]. It is based on the identities in Eqs. (1 a) 

and (2a) and their operational interpretations in Eqs. (1 b) and (2b), respectively. Eqs. 

(1 b) and (2b) yield Eq. (3). The three finite-difference equations (lb), (2b), (3) apply to 

the 9-point rectangle in Fig. 1. A capital letter like A presently represents a location in 

the rectangle as well as the datum at the same place. See Fig. 1. 

(2)sin(x)cos(x)cos(x+y) - (2)sin(x+y)cos(x)2 + sin(x+y) = sin(x-y) 

(F-D)(F+D)(I+A) - (I-A)(F+D)2 + 2E2(I-A) = 2E2(C-G) 

(la) 

(1b) 
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(2)sin(x)cos(x)cos(y-x) + (2)cos(x/sin(y-x) - sin(y-x) == sin(x+y) 

(F-D)(F+D)(G+C) + (F+D/(G-C) == 2E2(G-C+I-A) 

E2 = [FD(I+G-A-C)-F2(A- G)- D2(C-I)] / [2(I-A-C+G)] 

(2a) 

(2b) 

(3) 

The substitution D=F(A+G)/(I+C) simplifies Eq. (3) [3]. The simplified fonn 

can be solved for F as in Eq. (4). See Fig. 1. Choose the positive solution because most 

laboratory data are positive numbers. Eq. (4) can be re-interpreted as a relationship in 

three dimensions as in Eq. (5). See Fig. 2. The notation BDIG denotes an estimate of the 

center point of the right-hand face of the cube. In three dimensions, a single letter 

represents a number at the corresponding vertex of the cube in Fig. 2. A double-letter 

combination like AB represents the product of two vertex -point numbers. 

F == E(C + I)SQRT[(A + C - G - I) / ((A + C + G + I)(AC - GI))] 

BDIG = E(B + I)SQRT[(A + B - H - I) / ((A + B + H + I)(AB -HI))] 

Equation (5) has the disadvantage that it represents only five numbers in the 

cube. However, the cube can be rotated through a right angle to obtain a second 

representation of BDIG as illustrated by Eq. (6). 

BDIG = E(G + D)SQRT[(F + G - C - D) / ((F + G + C + D)(FG - CD))] 

(4) 

(5) 

(6) 
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The product ofEqs. (5) and (6) generate a new representation ofBDIG as in Eq. 

(7). Eq. (8) is obtained in a similar manner or, more easily, by rotation of the cube in 

Fig. 2. Similar expressions for the midpoints of the remaining faces of the cube appear 

as Eqs. (9)-(12). See also Eqs. (29)-(37) in Ref. [3]. 

BDIG = E[(B+I)(D+G)Ql](1I2) 

ACHF = E[(C+F)(A+H)Ql](1/2) 

ABGF = E[(A+G)(B+F)Q3](1I2) 

CDIH = E[(D+H)(C+I)Q3](1/2) 

ABDC = E[(B+C)(A+D)Qs](1I2) 

(7) 

(8) 

(9) 

(10) 

(11) 

FGIH= E[(F+I)(G+H)Qs](1 /2) (12) 

Ql = ((H+I-A-B)(F+G-C-D) I ((A+B+H+I)(HI-AB)(F+G+C+D)(FG-CD)))(\ /2) (13) 

Q3 = ((F+H-B-D)(G+I-A-C) I ((B+D+F+H)(FH-BD)(A+C+G+I)(GI-AC)))(\ /2) (14) 

Qs = ((C+H-B-G)(A+F-D-I) I ((B+G+C+H)(CH-BG)(D+I+A+F)(AF-DI)))(1 /2) (15) 

The scale of the three-dimensional (x,y,z) coordinate system in Fig. 2 is (-1 .. 1). 

The effect of a change in a particular direction is reflected in the coefficient of the 

corresponding parameter in the function representing the cube. The hyperbolic cosines 

of the X-, y-, and z- coefficients are (BDIG + ACHF)/(2E), (CDIH + ABGF)I(2E), and 

(FGIH + ABDC)/(2E), respectively. The letter E disappears from the three ratios . 
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In principle, many trigonometric-type equations for the eight-point cube could 

be generated by seeking replacements for Eqs. (1 a) and (2a). In practice, a variety can 

be generated more easily. Define new terms called T1 and T 2. A new series of six terms 

denoted by Wx are ratios ofT1 and T2 as in Eqs. (16)-(18). Only WI is defined by TI 

and T2 as they are presently written. NN in the exponent (NN/4) remains to be assigned. 

TI = (AH+CF-IB-DG)2(I+B+D+G)4 

I [( 4(F+I+ A +C +G+ H+D+B)\F-I+ A +C-G+ H-D-B/)] 

. T2 = (I+B)2(D+G)\AH-IB)(CF-DG) 

I [(F+C+G+D)(F+C-G-D)(A-B+H-I)(A +B+H+I)] 

WI = (TJ/TdNN/4
) 

(16) 

(17) 

(18) 

In the preceding expressions, a double-letter combination (except NN) is the 

product of two numbers at the corresponding vertices of the cube. See Fig. 2. Rearrange 

the letters in WI in order to define W2. Where the letter A occurs in WI, change it to D, 

where the letter B occurs in WI, change it to C, and so on according to Eqs. (19)-(24). 

That is, the sequence (A,B,C,D,F,G,H,I) in WI becomes the new sequence (D,C,B,A, 

I,H,G,F) in W2. Use the correspondences in Eqs. (19)-(24) to define W1 .. W6. 

WI: (A,B,C,D,F,G,H,I) ~ (A,B,C,D,F,G,H,I) 

W2: (A,B,C,D,F,G,H,I) ~ (D,C,B,A,I,H,G,F) 

W3: (A,B,C,D,F,G,H,I) ~ (C,A,D,B,H,F,I,G) 

(19) 

(20) 

(21) 
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W4 : (A,B,C,D,F,G,H,I) ~ (B,D,A,C,G,I,F,H) 

Ws: (A,B,C,D,F,G,H,I) ~ (H,C,I,D,F,A,G,B) 

W6: (A,B,C,D,F,G,H,I) ~ (D,I,C,H,B,G,A,F) 

(22) 

(23) 

(24) 

Eqs. (25)-(30) are new expressions for the center points of the cube faces in Fig. 

2. They are more versatile than the forms as in Eqs. (7)-(12). The letter E vanishes (see 

above) on evaluating the arccosh function making the procedure an 8-point method. 

BDIG = (W1)E[(B+I)(D+G)QJ](\ /2) (25) 

ACHF = (W2)E[(C+F)(A+H)QI](1 /2) (26) 

ABGF = (W3)E[(A+G)(B+F)Q3](1/2) (27) 

CDIH = (W4)E[(D+H)(C+I)Q3](1I2) (28) 

ABDC = (Ws)E[(B+C)(A+D)Qs](1 /2) (29) 

FGIH = (W6)E[(F+I)(G+H)Qs](1 /2) (30) 

The left-hand members ofEqs. (25)-(30) are used to generate new expressions 

for the numerical coefficients of the X-, y-, and z-parameters in the interpolating 

equation. They are listed as Eqs. (31 )-(33), respectively. If the argument of an arccosh 

function is less than unity, replace it with the arccos notation so that p, q, and r are real 

numbers. Then replace sinh and cosh by sine and cosine, respectively, in the 

interpolating equation. Choose another method if the arguments of the arcos or arccosh 

functions are complex numbers that do not represent artifacts of calculation precision. 
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p = arccosh((BDIG+ACHF)/(2E)) 

q = arccosh((CDIH+ABGF)/(2E)) 

r = arccosh((FGIH+ABDC)/(2E)) 

(31 ) 

(32) 

(33) 

Use Eq. (28) in Ref. [3] to detennine the numerical interpolating equation for 

the eight-point cube in Fig. 2. Note that p, q, and r in Eqs. (31 )-(33) replace p, q, and r 

in the cited Eq. (28). The numerical coefficients denoted J, K, M, N, S, T, U, V are 

explained in the text following the cited Eq. (28). The same coefficients also apply in 

the present method. All the W coefficients are unity when positive trilinear numbers at 

vertices A-I in Fig. 2 are arguments of functions such as 2'\ sin(10xO), sinh(x/4). 

For example, let trial data be 13,23,33,43 at vertices A-D, and 63
, 73

, 83
, and 93 

be the data at vertices F-I, respectively, in Fig. 2. Eq. (38) in Ref. [3] results when the 

exponent NN is zero. Note that the cited Eq. (38) does not reproduce the center point 

datum (R=53=125) when (x, y, z) are (0,0,0), respectively. Instead, it yields R=116.4, 

nearly. A merit of the present method lies in the adjustable nature of exponent NN. 

The introduction of exponent NN and six parameters denoted W yields a new 

interpolating equation that has more flexibility than Eq. (28) in Ref. [3]. The exponent 

NN can often be used to satisfy an arbitrary criterion. For example, let NN be 
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assigned a new value: NN=(-0.6142). The new interpolating equation, for the same trial 

data, is equation is Eq. (34). At (x,y,z)=(O,O,O) it renders R=125.0, nearly. In this case, 

Eq. (34) applies to the nine-point array in Fig. 2. The arbitrarily introduced criterion 

(that E should be close to 53=125) was satisfied by means of generating a new 

interpolating equation by changing the value of exponent NN. The value ofNN is 

adjusted until the prediction of Eq. (34) at (x,y,z) = (0,0,0) is satisfactorily close to the 

datum at E. 

R = (125.0)cos(0.2747x)cosh(0.3673y)cosh(1.224z) + 

(90.56)sin(0.2747x)cosh(0.3673y)cosh(1.224z) + 

(142.9)cos(0.2747x)sinh(0.3673y)cosh(1.224z) + 

(133.0)cos(0.2747x)cosh(0.3673y)sinh(1.224z) + 

(79.65)sin(0.2747x)sinh(0.3673y)cosh(1.224z) + 

(83.27)sin(0.2747x)cosh(0.3673y)sinh(1.224z) + 

(133.5)cos(0.2747x)sinh(0.3673y)sinh(1.224z) + 

(47 .36)sin(0.27 47x)sinh(0.3673 y)sinh(1.224z) (34) 

Suppose it is desired to generate an equation that yields R=128.0 when 

(x,y,z)=(O,O,O.l). The proper value of exponent NN is again found by trial and error. It 

is NN=(0.2968), nearly. The illustrated method is versatile and easy to apply. The 

present assignments for TI, T2, and WI .. W6 are not the only possible choices. 
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A property of the present trigonometric form is that it predicts the center point 

correctly whenever the data are derived from certain common functions with linear 

numbers as their arguments. Those functions include 2\ sin(x), cos(x), sinh(x), and 

cosh(x). Eqs. (16)-(18) have the merit of preserving this property for any value of the 

exponent NN. Let the eight trial data be the sines of 100 
•• 400 as A .. D and 500 

.• 900 as 

F .. I in Fig. 2, respectively. The equation representing the cube of sines is Eq. (35). It 

has J~0.08727x, K~0.1745y, L~0.4363z. Eq. (35) is maintained no matter what nlUTIber 

is assigned to exponent NN. The described property is also maintained when the linear 

numbers x=l . . . 4, and 6 ... 9 are assigned to 2x in order to generate new trial data at 

vertices A .. D and F .. I, respectively. Equations such as Eq. (35) reproduce the original 

data and are invariant under data rotation by not under data translation. 

R = (0.7660)cos(J)cos(K)cos(L) + (0.6428)cos(J)cos(K)sin(L) + 

(0.6428)cos(J)sin(K)cos(L) - (0.7660)cos(J)sin(K)sin(L) + 

(0.6428)sin(J)cos(K)cos(L) - (0.7660)sin(J)cos(K)sin(L)­

(0.7660)sin(J)sin(K)cos(L) - (0.6428)sin(J)sin(K)sin(L) 

4. Discussion 

As illustrated in this manuscript and the literature citations, the operational 

method represents a new approach to interpolation of data in geometric arrays. Its 

results are potentially useful in applications such as the estimation of curvature 

(35) 
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coefficients and other forms of data analysis. The literature citations refer solely to 

shifting-operator methods because they are so new, because there are few altemative, 

familiar approaches that are so versatile and easy to apply, and because shifting­

operator methodology is a new way to study problems in applied geometry. 

The algorithm described in this paper may seem to be tedious to prepare. To 

lessen the tedium, and illustrate the method, the author can supply a Maple® worksheet 

that executes all of the calculations and delivers the trigonometric interpolating equation 

[6]. The user must supply the eight data in cubical array and choose a value for NN. 

Another way to adjust the algorithm to accommodate a ninth datum is by means of a 

translating term. That method has been described in Ref. [7] . 

Table 1 illustrates the sums of squares of deviations of four equations for 

interpolating the eight-point cube: (1) the trilinear equation, (2) the quadratic equation 

appearing as Eq. (10) in Ref. [3], the cubic polynomial equation appearing as Eq. (1) in 

Ref. [5], and (4) the trigonometric equation derived as illustrated in this paper. The 

trigonometric equation uses NN=O. The trial data are generated by simple, monotonic 

functions applied to the integers 1 .. 4, and 6 .. 9 as A .. D and F .. G, respectively, as in 

Fig. 2. As can be observed by the tabulated results, the operational equations often have 

lower sums of squares of deviations than the trilinear equation. 
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Table 1. Approximate sums of squares of deviations of four modeling surfaces from 
typical trial surfaces. The equations are based on different approaches to the eight-point 
cube. The data are generated by applying the listed functions to the integers 1 .. 4 and 6 
.. 9 at vertices A .. D and F .. I, respectively, as in Fig. 2. The coefficient NN in the 
trigonometric equation is taken as NN=O [3,5]. 

Function* Trilinear Quadratic Cubic Trigonometric 
equation equation equation (this paper) 

ML 229 0 0 17.6 

MJ 52600 1200 0 3250 

2M 49600 10800 2540 0 

sinh(M/2) 265 36.7 7.12 0 

tan(9MO) 4.89 1.55 0.418 0.443 

cosh(M/2) 270 36.0 7.24 0 

cosh(Ml2) + M 270 36.0 7.24 1.47 

(M)cosh(MI2) 28700 5180 1120 45.4 

(5)sin(10MO) + 0.992 0.00670 0.00138 0 
cos(10MO) 

*M = (5+x/2+y+5z/2) 
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Fig. 1. The nine-point rectangle. 
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Fig. 2. The eight-point cube. 
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