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Energy Efficient Sensor Node Implementations

Jan Frigo*, Vinod Kulathumani', Sean Brennan*, Ed Rosten?, Eric Raby*
Christophe Wolinski®, Charles Wagnerﬁ, Francois Charot?
*Distributed Sensor Networks Group, Los Alamos National Labs

"Dept. of Computer Science and Electrical Engineering, West Virginia University

*Dept. of Engineering, University of Cambridge
SUniversity of Rennes, IRISA

Abstract—In this paper, we discuss a low power embedded sensor
node architecture we are developing for distributed sensor net-
work systems deployed in a natural environment. In particular,
we examine the sensor node for energy efficient processing-
at-the-sensor. We analyze the following modes of operation;
event detection, sleep(wake-up), data acquisition, data processing
modes using low power, high performance embedded technology
such as specialized embedded DSP processors and a low power
FPGAs at the sensing node. We use compute intensive sensor node
applications: an acoustic vehicle classifier (frequency domain
analysis) and a video license plate identification application
(learning algorithm) as a case study. We report performance and
total energy usage for our system implementations and discuss
the system architecture design trade offs.

Keywords: reconfigurable computing, FPGA, DSP, Distributed
Sensor Networks (DSN), seismic, acoustic, vehicle classifica-
tion, license plate detection

I. INTRODUCTION

There are growing numbers and varieties of sensor network
systems deployed for monitoring in a natural environment
[23], [3], [25], and [17]. This class of sensor network ap-
plications has some common requirements: (1) continuous
operation (24/7), (2) low power sleep modes for extended time
periods (3) fast wake-up for event triggering (4) dynamic range
for computationally complex algorithms (5) flexible platform
for rapid prototyping and changing system specifications (6)
highly reliable, ruggedized, low power components, and (7)
sufficient non-volatile memory. In addition, traffic monitoring
sensor networks usually rely on multiple types of sensors and
thus, processing each type requires different system resources.
As a result, a general-purpose node architecture suitable for
both rapid prototyping and a deployed outdoor environment
may require two different implementations, for example, a
microprocessor-based implementation may be sufficient for
proof-of-concept or rapid prototyping testing, but a more opti-
mized implementation may be required for long-term deployed
operation.

Traffic monitoring sensor network research is mainly
simulation-based [27], [10], [6] with a few exceptions [14],
[4]. Deployed sensor network implementations use a variety
of commercial off-the-shelf (COTS) hardware [12], [2]. These
COTS systems have some well known draw-backs such as
vendor specific Operating Systems (TinyOS)[18] [15], limited
I/O and computing capabilities (i.e. no floating point unit
(FPU)), small amounts of data storage and limited dynamic
range. Field deployments raise new challenges such as issues
with the range of network communication, environmental
interference, and power management. Deployable hardware
is a formidable research challenge and the success and ad-

vancement of deployed DSN systems ultimately depends on
addressing these challenges.

Our field deployment [8] experiences lead us to explore a
more flexible, modular, low-power node architecture. Our
purposed node architecture [9] separates the real-time sensor
data acquisition and data processing from network commu-
nications processing. The network communication interface
is standard, i.e. the sensor processing modules plug into a
common interface to communicate to the network. In addition,
it offers the developer a platform that is flexible enough
for rapid-prototyping as well as a more optimized imple-
mentation. Further, by processing at-the-sensor system power
resources are conserved. Data is processed immediately with
high-performance, energy-efficient technology and power is
not wasted passing raw data around on internal buses or
across the communication network. In data processing systems
where compute- and data-intensive algorithms are used, data
transfer is frequently the bottleneck for performance and power
utilization. Deployed sensor network systems have to manage
these same issues [22]. Often specialized, high performance
embedded and/or reconfigurable hardware is used to mitigate
this problem. In the same way, we aim to improve the
energy efficiency and performance of deployed sensor network
systems through the use of specialized hardware to process
data at the sensor. Herein we quantify the energy utilization
of our proposed implementations for two compute-intensive
applications.

In this paper, our node architecture is described in Section
II. The case study implementations and related work are dis-
cussed in Section III. We report the energy benchmark results
for a variety of high performance embedded technologies
suitable for processing-at-the-sensor in Section IV. Finally, in
Section V we make some concluding observations and discuss
future work.

II. NODE ARCHITECTURE

The application domain for our sensor network systems is
where events are infrequent, but significant computational
complexity is required. Sensor types and processing are multi-
modal. A sensor node may include one or more of the
following sensors: (1) audio at 4 KHz sampling, (2) 3-axis
seismic at 100 Hz, (3) 3-axis magnetometer at 1k Hz, and
(4) GPS for absolute location, (5) low resolution video. Our
target power requirements are 300 mW for the system while
processing and transmitting and less than 10 mW for the
system while acquiring data with the computational processor
and RF transceiver asleep. All components must meet an
environmental temperature range of -20.C to +70.C, suitable



for long-term, field deployment.

The system implementation goals for this modular architecture
are: (1) No central processor is required. (2) Modules are
independent, event driven entities with less top-down manage-
ment than typical sensor motes. (3) Sensing duty cycles are
specific to the individual sensor’s sampling frequencies. (4)
One processor, the sensing or the communication processor is
awake at some low-level of processing to activate the advanced
processing when an event occurs. (5) Message passing is
handled by a separate communication microcontroller (8051).

A. Implementation

The architecture as shown in Fig. 1 combines a low power
high performance ARM microcontroller mezzanine board ',
an embedded GPS module, a Texas Instruments CC243]
wireless chip, and four sensor interface connections. The
“mezzanine carrier board's wireless subsystem consists of a
single self-contained COTS wireless system on chip (SoC), a
CC2431 containing an embedded 2.4 GHz 802.15.4 compliant
radio, a 32 MHz 8051 microcontroller, 8 KBytes RAM, and
128 KBytes flash storage, as well as hardware accelerated
encryption, location computation and MAC layer functional-
ity. The GPS module on the carrier board is controlled by
the CC2431°s embedded 8051 microcontroller. The CC2431
development tools consist of a C compiler and assembler. Each
microcontroller core is capable of low power idle and sleep
modes controllable by software.

The Phytec ARM mezzanine board is designed around the
NXP LPC3180 chip (see Section IV). The ARM mezzanine
board can be used for proof-of-concept development and rapid
prototyping, or as a high performance co-processor. Further,
the mezzanine carrier board can fully operate without the
ARM board if a co-processor is not needed, i.e. if the node is
a relay or if a processor is placed on the sensor board. Any
embedded processor can be added in place of the ARM.

O Q

PhyCORE-LPC3180

Sensor
ARM Mezzanine Board board board
Fig. 1. Proposed modular node architecture
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B. Related work

Reconfigurable technology has not been used in DSN field
deployments to perform real-time processing-at-the-sensor.
Research efforts using FPGAs for DSN applications include
implementations to accelerate modeling of mobile agents
[7]; address the problem of scalability for mobile ad-hoc
networks [19]; and for filtering [26]. In the video processing
domain, DSN video processing has been implemented on
COTS hardware such as Stargates for many applications such
as for low resolution image registration [1], fast image motion
computation [16], and face detection [24].

Modular sensor network hardware architectures such as [22]
and [21], for example, use a modular stack with any one of a
combination of boards depending on the functionality of the
node. An microcontroller in each module allows it to operate
on its own schedule and power down when not in use, In
[22] data acquisition and data transfer issues between modules,
and component leakage current consumed a large part of the
power budget. These designs utilize embedded processors for
compute intensive data processing.

Other research suggests that to get the best power profile,
older, less dense micron technology (with lower leakage cur-
rent characteristics ) should control data acquisition, message
passing, and event monitoring— and the processor should be
turned off or not used at all due to high leakage current [11].
We propose to use an ultra-low power FPGA as the processor
at the sensor. It will be the master controller for power
management of system components, taking advantage of fast
switching times for wake-up and ultra-low power sleep modes
in the device. In addition, data acquisition and processing is
handled by the FPGA with lots of I/Os to accommodate high
resolution bit precision and high performance computation as
required by the application. At present, we anticipate using
the 8051 micro-controller on the carrier mezzanine board for
message passing.

III. CASE STUDY IMPLEMENTATIONS

In this section, we describe a real time vehicle classifier
system and a license plate identification system for traffic
monitoring and discuss implementation details on our pro-
posed modular architecture. In the following section we give
benchmark results for energy usage and performance for the
implementations.

A. Vehicle classifier

The vehicle classification system was developed on Cross-
bow’s Stargate and Mica2 mote hardware [9], [8] using seismic
and acoustic sensor data. The goal of this system is to classify
vehicles as they approach a specific region into 3 categories:
(1) a light-weight vehicle such as a compact car, (2) a
moderately heavy vehicle and (3) a very heavy vehicle.

Seismic sensor data is sampled at 100 Hz. A Haar Wavelet
computes the energy estimate of the 12-24 Hz band by
averaging the coefficients of this band. The variance of the
energy estimate is then computed and a variance threshold is
used for vehicle event detection. Once an event is detected,
acoustic data is sampled (4 KHz) and acoustic processing
(512-point FFT) is initiated. The acoustic data is processed



in real-time until a classification has been determined. For
the classification, we use Fisher Linear Discriminant Vector
analysis to identify the best projection vector given the training
data. We obtain a projection vector to distinguish between
vehicle classes. These projection vectors are computed offline
and stored locally. The dot product of this projection vector
with the feature vector is computed to obtain a classification.
Finally, a one byte result indicating the class of the vehicle
(one of three classes) is sent to the network.

Implementation Our purposed vehicle classifier system im-
plementation is shown in Figure 2. The seismic sensor is
connected to a low pass filter, an Analog-to-Digital converter
and then directly to the FPGA. The acoustic sensor connects
directly to the FPGA. The FPGA controls event detection
(seismic) and acoustic data acquisition and processing.
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Fig. 2. Vehicle classifier implementation

Figure 3 shows the pipelined architecture corresponding to the
seismic detection algorithm. It is composed of four processing
modules PMO0..PM3 and one control module CMO0. The
PAMO module saves and scales every 10th sample from the
input data stream. The PM1 module executes the level-
two wavelet transformations. The PM2 and PM3 modules
compute the mean and variance of the wavelet coefficients
according to equations 1 and 2. The latency, or first output
is accessible after 16.4us with a run-time system frequency
of 90 Mhz. The remaining output results are obtained every
1.1pus. The input data stream rate supported by this system is
164 Msample/sec (MSPS). Every 10th sample from the input
data stream is used. This design was implemented with VHSIC
hardware description language (VHDL).

For the acoustic processing algorithm, we examine 512-pt
integer FFT cores generated from the Xilinx ISE, and ACTEL
Libero IDE FPGA development tools. The FFT implemen-
tation can support a 12 MSPS throughput with run-time
frequency of 60 to 100 MHz.
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Fig. 3. Wavelet FPGA implementation

B. License plate identification

The license plate identification system [9], [8] extracts license
plate information from a moving vehicle on a roadway using
video and magnetometer data. The system aims to capture
images of the aft end of a vehicle at anticipated vehicle
speeds of 10 to 60 mph; extract license plate pixels from
the original image (reducing the original image by 60-90%);
and to convert the license plate image to text using optical
character recognition (OCR). Previously, the license plate
identification system was developed and tested on Crossbow’s
Stargate (400 MHz, XScale ARM-based) processor [9].

The license plate identification algorithm works by applying
a classifier to every pixel in an image to create a rough
segmentation of the license place, if it exists. From this, the
bounding box of the license plate is found, and that section
of the image is then resampled to a fixed size. The resampled
image is then PNG compressed and sent over the network
to a base station computer. The OCR is computed on the
base station computer. These steps are a trade off between
the amount of network bandwidth used, the latency of the
operation and the amount of computing power used locally.
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Fig. 4. License plate identification node implementation

Implementation Our purposed video license plate identifica-
tion system implementation is shown in Figure 4, the camera
and magnetometer connect directly to the ARM mezzanine
board interface. Vehicle detection requires sensing and process-
ing of magnetometer data. Here we are acquiring 16-bit data
at 1k Hz and computing the magnetometer error between the
raw data and the filtered data to detect a vehicle edge. When
a vehicle detection occurs, the image capture routine collects



frames over a window of a few seconds. One frame is selected
to be processed by the learning algorithm. In Section IV, the
license plate identification algorithm results for the ChipCon
LPC3180 ARM and the ADI BF537 Blackfin processors are
given.

IV. RESULTS

In this section we examine total system energy utilized for
each case study application. First, we analyze the highest
power operating mode, computational processing. Second, we
examine event detection, data acquisition, sleep modes for
each implementation.

For data processing mode, we benchmark our case study
applications on the following reconfigurable and embedded
architectures: Xilinx, Altera and ACTEL FPGAs?, a DSP
processor 2, two embedded processors. 4

The FPGA energy results are derived from the Altera (Quartus
Il), Xilinx (Xpower), and ACTEL (SmartPower) development
tools and our field experiment data per the frequency of the
routed hardware design. Both quiescent power and dynamic
power consumed during processing are calculated. The results
in Tables I and II show the total power as a combination of
both quiescent and dynamic power. The embedded processor
energy estimated herein is taken from benchmarking the
algorithms on the actual hardware.

The "throughput’ is calculated as:
throughput = n(samples)/executiontime(s)

denoted as mega samples per second(MSPS). The "throughput’
refers to the rate of outputs per second the implementation can
deliver. The energy is calculated by

Energy(J) = measurepower(J/s) * executiontime(s)
where the execution time is determined by

executiontime(s) = n(cycles)/clock frequency(cycles/s)

A. Processing

Vehicle classifierEstimated energy utilization for the seismic
algorithm (the wavelet transformations, mean and variance
calculations) is shown in Figure 5 and Table I. The acoustic
classifier algorithm (512-pt integer FFT) energy utilization
is given in Table II and Figure 6. The total computational
energy for the vehicle classifier application is approximately
0.0255 pJ for seismic computation and 1.77 pJ for the acoustic
classification if we consider the most efficient devices (see
Table 1 and Table II). These benchmark results show an
expected trend, the optimized, low power, embedded, special-
ized architectures show more energy efficiency—in this case,
the FPGAs have the lowest energy utilization for compute
intensive data processing.

License plate identification The three processing modes for
the license plate identification application are magnetometer
vehicle detection and sensing, image capture and license plate

2Virtexd XC4VLX15, Spartan3 XC3S400, Stratix [I EP2S60, Cyclonell
EP2C35F, Igloo AGL1000VS5)

3Texas Instrument’s TMS320C5510

*ChipCon LPC3180 and Analog Devices Blackfin ADI BF537 processor.)

Time | Pwr | Freq | Thru | Energy
1S mW | MHz | MSPS ]

Tgloo 4.3 595 1 23.16 T 23.16 | 0.0255

Cyclonell .1 164 100 oT 0.18
Stratix 1T T 731 100 91 0.804 |
Virtexd 0.95 288 105 91 0.274
Spartan3 [.78 120 56 56 0.213
Mica2 1077 60 4 0.093 64.62
DSP [45 262 200 0.680 | 3799
428 330 208 2.3 14,12
Blackfin 21 1056 500 4.7 2217
TABLE 1

SEISMIC PROCESSING ENERGY UTILIZATION

Time | Pwr | Freq | Thru | Energy

1S mW | MHz | MSPS wy

Tgloo 3123 185 16,39 1 16.39 577
Proasic 6.53 272 78.3 78.3 1.77
Stargate 367 1850 | 400 0.59 1603.9

DSP 3000 | 227 200 0.17 681
DSP opt 60 339 200 83 20,39
877 400 208 0.584 350.8

Blackfin 563 173 500 0.90 6615
Blackfin 0 | 139 | 1175 | 500 | 37 163.3

Blackfin ' 188 [ 1006 | 500 [ 27 1891 |
TABLE Il

ACOUSTIC PROCESSING ENERGY UTILIZATION (512-PT INT FFT)

pixel identification processing. This section will covers the two
most compute-intensive processing modes: image capture, and
license plate identification. The vehicle detection and sensing
mode will be discussed in Section IV-B.

The license plate identification processing routine performs the
following functions: preprocessing, detection of license plate
pixels, centroid, resampling, and compression. The energy
estimates in Table III below are the total energy for these
functions. In this application, the algorithm is a decision
tree. The tree is applied independently at every pixel of the
image. The decision tree was used in this implementation for
computational speed on the CPU. Thus, the benchmark results
are for the Stargate (XScale) and two embedded processors,
the 3180 and the Blackfin. The most efficient processor was
the 3180 at 0.186 J (Table III).

To port this algorithm to an FGPA, the system could learn a

.detector which is more amenable to processing on an FPGA:
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a weighted sum of thresholded convolutions. In practise, we
would build a cascade classifier so that most pixels were
discarded by the FPGA, then the few remaining would be
processed with a decision tree or something similar.

The image capture routine has not been ported to the 3180,
this is a topic for future work. We can estimate the energy
usage, by assuming capture takes as least 5 to 10 seconds
based on our previous implementation on the Stargate [9] with
maximum active MPU mode at 80 mA, 1.2 V. The energy is
then 0.480 J to 0.960 J.

Time Pwr Freq | Thru | Energy

s W MHz | KS T

Sta:ﬁate 0.675 | 1575 | 400 455 1.06

0.61 0.305 | 208 503 0.186

Blackfin | 0.535 | T.1484 | 500 574 0.614
TABLE III

LICENSE PLATE IDENTIFICATION ENERGY UTILIZATION

B. Data Acquisition and Event Detection

Vehicle classifier For the vehicle classifier system, the seismic
algorithm signals an event by processing seismic data (100
Hz) and this triggers acoustic and video data acquisition
and processing. Here the system is not on continuously, it
wakes up at periodic intervals and performs a few seconds
of computation to signal a vehicle event if it exists. The
question arises, if an FPGA is most energy efficient for data
processing, is it comparable to a separate microcontroller for
wake-up timing, sleep mode and leakage current to control
event detection and data acquisition? In addition, should power
management be performed by the FGPA for energy efficiency?

Igloo AGL600VS FPGA The Igloo FPGA devices has Flash
Freeze technology which enables power on/off from ultra-low
power modes. For this seismic detection using the AGL600VS,
the quiescent Flash Freeze leakage power is 114 uW with all
voltages (including the core voltage, Vcci = 1.5 V) on and all
clocks and I/Os off. For sleep mode with only the core voltage
on and all other voltages, clocks and 1/Os oft, power usage
is 10.8 W The FGPA power management does not require
extra components to turn off I/Os or clocks and retains design,
SRAM content and registers. Wake up timing is reported as
1 ps [5]. Run time operating frequency for this application is
23.16 MHz.

The Igloo AGL600VS5 device has 108 kbits RAM (1024
bits), 24 RAM Blocks (4608-Bit), 1 Kbits user nonvolatile
FlashROM and 600k system gates. Eight blocks of I/O with a
total of 270 user 1/Os.

Our anticipated event detection rate on a remote roadway is ap-
proximately 80 vehicle events/hour on average (5-10 seconds
"on" time as the vehicle approaches and passes the sensor). So
the system is "sensing" at 100 Hz continuously and computing
1 event every 1.35 minutes worst case or approximately 22.2%
active, 77.7% sensing mode which utilizes 916.7uW of power—
that is over 2 months of continuous use. Best case is 11.1%
active mode 88.9% sensing or sleep and the total power usage
goes down to 607.5 pW-a little less than 3 and a half months
of continuous operation on assuming a 1000 mAH battery. See
Figure Vfor a summary of total power results. Determinng a
schedule for sleep and/or Flash Freeze mode in the operating
plan for this application is a topic for future experiments.

wakeup time sleep idle active
1S uwW mw mw
AGLBO0OVS T TT,1T4% 0.134 5.95
8051 2,54 888,2.7,1.8¢ 1.476 0.621 - 21
5000 450 6.3(13 MHz) | 0.24pW
TABLE IV

TOTAL POWER FOR VEHICLE EVENT DETECTION
(*FLASHFREEZE,fPM | ,PM2,PMJ)

CC2430 SoC/8051 microcontroller The CC2430 SoC has
some useful features for seismic event detection such as
21 digital I/Os, 8-14 bit ADC, and both a watchdog and
sleep timer. The 8051 microcontroller has 8 KB RAM, with
the upper 4 KB retaining data in all power modes, 16-bit
read/write access to memory, and flash memory. In addition,
a memory arbiter to handle CPU and DMA access. There
are three low power modes (PM1,PM2,PM3) depending on
the expected wait time between events—all modes have RAM
retension. The low power modes use 1.8 uW to 888 uW
depending on the power mode. The wake up timing for the low
power modes is reported as 2 us for PM1 and 54 us for PM2
and PM3 [13]. The highest operating speed is 32 MHz. Best
and worst case estimates for the 8051 per the expected vehicle
event rate are 1.866pW and 2.452uW of power respectively.

LPC3180: The NXP LPC3180 chip runs at 208 MHz with
32 MByte of SDRAM operating at 104 MHz and 32 MByte
of NAND flash. The ARM core is an ARM926EJ-S CPU
with an IEEE vector floating point (VFP) co-processor. The
floating point performance is approximately 5 times faster than
the Intel Stargates XScale PXA255 CPU (400 MHz) using
a software floating point library. During continuous floating
point operation power consumption of the mezzanine board
is approximately 330 mW. (The LPC3180 ARM board runs
a standard Linux 2.6.10 kernel for rapid prototyping.) The
LPC3180 board’s low power modes are as follows: direct
RUN is 7 mA at 13 MHz (slow clock), and STOP mode is
500 pamps(lowest power mode). For wake-up timing, typical
values for ARM CPUs are less than 0.5 ms. Leakage current
for the 3180 is reported as 3 pamps [20].

C. Total System Energy

Vehicle Classifer: When we compare the power characteristic
for the CC2430/8051 and the Igloo FPGA in Figure V, the



overall power saved using the FGPA is approximately 2.6-3.0x
for seismic event detection.

Time Pwr Energy
1S mw 1]
seismic detect 43 5.95 0.0255
acouslic processing 31.33 185 Dok,
total vc system 3573 190.95 5.795
mag detect T[0T us 96-240 0.24 1]
image caplure 5-10s 96-240 048247
image processing 0.6Ts 305 0.1867
total Ip id system | 5.61-10.61s | 497-785 | 0.666 - 2.586 J
TABLE V

TOTAL RUN-TIME SYSTEM ENERGY

V. CONCLUSION

The central idea of our node architecture is to keep the
data transfer, both intra-module and to the network, at a
minimum by processing data in real-time on the sensor
board. In DSN and conventional processing systems where
compute- and data-intensive algorithms are used, data trans-
fer is frequently the bottleneck for performance and power
utilization. In our system, we have flexibility to choose the
most suitable embedded processor for the task. The master
controller for sensing, data acquisition and power control is
the processor/microcontroller on the sensor board. In most
cases, that will be the FPGA which offer fast wake up times
and ultra low power sleep modes. The 802.15.4 wireless link
on the mezzanine carrier board is available to partially or
fully reconfigure the FGPA in-situ—an advantage for deployed
systems with changing system requirements. Reduced need for
memory storage since event data is significantly reduced, i.e
one byte of data for vehicle classification and 3k bytes for
license plate identification.

In this paper, we discuss a low power embedded sensor node
architecture we are developing for distributed sensor network
systems deployed in a natural environment. In particular, we
examine the sensor node for energy efficient processing-at-the-
sensor. We analyze the following modes of operation; sensing,
sleep, data acquisition, data processing modes using low
power, high performance embedded technology for sensing
node. We use compute intensive sensor node applications: an
acoustic vehicle classifier and a video license plate identifica-
tion application as a case study. We report performance and
total energy usage for our system architecture and discuss the
system architecture design trade offs.

Future work Investigate hybrid FPGA with analog, non-
volitile memory such as ACTEL’s Fusion chip. Analyze and
develop an FGPA implementation for the vidoe node. Bench-
mark magnetometer on FPGA. Build and field test prototype
systems to measure energy efficiencies.
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