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Abstract-In this paper, we discuss a low power embedded sensor 
node architecture we are developing for distributed sensor net­
work systems deployed in a natural environment. In particular, 
we examine the sensor node for energy efficient processing­
at-the-sensor. We analyze the following modes of operation; 
event detection, sleep(wake-up), data acquisition, data processing 
modes using low power, high performance embedded technology 
such as specialized embedded DSP processors and a low power 
FPGAs at the sensing node. We use compute intensive sensor node 
applications: an acoustic vehicle classifier (frequency domain 
analysis) and a video license plate identification application 
(learning algorithm) as a case study. We report performance and 
total energy usage for our system implementations and discuss 
the system architecture design trade offs. 

Keywords: reconfigurable computing, FPGA, DSP, Distributed 
Sensor Networks (DSN), seismic, acoustic, vehicle classifica­
tion, license plate detection 

I. INTRODUCTION 

There are growing numbers and varieties of sensor network 
systems deployed for monitoring in a natural environment 
[23], [3], [25], and [I7}. This class of sensor network ap­
plications has some common requirements: (1) continuous 
operation (24n) , (2) low power sleep modes for extended time 
periods (3) fast wake-up for event triggering (4) dynamic range 
for computationally complex algorithms (5) flexible platform 
for rapid prototyping and changing system specifications (6) 
highly reliable, ruggedized, low power components, and (7) 
sufficient non-volatile memory. In addition, traffic monitoring 
sensor networks usually rely on multiple types of sensors and 
thus, processing each type requires different system resources. 
As a result, a general-purpose node architecture suitable for 
both rapid prototyping and a deployed outdoor environment 
may require two different implementations, for example, a 
microprocessor-based implementation may be sufficient for 
proof-of-concept or rapid prototyping testing, but a more opti­
mized implementation may be required for long-term deployed 
operation. 

Traffic monitoring sensor network research is mainly 
simulation-based [27], [10] , [6] with a few exceptions [14], 
[4]. Deployed sensor network implementations use a variety 
of commercial off-the-shelf (COTS) hardware [12], [2]. These 
COTS systems have some well known draw-backs such as 
vendor specific Operating Systems (TinyOS)[J8] [15], limited 
110 and computing capabilities (i.e. no floating point unit 
(FPU)), small amounts of data storage and limited dynamic 
range. Field deployments raise new challenges such as issues 
with the range of network communication, environmental 
interference, and power management. Deployable hardware 
is a formidable research challenge and the success and ad-

vancement of deployed DSN systems ultimately depends on 
addressing these challenges. 

Our field deployment [8] experiences lead us to explore a 
more flexible, modular, low-power node architecture. Our 
purposed node architecture [9] separates the real-time sensor 
data acquisition and data processing from network commu­
nications processing. The network communication interface 
is standard, i.e. the sensor processing modules plug into a 
common interface to communicate to the network. In addition, 
it offers the developer a platform that is flexible enough 
for rapid-prototyping as well as a more optimized imple­
mentation. Further, by processing at-the-sensor system power 
resources are conserved. Data is processed immediately with 
high-performance, energy-efficient technology and power is 
not wasted passing raw data around on internal buses or 
across the communication network. In data processing systems 
where compute- and data-intensive algorithms are used, data 
transfer is frequently the bottleneck for performance and power 
utilization. Deployed sensor network systems have to manage 
these same issues [22]. Often specialized, high performance 
embedded and/or reconfigurable hardware is used to mitigate 
this problem. In the same way, we aim to improve the 
energy efficiency and performance of deployed sensor network 
systems through the use of specialized hardware to process 
data at the sensor. Herein we quantify the energy utilization 
of our proposed implementations for two compute-intensive 
app I ications. 

In this paper, our node architecture is described in Section 
II. The case study implementations and related work are dis­
cussed in Section III. We report the energy benchmark results 
for a variety of high pelformance embedded technologies 
suitable for processing-at-the-sensor in Section IV. Finally, in 
Section V we make some concluding observations and discuss 
future work. 

II. NODE ARCHITECTURE 

The application domain for our sensor network systems is 
where events are infrequent, but significant computational 
complexity is required. Sensor types and processing are multi­
modal. A sensor node may include one or more of the 
following sensors: (1) audio at 4 KHz sampling, (2) 3-axis 
seismic at I ()() Hz, (3) 3-ax is magnetometer at I k Hz, and 
(4) GPS for absolute location, (5) low resolution video. Our 
target power requirements are 300 mW for the system while 
processing and transmitting and less than 10 mW for the 
system while acquiring data with the computational processor 
and RF transceiver asleep. All components must meet an 
environmental temperature range of -20.C to + 70.C, suitable 



for long-term, field deployment. 

The system implementation goals for this modular architecture 
are: (1) No central processor is required. (2) Modules are 
independent, event driven entities with less top-down manage­
ment than typical sensor motes. (3) Sensing duty cycles are 
specific to the individual sensor's sampling frequencies. (4) 
One processor, the sensing or the communication processor is 
awake at some low-level of processing to activate the advanced 
processing when an event occurs. (5) Message passing is 
handled by a separate communication microcontroller (8051). 

A. Implementation 

The architecture as shown in Fig. I combines a low power 
high performance ARM microcontroller mezzanine board I, 

an embedded GPS module, a Texas Instmments CC243 I 
wireless chip, and four sensor interface connections. The 

o mezzanine carrier board's wireless subsystem consists of a 
sinole self-contained COTS wireless system on chip (SoC), a 

b . 

CC2431 containiliJg an embedded 2.4 GHz 802.15.4 complIant 
radio, a 32 MHz 8051 microcontroller, 8 KBytes RAM, and 
128 KBytes flash storage, as well as hardware accelerated 
encryption, location computation and MAC layer functional­
ity. The GPS module on the carrier board is controlled by 
the CC243 I 's embedded 8051 microcontroller. The CC2431 
devefopment tools consist of a C compiler and assembler. Each 
microcontroller core is capable of low power idle and sleep 
modes controllable by software. 

The Phytec ARM mezzanine board is designed around the 
NXP LPC3l80 chip (see Sect,ion IV). The ARM mezzanine 
board can be used for proof-of-concept development and rapid 
prototyping, or as a high performance co-processor. FUither, 
the mezzanine carrier board can fully operate without the 
ARM board if a co-processor is not needed, i.e. if the node is 
a relay or if a processor is placed on the sensor board. Any 
embedded processor can be added in place of the ARM. 

Fig. I. Proposed modular node architecture 

I Phytec phyCOREARM9fLPC3180 

B. Related work 

Reconfigurable technology has not been used in DSN field 
deployments to perform real-time processing-at-the-sensor. 
Research efforts using FPGAs for DSN applications include 
implementations to accelerate modeling of mobile agents 
[7]; address the problem of scalability for mobile ad-hoc 
networks [19]; and for filtering [26]. In the video processing 
domain, DSN video processing has been implemented on 
COTS hardware such as Stargates for many applications such 
as for low resolution image registration [1], fast image motion 
computation [16], and face detection [24]. 

Modular sensor network hardware architectures such as [22] 
and [21], for example, use a modular stack with anyone of a 
combination of boards depending on the functionality of the 
node. An microcontroller in each module allows it to operate 
on its own schedule and power down when not in use. In 
[22] data acquisition and data transfer issues between modules, 
and component leakage current consumed a large part of the 
power budget. These designs utilize embedded processors for 
compute intensive data processing. 

Other research suggests that to get the best power profile, 
older, less dense micron technology (with lower leakage cur­
rent characteristics) should control data acquisition, message 
passing, and event monitoring- and the processor should be 
turned off or not used at all due to high leakage current [11]. 
We propose to use an ultra-low power FPGA as the processor 
at the sensor. It will be the master controller for power 
management of system components, taking advantage of fast 
switching times for wake-up and ultra-low power sleep modes 
in the device. In addition, data acquisition and processing is 
handled by the FPGA with lots of IJOs to accommodate high 
resolution bit precision and high performance computation as 
required by the application. At present, we anticipate using 
the 8051 micro-controller on the carrier mezzanine board for 
message passing. 

III. CASE STUDY IMPLEMENTATIONS 

In this section, we describe a real time vehicle classifier 
system and a license plate identification system for traffic 
monitoring and discuss implementation details on our pro­
posed modular architecture. In the following section we give 
benchmark results for energy usage and performance for the 
implementations. 

A. Vehicle classifier 

The vehicle classification system was developed on Cross­
bow's Staroate and Mica2 mote hardware [9], [8] using seismic 
and acoustic sensor data. The goal of this system is to classify 
vehicles as they approach a specific region into 3 categories: 
(1) a light-weight vehicle such as a compact car, (2) a 
moderately heavy vehicle and (3) a very heavy vehicle. 

Seismic sensor data is sampled at 100 Hz. A Haar Wavelet 
computes the energy estimate of the 12-24 J-:Iz band by 
averaging the coefficients of this band. The varIance of t~e 
energy estimate is then computed and a variance ~hreshold IS 

used for vehicle event detection. Once an event IS detected, 
acoustic data is sampled (4 KHz) and acoustic processing 
(512-point FFT) is initiated. The acoustic data is processed 



in real-time until a classification has been determined. For 
the classification, we use Fisher Linear Discriminant Vector 
analysis to identify the best projection vector given the training 
data. We obtain a projection vector to distinguish between 
vehicle classes. These projection vectors are computed offline 
and stored locally. The dot product of this projection vector 
with the feature vector is computed to obtain a classification. 
Finally, a one byte result indicating the class of the vehicle 
(one of three classes) is sent to the network. 

Implementation Our purposed vehicle classifier system im­
plementation is shown in Figure 2. The seismic sensor is 
connected to a low pass filter, an Analog-to-Digital converter 
and then directly to the FPGA. The acoustic sensor connects 
directly to the FPGA. The FPGA controls event detection 
(seismic) and acoustic data acquisition and processing. 
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Fig. 2. Vehicle classifier implementation 

Figure 3 shows the pipelined architecture corresponding to the 
seismic detection algorithm. It is composed of four processing 
modules PMO .. PJ'vI3 and one conteol module CMO. The 
P kIO module saves and scales every 10th sample from the 
input data stream. The P Nfl module executes the level­
two wavelet transformations. The P N12 and P M3 modules 
compute the mean and variance of the wavelet coefficients 
according to equations I and 2. The latency, or first output 
is accessible after 16.4J.ls with a run-time system frequency 
of 90 Mhz. The remaining output results are obtained every 
1.1 J.ls. The input data stream rate supported by this system is 
164 Msample/sec (MSPS). Every 10th sample from the input 
data stream is used. This design was implemented with VHSIC 
hardware description language (YHDL). 

For the acoustic processing algorithm, we examine 512-pt 
integer FFT cores generated from the Xilinx ISE, and ACTEL 
Libero IDE FPGA development tools. The FFT implemen­
tation can support a 12 MSPS throughput with run-time 
frequency of 60 to 100 MHz. 

31 . 
mean = I:i=O I amp[zll 

32 
(1) 

I:31 (mean - amp[i])2 
result[t] = ,=0 * 7 +result[t -1] (2) 

32 

Input data 
, ... =lUMt£tnpliW-= 

Fig. 3. Wavelet FPGA implementation 

B. License plate identification 

The license plate identification system [9], [8) extracts license 
plate information from a moving vehicle on a roadway using 
video and magnetometer data. The system aims to capture 
images of the aft end of a vehicle at anticipated vehicle 
speeds of 10 to 60 mph; extract license plate pixels from 
the original image (reducing the original image by 60-90%); 
and to convert the license plate image to text using optical 
character recognition (OCR). Previously, the license plate 
identification system was developed and tested on Crossbow's 
Stargate (400 MHz, XScale ARM-based) processor [9]. 

The license plate identification algorithm works by applying 
a classifier to every pixel in an image to create a rough 
segmentation of the license place, if it exists. From this, the 
bounding box of the license plate is found , and that section 
of the image is then resampled to a fixed size. The resampled 
image is then PNG compressed and sent over the network 
to a base station computer. The OCR is computed on the 
base station computer. These steps are a trade off between 
the amount of network bandwidth used, the latency of the 
operation and the amount of computing power used locally. 
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Fig. 4. License plate identification node implementation 

Implementation Our purposed video license plate identifica­
tion system implementation is shown in Figure 4, the camera 
and magnetometer connect directly to the ARM mezzanine 
board interface. Vehicle detection requires sensing and process­
ing of magnetometer data. Here we are acquiring 16-bit data 
at lk Hz and computing the magnetometer error between the 
raw data and the filtered data to detect a vehicle edge. When 
a vehicle detection occurs, the image capture routine collects 



frames over a window of a few seconds. One frame is selected 
to be processed by the learning algorithm. In Section IV, the 
license plate identification algorithm results for the ChipCon 
LPC3180 ARM and the ADI BF537 Blackfin processors are 
given. 

IV. RESULTS 

In this section we examine total system energy utilized for 
each case study application. First, we analyze the highest 
power operating mode, computational processing. Second, we 
examine event detection, data acquisition, sleep modes for 
each implementation. 

For data processing mode, we benchmark our case study 
applications on the following reconfigurable and embedded 
arch~tectures: Xilinx, Altera and ACTEL FPGAs2, a DSP 
processor 3, two embedded processors. 4 

The FPGA energy results are derived from the Altera (Quartus 
II), Xilinx (Xpower), and ACTEL (SmartPower) development 
tools and our field experiment data per the frequency of the 
routed hardware design. Both quiescent power and dynamic 
power consumed during processing are calculated. The results 
in Tables I and II show the total power as a combination of 
both quiescent and dynamic power. The embedded processor 
energy estimated herein is taken from benchmarking the 
algorithms on the actual hardware. 

The 'throughput' is calculated as: 

th1'OUghput = n( samples) / executiontime( s) 

denoted as mega samples per second(MSPS). The 'throughput' 
refers to the rate of outputs per second the implementation can 
deliver. The energy is calculated by 

Energy( J) = measurepawer( J / s) * executiontime( s) 

where the execution time is determined by 

executiontime(s) = n(cycles)/clockfrequency(cycles/ s) 

A. Processing 

Vehicle classifierEstimated energy utilization for the seismic 
algorithm (the wavelet transformations, mean and variance 
calculations) is shown in Figure 5 and Table 1. The acoustic 
classifier algorithm (512-pt integer FFT) energy utilization 
is given in Table II and Figure 6. The total computational 
energy for the vehicle classifier application is approximately 
0.0255 J.Ll for seismic computation and 1.77 JiJ for the acoustic 
classification if we consider the most efficient devices (see 
Table I and Table Il). These benchmark results show an 
expected trend, the optimized, low power, embedded, special­
ized architectures show more energy efficiency-in this case, 
the FPGAs have the lowest energy utilization for compute 
intensive data processing. 

License plate identification The three processing modes for 
the license plate identificat,ion application are magnetometer 
vehicle detechon and sensing, image capture and license plate 

2Yinex4 XC4YLX15, Spartan) XC)S400, Slralix II EP2S60, Cycionell 
EP2C35F, Igloo AGLIOOOY5) 

3Texas Instrument's TMS320C5510 
~ChipCon LPC3180 and Analog Devices Blackfin ADI BF537 processor.) 

TABLE I 
SEISMIC PROCESSING ENERGY UTILIZATION 

TABLE 11 
ACOUSTIC PROCESSING ENERGY UTILIZATION (512-PT INT FFT) 

pixel identification processing. This section will covers the two 
most compute-intensive processing modes: image capture, and 
license plate identification. The vehicle detection and sensing 
mode will be discussed in Section IV-B . 

The license plate identification processing routine performs the 
following functions: preprocessing, detection of license plate 
pixels, centroid, resampling, and compression. The energy 
estimates in Table UI below are the total energy for these 
functions. In this application, the algorithm is a decision 
tree. The tree is applied independently at every pixel of the 
image. The decision tree was used in this implementation for 
computational speed on the CPU. Thus, the benchmark results 
are for the Stargate (XScale) and two embedded processors, 
the 3180 and the Blackfin. The most efficient processor was 
the 3180 at 0.186 J (Table 11I). 

To pon this algorithm to an FGPA, the system could learn a 
detector which is more amenable to processing on an FPGA: 
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Fig. 5. Seismic Algorilhm Energy Trends 
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Fig. 6. Acoustic Processing Energy Trends 

a weighted sum of thresholded convolutions. In practise, we 
would build a cascade classifier so that most pixels were 
discarded by the FPGA, then the few remaining would be 
processed with a decision tree or something similar. 

The image capture routine has not been ported to the 3180, 
this is a topic for future work. We can estimate the energy 
usage, by assuming capture takes as least 5 to 10 seconds 
based on our previous implementation on the Stargate [9] with 
maximum active MPU mode at 80 rnA, 1.2 V. The energy is 
then 0.480 J to 0.960 1. 

TABLE III 
LICENSE PLATE IDENTIFICATION ENERGY UTILIZATION 

B. Data Acquisition and Event Detection 

Vehicle classifier For the vehicle classifier system, the seismic 
algorithm signals an event by processing seismic data (100 
Hz) and this triggers acoustic and video data acquisition 
and processing. Here the system is not on continuously, it 
wakes up at periodic intervals and performs a few seconds 
of computation to signal a vehicle event if it exists. The 
question arises, if an FPGA is most energy efficient for data 
processing, is it comparable to a separate microcontroller for 
wake-up timing, sleep mode and leakage current to control 
event detection and data acquisition? In addition, should power 
management be performed by the FGPA for energy effiCiency? 

Igloo AGL600VS FPGA The Igloo FPGA devices has Flash 
Freeze technology which enables power on/off from ultra-low 
power modes. For this seismic detection using the AGL600V5, 
the quiescent Flash Freeze leakage power is 114 f.LW with all 
voltages (including the core voltage, V cci = t.5 V) on and all 
clocks and VOs off. For sleep mode with only the core voltage 
on and all other voltages, clocks and VOs off, power usage 
is 10.8 f.LW The FGPA power management does not require 
extra components to turn off VOs or clocks and retains design, 
SRAM content and registers. Wake up timing is reported as 
1 f.Ls [5). Run time operating frequency for this application is 
23.16 MHz. 

The Igloo AGL600V5 device has 108 kbits RAM (1024 
bits), 24 RAM Blocks (4608-Bit), 1 Kbits user nonvolatile 
FlashROM and 600k system gates . Eight blocks of VO with a 
total of 270 user VOs . 

Our anticipated event detection rate on a remote roadway is ap­
proximately 80 vehicle eventslhour on average (5-10 seconds 
"on" time as the vehicle approaches and passes the sensor). So 
the system is "sensing" at 100 Hz continuously and computing 
1 event every 1.35 minutes worst case or approximately 22.2% 
active, 77.7% sensing mode which utilizes 916.7f.LW of power­
that is over 2 months of continuous use. Best case is 11.1 % 
active mode 88.9% sensing or sleep and the total power usage 
goes down to 607.5 f.LW-a little less than 3 and a half months 
of continuous operation on assuming a 1000 rnAH battery. See 
Figure Vfor a summary of total power results . Determinng a 
schedule for sleep andlor Flash Freeze mode in the operating 
plan for this application is a topic for future experiments. 

TABLE IV 
TOTAL POWER FOR VEHICLE EVE NT DETECTION 

(*FLAS HFREEZE, fPM I .PM2,PM3) 

CC2430 SoC/80S 1 microcontroller The CC2430 SoC has 
some useful features for seismic event detection such as 
21 digital VOs, 8-14 bit ADC, and both a watchdog and 
sleep timer. The 8051 microcontroller has 8 KB RAM, with 
the upper 4 KB retaining data in all power modes, 16-bit 
read/write access to memory, and flash memory. In addition, 
a memory arbiter to handle CPU and DMA access. There 
are three low power modes (PM1,PM2,PM3) depending on 
the expected wait time between events-all modes have RAM 
retension. The low power modes use \.8 f.LW to 888 f.LW 
depending on the power mode. The wake up timing for the low 
power modes is reported as 2 f.LS for PM I and 54 J.1-s for PM2 
and PM3 [13). The highest operating speed is 32 MHz. Best 
and worst case estimates for the 8051 per the expected vehicle 
event rate are 1.866f.LW and 2.452f.LW of power respectively. 

LPC3180: The NXP LPC3180 chip runs at 208 MHz with 
32 MByte of SDRAM operating at 104 MHz and 32 MByte 
of NAND flash . The ARM core is an ARM926EJ-S CPU 
with an IEEE vector floating point (VFP) co-processor. The 
floating point performance is approximately 5 times faster than 
the Intel Stargates XScale PXA255 CPU (400 MHz) using 
a software floating point library. During continuous floating 
point operation power consumption of the mezzanine board 
is approximately 330 m W. (The LPC3180 ARM board runs 
a standard Linux 2.6.10 kernel for rapid prototyping.) The 
LPC3l80 board's low power modes are as follows: direct 
RUN is 7 rnA at 13 MHz (slow clock), and STOP mode is 
500 f.Lamps(lowest power mode). For wake-up timing, typical 
values for ARM CPUs are less than 0.5 ms. Leakage current 
for the 3180 is reported as 3 f.Lamps [20). 

C. Total System Energy 

Vehicle Classifer: . When we compare the power characteristic 
for the CC2430/8051 and the Igloo FPGA in Figure V, the 



overall power saved using the FGPA is approximately 2.6-3.0x 
for seismic event detection. 

TABLE V 
TOTAL RUN-TIME SYSTEM ENERGY 

V. CONCLUSION 

The central idea of our node architecture is to keep the 
data transfer, both intra-module and to the network, at a 
minimum by processing data in real-time on the sensor 
board. In DSN and conventional processing systems where 
compute- and data-intensive algorithms are used, data trans­
fer is frequently the bottleneck for performance and power 
utilization. In our system, we have flexibility to choose the 
most suitable embedded processor for the task. The master 
controller for sensing, data acquisition and power control is 
the processor/microcontroller on the sensor board. In most 
cases, that will be the FPGA which offer fast wake up times 
and ultra low power sleep modes. The 802.15.4 wireless link 
on the mezzanine carrier board is available to partially or 
fully reconfigure the FGPA in-situ-an advantage for deployed 
systems with changing system requirements. Reduced need for 
memory storage since event data is significantly reduced, i.e 
one byte of data for vehicle classification and 3k bytes for 
license plate identification. 

In this paper, we discuss a low power embedded sensor node 
architecture we are developing for distributed sensor network 
systems deployed in a natural environment. In particular, we 
examine the sensor node for energy efficient processing-at-the­
sensor. We analyze the following modes of operation; sensing, 
sleep, data acquisition, data processing modes using low 
power, high performance embedded technology for sensing 
node. We use compute intensive sensor node applications: an 
acoustic vehicle classifier and a video license plate identifica­
tion application as a case study. We report performance and 
total energy usage for our system architecture and discuss the 
system architecture design trade offs. 

Future work Investigate hybrid FPGA with analog, non­
volitile memory such as ACTEL's Fusion chip. Analyze and 
develop an FGPA implementation for the vidoe node. Bench­
mark magnetometer on FPGA. Build and field test prototype 
systems to measure energy efficiencies. 

VI. ACKNOWLEDGEMENTS 

This work was supported by the U.S. Dep3ltment of En­
ergylNNSA and Los Alamos National Laboratory funds under 
LANS, LLC Contract No. W-7405-ENG-36. This document is 
approved for public release under LAUR-09-. 

REFERENCES 

[I] e. a. Balasubramanian, Harini. Image registration in low resolution visual 
sensor netowrks. In International Conference on Information Processing 
in Sensor Networks, 2008. 

[2] J. Barton and et aI. A miniaturised modular platform for wireless sensor 
networks. IEEE Circuit Theory and Design, vol. 3, p. 35-38, Aug. 2005. 

[3] U. Center for Embedded Network Sensing. Leap: Low power energy 
aware processing. http://research.cens.ucla.eduiprojectsl2007ISyslemsl 
LEAPI. 2008. 

[4] e. a. Coleri. Sinem. Sensor networks for monitoring traffic. In IPSN, 
2004. 

[5] A. Corporation. Igloo. hllp:llwww.aclel.com/productsligloo. 2009. 
[6] e. a. Corredor. Ivan. Design and deployment of industrial sensor 

networks: Experiences from a semiconductor plant and the north sea. 
In Collecter Iberoamerica 2005. 2008. 

[7] e. a. Du, Hongtao. Modeling mobile-agent-based collaborative process­
ing in sensor networks using generalized stochastic petri nets. IEEE 
International Conference on Systems. Man and Cybernetics, vol. 1, p. 
563-568, Oct. 2003. 

[8] J. e. a. Frigo. Radiation detection and situation management by 
distributed sensor networks. In SPIE Proceedings on Defense, Security 
and Sensing, 2009. 

[9] J. e. a. Frigo. Sensor network based vehicle classification and license 
plate identification system. In IEEE INSS. 2009. 

[10] e. a. Ganguly. A. R. Knowledge discovery from sensor data for security 
applications. Knowledge Discovery from Sensor Data for Security 
Applications. pages 187-204.2007. 

[,I I] M. e. a. Hempstead. An ultra low power system architecture for sensor 
network applications. In IEEE, 2005. 

[ '12] J. Hill, M. Horton. R. Kling. and L. Krishnamurthy. The platforms 
enabling wireless sensor networks. Communications of the ACM, vol 
47, June 2004. 

[13] T. Instruments. http://focus.ti.com/docs/prod/folders/printlcc2430.html. 
In Chip con Products CC2430 SoC. 2009. 

[14] e. a. Krishnamurthy. Lakshman. Wireless sensor network-based system 
for measuring and monitoring road traffic. In SenSys 2005. Nov. 2005. 

[IS] K. Langendoen. A. Baggio. and O. Visser. Murphy loves potatoes: expe­
riences from a pilot sensor network deployment in precision agriculture. 
20th International Parallel and Distributed Processing Symposium, vol. 
2006. Apr. 2006. 

[16] X. Lu and R. Manduchi. Fast image motion computation on an 
embedded computer. In Conference on Computer Vision and Pattern 
Recognition, 2006. 

[17] K. Martinez. P. Padhy. A. Elsaify, G. Zou, A. Riddoch. and J. K. Hart. 
Deploying a sensor network in an extreme environment. Proceedings of 
the IEEE Conference on Sensor Networks, Ubiquitous, and Trustworthy 
Computing, 2006. 

[18] e. a. Nassr, M. S. Development, implementation, and experimentation of 
parametric routing protocol for sensor networks. Proceedings of SP1E­
the international society for optical enginering, vol. 6394, 2006. 

[19] w. Ong, G. Venkataraman. S. Emmanuel, and A. Das. Fpga imple­
mentation of cluster formation algorithms in mobile ad-hoc networks. 
Intelligent Sensors, Sensor Networks and Information Processing Con­
ference. p. 19-24, Dec. 2005. 

[20] N. Phillips. http://www.standardics.nxp.com/products/lpc3000/lpc3180/. 
In 3180 processor, 2009. 

[21] J. Portilla, T. Riesgo. and A. de Castro. A reconfigurable fpga-based 
architecture for modular nodes in wireless sensor networks. IEEE 
Conference on Programing Logic, 2007, June 2007. 

[22] B. Schott, M. Bajura, J. Czarnaski. J. Ridr, T. Tho. and' L. Wang. A 
modular power-aware microsensor with> I OOOx dynamic power range. 
In Infortnation Processing in Sensor Networks SPOTS (IPSN-SPOTS). 
2007. 

[23] R. Szewczyk, J. Polastre. A. Mainwaring, and D. Culler. Lessons from a 
sensor network expedition. 1st European Workshop on Wireless Sensor 
Networks, 2004. 

[24] Y. Weng and A. Doboli. Smart sensor architecture customized for image 
processing applications. In IEEE Real-Time Embedded Technology and 
Applications Symposium. Aug. 2004. 

[25] G. Werner-Allen, O. Marcillo, J. Johnson, M. Ruiz. and J. Less. 
Deploying a wireless sensor network on an active volcano. IEEE Internet 
Computing, Mar. 2006. 

[26] M. B. Yeary, W. Zhang, J. Q. Trelewicz. Y. Zhai. and B. McGuire. The­
ory and implementation of computationally efficient decimation filter for 
power-aware embedded systems. IEEE Transactions Oil Instrumentation 
and Measurement, vol. 55. no. 5. Oct. 2006. 

[27] e. a. Zhang, Mingchen. Three-tiered sensor network architecture for 
traffic information monitoring and processing. In IPSN, 2004. 


