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ISENTROPE ENERGY, HUGONIOT TEMPERATURE,
AND THE MIE-GRUNEISEN EQUATION OF STATE

Charles A. Forest

Group DX-1, MS P952, Los Alamos National Laboratory, Los Alamos, NM 87545

Analytic expressions for both the isentrope energy and temperature along the Hugoniot curve may be
expressed in terms of a single integral function for a Mie-Gruneisen equation of state with constant heat

capacity c,.

INTRODUCTION

The Mie-Gruneisen equation of state with a
Hugoniot reference line is commonly used in
calculations. The temperature on the Hugoniot
and isentrope curves are at times desired.
Calculation of the temperature along the Hugoniot
was given by Walsh and Christian (1), the
expression for which contains an integral function.
This integral, for constant heat capacity ¢, and
general Gruneisen parameter I'(v)=v(dp/de),,
will be shown to be that integral which is
necessary for the calculation of isentropic energy.

The calculation of temperature or the calculation
of an arbitrary isentrope is often useful in fluid
dynamic modeling. These properties are used in
mixture equations of state that assume pressure
equilibrium along with temperature equilibrium or
isentropic behavior following a first shock. There
is ‘a convenience in having the single integral
fanction I(u) that facilitates both purposes.

BASIC FORMULATION

The Mie-Gruneisen equation of staie using a
first-shock Hugoniot reference line is written

p(v.e) = (TA)e - ey(v)) +p,(v) (D

where v = specific volume, e = specific internal
energy, p,(v)= Hugoniot pressure, ¢,(v)=
4(p,(v) +py) (vp~v) + ¢y, the Hugoniot
relation.

The function p,(v) is calculated from two

Rankine-Hugoniot relations (conservation of mass
and momemtum) and the empirical U, (1) relation

(the shock velocity into undisturbed material).
These equations are, as functions of the shock

particle velocity u, vy (u)=vo(Us(u)—u)/Ug(u},
Dy (1) =poul (u)}+ p,, and U,(u)=c+su+qu2.

Letting u,(v) be the inverse v,(u), then by
composition p,(v) = p,(u,(v)).

The empirical U,(u) relation is represented
piecewise by a linear or quadratic over n segments,
u;<up<...<up,; A comesponding set of
oppositely ordered volume segments are defined,
ViSV> 5V, with v = v (u;) X U(u) =
C+su+ qu2 on a scgment, then u, (v) is obtained
by solution of the quadratic equation

(2!5(2};2—11 +u)(v)=0 where
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up(v) =clvg=v)/(vy = s(vy = v))
If ¢ =0, then u,(v)=u,(v).

If ¢ = 0, the two roots for u, (v) are

u, = 2u,(v)/(1+‘!1—4q u,(v)z /c)and

u, =c/(quy).

The root u, has the correct limit for ¢ = 0 and
has good numerical precision; and for g # 0, the
u, root has similar precision. Both are calculated
using the fact that if the equation
ax?+ bx + ¢ =0 has roots x; and x,, then
¢ = ax;x,. The proper root must be selected to
lie in the segment determined by v.

The derivatives of p,(v)=p,(u,(v)) with

respect to specific volume v, or of any other
function parametrically given as a function of u,
requires the derivative du,/dv, which can be

calculated implicitly from the mass equation
Us(up (V) v = vo[U, (u, (v)) — uy(v)]
Differentiation gives
du, U (v)
dv ~ dU, :
iV Y

Using this result, with u = u, (v),

du,

An expression for the Gruneisen gamma I' in
terms of c,, T, B, and ¢’ can be obtained from
two thermodynamic equations related to I,

¢p = ¢(1 + BI'T) and ¢, = Bc’ /T, where

¢, =(3e/3T), + p(dv/3T),, ¢, = (3e/3T),
B = (v/3T), /v,and ¢’ =(3p/3p),

Equating the two < expressions and solving the
resulting quadratic equation for I” gives

2ABsc,)
1+[1+ «Bcz/cv)ﬁTﬁ.

r =

ISENTROPE ENERGY AND MIE-
GRUNEISEN EOS

From the thermodynamic equation, Tds = de +
pdv (with ds = 0) and the equation of state,

de.
% = —Pv.e(v)

where ¢;(v) is the isentrope emergy. The
differential equation for ¢; is then

de:
S+ T/g = TeM) - pv) @

with initial value ¢;(v;) = e;. Let now g(v) =
(TA), and let G(v) = exp{jg(v)dv} be the
integrating factor.

For two special cases of (I/), these functions
are as follows:

1. f T =T,, theng(v) = (TA) and G(v) = v".
2. lfrh =r0/vO, thcn g(V) = poro and

G(v) = exp {polpv}.

Now multiply equation (2) by G and integrate,
(vV)G(v) — e;G(vp) =

} G(vilg(viey (v) — py(viidv

vy




Note that -—-— = G{v)g(v) and integrate by parts

v
[Ggenav = [Ge,,] J'Gde" dv.
]

Also note

de dp
_th' +pu= 4 'a;f"(vo*”) + 4(py-po)

Finally then

e;(V)G(v) - €,G(v)) = G(v) ¢,(v) - G(v))e,(v1)

"j(‘;%‘i[%("o =V)+py -Po]"v
Vi

The remaining integral is not expressible in
terms of elementary functions, and is not easily
and accurately fit as a function of volume v
because p,(v) has a singular point at
v = vy(s - 1)/s when U, =c + su. Recall that
the particle velocity has no such trouble and can be
used for the integration change of variable. Thus
let

I(v) = j%[%("o -v)+ P, "Ii’o}“'v

Yo

(note lower limit of integration). Changing

integration variable, let

av
v = v,(u) anddv=-a-uidu.

This particular choice of variable change is
advantageous because p,(v) = p,(u,(v)) and

dp dp, du
d‘tl:duh d:=p0(Us+

dau,  dv
u T ) ==
Also note

(vo —v) = vou/U;, pp — Py = pU;, and

dv, ) vy u-aui - Us
du Us2
Then
Hu) = j___z(_u)_)_[dph d'Vh( Vo - v) +
(py — Po) ]du, and finally,
G(v (u))u dau
I(u) = j il O
and

e;(V)G(v) = ¢,G(v;) + e, (V)GV} - e, (v )G(v;)~
[1uyv)) - Kup(v,; 0}

Remark: ¢;(v) is the energy of the isentrope
through the point (v, e,bwhich may be any
point in the domain of p(v,e). A common
usage is the case where ¢; =¢,(v;) that is the
isentrope for a material element that has
experienced a first shock.

The function Nu) is represented om each
(uj, u;y) interval by the form I(u) =

a; + u™(ay+ agu + au’ + ag’ +ag®)  In
the neighborhood of u = 0, we let m = 3, and
elsewhere let m = 1. For calculation of the
derivative of Ku), the exact expression

dUS
du = G(vh(u))u —=/Ug(u) is used.

The use of component equations of state in a
equilibrium mixture equation of state requires not
only an accurate function value but an accurate
derivative so that the iterative equilibrium solution
method will converge quickly. To that end, the
function Ku) is fited by fitting the derivative of




I(u) and I(u) simultaneously. One need not use
polynomials, any suitable analytically integrable
basis function set would do.

TEMPERATURE AND HUGONIOT
TEMPERATURE

The temperature as’a function of (v,e) is

(e—e,(v)

T(v, e) = z
v

+ T, (v}

where e,(v) = Hugoniot energy and T,(v} =
Hugoniot temperature, and ¢, = constant heat
capacity.

The temperature on the Hugoniot T,(v) is
calculated via Walsh and Christian’s method (1).

They write on page 1554,
d1, dp 1
o @) p-taerdon-p

Changing variable to (v.¢), p(v,7) = p(v, e(v.,T))
and thus

(5).- ) @ o

The differential equation is then

P,
YT Tij{“a;'"”o-") +Pr1’o}

with initial value T,(v,) = T,. Using the same
integrating factor and notation as in the
integration of the isentrope energy equation,

T,,(v) G(v) - TyG(vy) =

v

dp
I 7%7{'3‘{5" (vo-v) + py —Po}d"-
Vo

For ¢, = constant, the integral is just I(v)/ ¢,, and
thus

T,(0) G) = TyGvp) +2-I(uy(v)).
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