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Abstract The self-similar converging-diverging shock wave problem introduced by 
Guderley in 1942 has been the source of numerous investigations since its publication. 
In this paper, we review the simplifications and group invariance properties that lead 
to a self-similar formulation of this problem from the compressible flow equations for a 
polytropic gas. The complete solution to the self-similar problem reduces to two cou­
pled nonlinear eigenvalue problems: the eigenvalue of the first is the so-called similarity 
exponent for the converging flow, and that of the second is a trajectory multiplier for 
the diverging regime. We provide a clear exposition concerning the reflected shock 
configuration. Additionally, we introduce a new approximation for the similarity expo­
nent , which we compare with other estimates and numerically computed values. Lastly, 
we use the Guderley problem as the basis of a quantitative verification analysis of a 
cell-centered, finite volume, Eulerian compressible flow algorithm. 
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1 Introduction 

The problem of a strong shock wave converging cylindrically or sp herically in a gas 
is well known in hydrodynamics and is considered important in varied contexts. For 
example, the problem of converging compressible flow is familiar to the laser fu sion 
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community [2,16,46,58] as well as in astrophysical contexts, e.g., in double-detonation 
su pernovae [21], 

Guderley was the first to investigate the basic problem of a strong cylindrically or 
spherically symmetric shock wave converging into an inviscid, non-radiating, non-heat­
conducting, perfect gas [24] (though this particular problem was also solved indepen­
dently by Landau and Stanyukovich in 1944 [60]). Guderley recognized that certain 
physical assumptions lead to a self-similar problem formulation. The solution of the 
self-similar problem is contingent upon the determination of the numerical value of a 
so-called "similarity exponent" that characterizes the space-time path of the infinite­
strength incoming (converging) and finite-strength reflected (diverging) shock waves in 
proximity to the location of collapse. In the years following Guderley's seminal work, 
various authors including Butler Ill], Lazarus and Richtmyer [38], Lazarus [36], and 
Hafner [28] calculated the numerical value of this similarity exponent (a function of 
the adiabatic exponent and geometry) to several significant figures using various tech­
niques. 

The "classic" Guderley problem, also reviewed by Meyer-ter-Vehn and Schalk [41], 
has variations that have been explored in some detail. Axford and Holm [4] used group 
theoretic techniques to determine the general equation of state (represented through the 
adiabatic bulk modulus) that admits self-similar solutions for a Guderley-type problem. 
Wu and Roberts [66] investigated the special case of a strong shock wave converging 
into a Van del' Waals gas , and various authors have found similarity solutions for strong 
shock waves converging into dusty gases [33], variable-density gases [40,62]' and radi­
ating gases [30 ,48]. Additionally, Axford and Holm [5] explored a quasi-self-similar so­
lution regime for finite-strength shocks, Ponchaut et al. [52 ,53J also relaxed Guderley's 
original s trong shock assumption , and Hornung et al. [32J considered the universality 
of imploding shock solutions from examination of approximate solutions for the Gud­
erley problem and computed solutions of converging shocked flows. The stability of 
Guderley flows was first investigated by Morawetz [45] and subsequently discussed by 
Hafele [26], Axford and Holm [4], Brushlinskii [10], and , recently, Clarisse [15]. 

Consistent with the assumptions motivating the governing Euler equations of invis­
cid , non-heat-conducting, compressible flow, the converging shock wave reflects through 
the origin , resulting in a diverging shock wave immediately following focus. It is easily 
proven that the similarity exponent governing the trajectory of the reflected shock is 
the same as that determined for the incoming case; consequently, many authors do not 
address reflection. Some authors, such as Lazarus and Richtmyer [38]' Fernandez [20], 
Lazarus [36], Rodriguez and Amable [56], Wu and Roberts [66], Bilbao and Gratton [7], 
and Ponchaut [52] , engage in discussions describing the flow into and out of the reflected 
shock wave. 

In fact , the reflected portion of Guderley's converging shock wave problem consti­
tutes a separate eigenva lue problem. In addition to the s imila rity exponent determined 
as part of the analysis of the converging portion , an a priori unknown trajectory 
multiplier must be determined in order to fully realize the (scale-invariant) physical 
flow variables. In general, this multiplier is determined numerically through integration 
of the reduced flow equations on either side of the reflected shock, supplemented by 
boundary condition matching; this is achieved thorough the satisfaction of the general­
ized Rankine-Hugoniot jump conditions at a certain point in similarity variable space. 
The evaluation of this multiplier is subtle: we present a thorough treatment for the 
sake of increased clarity and understanding. 
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One objective of this work is to rigorously examine both the converging and di­
verging portions of Guderley's original problem. We present a reduction of the one­
dimensional inviscid flow equations to self-similar form based on Lie Group techniques 
in the spirit of the work of Coggeshall et a!. [19,17 ,18], as opposed to ansatz or di­
mensional arguments l . Additionally, a number of existing approximations to the value 
of the similary exponent are summarized , and a new approximation based upon the 
work of Hirschler and Gretler [31] (H&G) is introduced. We focus only on the deter­
mination of standard solution modes (i.e., not those implied to exist by Lazarus and 
Richtmyer [38] and by Lazarus [36], and discussed in further detail by Van Dyke and 
Guttmann [63]). A description of the numerical solution of the problem as a whole will 
follow the analytic and semi-analytic considerations. 

The structure of this paper is as follows. In §2 we provide a brief review of the 
Guderley problem. The presentation in §3 describes how this problem is reduced to its 
self-similar form for both the converging-shock and reflected-shock phases. We discuss 
various approximations of the critical similarity exponent (including our new contribu­
tion) in §4. Comparisons of compressible flow code simulations of the Guderley problem 
with the semi-analytic ("exact") solution are given in §5, including quantitative verifi­
cation analysis of an Eulerian finite-volume code. We conclude in §6. 

2 Review of the GuderIey Problem 

The "classical Guderley problem" begins with the consideration of an infinitely strong, 
symmetric shock wave focusing perfectly on an infinite axis (cylindrical geometry) 
or point (spherical geometry). The source of the shock wave is not discussed in this 
scenario, but the initial state of the gas into which the wave is propagating is well­
defined. Denoting physical flow variables in this unshocked region by the subscript 0, 
the initial state is given by 

UO(T, t) = 0 , 

PO(T , t) = constant, 

PO(T, t) =0, 

(1) 

(2) 

(3) 

where T denotes position (T 2: 0), t time (-00 < t < 0 for the converging mode, 
0< t < 00 for the reflected mode), u velocity, P mass density, anel P material pressure. 
For a one-dimensional (l-D Cartesian, cylindrical, or spherical) , smooth flow free of 
viscosity, heat conduction, radiation , and body forces, the Euler equations describe 
fluid motion at all continuous (i.e. , non-shock) locations: 

ap + a (pu) + (m _ 1) P u = 0, 
at aT T (4 ) 

au+uau+~ [c2 
ap+ 2c ac] = 0, 

&t aT 'Y P aT aT (5) 

ac + u ac + ('Y _ 1) c [au + (m - 1) u] = 0 , 
at aT aT T (6) 

1 Dimensional analysis finds only scale-invariant variables and solutions, while application 
of Lie group techniques systematically identifies all invariant functions and solutions. 
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where c denotes the local sound speed, defined through the pressure and density by: 

(7) 

Here we consider only a polytropic gas with the incomplete equation of state (EOS) 
given by: 

P(p,e) = h -1) pe, (8) 

where e is the specific internal energy (SIE). In (4-8)" denotes the adiabatic exponent 
(1 <, < =), and m the space dimension (m = 1, 2, or 3 for I-D plana r, cylindrical, or 
spherical symmetry). Equations (4-8) are not vaHd globally, though shock jump con­
ditions are available to connect the pre-shock and post-shock flow fields. In particular, 
since the converging shock wave is assumed to be infinitely strong, the strong limit of 
the R a nkine-Hugoniot jump conditions may be used to connect the flow just upstream 
to that just downstream: 

P2a ,+ 1 
Po - 'y -1' 

2 ._ 
'UZa = -- Rs (t) , 

, - I 

2 [ . - ]2 P2a = - - PO Rs (t) , 
,- I 

(9) 

(10) 

(11) 

where the subscript 2a denotes the state just upstream of (behind ) the converging 
shock , and R .;(t) denotes the converging shock speed. 

Equations (9-11 ) are valid for all t < 0 (the convergent mode). After shock focus 
and subsequent reflection about the axis or point of symmetry (analogous to reflection 
from a rigid wall in 1-D planar symmetry) , these equations cease to be valid. As the 
st rength of the reflected shock wave for t > 0 is unknown (due to the fact that the 
pressure field downstream (ahead) of the reflected shock wave is once-disturbed and 
not necessarily negligible), general jump conditions must be employed to connect the 
flow in the post-reflect ion space-time regions. After some manipulation, the standard 
R a nkine-Hugoniot jump conditions in this case can be written as [24]: 

,+1 
P3 = P2b -------'----------.". 

, -1+2 [C2b/(U2b - Ri(t))]2 ' 
(12) 

. + 1 [ . + ] { ( C2b ) 2 } U3 = Rs (t) + -1 U2b - Rs (t) 1 - 1 + 2 . + 
, + u2b - R" (t) 

(13) 

P3 =P2b +-2-P2b [U2b- R;(t )]2 {1 -( C2b+ )2}, 
"1 + 1 u2b - Rs (t) 

(14) 

where the subscripts 2b and 3 denote, respectively, the states just downstream and up­
st ream of the reflected shock, and Ri (t) denotes the reflected shock speed , Additional 
constraints apply at r = 0 for t > 0: 

Ip3(0, t)1 < =, 
U3(0,t) =0 , 

1P3(0, t )1 < =. 

(15) 

(16) 

(17) 
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In principle, and in conjunction with the conditions that the flow field be single-valued 
for all t (including t = 0 but excepting shock wave positions) and bounded as r ---> 00 

for t f. 0, (1-17) are sufficient to fully determine the flow field surrounding both the 
converging and reflected shock waves for all t. 

3 Semi-Analytic Evaluation of the Guderley Solution 

Following from group theoretic considerations of (4- 6) 2, the following change of vari­
ables may be derived: 

r 
~ == sgn(t) W ' 

r 
u(r, t) == t V(O , 

2 T2 
c (T,t) == t2 C(O, 

p(r, t) == Po D(O , 

(18) 

(19) 

(20) 

(21 ) 

where 0 is a dimensionless constant referred to as the Similarity exponent. \Ve utilize 
this choice of variables and follow the particularly clear development of Chisnell [14J. 
Lazarus [36J takes a different approach, using as his fundamental nondimensional in­
dependent variable a quantity proportional to ~-1/a.. This choice of variables has 
implications in the computational evaluation of the solution , as we discuss in §§3.1 and 
3.2 and Appendix B. 

Analogs of (4--6) may be transformed to a system of ordinary differential equations 
(ODEs) in the dimensionless variables~, D(~), V(O, and C(~) : 

1 dC 2L'l {1 + { [(1- o)/b (0 - V)])} + h - 1) Q(V) 
C dV L'l {m V - [2 (1 - o)lY]) + (0 - V) Q(V) 

1 dD Q(V) - L'l {[2 (1 - o)J/b (0 - V)]} 
D dV (0 - V) Q(V) + L'l {m V - [2 (1 - o)lY]) , 
1 ~ -L'l 
~ dV = (0 - V) Q(V ) + L'l {m V - [2 (1 - o)lY]) , 

where 

L'l == -C + (V _ 0)2 , 

2 (1 - 0) 
Q(V) == m V (V - 0) + (0 - V) - V (V - 1) . 

"( 

(22) 

(23) 

(24) 

(25) 

(26) 

One can similarly transform (9-11), (12-14), (15-17), and the conditions that the flow 
field be single-valued for all t and bounded as r ---> 00 for t f. 0, as these relations are 
invariant under the same group of point transformations as (4-6). Transformation of 
these expressions results in the following relations. At the incoming shock location: 

D(~ =- I) = ,,(+1, 
,,(-I 

V(~ = -1) = "(2:1 ' 

C(~ = -1) = 2 h - 1) 20
2 

. 

h+ 1) 

2 See Appendix A for a brief motivation and discuss ion . 

(27) 

(28) 

(29) 
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D(E, -0 -(0) = constant , 

V(E, -0 - (0) = 0 , 

C (E, -0 -(0) = o. 

(30) 

(31 ) 

(32) 

At the reflected shock (where E, = E,R) : 

,+1 
D3(E,R ) = D2b (E,R) , _ 1 + 2 [C2b (E,R)/(V2b (E,R) _ 0:)2] , (33) 

V3(E,R ) = a + _1_ [V2dE,R) - 0:] {,- 1 + 2 [C2b (E,R)/(V2b(E,R) - 0:)2]} , (34) . ,+ 1 

C3(E,R) = ,~l {, - 1 + 2 [C2b(E,R )/(V2b (E, R) - 0:)2J } 

x { C2b (E,R) + ,~1 [V2dE,R) - a]2 {I - [(V2~~~(;~ 0:)2]} } . (35) 

As r -0 0 for t > 0: 

Through the focus: 

ID(E, = 0)1 < 00, 

V(E, = 0) = constant , 

C(E, = 0) -0 00. 

D2a(E, -0 - (0) = D2dE, -0 (0), 

lim ~ [V2a(E,(r, t)) - V2b (E,(r, t)) J = 0, 
t-O+ t 

r2 
lim "2 [C2a(E,(r,t) ) - C2b(E,(r,t)) ] = O. 

t-O+ t 

(36) 

(37) 

(38) 

(39) 

(40) 

( 41) 

Together, (22-24) a nd (27-41) provide a framework for the Guderley problem in terms 
of ODEs and additional constraints. Different forms of these governing equations have 
been previously derived by various authors [14,36 , 38J. 

3.1 The Converging Shock 

The calculation of the similarity exponent and evaluation of the numerical solution 
of (22-24) are carried out simultaneously, first using successive estimates for 0: and 
the initial and boundary conditions given by (27-29) and (30-32). With an initial 
estimate for 0: , numerical integration of (22-24) is typically started at the incoming 
shock represented by (27-29) and carried through to the state represented by (30-32). 
Between these states, however, the governing equations become singular when LJ = O. 
As shown by Chisnell [14], to remove the physically unrealistic singular behavior , it 
becomes necessary to impose the constra int: 

Q(V*) = mV' (V* - 0:) + 2(1- 0:) (0: - V*) - V· (V' -1) = 0 when LJ = 0, , 
(42) 



Table 1 Selected values of the sim ilarity exponent (} 

Cylindrical Geometry (m = 2) 
New value Lazarus [361 1/ Astd 

1.4 0.835323192 
5/ 3 0.815624901 
2 0.800112351 
3 0.775666619 
6 0.751561684 

0.8353231919 
0.8156249014 
0.800112.3512 
0.7756666194 
0.7515616841 

Spherical Geom et ry (m = 3) 
New value Lazarus [3 6J 1/ Astd 

0.717174501 
0.688376823 
0.667046070 
0.636410594 
0.610339 148 

0.7171745015 
06883768229 
0.6670460703 
0.6364105940 
0.6103391480 
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where V' represents the V-coordinate of the Ll = 0 si ngularity. Accordingly, the con­
st raint given by (42) provides the means by which to remove this singularity and 
numerically determine a precise value for the si milarity exponent. Concomitantly, the 
apparent s ingularity in (22-24) becomes integrable, and the numerical solution of these 
equations may be carried through to the state given by (30-32). 

In the current work, this procedure was implemented using the equations based 
on the nondimensionalization of Lazarus [36]3 We use the Netlib routines ODE to 
solve the system of differential equations and the one-dimensional rootfinder ZEROIN 
for determining the similarity exponent [22,47]. In the literature [28,31,36 ,38]' there 
has been inconsistent reproduction of si milarity exponent values beyond eight or nine 
decimal places, even for "standard" values of the adiabatic exponent. For I < 1.4, 
accurate calcula tion of Q becomes difficult, as discussed by Lazarus [36]. Even so, the 
results given in Table 1 a re consis tent with other published results. 

3.2 The Reflected Shock 

The converging shock wave solution mode is valid until focus (t = 0). At that time, 
the shock wave reflects about the point or a..'(is of symmetry and proceeds to diverge 
outwards into the once-perturbed fluid with an unknown trajectory given by: 

(43) 

where the parameters E and ,8 are initially unknown , though it is easily shown tha t 
{3 = Q. The parameter E, however, requires more effort t.o calcula te. 

As the structure of the equations governing the flow for t > 0 has not changed (they 
are in fad given by (22-24)), numerical evaluation of the solution may, with a su itable 
change of variables (see Lazarus [36]), be conti nued beyond the state represented by 
(30-32) by means of two integrations. The first integration represents recovery of flow 
data beginning at r ---+ 00 for all t > 0, and can be continued "i nward" until the 
reflected shock wave is reached. Being co upled to the unknown value of E, the phase­
space point corresponding to the reflected shock wave is unknown. If this location were 
known , then the general-strength Rankine-Hugoniot jump conditions would be applied 
there, and the integration of (22-24) could be continued to a suitable endpoint, namely, 
until (36-38) are satisfied. This final state represents the position r' = 0 for t > O. 

To determine the phase space location of the reflected shock wave, Lazarus [36] 
devised a so-called "jump locus" methodology. A locus of "jump points" is formed by 

3 In Appendix B , we present the reaso ns for utilizing the Lazarus methodology in the nu­
merical calculations together wi th computational details useful for practical implementations. 
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Table 2 Selected values of B- C<, the reflected shock space-time location . 

Cylindrical Geometry (m = 2) 
New value Lazarus [36,37] 

1.4 2.815610935 
5/3 1.694792696 
2 1.199630409 
3 0 .763159927 
6 0.540791267 

2.815608 
1.694792 
1.199631 
0763160 
0.5407906 

Spherical Geometry (m = 3) 
New value Lazarus [36,:37] 

2.688492680 
1.547894929 
1.077253818 
0.693969704 
0.531821969 

2688492 
1.547896 
1.077255 
0.693970 
0 .5318222 

applying the general Rankine-Hugoniot jump conditions to every numerical solution 
point beyond the state represented by (30-32), which corresponds to the origin in the 
(V, C )-plane. The numerical integration and resulting jump locus are continued to an 
arbitrary end point in the (V, C)-plane beyond the phase-space position corresponding 
to the reflected shock wave. The end point is determined by trial a.nd error, subject to 
the success of the second numerical integration. 

This second numerical integration follows the const.ruction of the jump locus. It 
is subject to another appropriate change of variables and is initialized from (36-38). 
This integration is continued until a single intersection with the jump locus is obtained. 
Through this coupling, one identifies a unique phase-space point (on the jump locus) at 
which the reflected shock wave exists. Through suitable transformations of these results 
B is determined, and the entire diverging-phase solution can be constructed. Data from 
the first numerical integration beyond the location corresponding to the correct jump 
point are thereby rendered irrelevant; the same is true of the remainder of the jump 
locus. As for the converging shock calculation, in the current work our computational 
implementation of the reflected shock solution follows the Lazarus methodology. 

Lazarus [36], defining his B as the reflected shock space-time location , published 
values of that parameter (found by taking B in (43) to the negative a power) in Tables 
6.4--6.5 of that reference (subject to the erratum [37]). 

For / ' < 1.4, accurate calculation of B- Q becomes difficult, as discussed by 
Lazarus [36J. Even so, the results given in Table 2 are consistent with other published 
results. 

4 Analytic Similarity Exponent Approximations 

The nonlinear eigenvalue problem whose solution determines a has been solved approx­
imately by a number of authors including Stanyukovich [60J and Chisnell [14J. A variety 
of physical and mathematical arguments exist so as to provide accurate estimates of 
the parameter a. We consider three approximations of a based on fundamental as­
sumptions about the solution of the governing equations 4 These estimates ultimately 
prove useful as first iterates or bracketing values on the true value of a, and are easily 
incorporated into numerical routines that iterate on the true value of the similarity 

4 These approximations are to be co ntrasted with the purely curve-fit approximation for Q 

as a function of 'Y given by Hafner [27] for the spher ical (m = :3) case: 

{ } 
-l i n 

0= [h - 1)/ (2 a)] + (1- Ooo)-n + 000 I (44) 

where a = 3.26 X 10-4
, n = 6, and 0:00 = 0.375. 
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exponent. It will be shown that for different ranges of, and m, the relative accuracies 
of the approximations vary. 

4.1 The Pressure Maximum Requirement 

Stanyukovich [60J noted that for certain values of the adiabatic exponent, the pressure 
distribution behind the converging shock wave contains a single maximum. The exis­
tence of a pressure maximum in the ftow behind a converging shock wave for arbitrary 
, > 1 was dismissed by Zel'dovich and Raizer [68], but a work by Mishkin and Fuji­
moto (M&F) claimed otherwise [43 ,44J. Through this requirement, M&F derived an 
analytic expression for a claimed to be exact: 

a = _~'--( _+---:2-:-+_2--,-.j'Ff-,;2=,=­
m i' + 2 + 2.j'Ff 

( 45) 

The cla.im that (45) represents an exact solution for the similarity exponent was later 
refuted in papers by Lazarus [35J (with a rejoinder by Mishkin [42]) and Yousaf [67]; 
see also the paper by Wang [64J. This so-called "Landau-Stanyukovich rule" has also 
been recently extended by Gurovich and Fel [25J in order to construct upper and lower 
bounds on the true value of the similarity exponent. 

4.2 The CCW Method 

The Chester-Chisnell-Whitham (CCW) method is based upon Chester's result for the 
motion of a shock wave in a channel with a small change in area [12]. Chisnell first. 
integrated Chester's result for "freely propagating" symmetric shock waves [13], and 
Whitham produced an alternative derivation of Chisnell's result [65]. For the case of 
strong shock waves, the ultimate result is an analytic formula relating the similarity 
exponent to the adiabatic exponent and space dimension. 

It was apparently first noted by Sedov [59] that in the neighborhood of (V, C) 
(0,0), the solution of (22) has the following limiting behavior: 

lim C(V) = A2 V2 
, 

v~o+ 
(46) 

where A2 is a constant to be determined. Since (46) automatically sa.tisfies the bound­
ary condition imposed upon the solution curve C( V) given by (31,32), only the initial 
conditions (28 ,29) remain to be utilized . In particular, imposing the latter on (46) 
allows for determination of the constant A 2 , and (46) becomes 

1 2 
C(V) = 2' b - 1) V . (47) 

This equation represents an approximate analytic expression for the solution curve 
C(V) of (22). Together with the condition L1 = ° and one solution of (42), (47) provides: 

(48) 
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4.3 The New Method 

Inspired by the mathematical development of the CCW method just presented and 
a pseudo-limiting form of (22) first derived by Hirschler and Gretler [31] (H&G), a 
different approximate expression for the similarity exponent can be derived. Through 
the use of H&G's asymptotic treatment of (22) and the initial condition given by 
(28,29), an approximate solution can be shown to hold near the singular point at 
Lj = 0 [54,55]: 

1 2 
C(V) = Q ('y - 1) V + 2" (1 - 'Y) V . ( 49) 

When evaluated at the singular point, (49) closes a system of three nonlinear algebraic 
equations with the condition Lj = 0 and one solution of (42). Solution of this system 
for Q is given by 

'Y ('y + 1) - ('y - 2) ~ 
Q= ------~~--~~====~~~----------

[2+'Y(m - 2)] ~ - 'Y b (m - 2) - m]' 
(50) 

Equation (50) provides an alternative to the M&F and CCW approximations as an 
analytic approximation to the similarity exponent. 

4.4 Discussion of Results 

Evaluation of (45) , (48), and (50) for various values of 'Y and m appears in Tables 3 
and 4. Several trends may be discerned from these data. 

1. The M&F approximation underestimates Q for all 'Y and m. 
2. The CCW approximation overestimates Q only for a small range, 1.1 < 'Y < 2, for 

m = 2 and 3. 
3. The new approximation overestimates Q for 'Y > 5/ 3 for m = 2 and 3. 
4. The CCW and new approximations are both more accurate than the M&F appox­

imation for nearly all 'Y and m. 
5. The new approximation is more accurate than the CCW approximation only for 

very large 'Y for m = 2 and 3. 

As discussed in §3.1, an exact value for the similarity exponent is obtained by removing 
the Lj = 0 singularity crossed by the solution of (22-24). While all Guderley solutions 
employ this technique, an additional constraint is necessary in order to construct ana­
lytic approximations to Q. We have found that the global approach of utilizing both the 
initial conditions (28-29) and asymptotic solutions of (22-24) provides analytic approx­
imations that retain a high level of fidelity to exact semi-analytic solutions (e.g., the 
CCW and new approximations). The purely local M&F approximation, which employs 
the pressure maximum requirement (i.e. a solution of (42) but not (28-29)) proves Jess 
accurate. Therefore, we hypothesize that both the local-global nature and accuracy 
of the additional constraint largely determines the accuracy of the resulting analytic 
approximation. 

Reasons for the accuracy difference between the CCW and new approximations for 
various choices of" and m are not easily resolved. We hypothesize that the relative local 
accuracy of the approximate solutions provided by (47) and (49) varies explicitly with 
T Accordingly, the accuracy of analytic Q calculations based upon the implementation 
of these approximate solutions is seen to vary in a like manner. 
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Table 3 Estimates of the sim ilarity exponent Ci for selected values of the adiabatic exponent 

Cylindrical Geometry (m = 2) 

'Y Exact [361 M&F (45) CCW (48) New (50) 

1.1 0.88524806 0.84650762 0.88247182 087355000 
1.4 0.83532320 0.82815001 0.83537259 082945717 
5/3 081562490 0.81450188 0.81604351 0.81481482 
1.8 0.80859994 0.80840329 0.80888426 0.80980869 
2.0 0.80011235 0.8 0.8 0.80384758 
3.0 0.77566662 0.76742346 0.77266101 078679656 
50 0.75640105 0.72714208 0.74881559 0.77296156 
10 0.74182593 0.67683841 0.72904957 0.76193475 
100 0.72853594 0.56575410 0.70941536 0.75124381 
00 0.72704805 0.5 0.70710678 0.75 

Table 4 Estimates of the s imilarity exponent Ci for selected values of the adiabatic exponent 

Spherical Geometry (m = 3) 
'Y Exact [361 M&F (45) CCW (48) New (50) 

l.l 0.79596980 
1.4 0.71717450 
5/3 0.68837682 
1.8 0.67855370 
2.0 0.66704607 
3.0 0.63641060 
5.0 0.61522398 
10 0.60104880 
100 0.58950281 
00 0.58828929 

0.73386494 
0.70670310 
0.68705455 
0.67842021 
0.66666667 
0.62261729 
0.57126728 
0.51153119 
0.39446102 
0.33333333 

078966404 
0.71728743 
0.68925126 
0.67909796 
066666667 
0.62954164 
0.59848539 
0.57362550 
0.54968526 
0.54691816 

5 Compressible Flow Code Results 

0.77548938 
0.70860899 
0.6875 
0.68040211 
0.67202771 
0.64852814 
0.62994081 
0.61542374 
0.60159367 
0.6 

With semi-analytic results for the classical Guderley problem available, a counterpart 
numerical simulation was conducted using the general compressible flow solver of the 
program RAGE [23]. This algorithm is a variant of the Lagrangc+ remap-sty le Eulerian 
solver, as described, e.g. , by Benson [6]; we refer to [23] for further details. With the 
semi-analytic solution, we can quantitatively gauge the quality of the compressible flow 
algorithm for both the incoming converging flow as well as the outgoing reflected shock 
solution. 

Initializing a Guderley-like scenario in a generalized compressible flow code must 
be performed carefully. Theoretically, the converging shock wave that characterizes 
the Guderley problem is created in an infinitely weak state at r· ---> 00 and t ---> -00. 

The shock wave then propagates inwards with increasing strength due to geometric 
effects. It is impossible to precisely initialize a compressible flow code with such a 
prescription. Ponchaut et al. [53] and Hornung et aJ. [32] initialize generalized Guderley­
like compressible flow calcula tions as "sp herical shock tubes," i.e. by "numerically 
removing a membrane" separating a small pressure/ sou nd speed differential a t some 
position fa r from the focal point. The simulation is then a lJowed to evolve such that a 
Guderley solution is approached asymptotically in the immediate neighborhood of the 
focal point. 
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To be ostensibly more faithful to Guderley's original solution [24], a different ap­
proach is employed in the current work. Specifically, the solution to the Guderley 
problem is calculated on a specified, finite domain , 0 ::: T' S T'max, at a chosen time 
when the shock wave is "near" the position T' = O. This computed solution is used 
to evalute cell-averaged values on the uniform mesh of the 1D, spherically symmet­
ric compressible flow code. This choice of initia lization is applied over a finite spatial 
domain including the origin. 

In the compressible flow code calculations, a reflecting boundary condition is spec­
ified at the far boundary at T'max, resulting in the generation of a spurious, inward­
propagating rarefaction wave. Estimates suggest that this rarefaction wave propagates 
at approximately the u - c characteristic speed. This information is used to iden­
tify subsets of the computational domains, unpolluted by this sp urious rarefaction , on 
which to make quantitative comparisons of the flow code results with the self-similar 
Guderley solution computed from the ODEs. 

The semi-analytic solution is computed in spherical geometry (m = 3) for an adi­
abatic exponent 'Y = 3. At t = -1 the initial state is chosen so that the converging 
shock is exactly at T' = 1 (which forms an exact computational-cell boundary in all 
computations). With these initial conditions , reHection occurs at the origin at t = O. 

The initial incoming-shock configuration is shown in Fig. 1, which depicts the den­
sity, velocity, SIE, and pressure as functions of radial position over the entire computa­
tional domain. In all results and figures, How quantities are in consis tent cgs units. The 
values shown are cell-centered, cell-averaged quantities on 1200 equally-spaced zones 
between T' = a and T'max = 3. This figure shows that the incoming (negative) velocity 
peaks at the shock, located at T' = 1, as do the pressure and SIE. In the upstream vicin­
ity of the shock, the density gradually decreases to its immediate post-shock value.5 

The configuration of Fig. 1 is used as initia l conditions for the compressible flow 
solver. The semi-analytic and computed density fields at t = -0.5 , -0.1, 0.1, and 0.5, 
are shown in Figs. 2, 3, 4, and 5, respectively. These figures also contain plots of the 
pointwise error , liif - iifl, in each of the computed solutions; here, Yj represents the 
solution averaged over cell j for either the exact (E) or computed (C) solution. Cor­
responding plots of the veloci ty, SIE , and pressure fields are provided by Ramsey [55]. 
We now turn to a discussion of these resul ts. 

5.1 Start-Up Errors 

A prominent feature of Figs. 2-5 is the "dip" in the computed density fields. This dip is 
seen to exist in the density solution field for all post-initialization times. Additionally, 
"bumps" appear in the SIE field (provided by Ramsey [55]) at positions corresponding 
to the density dips for given times. These dips and bumps appear to annihilate one 
another in the computed pressure field and are not particularly noticeable in velocity 
results [55J. Quantitative estimates suggest that the dips and bumps move in the fixed 
Eulerian frame at approximately the material speed. 

Phenomena of this type are not unique to the Guderley problem. In particular, 
dips and bumps such as those observed in Figs. 2-5 appear even in simple 1D pla­
nar numerical calculations initialized with exact solutions involving shock waves. This 

5 Cell averages are determined from numerical integrat ions using conserved quantities. See 
Appendix C for a discussion . 
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phenomenon is discussed in detai l by Arora and Roe [1] ; see also LeVeq ue [39]. For 
the purposes of this investigation, it is sufficient to recognize that the density dips are 
generated by finite volume numerical shock-capturing algorithms. While it is reason­
able to assume that details of this phenomenon vary with different compressible flow 
algorithms, to the authors' knowledge there is no evidence in the literature that this 
phenomenon can be eliminated in Eulerian finite-volume codes. 

The magnitude of the start-up error remains app roximately constant in time. The 
spatial extent of the error increases slightly from t = -0.5 to t = -0.1, but is then 
compressed at t = 0.5, presumably associated with the passage of the reflected shock. 
As suggested by Fig. 5, however, the presence of the startup error does little to affect 
either the position or strength of the reflected shock su bsequent to its interaction with 
this feature. 

Figures 4 and 5 suggest that the shock capturing algorithm numerically approx­
imates well the shock focusing and subsequent reflection at the origin at t = 0, i.e., 
the flow features of the semi-analytic solution subsequent to focus are captured in the 
computed solution. For only the coarsest resolution does the calculated shock position 
deviate noticeably from the semi-analytic solution. 

5.2 Effects of Initia lization with a Post-Focus State 

The presence of the post-shock errors near the origin lead us to question how the 
compressible flow algorithm would behave if initialized with a post-focus state . . Using 
an initialization with a state subsequent to shock focusing time, we find the computed 
behavior to be more precise than with the converging flow initialization. More precisely, 
we evaluate the semi-analytic solution at a time (t = 0.018594543 for m = 3 and 
I = 3) when the shock is located at T = 0.1, and use those values to initialize the 
compressible flow code. Figure 6 depicts the density, velocity, SIE, and pressure as 
functions of rad ial position over a subset of the computational dqmain. These values 
are cell-centered , cell-averaged quantities on 1200 equally-spaced zones between T = 0 
a nd T = 3. This figure shows the strong peaks in pressure, velocity, and density behind 
the outgoing shock as it encounters the incoming flow. 

Comparison between the computed results at t = 0.5 in Figs. 5 and 7 corresponding 
to the different initializat ions reveals two significant differences. The first difference is 
the near-origin behavior. SpeCifically, a choice of post-reflection initialization drastically 
reduces the near-origin error-a fact explained by the computed solution not being 
subject to the consequences of singular behavior at t = O. 

The second difference is the significant reduction (but not elimination) of the den­
sity start-up error in Fig. 7: a small, localized flow error is apparent in this figure be­
tween T = 0.1 and T = 0.15. We specula te that this feature has the same cause as the 
start-up error evident in Figs. 3-5. A possible explanation as to why this phenomenon 
has smaller amp litude and spatial extent is given by the different flow geometry of the 
two different initial conditions: the initialization a t t = -1 corresponds to converging 
flow, while an initialization with a semi-analytic solution at any t > 0 (including that 
shown in Fig. 6) corresponds to diverging flow. We hypothesize that the divergent flow 
may reduce the start-up errors. 
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5.3 Verification Analysis 

Code verification analysis is an approach for gathering quantitative evidence that soft­
ware for the solution of discretized equations generates results consistent with the 
corresponding continuum equations, e.g., by examining the error order-of-accuracy of 
the numerical results. Verification analysis (reviewed, e.g., by Oberkampf et a!. [50J and 
Roy [57]) is a vitally important aspect of both algorithm and software development. 
The Guderley problem presents an ideal configuration with which to perform code ver­
ification analysis for cylindrically or spherically symmetric, converging-then-diverging 
compressible flow of an ideal gas. Using both the semi-analytic ( "exact") and numerical 
("computed") Guderley solutions, we evalute the spatial convergence properties of the 
RAGE compressible flow algorithm 6 

In particular, we take as axiomatic the standard error ansatz, 

E C a Ily - y II = A (Llr) , (51) 

where the superscripts E and C refer to the exact and computed solutions, respectively, 
II . II represents an error norm evaluated over a specified domain, Llr is a characteris­
tic mesh dimension (e.g., the cell size on a uniform grid), A is a prefactor, and (1 is 
the convergence rate (e.g., (1 = 1 for a first-order method). As is standard for analy­
sis of compressible flows, we consider the L1 norm only (see, e.g. , the monograph of 
Bouchut [8]). We approximate the left side of (51) as 

Nr 

IlyE - yell:::; ~ 2:)Df - yfl dV), (52) 
j=1 

where iij represents the solution averaged over cell J for either the exact (E) or com­
puted (C) solution , dVJ is the volume of the spherical shell element centered at rj, NT 
is the number of cells between the origin and r = 2, and V is the volume of the sphere 
of radius 2. 

The ansatz in (51) implicitly assumes that the convergence is monotonic and the 
method is consistent, i.e., that there is no 0(1) error. Using a series of calculations at 
different mesh resolutions, it is straightforward to infer best-fit values for both A and (1, 

which we accomplish with a standard nonlinear least-squares technique, using software 
described by Hemez et a!. [29J In all calculations, the domain over which the errors 
were evaluated was a < r < 2, thus neutralizing the efl'ects of spurious boundary-driven 
rarefaction waves, as discussed in §5.1. 

Results of this analysis are catalogued for various times in Tables 5 and 6. Addition­
ally, example plots corresponding to the two data sets given at t = 0.5 (converging and 
diverging initialization) are provided in Fig. 8; further results are given by Ramsey [55J. 
Results for convergent initialization are provided in the first four rows of the tables 
and the left plot in the figure ; the last row and right plot show results for divergent 
initialization. 

These results show that the L1-norm convergence rate is approximately linear for 
times before focus , with the exception of the density field. For times following focus, 
the L1-norm convergence rate is universally but only slightly sublinear. In all field s 
except density, the L1-norm convergence rate also decreases as focus is approached. 

6 One can also evaluate the temporal and combined spatio-temporal convergence properties 
of com pressible flow algorithms [34[ . 
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Table 5 Summary of L1-norm convergence data 

Premultipl iers A 
p u P e 

-0.5 0.1886 01003 0.0510 0.0146 
-0.1 0.2636 0.0364 0.0593 0.0178 
+0.1 0.3078 0.0630 02102 0.0278 
+0.5 0.2584 0.0547 0.1024 0.0275 
+0.5" 0.1780 0.0460 0.1243 0.0091 

*lnitialized at t = +0.01 8594543; others initialized at t = -1. 

Table 6 Summary of L1 -norm convergence data 

Convergence Rates 0' 

p U P e 

-0.5 0.8652 1.046 1.028 0.9906 
- 0.1 0.9061 0.9720 1.002 0.9518 
+0.1 0.9125 0.9794 0.9358 0.9324 
+0.5 0.8501 0.9362 0.8694 0.9401 
+0.5" 0.9605 1.011 0.9695 0.9444 

*Initialized at t = +0.018594543; others initialized at t = - 1. 

Additionally, for times after focus , the L l -norm convergen ce rates decrease for all fie lds 
except SIE. The pressure and SIE convergence rates decrease through focus . 

Comparison of the error plots in Fig. 8 confirms what is seen for the density in 
Figs. 5 and 7, viz ., the absolute error is smaller for the reflected shock initialization; 
moreover , the convergence rate in this case is higher. VI/e observe si milar trend s for 
each flow quantity except the SIE. 

The behavior observed in Tables 5 and 6, and Fig. 8, allows for the construction of 
hypotheses regarding effects that may influence the various convergence rates. Promi­
nent trends that may prove amenable to explanation are the following. 

1. Decreases in convergence rates during the time-evolution of the convergent. solution 
mode. 

2. Decreases in convergence rates during the time-evolution of the diverging solution 
mode. 

3. Decreases in convergence rates across focu sing time . 
4. The inapplica bility of trends 1 and 3 to the density field . 
5. A marked improvement in convergence rates for initialization at a post-focus time. 

Trends 1, 2, and 3 have a common explanation. At focus time, the exact Guderley 
solution for the physical velocity, SIE, and pressure fields increases without bound at 
the shock. This phenomenon is not numerically realizable due to inherent numerical 
precision limitations, so errors accrue in both the semi-analytic solution and compress­
ible flow code results near focus time. Trends 1 and 3 do not apply to the density field 
co nvergence rates, and , in fact , these rates exhibit opposite behavior. A phenomenon 
that could prove responsible for this counterintuitive behavior is the interaction be­
tween a prominent start-up error a nd the fact that the density field solution does not 
increase without bound in the vicinity of t = O. Similar reasoning might explain be­
hav ior in the pressure fi e ld that does not agree with trend s 1-4, as this variable is 
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connected to the density and SIE through the polytropic EOS. Trend 5 notes an im­
provement in all L1-norm convergence rates for a positive choice of initialization time, 
in all cases reaching essentially linear levels. This effect is clearly due to improved 
near-origin behavior and start-up error reduction in this case. 

6 Conclusion 

'vVe have provided a. brief overview of the theoretical framework necessary to construct 
a semi-analytic solution to Guderley's imploding shock problem. A number of exist­
ing analytic approximations to the problem's key parameter- the so-called similarity 
exponent-have been summa.rized and a new approximation was introduced. 

We used the semi-analytic solution to the Guderley problem to initialize a com­
pressible flow code on a finite domain and conduct what may be the first rigorous 
code verification analysis of an Eulerian compressible flow code with the full Guderley 
solution. Despite the well-known start-up errors that the computed solutions exhibit, 
these results show near-linear spatial convergence in the L1-norm for the converging 
solution mode, and sublinear spatial convergence in the Ll-norm for the subsequent 
diverging solution mode. When initialized with a post-focus flow state, the errors in 
the computed solutions are notably smaller and the convergence results are marginally 
better. 

The Guderley problem provides an attractive alternative to two other widely-used 
compressible flow code test problems: the Noh problem [3 ,49J and the Sedov prob­
lem [59J. The Guderley problem's advantages lie in the fact that it includes no unphys­
ical wall heating effects, and is capable of describing coupled converging and diverging 
flow. It will be of interest to use the Guderley problem to evaluate the properties of 
other compressible flow algorithms, as well as to investigate 2D cylindrically symmetric 
and 3D geometries. Despite being introduced over 65 years ago, the Guderley prob­
lem continues to provide challenges to the theoretical and computational fluid physics 
communities. 

Appendix A: Derivation of Similarity Variables 

Equations (18-21) may be derived from the group invariance properties of (4-6). Specif­
ically, (4-6) have been found [3- 5,51J to admit the group of point transformations with 
the generator: 

where the parameters ai (i = 1, 2,3,4) are arbitrary constants. 
Equations. (4-6) can be reduced to ordinary differential equations by introducing 

the invariant functions of the group as the new independent and dependent variables. 
These functions are determined by solving 

o if!(r, t, u, p, P) 1"'=0 = 0, (A2) 

where if! is an arbitrary function of its arguments. Equation (A2) is a linear , first order 
partial differential equation whose solution is is found by the method of characteristics. 
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The characteristic eq ua tions of (A2) are: 

dr 
(A3) 

Invariance of the in itia l co ndi tions, boundary conditions, etc . (as given in (1-3), (9-11), 
(12- 14). and (15-17)) req uires the following constrai nts on the gro up parameters ai , i 

= 1,2, 3,4: 

a4 - 2 a3 = 0, 

a1 = 0, 

a2 = 1 , 

1 + a3 = 0, 

(A4) 

(A5) 

(A6) 

(A7) 

where a is a parameter to be determined in the course of t he analys is. Here, (A4) 
expresses the assumption of a uniform ambient medium, (A5) reflects that th e start 
time is arbitrary, and (A6) indicates th a t the time variable is not being scaled. With 
a2 = 1, (A 7) specifies a scaling of the radial coordinate with the s imilarity exponent 
o . 

With (A4-A7), (A3) becomes 

dr dt du dP dp 

0 ' (AB) 
or (0 - 1) u 2(0- 1)P 

where the zero de nomi nator in the last term reflects the ass umption of a uniform 
ambient medium, as expressed in (A4). Solutions of these characteristic equations are 

l' 
sgn(t) -I 1- = consta nt , k to< 

u ----:---;-:--;----;- = constant, 
1'1-(1/0<) 

P 
-;:--=-;----;- = constant, 
7'2 - (2/0<) 

P = constant , 

(A9) 

(A10) 

(All) 

(A12) 

where k is an arbitrary di mensional constant . vVe set k to unity in the numerical 
calculations. Equat ions (A9-A12) a re t he invar iant coord inates of the group generator 
given by (A I ) . If we define 

l' 

~ == sgn(t) k IW ' (A13) 

v(~) == 
u 

(AI4) 7'1- (1/0) , 

p(~) == 
P 

(A 15) .,.2 - (2/0) , 

d(O == p, (A16) 

then (4-6) may be reformulated as ODEs with the new dependent variables v, P, and 
d as functions of the new independent variable ~. Alternatively, (A14-A16) may be 
nond imensional ized through the transformations 

V (O == v~k, 

CUJ == rpd (~k)2 I 

d 
D(O == -. 

PO 

(Al7) 

(A l B) 

(A19) 
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With (A17-A19). (A14-A16) reduce to (18-21). A more rigorous and detailed deriva­
tion of (18-21), including an explanation of the meaning of the group generator given 
in (AI) , is provided by Axford and Holm [4,5], Axford [3], and Ramsey [54J. 

Appendix B: Details of the Numerical Solution Procedure 

Here we provide some practically useful computational details omitted from the main 
text, following Lazarus [36J. First, we explain the differences between Lazarus ' method 
and the method in §3.1. Next, we discuss a few algorithmic details not given in Lazarus ' 
paper. Finally, we discuss alternatives to the methods in §5 for prescribing boundary 
conditions for Eulerian and Lagrangian compressible Row codes. 

The two main differences between Lazarus' method and that in §3.1 are the defini­
tions of the independent similarity variable and the dimensionless sound speed. Instead 
of the similarity variable ~, Lazarus uses 

(B1) 

where, effectively, Ct == 1/ A. The initial condition is imposed at x = -1 at time t = -1, 
and x (rather than V, as in (22-24)) is taken as the independent variable. This strategy 
has the virtue of greatly simplifying the computation of the solution as it passes through 
focus. Instead of the similarity variable ~ approaching -00 at this point, the variable 
x passes smoothly through the origin from negative to positive values. The integration 
continues up to the reflected shock point x = B (assuming the Lazarus definition of 
B) , where the general jump conditions are imposed. The integration then proceeds to 
"infinity," i.e., large values of x, which correspond to physical values of r near the origin 
for t > O. In fact , the point x = 00 is a saddle point ; therefore, although V theoretically 
asymptotes to a constant there (see (37)), it numerically diverges to ±oo (roundoff error 
precludes the numerical calculation from staying on the separatrix). The integration 
stops when the absolute value of the numerical V becomes "too large." The velocity, 
sound speed, and density are decomposed as in (19-21), where, e.g., V(x) and V(O 
now denote different functions (with apologies to the reader for this abuse of notation). 
The Lazarus methodology also differs through the use of a dimensionless sound speed 
C that is the square root of the C defined by (20); that is c(r, t) = r C(x)/t. This 
alternative definition causes no essential difference, but makes the interpretation of 
diagrams in the (V, C) plane easier to interpret. 

With these modifications, it is necessary to integrate only two ODEs for V and 
C, since the third equation for D can then be solved by numerical quadrature. This 
approach is also attractive because the qualitative theory can be considered in a plane 
instead of 3-space, and thus is easier to understand. We shall see, however, that it is 
preferable to integrate all three equations. 

There are three singular points. The first singular point, (V', CO) given near (42) , 
occurs before the focus, where the numerators and denominators of the differential 
equations approach zero. The second singular point is at the focus x = 0, where the 
Lazarus differential equations each contain a factor of x in the denominator. The third 
is at the point x = 00 or e = 0+, which is the aforementioned saddle point. Lazarus dis­
cusses the first two points, but does not indicate how to avoid computational difficulties 
near them. 

Near the first point , the two equations behave like dC/dV = (C - C')/(V - V*). 
The solution of this equation is cl (C - C*) = C2 (V - V") , where Cl and C2 are any 
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non-zero constants. Locally, any straight line through the point V = V', C = C" is 
a solution. The requirement that Q = 0 together with the initial conditions select the 
proper one. 

We consider two approaches to computing in the neighborhoods of the first two 
singular points. The first is to perform asymptotic expansions in the neighborhoods 
of each point, as in §4. In this case, an algorithm for switching between the differen­
tial equations and the asymptotic expansions must be employed. The second uses no 
expansions, and directly integrates the differential equations through the singularities. 
We prefer the second method, as long as we can assess how much accuracy is lost in 
passing through the singularities. 

At this point, the third differential equation becomes useful. We define the total 
energy (up to a multiplicative constant) as 

E(x) :::;;;; ! D(x )V2(x) + D(~)C2(x)/ hh - 1)) . 
x 

(B2) 

This energy integral is invariant for all x until the so lution trajectory passes through the 
reflected shock. Monitori ng this quantity provides a measure of the solution accu racy 
near the two singular points. Thus , we define the energy check as E(x) - E(x = -1 ). 

We typically specify the (local) relative error tolerance of the ODE solver at about 
10- 15 (assuming IEEE double precision). By comparing data generated with the ODE 
solver for successive relative error tolerances of lO-j, j = 6, 7, ... ,16, we can ascertain 
that the solutions are accurate to approximately 14 digits. This determination also re­
quires that the rootfinder tolerance for the determination of Q be sufficiently tight. We 
find that the energy check begins at approximately the same figure (i.e., to within an 
order of magnitude) and remains roughly the same as the integration passes through 
the first singular point. These results indicate that no accuracy is lost by integrating 
through this point. In passing through the focus, the energy check increases to about 
10- 11

. This phenomenon suggests that three to four digits of accuracy are lost through 
focus. As we cannot imagine a situation in which this outcome would not be tolera­
ble, our strategy of not using asymptotic expansions is vindicated. This behavior is 
qualitatively the same for all cases of m and 1 given in Tables 1 and 2. 

Finally, we consider al ternative methods for prescribing boundary conditions for 
compressible flow codes. First , we consider Eulerian codes. The result of the ODE 
integration is a table of D(x), V(x), and C(x) values vs. x from x = -1 to .X = 
"infinity." Using the definition of the similarity variable x given in (B1), it is trivial 
to convert to a table of three physical flow variables versus time from t = -1 to t = 
"infinity" at a fixed position r. If the compressible flow code can accept such a table 
as input, and automatically interpolate from within that table, then all is well. 

For Lagrangian codes, prescribing boundary conditions is more difficult because the 
outer boundary is not fixed in space. Let r = R(t) be the location of the outer boundary 
at time t. By the definition of Lagrangian representation, dR(t) / dt = u(R(t), t) = 
R(t) V (x) It. From the definition of the similarity variable, x = t/ R(t)." so x evaluated 
at the boundary is a function of t only. It can be shown that this function is monotone 
and thus has an inverse. While it is not poss ible to compute R(t) directly, it is possible 
to derive an ODE for the function R(x) considered as a function of x (with further 
apologies to the reader for this additional abuse of notation). Using the chain rule 
OIl the Lagrangian definition , we obtain dR/dt = (dR / dx)(dx/dt) = R(x) V(x)/t. We 
multiply this equation by dt/dx to obtain a linear equation for dR/dx and dt/dx. 
Differentiating the similarity variable definition t = xR(x) .. with respect to x yields 
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a second linear equation for these quantities. This 2 x 2 linear system can be solved 
exactly by successive substitutions to yield dR/dx = R(x)V(x) / [x(l - ,\ V(x))] and 
dt / dx = R(X)A/(l_,\ V(x)). The latter confirms that, at least ahead of the reRected 
shock, t is a monotone function of x, since V(x) is negative there. We observe in 
practice that x is also monotone elsewhere. 'vVe thus obtain an ODE in x for the 
position of the boundary R(x). Solving this equation requires knowledge of not just 
R, but also V. If we solve this equation simultaneously with the original three ODEs, 
we can determine R(x) and t = XR(X)A (and have computed the inverse function 
of the position of the boundary). As before, the x table is then converted to a t 
table, with the three original dependent variables. This approach has been successfully 
implemented in a research Lagrangian compressible Row code [9], and can also be 
used for an Arbitrary Lagrangian-Eulerian (ALE) code with the option of forcing the 
outermost layer of computational cells to "act Lagrangian." 

Appendix C: Calculation of Cell-Averaged Values 

Appropriate initialization of the compressible Row code using values based on the 
semi-analytic Guderley solution is extremely important for proper comparison of ex­
act and computed quantities. As the RAGE compressible flow algorithm is based on 
finite-volume approximations, the quantities it calculates are cell-averaged values. To 
initialize the code with a non-trivial Row field, one cannot simply use the point-wise 
flow fields that solve (22-24), as obtained with the procedure described in §3. 7 

In order to provide input consistent with a finite-volume approach, one must eval­
uate cell-averaged flow fields that are consistent with the exact Guderley solution. 
Moreover , these cell-averaged values must be constructed from conserved quantities 
corresponding to those used in the governing conservation laws, namely, mass , momen­
tum, and total energy. For the cell delimited by Tmin and rmax, we compute the volume 
VceIl , mass tvIccll, momentum MOMccll , and total energy Eccll on a cell-by-cell basis. 
Using the notation introduced above, these quantities are evaluated as follows: 

V. Sm ( m m) cell ;::: - Tmax - Tmi n 
m 

{Tm" 
tvIcel1 == Sm .JT

mw 

drr
m

-
1 

p(r) , 

(Tmax 
MOMceIl == Sm Jr dr r m

-
1 p(r) U(T) , 

'rmin 

( Tm"x . [ 1 ] 
Ecell == Sm iT. dTr

m
-

1 
p(r) e(r) + 2"u

2
(r ) , 

rn1!n 

(C1) 

(C2) 

(C3) 

(C4) 

where m is the space dimension and Sm is the surface area of the unit ball (Sm = 2, 
211" , or 411" for m = 1, 2, or 3, respectively). These quantities were evaluated numerically 
using the FORTRAN routine DQAGS [47], with the integrand functions obtained from 
the semi-analytic solution. 

7 Timmes et al. [61] provide a detailed discussion of this issue for another compressible Row 
problem. 
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On a cell-by-cell basis, the values used to initialize the compressible Row code are 
then defined as follows: 

Peell == JVIcell/Vcell , 

Ueell == MOMceil/ Peell ' 

eeell == Eecll/Pee ll - ~ (MOMce ll / Peell)2 

(C5) 

(C6) 

(C7) 
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Fig. 1 Semi-analytic so lution of the Guderley problem at initialization time t = -1, depicting 
cell-averaged quantities for 1200 cells between T = 0 and r· = 3. 
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Fig. 2 Left: Semi-an aJytic a nd comp uted Guderley density fi e ld at t = -0.5. Right: Corre­
sponding pointwise errors . ln these plots , the semi-analytic solution is a black line, and the 
corresponding computed values are colored lines according to the legend. 
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Fig. 3 Left: Semi-analytic and computed Guderley density field at t 
sponding pointwise errorS. 
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Fig . 4 Left : Semi-analyt,ic and computed Guderley density fi e ld at t 
sponding pointwise errors. 
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Fig. 5 Le ft : Semi-analytic and computed Guderley dens ity field at t 
sponding pointwise errors. 
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Fig . 6 Semi-analyt ic solut ion o f the Guderley problem at in it ial ization time t = 0.018594543 , 
depicting cell-averaged quant it ies for 1200 cells between T = 0 and T = 3. 
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Fig. 7 Left: Semi-analytic and computed Guderley density field at t 
the initial conditions in Fig. 6. Right: Corresponding pointwise errors. 
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Fig. 8 L1 errors on 0 :S r :S 2 for flow quantities calculated for the Guderley problem at 
time t = 0.5 . Left : Problem initiated with incoming shock wave. Right: Problem initiated 
with outgoing s hock wave. The dashed black line in each plot is a reference line for first-order 
convergence. 


