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Abstract The self-similar converging-diverging shock wave problem introduced by
Guderley in 1942 has been the source of numerous investigations since its publication.
In this paper, we review the simplifications and group invariance properties that lead
to a self-similar formulation of this problem from the compressible flow equations for a
polytropic gas. The complete solution to the self-similar problem reduces to two cou-
pled nonlinear eigenvalue problems: the eigenvalue of the first is the so-called similarity
exponent for the converging flow, and that of the second is a trajectory multiplier for
the diverging regime. We provide a clear exposition concerning the reflected shock
configuration. Additionally, we introduce a new approximation for the similarity expo-
nent, which we compare with other estimates and numerically computed values. Lastly,
we use the Guderley problem as the basis of a quantitative verification analysis of a
cell-centered, finite volume, Eulerian compressible flow algorithm.
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1 Introduction

The problem of a strong shock wave converging cylindrically or spherically in a gas
is well known in hydrodynamics and is considered important in varied contexts. For
example, the problem of converging compressible flow is familiar to the laser fusion
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community [2,16,46,58] as well as in astrophysical contexts, e.g., in double-detonation
supernovae [21].

Guderley was the first to investigate the basic problem of a strong cylindrically or
spherically symmetric shock wave converging into an inviscid, non-radiating, non-heat-
conducting, perfect gas [24] (though this particular problem was also solved indepen-
dently by Landau and Stanyukovich in 1944 [60]). Guderley recognized that certain
physical assumptions lead to a self-similar problem formulation. The solution of the
sell-similar problem is contingent upon the determination of the numerical value of a
so-called “similarity exponent” that characterizes the space-time path of the infinite-
strength incoming (converging) and finite-strength reflected (diverging) shock waves in
proximity to the location of collapse. In the years following Guderley’s seminal work,
various authors including Butler [11], Lazarus and Richtmyer [38], Lazarus [36], and
Hafner [28] calculated the numerical value of this similarity exponent (a function of
the adiabatic exponent and geometry) to several significant figures using various tech-
niques.

The “classic” Guderley problem, also reviewed by Meyer-ter-Vehn and Schalk [41],
has variations that have been explored in some detail. Axford and Holm [4] used group
theoretic techniques to determine the general equation of state (represented through the
adiabatic bulk modulus) that admits self-similar solutions for a Guderley-type problem.
Wu and Roberts [66] investigated the special case of a strong shock wave converging
into a Van der Waals gas, and various authors have found similarity solutions for strong
shock waves converging into dusty gases [33], variable-density gases [40,62], and radi-
ating gases [30,48]. Additionally, Axford and Holm [5] explored a quasi-self-similar so-
lution regime for finite-strength shocks, Ponchaut et al. [52,53] also relaxed Guderley’s
original strong shock assumption, and Hornung et al. [32] considered the universality
of imploding shock solutions from examination of approximate solutions for the Gud-
erley problem and computed solutions of converging shocked flows. The stability of
Guderley flows was first investigated by Morawetz [45] and subsequently discussed by
Hifele [26], Axford and Holm [4], Brushlinskii [10], and, recently, Clarisse {15].

Consistent with the assumptions motivating the governing Euler equations of invis-
cid, non-heat-conducting, compressible low, the converging shock wave reflects through
the origin, resulting in a diverging shock wave immediately following focus. It is easily
proven that the similarity exponent governing the trajectory of the reflected shock is
the same as that determined for the incoming case; consequently, many authors do not
address reflection. Some authors, such as Lazarus and Richtmyer [38], Fernandez [20],
Lazarus [36], Rodriguez and Amable [56], Wu and Roberts [66], Bilbao and Gratton [7],
and Ponchaut [52], engage in discussions describing the flow into and out of the reflected
shock wave.

In fact, the reflected portion of Guderley’s converging shock wave problem consti-
tutes a separate eigenvalue problem. In addition to the similarity exponent determined
as part of the analysis of the converging portion, an a priori unknown trajectory
multiplier must be determined in order to fully realize the (scale-invariant) physical
flow variables. In general, this multiplier is determined nunierically through integration
of the reduced flow equations on either side of the reflected shock, supplemented by
boundary condition matching; this is achieved thorough the satisfaction of the general-
ized Rankine-Hugoniot jump conditions at a certain point in similarity variable space.
The evaluation of this multiplier is subtle: we present a thorough treatment for the
sake of increased clarity and understanding.




One objective of this work is to rigorously examine both the converging and di-
verging portions of Guderley's original problem. We present a reduction of the one-
dimensional inviscid flow equations to self-similar form based on Lie Group techniques
in the spirit of the work of Coggeshall et al. [19,17,18], as opposed to ansatz or di-
mensional arguments'. Additionally, a number of existing approximations to the value
of the similary exponent are summarized, and a new approximation based upon the
work of Hirschler and Gretler [31] (H&G) is introduced. We focus only on the deter-
mination of standard solution modes (i.e., not those implied to exist by Lazarus and
Richtmyer [38] and by Lazarus [36], and discussed in further detail by Van Dyke and
Guttmann [63]). A description of the numerical solution of the problem as a whole will
follow the analytic and semi-analytic considerations.

The structure of this paper is as follows. In §2 we provide a brief review of the
Guderley problem. The presentation in §3 describes how this problem is reduced to its
self-similar form for both the converging-shock and reflected-shock phases. We discuss
various approximations of the critical similarity exponent (including our new contribu-
tion) in §4. Comparisons of compressible flow code simulations of the Guderley problem
with the semi-analytic (“exact”) solution are given in §5, including quantitative verifi-
cation analysis of an Eulerian finite-volume code. We conclude in §6.

2 Review of the Guderley Problem

The “classical Guderley problem” begins with the consideration of an infinitely strong,
symmetric shock wave focusing perfectly on an infinite axis (cylindrical geometry)
or point (spherical geometry). The source of the shock wave is not discussed in this
scenario, but the initial state of the gas into which the wave is propagating is well-
defined. Denoting physical flow variables in this unshocked region by the subscript 0,
the initial state is given by

ug(r,t) =0, (1)
po(r,t) = constant , (2)
Po(r,t) =0, (3)

where r denotes position (r > 0}, t time (—oo < t < 0 for the converging mode,
0 <t < oo for the reflected mode), u velocity, p mass density, and P material pressure.
For a one-dimensional (1-D Cartesian, cylindrical, or spherical), smooth flow free of
viscosity, heat conduction, radiation, and body forces, the Euler equations describe
fluid motion at all continuous (i.e., non-shock) locations:

dp | d(pu) oy pu
% or +(m 1)7—0. (4)

du Ju 1 |c¢” dp de|
o+ 6‘r+1[p6r+263r] =0, (5)
E)c 8 (m—1)u| _ .
5% T3 +(r-1e {54‘—?—-]—0: (6)

L Dimensional analysis finds only scale-invariant variables and solutions, while application
of Lie group techniques systematically identifies all invariant functions and solutions.



where ¢ denotes the local sound speed, defined through the pressure and density by:
=y Plp. (7)

Here we consider only a polytropic gas with the incomplete equation of state (EOS)
given by:
P(pe)=(y—-1) pe, (8)

where € is the specific internal energy (SIE). In (4-8), v denotes the adiabatic exponent
(1 <5 < o), and m the space dimension (m = 1, 2, or 3 for 1-D planar, cylindrical, or
spherical symmetry). Equations (4-8) are not valid globally, though shock jump con-
ditions are available to connect the pre-shock and post-shock How fields. In particular,
since the converging shock wave is assumed to be infinitely strong, the strong limit of
the Rankine-Hugoniot jump conditions may be used to connect the flow just upstream
to that just downstream:

Pos . F+1
e =T 9
= 2 R (t 10)
UZa—,]’_.l 5 )‘ (
2 - 2
Pra= =700 [Rs ()], (11)

where the subscript 2a denotes the state just upstream of (behind) the converging
shock, and R; (t) denotes the converging shock speed.

Equations (9-11) are valid for all t < 0 (the convergent mode). After shock focus
and subsequent reflection about the axis or point of symmetry (analogous to reflection
from a rigid wall in 1-D planar symmetry), these equations cease to be valid. As the
strength of the reflected shock wave for ¢t > 0 is unknown (due to the fact that the
pressure field downstream (ahead) of the reflected shock wave is once-disturbed and
not necessarily negligible), general jump conditions must be employed to connect the
flow in the post-reflection space-time regions. After some manipulation, the standard
Rankine-Hugoniot jump conditions in this case can be written as [24]:

skl
y—1+2 [czb/(uzb = R:{f))lz

2
ug=FE ) 4 —%—1 [uzs — RE ()] {T 142 (_&_) } T

p3 = pa (12)

Y ugp — R (t)

2 2 2 ;

where the subscripts 2b and 3 denote, respectively, the states just downstream and up-
stream of the reflected shock, and RY (t) denotes the reflected shock speed. Additional
constraints apply at r =0 for t > O:

|p3(0,)| < oo, (15)
u3(0,8) =0, (16)
|P3(0,8)] < . (17)
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In principle, and in conjunction with the conditions that the Aow field be single-valued
for all ¢ (including ¢ = 0 but excepting shock wave positions) and bounded as r — oo
for t # 0, (1-17) are sufficient to fully determine the flow field surrounding both the
converging and reflected shock waves for all (.

3 Semi-Analytic Evaluation of the Guderley Solution

Following from group theoretic considerations of (4—6)2, the following change of vari-
ables may be derived:

€ = sgn(t) iﬂ_ ; (18)

u(r,t) = ;V{g), (19)
2

Ent) = 1?5 cle), (20)

p(?‘, t') = po D(E) 3 (21]

where o is a dimensionless constant referred to as the similarity exponent. We utilize
this choice of variables and follow the particularly clear development of Chisnell [14].
Lazarus [36] takes a different approach, using as his fundamental nondimensional in-
dependent variable a quantity proportional to £‘1/°‘. This choice of variables has
implications in the computational evaluation of the solution, as we discuss in §§3.1 and
3.2 and Appendix B.

Analogs of (1-6) may be transformed to a system of ordinary differential equations
(ODEs) in the dimensionless variables £, D(£), V(¢), and C(£):

1dC _24(1+{[A-a)/y(e=V)]}}+(r—-1) QV) (22)
C dv A{mV -2(1-a)/4]} +{a=V)QV)
DdV ~ (a-V)QV)+A (mV -2(1-a)/1]}
14 _ —4 , (24)
gdvV. (a-V)Q(V)+ A {mV —[2(1-a)/]}
where

As G4V —a), (25)

Q(V}sz(v—aHE“T_"l(a—V)—V(v—x). (26)

One can similarly transform (9-11), (12-14), (15-17), and the conditions that the flow
field be single-valued for all t and bounded as r — oo for t # 0, as these relations are
invariant under the same group of point transformations as (4-6). Transformation of
these expressions results in the following relations. At the incoming shock location:

s

Dlg=-1) =177, (27)
v(g__1)_7+1. (28)
2(v—1)a?
C — —1 = —
(3 ) 1) (29)

? See Appendix A for a brief motivation and discussion.
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As t — 07
D(§ — —co) = constant, (30)
V(€ — —c0) =0, (31)
ClE — —c0) = 0. (32)

At the reflected shock (where £ = £p):

7+1
v —1+2[Cop(€r)/(Vap(Er) —@)?]’

Va(€r) = a+ — Vas(6r) -] {7=1+2 [Oan(€R)/(Var(m) ~ 0°]} » (30

D3(Er) = Day(€r)

C3(€r) = v —1+2 [Copl€R)/(Vas(€r) — )?] }

1
y+1 {
2y 2 Cap(ér)

X {Czafﬁr{) + 1 [Vap(éR) — @l {1 - {m] }} . (35)

Asr—0 for t > 0O

ID(§ =0)| < oo, (36)
V(£ =0) = constant, (37)
ClE=0) — co. (38)
Through the focus:

D3qa(§ — —00) = D2y(§ — 0), (39)
Jim 2 (Vaa(€(r0)) = Vau((r, )] = 0, (40)

8
i, oy (C2a(&(r, 1)) = Cap(§(r,t))] = 0. (41)

Together, (22-24) and (27-41) provide a framework for the Guderley problem in terms
of ODEs and additional constraints. Different forms of these governing equations have
been previously derived by various authors [14,36,38].

3.1 The Converging Shock

The calculation of the similarity exponent and evaluation of the numerical solution
of (22-24) are carried out simultaneously, first using successive estimates for a and
the initial and boundary conditions given by (27-29) and (30-32). With an initial
estimate for «, numerical integration of (22-24) is typically started at the incoming
shock represented by (27-29) and carried through to the state represented by (30-32).
Between these states, however, the governing equations become singular when A = 0.
As shown by Chisnell [14], to remove the physically unrealistic singular behavior, it
becomes necessary to impose the constraint:

QIV ) =mV* (V" -« +—-—l2(l_ﬂr)I a=-V*)=V* (V' ~1)=0 whenA=0,
(v ) + 202 oy v (v -
(42)




Table 1 Selected values of the similarity exponent o

Cylindrical Geometry (m = 2) Spherical Geometry (m = 3)
¥ New value Lazarus [36] 1/A,q New value Lazarus [36] 1/Aqq
14 0.835323192 0.8353231919 0.717174501 0.7171745015
5/3 0.815624901 0.8156249014 0.688376823 0.6883768229
2 0.800112351 0.8001123512 0.667046070 0.6670460703
3 0.775666619 0.7756666194 0.636410594 0.6364105940
6 0.751561684 0.7515616841 0.610339148 0.6103391480

where V" represents the V-coordinate of the A = 0 singularity. Accordingly, the con-
straint given by (42) provides the means by which to remove this singularity and
numerically determine a precise value for the similarity exponent. Concomitantly, the
apparent singularity in (22-24) becomes integrable, and the numerical solution of these
equations may be carried through to the state given by (30-32).

In the current work, this procedure was implemented using the equations based
on the nondimensionalization of Lazarus [36].> We use the Netlib routines ODE to
solve the system of differential equations and the one-dimensional rootfinder ZEROIN
for determining the similarity exponent [22,47]. In the literature [28,31,36,38], there
has been inconsistent reproduction of similarity exponent values beyond eight or nine
decimal places, even for “standard” values of the adiabatic exponent. For v < 1.4,
accurate calculation of o becomes difficult, as discussed by Lazarus [36]. Even so, the
results given in Table 1 are consistent with other published results.

3.2 The Reflected Shock

The converging shock wave solution mode is valid until focus (t = 0). At that time,
the shock wave reflects about the point or axis of symmetry and proceeds to divErge
outwards into the once-perturbed fluid with an unknown trajectory given by:

RY(t)=Bt?, (43)

where the parameters B and [ are initially unknown, though it is easily shown that
B = a. The parameter B, however, requires more effort to calculate.

As the structure of the equations governing the flow for t > 0 has not changed (they
are in fact given by (22-24)), numerical evaluation of the solution may, with a suitable
change of variables (see Lazarus [36]), be continued beyond the state represented by
(30-32) by means of two integrations. The first integration represents recovery of flow
data beginning at » — oo for all £ > 0, and can be continued “inward" until the
reflected shock wave is reached. Being coupled to the unknown value of B, the phase-
space point corresponding to the reflected shock wave is unknown. If this location were
known, then the general-strength Rankine-Hugoniot jump conditions would be applied
there, and the integration of (22-24) could be continued to a suitable endpoint, namely,
until (36-38) are satisfied. This final state represents the position r = 0 for ¢t > 0.

To determine the phase space location of the reflected shock wave, Lazarus [36)
devised a so-called “jump locus" methodology. A locus of “jump points” is formed by

3 In Appendix B, we present the reasons for utilizing the Lazarus methodology in the nu-
merical calculations together with computational details useful for practical implementations.



Table 2 Selected values of B~%, the reflected shock space-time location.

Cylindrical Geometry (m = 2) Spherical Geometry (m = 3)

~ New value Lazarus [36,37) New value  Lazarus [36,37|
1.4 2.815610935 2.815608 2.688492680 2.688492
5/3  1.694792696 1.694792 1.547894929 1.547896

2 1.199630409 1.199631 1.077253818 1.077255

3 0.763159927 0.763160 0.693969704 0.693970

6 0.540791267 0.5407906 (.531821969 0.5318222

applying the general Rankine-Hugoniot jump conditions to every numerical solution
point beyond the state represented by (30-32), which corresponds to the origin in the
(V, C)-plane. The numerical integration and resulting jump locus are continued to an
arbitrary end point in the (V, C)-plane beyond the phase-space position corresponding
to the reflected shock wave. The end point is determined by trial and error, subject to
the success of the second numerical integration.

This second numerical integration follows the construction of the jump locus. It
is subject to another appropriate change of variables and is initialized from (36-38).
This integration is continued until a single intersection with the jump locus is obtained.
Through this coupling, one identifies a unique phase-space point (on the jump locus) at
which the reflected shock wave exists. Through suitable transformations of these results
B is determined, and the entire diverging-phase solution can be constructed. Data from
the first numerical integration beyond the location corresponding to the correct jump
point are thereby rendered irrelevant; the same is true of the remainder of the jump
locus. As for the converging shock calculation, in the current work our computational
implementation of the reflected shock solution follows the Lazarus methodology.

Lazarus [36], defining his B as the reflected shock space-time location, published
values of that parameter (found by taking B in (43) to the negative o power) in Tables
6.4-6.5 of that reference (subject to the erratum [37]).

For v < 1.4, accurate calculation of B™% becomes difficult, as discussed by
Lazarus [36]. Even so, the results given in Table 2 are consistent with other published
results.

4 Analytic Similarity Exponent Approximations

The nonlinear eigenvalue problem whose solution determines & has been solved approx-
imately by a number of authors including Stanyukovich [60] and Chisnell [14]. A variety
of physical and mathematical arguments exist so as to provide accurate estimates of
the parameter . We consider three approximations of o based on fundamental as-
sumptions about the solution of the governing equations.* These estimates ultimately
prove useful as first iterates or bracketing values on the true value of o, and are easily
incorporated into numerical routines that iterate on the true value of the similarity

4 These approximations are to be contrasted with the purely curve-fit approximation for a
as a function of v given by Hafner [27] for the spherical (m = 3) case:

a={l(v-1/2a) +(1-ax)"} """ + 6w, (44)

where a =3.26 x 1074, n = 6, and ao = 0.375.



exponent. It will be shown that for different ranges of v and m, the relative accuracies
of the approximations vary.

4.1 The Pressure Maximum Requirement

Stanyukovich [60] noted that for certain values of the adiabatic exponent, the pressure
distribution behind the converging shock wave contains a single maximum. The exis-
tence of a pressure maximum in the flow behind a converging shock wave for arbitrary
v > 1 was dismissed by Zel'dovich and Raizer [68], but a work by Mishkin and Fuji-
moto (M&F) claimed otherwise [43,44]. Through this requirement, M&F derived an
analytic expression for a claimed to be exact:

may+ 2422y

The claim that (43) represents an exact solution for the similarity exponent was later
refuted in papers by Lazarus [35] (with a rejoinder by Mishkin [42]) and Yousaf [67];
see also the paper by Wang [64]. This so-called “Landau-Stanyukovich rule” has also
been recently extended by Gurovich and Fel [25] in order to construct upper and lower
bounds on the true value of the similarity exponent.

4.2 The CCW Method

The Chester-Chisnell-Whitham (CCW) method is based upon Chester’s result for the
motion of a shock wave in a channel with a small change in area [12]. Chisnell first
integrated Chester’s result for “freely propagating” symmetric shock waves [13], and
Whitham produced an alternative derivation of Chisnell’s result [65]. For the case of
strong shock waves, the ultimate result is an analytic formula relating the similarity
exponent to the adiabatic exponent and space dimension.

It was apparently first noted by Sedov [59] that in the neighborhood of (V,C) =
(0,0), the solution of (22) has the following limiting behavior:

@ V) = 2 .
Jim C(v) =4 V2, (46)

where Ag is a constant to be determined. Since (46) automatically satisfies the bound-
ary condition imposed upon the solution curve C(V) given by (31,32), only the initial
conditions (28,29) remain to be utilized. In particular, imposing the latter on (46)
allows for determination of the constant A;, and (46) becomes

cV)=3v (-1 V2. (a7)

This equation represents an approximate analytic expression for the solution curve
C(V) of (22). Together with the condition A = 0 and one solution of (42), (47) provides:

__+2)A-T+7v2y
my+2)Vr-T+rv2y

(48)
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4.3 The New Method

Inspired by the mathematical development of the CCW method just presented and
a pseudo-limiting form of (22) first derived by Hirschler and Gretler [31] (H&G), a
different approximate expression for the similarity exponent can be derived. Through
the use of H&G's asymptotic treatment of (22) and the initial condition given by
(28,29), an approximate solution can be shown to hold near the singular point at
A =0 [54,55):

C(V)=a(7-1}v+%(1—7)v?. (49)
When evaluated at the singular point, (49) closes a system of three nonlinear algebraic

equations with the condition A = 0 and one solution of (42). Solution of this system
for o is given by

- 1iyr+1) = (r=2 /4 =1 _ (50)
R+y(m-2] vV¥* -1 -7y (m-2)-m|

Equation (50) provides an alternative to the M&F and CCW approximations as an
analytic approximation to the similarity exponent.

4.4 Discussion of Results

Evaluation of (45), (48), and (50) for various values of v and m appears in Tables 3
and 4. Several trends may be discerned from these data.

1. The M&F approximation underestimates ¢ for all v and m.
2. The CCW approximation overestimates o only for a small range, 1.1 < v < 2, for
m =2 and 3.

. The new approximation overestimates o for v > 5/3 for m = 2 and 3.

4. The CCW and new approximations are both more accurate than the M&F appox-
imation for nearly all v and m.

5. The new approximation is more accurate than the CCW approximation only for
very large v for m = 2 and 3.

(-]

As discussed in §3.1, an exact value for the similarity exponent is obtained by removing
the A = 0 singularity crossed by the solution of (22-24). While all Guderley solutions
employ this technique, an additional constraint is necessary in order to construct ana-
lytic approximations to a. We have found that the global approach of utilizing both the
initial conditions (28-29) and asymptotic solutions of (22-24) provides analytic approx-
imations that retain a high level of fidelity to exact semi-analytic solutions (e.g.. the
CCW and new approximations). The purely local M&F approximation, which employs
the pressure maximum requirement (i.e. a solution of (42) but not (28-29)) proves less
accurate. Therefore, we hypothesize that both the local-global nature and accuracy
of the additional constraint largely determines the accuracy of the resulting analytic
approximation.

Reasons for the accuracy difference between the CCW and new approximations for
various choices of v and m are not easily resolved. We hypothesize that the relative local
accuracy of the approximate solutions provided by (47) and (49) varies explicitly with
7. Accordingly, the accuracy of analytic & calculations based upon the implementation
of these approximate solutions is seen to vary in a like manner.
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Table 3 Estimates of the similarity exponent ¢ for selected values of the adiabatic exponent

Cylindrical Geometry (m =_§)_
¥ Exact [36] M&F (45) CCW (48) New (50)

1.1 0.88524806  (0.84650762 0.88247182 0 87355000
1.4  0.83532320 0.82815001 0.83537259 0 82945717
5/3 0.81562490 0.81450188 0.81604351 0.81481482
1.8 0.80859994 0.80840329 (.80888426  0.80930869
2.0 0.80011235 0.8 0.8 0.80384758
3.0 0.77566662 0.76742346 0.77266101  0.78679656
50 0.75640105 0.72714208 0.74881559 0.77296156
10 0.74182593 0.67683841  0.72904957 0.76193475
100 0.72853594  0.56575410 0.70941536  0.75124381
o0 0.72704805 0.5 0.70710678 0.75

Table 4 Estimates of the similarity exponent « for selected values of the adiabatic exponent

Spherical Geometry (m = 3)
¥ Exact (36] M&F (45) CCW (48)  New (50)

1.1  0.79596980 0.73386494 078966404 0.77548938
1.4 071717450 0.70670310 0.71728743  0.70860899
5/3 0.68837682 0.68705455 0.68925126 0.6875

1.8 0.67855370 0.67842021 0.67909796 0.68040211
2.0 0.66704607 0.66666667 0.66666667 0.67202771
3.0 0.63641060 0.62261729 0.62954164 0.64852814
5.0 0.61522398 0.57126728 0.59848539  0.62994081
10 0.60104880 0.51153119 0.57362550  0.61542374
100 0.58950281 0.39446102 0.54968526  0.60159367
ee} 0.58828929 0.33333333 0.54691816 0.6

5 Compressible Flow Code Results

With semi-analytic results for the classical Guderley problem available, a counterpart
numerical simulation was conducted using the general compressible flow solver of the
program RAGE [23]. This algorithm is a variant of the Lagrange+remap-style Eulerian
solver, as described, e.g., by Benson [6]; we refer to [23] for further details. With the
semi-analytic solution, we can quantitatively gauge the quality of the compressible flow
algorithm for both the incoming converging flow as well as the outgoing reflected shock
solution.

Initializing a Guderley-like scenario in a generalized compressible flow code must
be performed carefully. Theoretically, the converging shock wave that characterizes
the Guderley problem is created in an infinitely weak state at r — oo and  — —oo0.
The shock wave then propagates inwards with increasing strength due to geometric
effects. It is impossible to precisely initialize a compressible flow code with such a
prescription. Ponchaut et al. [53] and Hornung et al. [32] initialize generalized Guderley-
like compressible Aow calculations as “spherical shock tubes,” i.e. by “numerically
removing a membrane” separating a small pressure/sound speed differential at some
position far from the focal point. The simulation is then allowed to evolve such that a
Guderley solution is approached asymptotically in the immediate neighborhood of the
focal point.



To be ostensibly more faithful to Guderley’s original solution [24], a different ap-
proach is employed in the current work. Specifically, the solution to the Guderley
problem is calculated on a specified, finite domain, 0 < » < rmax, at a chosen time
when the shock wave is “near” the position r = 0. This computed solution is used
to evalute cell-averaged values on the uniform mesh of the 1D, spherically symmet-
ric compressible flow code. This choice of initialization is applied over a finite spatial
domain including the origin.

In the compressible flow code calculations, a reflecting boundary condition is spec-
ified at the far boundary at rmax, resulting in the generation of a spurious, inward-
propagating rarefaction wave. Estimates suggest that this rarefaction wave propagates
at approximately the u — ¢ characteristic speed. This information is used to iden-
tify subsets of the computational domains, unpolluted by this spurious rarefaction, on
which to make quantitative comparisons of the flow code results with the self-similar
Guderley solution computed from the ODEs.

The semi-analytic solution is computed in spherical geometry (m = 3) for an adi-
abatic exponent v = 3. At t = —1 the initial state is chosen so that the converging
shock is exactly at r = 1 (which forms an exact computational-cell boundary in all
computations). With these initial conditions, reflection occurs at the origin at £ = 0.

The initial incoming-shock configuration is shown in Fig. 1, which depicts the den-
sity, velocity, SIE, and pressure as functions of radial position over the entire computa-
tional domain. In all results and figures, low quantities are in consistent cgs units. The
values shown are cell-centered, cell-averaged quantities on 1200 equally-spaced zones
between = 0 and rmax = 3. This figure shows that the incoming (negative) velocity
peaks at the shock, located at r = 1, as do the pressure and SIE. In the upstream vicin-
ity of the shock, the density gradually decreases to its immediate post-shock value.®

The configuration of Fig. 1 is used as initial conditions for the compressible fHow
solver. The semi-analytic and computed density fields at t = —0.5, —0.1, 0.1, and 0.5,
are shown in Figs. 2, 3, 4, and 3, respectively. These figures also contain plots of the
pointwise error, |3};’j - gfl, in each of the computed solutions; here, §j; represents the
solution averaged over cell j for either the exact (E) or computed (C) solution. Cor-
responding plots of the velocity, SIE, and pressure fields are provided by Ramsey [55].
We now turn to a discussion of these results.

5.1 Start-Up Errors

A prominent feature of Figs. 2-5 is the “dip” in the computed density fields. This dip is
seen to exist in the density solution field for all post-initialization times. Additionally,
“bumps” appear in the SIE field (provided by Ramsey [55]) at positions corresponding
to the density dips for given times. These dips and bumps appear to annihilate one
another in the computed pressure field and are not particularly noticeable in velocity
results [55]. Quantitative estimates suggest that the dips and bumps move in the fixed
Eulerian frame at approximately the material speed.

Phenomena of this type are not unique to the Guderley problem. In particular,
dips and bumps such as those observed in Figs. 2-5 appear even in simple 1D pla-
nar numerical calculations initialized with exact solutions involving shock waves. This

% Cell averages are determined from numerical integrations using conserved quantities. See
Appendix C for a discussion
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phenomenon is discussed in detail by Arora and Roe [1]; see also LeVeque [39]. For
the purposes of this investigation, it is sufficient to recognize that the density dips are
generated by finite volume numerical shock-capturing algorithms. While it is reason-
able to assume that details of this phenomenon vary with different compressible flow
algorithms, to the authors’ knowledge there is no evidence in the literature that this
phenomenon can be eliminated in Eulerian finite-volume codes.

The magnitude of the start-up error remains approximately constant in time. The
spatial extent of the error increases slightly from t = —0.5 to t = —0.1, but is then
compressed at ¢t = 0.5, presumably associated with the passage of the reflected shock.
As suggested by Fig. 5, however, the presence of the startup error does little to affect
either the position or strength of the reflected shock subsequent to its interaction with
this feature.

Figures 4 and 5 suggest that the shock capturing algorithm numerically approx-
imates well the shock focusing and subsequent reflection at the origin at t = 0, i.e.,
the flow features of the semi-analytic solution subsequent to focus are captured in the
computed solution. For only the coarsest resolution does the calculated shock position
deviate noticeably from the semi-analytic solution.

5.2 Effects of Initialization with a Post-Focus State

The presence of the post-shock errors near the origin lead us to question how the
compressible flow algorithm would behave if initialized with a post-focus state. Using
an initialization with a state subsequent to shock focusing time, we find the computed
behavior to be more precise than with the converging flow initialization. More precisely,
we evaluate the semi-analytic solution at a time (f = 0.018594543 for m = 3 and
v = 3) when the shock is located at » = 0.1, and use those values to initialize the
compressible flow code. Figure 6 depicts the density, velocity, SIE, and pressure as
functions of radial position over a subset of the computational domain. These values
are cell-centered, cell-averaged quantities on 1200 equally-spaced zones between v =0
and r = 3. This figure shows the strong peaks in pressure, velocity, and density behind
the outgoing shock as it encounters the incoming flow.

Comparison between the computed results at ¢t = 0.5 in Figs. 5 and 7 corresponding
to the different initializations reveals two significant differences. The first difference is
the near-origin behavior. Specifically, a choice of post-reflection initialization drastically
reduces the near-origin error—a fact explained by the computed solution not being
subject to the consequences of singular behavior at ¢t = 0.

The second difference is the significant reduction (but not elimination) of the den-
sity start-up error in Fig. 7: a small, localized flow error is apparent in this figure be-
tween r = 0.1 and r = 0.15. We speculate that this feature has the same cause as the
start-up error evident in Figs. 3-5. A possible explanation as to why this phenomenon
has smaller amplitude and spatial extent is given by the different Aow geometry of the
two different initial conditions: the initialization at t = —1 corresponds to converging
flow, while an initialization with a semi-analytic solution at any ¢ > 0 (including that
shown in Fig. 6) corresponds to diverging Alow. We hypothesize that the divergent Aow
may reduce the start-up errors.
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5.3 Verification Analysis

Code verification analysis is an approach for gathering quantitative evidence that soft-
ware for the solution of discretized equations generates results consistent with the
corresponding continuum equations, e.g., by examining the error order-of-accuracy of
the numerical results. Verification analysis (reviewed, e.g., by Oberkampf et al. [50] and
Roy [57]) is a vitally important aspect of both algorithm and software development.
The Guderley problem presents an ideal configuration with which to perform code ver-
ification analysis for cylindrically or spherically symmetric, converging-then-diverging
compressible flow of an ideal gas. Using both the semi-analytic (“exact”) and numerical
(“computed”) Guderley solutions, we evalute the spatial convergence properties of the
RAGE compressible flow algorithm.®
In particular, we take as axiomatic the standard error ansatz,

Ilv® -4 = A(ar)?, (51)

where the superseripts E and C refer to the exact and computed solutions, respectively,
| - || represents an error norm evaluated over a specified domain, Ar is a characteris-
tic mesh dimension (e.g., the cell size on a uniform grid), A is a prefactor, and o is
the convergence rate (e.g., o = 1 for a first-order method). As is standard for analy-
sis of compressible flows, we consider the L1 norm only (see, e.g., the monograph of
Bouchut [8]). We approximate the left side of (51) as

Ny
> 1 , -C .
v =yl = 3 Y 157~ 35 1av;., (52)
=il

where 7; represents the solution averaged over cell j for either the exact (E) or com-
puted (C) solution, dV; is the volume of the spherical shell element centered at r;, N-
is the number of cells between the origin and r = 2, and V is the volume of the sphere
of radius 2.

The ansatz in (51) implicitly assumes that the convergence is monotonic and the
method is consistent, i.e., that there is no O(1) error. Using a series of calculations at
different mesh resolutions, it is straightforward to infer best-fit values for both A and o,
which we accomplish with a standard nonlinear least-squares technique, using software
described by Hemez et al. (29] In all calculations, the domain over which the errors
were evaluated was 0 < r < 2, thus neutralizing the effects of spurious boundary-driven
rarefaction waves, as discussed in §5.1.

Results of this analysis are catalogued for various times in Tables 5 and 6. Addition-
ally, example plots corresponding to the two data sets given at t = 0.5 (converging and
diverging initialization) are provided in Fig. 8; further results are given by Ramsey [55].
Results for convergent initialization are provided in the first four rows of the tables
and the left plot in the figure; the last row and right plot show results for divergent
initialization.

These results show that the Li-norm convergence rate is approximately linear for
times before focus, with the exception of the density field. For times following focus,
the Lj-norm convergence rate is universally but only slightly sublinear. In all fields
except density, the Li-norm convergence rate also decreases as focus is approached.

5 One can also evaluate the temporal and combined spatio-temporal convergence properties
of compressible flow algorithms |34].
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Table 5 Summary of Li-norm convergence data

Premultipliers A

L P u P €
-0.5 0.1886 0.1003 0.0510 0.0146
-0.1 0.2636 0.0364 0.0593 0.0178
+0.1 0.3078 0.0630 0.2102 0.0278
-+0.5 0.2584 0.0547 0.1024 0.0275
+0.5" 0.1780 0.0460 0.1243 0.0091

*Initialized at t = +0.018594543; others initialized at t = —1.

Table 6 Summary of Ly-norm convergence data

Convergence Rates o

t P u P e
-0.5 0.8652 1.046 1.028 0.9906
-0.1 0.9061 0.9720 1.002 0.9518
+0.1 0.9125 0.9794 0.9358 0.9324
+0.5 0.8501 0.9362 0.8694 0.9401
+0.5" 0.9605 1.011 0.9695 0.9444

*Initialized at t = +0.018594543; others initialized at { = — 1.

Additionally, for times after focus, the Li-norm convergence rates decrease for all fields
except SIE. The pressure and SIE convergence rates decrease through focus.

Comparison of the error plots in Fig. 8 confirms what is seen for the density in
Figs. 5 and 7, viz., the absolute error is smaller for the reflected shock initialization;
moreover, the convergence rate in this case is higher. We observe similar trends for
each flow quantity except the SIE.

The behavior observed in Tables 5 and 6, and Fig. 8, allows for the construction of
hypotheses regarding effects that may influence the various convergence rates. Promi-
nent trends that may prove amenable to explanation are the following.

1. Decreases in convergence rates during the time-evolution of the convergent solution
mode.

2. Decreases in convergence rates during the time-evolution of the diverging solution
mode.

3. Decreases in convergence rates across focusing time.

4. The inapplicability of trends 1 and 3 to the density field.

5. A marked improvement in convergence rates for initialization at a post-focus time.

Trends 1, 2, and 3 have a common explanation. At focus time, the exact Guderley
solution for the physical velocity, SIE, and pressure fields increases without bound at
the shock. This phenomenon is not numerically realizable due to inherent numerical
precision limitations, so errors accrue in both the semi-analytic solution and compress-
ible flow code results near focus time. Trends 1 and 3 do not apply to the density field
convergence rates, and, in fact, these rates exhibit opposite behavior. A phenomenon
that could prove responsible for this counterintuitive behavior is the interaction be-
tween a prominent start-up error and the fact that the density field solution does not
increase without bound in the vicinity of ¢ = 0. Similar reasoning might explain be-
havior in the pressure field that does not agree with trends 1-4, as this variable is
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connected to the density and SIE through the polytropic EOS. Trend 5 notes an im-
provement in all Ly-norm convergence rates for a positive choice of initialization time,
in all cases reaching essentially linear levels. This effect is clearly due to improved
near-origin behavior and start-up error reduction in this case.

6 Conclusion

We have provided a brief overview of the theoretical framework necessary to construct
a semi-analytic solution to Guderley’s imploding shock problem. A number of exist-
ing analytic approximations to the problem’s key parameter—the so-called similarity
exponent-—have been summarized and a new approximation was introduced.

We used the semi-analytic solution to the Guderley problem to initialize a com-
pressible Aow code on a finite domain and conduct what may be the first rigorous
code verification analysis of an Eulerian compressible flow code with the full Guderley
solution. Despite the well-known start-up errors that the computed solutions exhibit,
these results show near-linear spatial convergence in the Ly-norm for the converging
solution mode, and sublinear spatial convergence in the Li-norm for the subsequent
diverging solution mode. When initialized with a post-focus flow state, the errors in
the computed solutions are notably smaller and the convergence results are marginally
better.

The Guderley problem provides an attractive alternative to two other widely-used
compressible Alow code test problems: the Noh problem [3,49] and the Sedov prob-
lem [59]. The Guderley problem’s advantages lie in the fact that it includes no unphys-
ical wall heating effects, and is capable of describing coupled converging and diverging
flow. It will be of interest to use the Guderley problem to evaluate the properties of
other compressible flow algorithms, as well as to investigate 2D cylindrically symmetric
and 3D geometries. Despite being introduced over 65 years ago, the Guderley prob-
lem continues to provide challenges to the theoretical and computational fluid physics
communities.

Appendix A: Derivation of Similarity Variables

Equations (18-21) may be derived from the group invariance properties of (4-6). Specif-
ically, (4-6) have been found [3-5,51] to admit the group of point transformations with
the generator:

+(aa—2a5) p-, (A1)

- a a 3] a
U=(az+a3}r—+(a1+agt}§z+a3u—+a4Pé—P %

ar du
where the parameters a; (¢ = 1, 2, 3, 4) are arbitrary constants.
Equations. (4-6) can be reduced to ordinary differential equations by introducing
the invariant functions of the group as the new independent and dependent variables.
These functions are determined by solving

O&(r,t,u,p,P)|y_p =0, (A2)

where ¥ is an arbitrary function of its arguments. Equation (A2) is a linear, first order
partial differential equation whose solution is is found by the method of characteristics.
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The characteristic equations of (A2) are:

dr dt du dpP dp

(a3 +az)r  (a1+ast) asu  asP (a4 —2a3)p (A3)

Invariance of the initial conditions, boundary conditions, ete. (as given in (1-3), (9-11),
(12-14), and (15-17)) requires the [ollowing constraints on the group parameters a;, i
= 1,2, 844

a4—2a3=0. (A4)
a; =0, (AS5)

as =1, (A6)
l+az=a, (A7)

where a is a parameter to be determined in the course of the analysis. Here, (A4)
expresses the assumption of a uniform ambient medium, (A5) reflects that the start
time is arbitrary, and (A6) indicates that the time variable is not being scaled. With
ap = 1, (A7) specifies a scaling of the radial coordinate with the similarity exponent
.

With (A4-AT), (A3) becomes
dr _dt _ du dP dp

ar t (@-Du 2@-1DP 0

where the zero denominator in the last term reflects the assumption of a uniform
ambient medium, as expressed in (A4). Solutions of these characteristic equations are

(A8)

sgn(t) k_|}|; = constant , (A9)
,T—-‘?i?ﬁ_-}' = constant , (AIO)
oyrs constant, (A11)

p = constant (A12)

where k is an arbitrary dimensional constant. We set k£ to unity in the numerical
calculations. Equations (A9-A12) are the invariant coordinates of the group generator
given by (Al). If we define

T

€ = sgn(t) TR (A13)

v(€) = T—zﬁ (A14)
P

P) = /e - (A15)

ag) = p, (A16)

then (4-6) may be reformulated as ODEs with the new dependent variables v, p, and
d as functions of the new independent variable £. Alternatively, (A14-A16) may be
nondimensionalized through the transformations

V(€) = v&k, (A17)

C(€) = ypd(Ek)?, (A18)
_ 4

D(&) = = (A19)
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With (A17-A19), (A14-A16) reduce to (18-21). A more rigorous and detailed deriva-
tion of (18-21), including an explanation of the meaning of the group generator given
in (A1), is provided by Axford and Holm [4,5], Axford [3], and Ramsey [54].

Appendix B: Details of the Numerical Solution Procedure

Here we provide some practically useful computational details omitted from the main
text, following Lazarus [36]. First, we explain the differences between Lazarus’ method
and the method in §3.1. Next, we discuss a few algorithmic details not given in Lazarus’
paper. Finally, we discuss alternatives to the methods in §5 for prescribing boundary
conditions for Eulerian and Lagrangian compressible Aow codes.

The two main differences between Lazarus' method and that in §3.1 are the defini-
tions of the independent similarity variable and the dimensionless sound speed. Instead
of the similarity variable £, Lazarus uses

= t;‘r)‘, (B1)

where, effectively, @ = 1/A. The initial condition is imposed at x = —1 at time t = —1,
and z (rather than V/, as in (22-24)) is taken as the independent variable. This strategy
has the virtue of greatly simplifying the computation of the solution as it passes through
focus. Instead of the similarity variable £ approaching —oc at this point, the variable
x passes smoothly through the origin from negative to positive values. The integration
continues up to the reflected shock point = B (assuming the Lazarus definition of
B), where the general jump conditions are imposed. The integration then proceeds to
“infinity,” i.e., large values of z, which correspond to physical values of » near the origin
for ¢ > 0. In fact, the point & = oo is a saddle point; therefore, although V theoretically
asymptotes to a constant there (see (37)), it numerically diverges to £oo (roundoff error
precludes the numerical calculation from staying on the separatrix). The integration
stops when the absolute value of the numerical V' becomes “too large.” The velocity,
sound speed, and density are decomposed as in (19-21), where, e.g., V(z) and V(&)
now denote different functions (with apologies to the reader for this abuse of notation).
The Lazarus methodology also differs through the use of a dimensionless sound speed
C that is the square root of the C defined by (20); that is ¢(r,t) = v C(xz)/t. This
alternative definition causes no essential difference, but makes the interpretation of
diagrams in the (V,C) plane easier to interpret.

With these modifications, it is necessary to integrate only two ODEs for V and
C, since the third equation for D can then be solved by numerical quadrature. This
approach is also attractive because the qualitative theory can be considered in a plane
instead of 3-space, and thus is easier to understand. We shall see, however, that it is
preferable to integrate all three equations.

There are three singular points. The first singular point, (V*,C*) given near (42),
occurs before the focus, where the numerators and denominators of the differential
equations approach zero. The second singular point is at the focus z = 0, where the
Lazarus differential equations each contain a factor of = in the denominator. The third
is at the point = oo or £ = 07, which is the aforementioned saddle point. Lazarus dis-
cusses the first two points, but does not indicate how to avoid computational difficulties
near them.

Near the first point, the two equations behave like dC/dV = (€ — CHY/(V = v,

The solution of this equation is ¢y (C — C") = ea (V — V*), where ¢; and ¢2 are any
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non-zero constants. Locally, any straight line through the point V = V*, C = c* is
a solution. The requirement that @ = 0 together with the initial conditions select the
proper one.

We consider two approaches to computing in the neighborhoods of the first two
singular points. The first is to perform asymptotic expansions in the neighborhoods
of each point, as in §4. In this case, an algorithm for switching between the differen-
tial equations and the asymptotic expansions must be employed. The second uses no
expansions, and directly integrates the differential equations through the singularities.
We prefer the second method, as long as we can assess how much accuracy is lost in
passing through the singularities.

At this point, the third differential equation becomes useful. We define the total
energy (up to a multiplicative constant) as

_ 1 D@)V2(z) + D@E)C* @)/ (v(y =1))

E(z) 2

(B2)

This energy integral is invariant for all z until the solution trajectory passes through the
reflected shock. Monitoring this quantity provides a measure of the solution accuracy
near the two singular points. Thus, we define the energy check as E(z) — E(z = —1).

We typically specify the (local) relative error tolerance of the ODE solver at about
e (assuming IEEE double precision). By comparing data generated with the ODE
solver for successive relative error tolerances of 1077, 7 = 6,7,...,16, we can ascertain
that the solutions are accurate to approximately 14 digits. This determination also re-
quires that the rootfinder tolerance for the determination of a be sufficiently tight. We
find that the energy check begins at approximately the same figure (i.e., to within an
order of magnitude) and remains roughly the same as the integration passes through
the first singular point. These results indicate that no accuracy is lost by integrating
through this point. In passing through the focus, the energy check increases to about
1071, This phenomenon suggests that three to four digits of accuracy are lost through
focus. As we cannot imagine a situation in which this outcome would not be tolera-
ble, our strategy of not using asymptotic expansions is vindicated. This behavior is
qualitatively the same for all cases of m and v given in Tables 1 and 2.

Finally, we consider alternative methods for prescribing boundary conditions for
compressible flow codes. First, we consider Eulerian codes. The result of the ODE

integration is a table of D(z), V(z), and C(z) values vs. z from z = =1 to z =
“infinity.” Using the definition of the similarity variable 2 given in (B1), it is trivial
to convert to a table of three physical flow variables versus time from t = -1 to ¢t =

“infinity” at a fixed position r. If the compressible flow code can accept such a table
as input, and automatically interpolate from within that table, then all is well.

For Lagrangian codes, prescribing boundary conditions is more difficult because the
outer boundary is not fixed in space. Let r = R(t) be the location of the outer boundary
at time t. By the definition of Lagrangian representation, dR(t)/dt = w(R(t),t) =
R(t) V(x)/t. From the definition of the similarity variable, z = t/R(t)?, so z evaluated
at the boundary is a function of ¢ only. It can be shown that this function is monotone
and thus has an inverse. While it is not possible to compute R(t) directly, it is possible
to derive an ODE for the function R(z) considered as a function of z (with further
apologies to the reader for this additional abuse of notation). Using the chain rule
on the Lagrangian definition, we obtain dR/dt = (dR/dxz)(dz/dt) = R(z) V(z)/t. We
multiply this equation by dt/dx to obtain a linear equation for dR/dz and dt/dx.
Differentiating the similarity variable definition ¢t = ;cR(x)A with respect to z yields
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a second linear equation for these quantities. This 2 x 2 linear system can be solved
exactly by successive substitutions to yield dR/dx = R(z)V(z)/[x(1 — AV(z))] and
dt/dx = R(z)*/(1 — AV(z)). The latter confirms that, at least ahead of the reflected
shock, t is a monotone function of z, since V(z) is negative there. We observe in
practice that x is also monotone elsewhere. We thus obtain an ODE in z for the
position of the boundary R(z). Solving this equation requires knowledge of not just
R, but also V. If we solve this equation simultaneously with the original three ODEs,
we can determine R(z) and ¢t = zR(z)* (and have computed the inverse function
of the position of the boundary). As before, the z table is then converted to a ¢t
table, with the three original dependent variables. This approach has been successfully
implemented in a research Lagrangian compressible flow code |9], and can also be
used for an Arbitrary Lagrangian-Eulerian (ALE) code with the option of forcing the
outermost layer of computational cells to “act Lagrangian.”

Appendix C: Calculation of Cell-Averaged Values

Appropriate initialization of the compressible low code using values based on the
semi-analytic Guderley solution is extremely important for proper comparison of ex-
act and computed quantities. As the RAGE compressible flow algorithm is based on
finite-volume approximations, the quantities it calculates are cell-averaged values. To
initialize the code with a non-trivial flow field, one cannot simply use the point-wise
flow fields that solve (22-24), as obtained with the procedure described in §3.7

In order to provide input consistent with a finite-volume approach, one must eval-
uate cell-averaged flow fields that are consistent with the exact Guderley solution.
Moreover, these cell-averaged values must be constructed from conserved quantities
corresponding to those used in the governing conservation laws, namely, mass, momen-
tum, and total energy. For the cell delimited by 7 iy and rinax, we compute the volume
Veerr, mass Mg, momentum MOM,., and total energy E . on a cell-by-cell basis.
Using the notation introduced above, these quantities are evaluated as follows:

tn

Veell = ?m (T;:llax = Tmir1) (C1)
Tmax
M"uel] = Sm / dr T‘m_l p(r} i (CQ)
I rr".‘l::‘ﬂ‘
MOM_ o = Sm / dr ™ p(r) ulr) (C3)
Bean = Sm [ arr™ () [e()+ 1u0)] (o

where m is the space dimension and Sy, is the surface area of the unit ball (S, = 2,
2m, or 47 for m = 1, 2, or 3, respectively). These quantities were evaluated numerically
using the FORTRAN routine DQAGS [47], with the integrand functions obtained from
the semi-analytic solution.

? Timmes et al. [61] provide a detailed discussion of this issue for another compressible flow
problem.
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On a cell-by-cell basis, the values used to initialize the compressible flow code are

then defined as follows:

Peell = Meen/Veen (C5)

Ugell = MOMcent/peeit » (C6)
1

€cell = Ecell/peetl = 5 (MOMeen/peent)? - (C7)
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Fig. 1 Semi-analytic solution of the Guderley problem at initialization time ¢ = —1, depicting
cell-averaged quantities for 1200 cells between 7 = 0 and v = 3.

ul

L ot

Fig. 2 Left: Semi-analytic and computed Guderley density field at ¢t = —0.5. Right: Corre-
sponding pointwise errors. In these plots, the semi-analytic solution is a black line, and the
corresponding computed values are colored lines according to the legend.
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Fig. 3 Left: Semi-analytic and computed Guderley density field at ¢ = —0.1. Right: Corre-

sponding pointwise errors.

Fig. 4 Left: Semi-analytic and computed Guderley density field at ¢t = 0.1. Right: Corre-

sponding pointwise errors.



Fig. 5 Left: Semi-analytic and computed Guderley density field at ¢t = 0.5. Right: Corre-

sponding pointwise errors.
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Fig. 6 Semi-analytic solution of the Guderley problem at initialization time ¢t = 0.018594543,
depicting cell-averaged quantities for 1200 cells between r = 0 and r = 3,
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Fig. 7 Left: Semi-analytic and computed Guderley density field at ¢t = 0.5, computed from
the initial conditions in Fig. 6. Right: Corresponding pointwise errors.
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Fig. 8 Ly errors on 0 < r < 2 for Alow quantities calculated for the Guderley problem at
time ¢ = 0.5. Left: Problem initiated with incoming shock wave. Right: Problem initiated
with outgoing shock wave. The dashed black line in each plot is a reference line for first-order
convergence.



