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TOTAL-VARIATION REGULARIZATION WITH BOUND CONSTRAINTS 

Rick Chartrand, Brendt Wahlberg 

Los Alamos National Laboratory 
{rickc,brendt}@lanl.gov 

ABSTRACT 

We present a new algorithm for bound-constrained total­
variation (TV) regularization that in comparison with its 
predecessors is simple, fast, and flexible . We use a splitting 
approach to decouple TV minimization from enforcing the 
constraints. Consequently, existing TV solvers can be em­
ployed with minimal alteration . This also makes the approach 
straightforward to generalize to any situation where TV can 
be applied. We consider deblurring of images with Gaussian 
or salt-and-pepper noise, as well as Abel inversion of radio­
graphs with Poisson noise. We incorporate previous iterative 
reweighting algorithms to solve the TV portion. 

Index Terms- Total variation , bound constraints, non­
negativity constraint, image deblurring, Abel inversion. 

1. INTRODUCTION 

Total-variation (TV) regularization [11 has been invaluable for 
image restoration and reconstruction. TV suppresses noise, 
yet permits sharp edges. The convexity of the TV seminorrn 
means that local minima are typically not an issue. However, 
the nonsmoothness orTV makes its implementation challeng­
ing. Numerous algorithms have been developed: primal-dual 
methods [2], iterative reweighting [3,4) , dual methods [5, 6], 
graph cuts [7], operator splitting [8), linear programming [9) , 
second-order cone programming [10), and more. 

TV was originally formulated [1] as a constrained opti­
mization problem: 

min r I\i'ul, subject to /' (u - 1)2 .:; (J'2. (I) 
u in in 

Here, f is a grayscale image defined on n c ]R2 , and (J'2 

is the variance of Gaussian noise presumed to be present in 
f . However, it is generally regarded to be computationally 
simpler to solve an unconstrained formulation : 

min /' I\i'ul + ~ r (u - f? 
u in 2 in (2) 

For any value of (J', there is a corresponding value of A mak­
ing (2) equivalent to (I), though it is not typically possible to 
determine the appropriate A a priori. 
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Further extensions of TV are obtained by considering a 
(typically linear) transformation A: 

min r I\i'ul + ~ /' (Au - f? 
u ./0. 2 in (3) 

The most common instance is when A is a blurring operator, 
in which case solving (3) is TV-regularized deblurring of f. 
However, numerous other inverse processes have been simi­
larly regularized, including MRI [II) and CT [12) tomogra­
phy, Abel inversion [13], differentiation [14), among others. 

We can often include information about the values of the 
solution. The most common such constraint is that to be phys­
ically meaningful, the solution should be nonnegative. One 
approach is to simply impose this after solving (3), by clip­
ping the solution. However, better results can be obtained by 
enforcing the constraint during the solution process itself: 

m~n.1o I\i'ul + ~ In (Au - 1)2, subject to u E [a, b], (4) 

where u E [a, b] is meant pointwise (and similarly hence­
forth), and the interval may be unbounded. With a = 0 and 
b = 00, we have a nonnegativity constraint. Algorithms for 
solving (4) have been considered before, but in this work we 
present a new approach that is conceptually simpler and com­
putationally faster. 

2. SPLITTING ALGORITHM FOR 
BOUND-CONSTRAINED TV 

Our algorithm uses a splitting approach, which decouples the 
tasks of minimizing TV from that of enforcing the constraint. 
We enforce the constraint on a new variable, w, which we link 
to u initially by means of a trivial equality constraint: 

min /' I\i'ul + ~ r (Au - 1)2, 
U,w in 2 ./0. 

subject to u = wand wE [a , b] . (5) 

However, we now relax the constraint u = W, instead penal­
izing the discrepancy between u and w : 

min r I\i'ul + ~ /' (Au - f)2 + f!.. r (u - W)2 , 
U,w ./0. 2 in 2 in 

subject to W E [a, b], (6) 



where (3 is a new parameter. We proceed by alternate mini­
mization, fixing one variable and solving for the other. 

We first fix the iterate w, and solve for u, leaving the un­
constrained problem 

min r !V'u! + ~ r (Au - 1)2 + ~ { (u - w)2 (7) 
" ./0 2 ./0 2 ./0 

The corresponding Euler-Lagrange equation is 

V'u T 
-V"!V'u! +),A (Au-1)+(3(u-w). (8) 

This differs from the Euler-Lagrange equation for (3) only 
in the presence of the final term, which does not apprecia­
bly alter the difficulty of its solution. We solve (8) by using 
the lincarization obtained by substituting the previous iterate 
urn) for u. in the denominator of the first term. This is equiva­
lent to using u = urn) to generate a quadratic approximation 
to (7); see [41 for details of our iteratively-reweighted norm 
(lRN) approach. Convergence for the cases we consider in 
this papcr has been established [15, 16]. Generally, most TV­
regularization solvers can easily be modified to solve this sub­
problem. 

Now we fix u and solve for w: 

min ~ r (u - W)2, subject to wE [a, bj. (9) 
W 2./0 

We have a trivial, separable, quadratic optimization problem, 
with a simple solution: at each point x, w(x) is the closest 
element of [a, bj to u(x) (hence a, b, or u(x) itself). Note that 
it would bc equally simple to use a separate interval at each 
pixel, but will we not pursue this here. 

An additional consideration is that we wish the constraint 
w = 'U lO hold at convergence. For this, we use a method of 
multipliers approach (cf. the split Bregman approach of [17]). 
We incorporale a Lagrange multiplier v: 

min r !V'u! + ~ r (Au - 1)2 
",w./o 2 ./0 

,6 {( )2 "2 Jo u - w - v , 

subject to w E [a, b], (10) 

which we update each iteration: v(n+l) = v(n) + w(n+l) -
u(n+l). Standard method of multipliers theory guarantees 
that wen) - urn) ---> 0 as desired. Note that the inclusion 

of v does not increase the difficulty of either of the subprob­
lems, serving only to additively modify w when solving for 
'U, and vice versa. 

Since the only nontrivial computation, that of solving for 
u, reduces to a slight modification of a standard TV problem, 
one can take advantage of previous instances where (3) has 
been generalized. We consider two such cases in this paper, in 
addition to TV-regularized deblurring: £l_TV for deblurring 
images corrupted by salt-and-pepper noise [18,19], and Abel 
inversion of images corrupted by Poisson noise [13, 16]. 

3. EXPERIMENTS AND GENERALIZATIONS 

We first consider a nonnegatively-constrained TV deblurring 
problem. The 128 x 128 satellite image (Figure I (a)) is 
blurred with a 9 x 9 Gaussian kernel (J" = 20), then white 
Gaussian noise added (SNR 20 dB). We minimize (10), using 
10 iterations of alternation and Lagrange multiplier update. 
We compare our result with that of the primal-dual algorithm 
(called NNCGM) of Krishnan, Lin, and Yip [20], We obtain 
similar restorations, but ours runs almost 3 times faster. Our 
approach also has the flexibility to incorporate not only more 
general constraints, but also alternate noise models, with little 
alteration. 

(a) Satellite image (h) BIUlI)', noisy (SNR 5.8 dB) 

(e) NNCGM. SNR 13.2 dB, 89 s (d) IRN, SNR 13.2 dB. 36 s 

Fig.!. Our reconSlruction is similar to that of NNCGM [20], 
but in much less time. 

Now we considcr another TV deblurring problem, but 
with salt-and-pepper noise. It is by now well-known [18, 19] 
that replacing the £2-norm data fidelity term in (1) with an £1 
norm instead gives substantially better results. Incorporated 
into our approach, we obtain 

min {!V'u l +~ r!Au-f!+ ~ {(u.-w - v)2, 
" ,w./o 2 ./0 2./0 

subject to w E [a, bj. (II) 

The subproblem of solving for u for fixed 10 is a trivial 
modification of a standard £l-TV regularization. The same 
approach of iteratively approximating (II) with a quadratic 
problem works well here too, noting Ihat now the data fidelity 
term is approximated as well. The equation we solve for 



u = u(n+1) becomes 

n V71 'AT Au - 1 (3(' (n) (n») (12) -V'---+A + u-w -v . 
IVu(n) I IAu(n) - 11 

See [19] for further details. 
We apply this approach to the 256 x 256 cameraman im­

age (Figure 2(a)). We blur with a 7 x 7 Gaussian kernel (0" = 

5), and then corrupt 60% of the pixels with salt-and-pepper 
noise. We compare with the linear programming, interior­
point method (called LAD) of Fu, Ng, Nikolova, and Bar­
low [9], as presented in [21]. We obtailn similar results in 
less time, especially for heavily corrupted images, despite the 
LAD implementation containi Jilg some C code, while ours 
is entirely Matlab based. The LAD algorithm is limited to 

anisotropic TV c.f(luxl + IUyl), as opposed to J JUi + u~), 
as the usual isotropic TV wou'ld require a second-order cone 
program. Our algorithm is also easily extended to data fidelity 
terms not having a linear programming formulation, such as 
the Poisson noise case we consider next. 

(a) Cameraman image 

(e) LAD, SNR 11.1 dB . 239 s 

(b) Blurry, 600/,. pixels corrupted 
(SNR -0.4 dB) 

(d) IRN,SNR 11.ldB.85s 

Fig. 2. Our reconstruction is similar to ~hat of LAD [9], but 
in much less time. 

It should be noted that in [21], Yang, Zhang, and Yin con­
sider a more aggressive splitting, decoupling the nonsmooth 
minimization task from the differentiation and measurement 
operators. Their L1_ TV algorithm runs much faster than ours 
in the previous example (17 s). This is without a nonnegativ­
ity constraint, but our constraint splitting call be incorporated 
into their approach. However, their efficiency relies on the 

fact that when A is a blurring operator, AT A can be diago­
nalized by a Fourier transform. Our approach can easily be 
applied to operators without a useful Fourier representation, 
such as the Abel transform [13] we now consider. 

We examine the task of inverting radiographs of an ax­
isymmetric object. A reasonable approximation is that the 
negative-log of the radiograph is the Abel transform of a ra­
dial half-slice of the object (this being sufficient to determine 
the whole object, due to the symmetry). We thus may pro­
ceed with (10), with A being the Abel transform, and 1 the 
negative-log radiograph. However, the noise in the radiograph 
is Poisson distributed, and in particular is signal dependent. 
Using a uniform regularization strength across the image will 
result in underregularization where the transmission is high, 
and/or overregularization where the transmission is low. 

It is well known that a more appropriate data-fidelity 
term for Poisson noise is I (Au - 1 10g(Au)). The iterative­
reweighting framework was extended to this case in [16]. The 
equation to be solved for u becomes 

-V. Vu +,\ATAu - 1 +6(u-wn -vl1
). 

IVun l IAun l ' 
( 13) 

The denominator of the second term serves to automatically 
rescale the regularization strength, by decreasing the "effec­
tive" ,\ when the current estimate of Au is large, and decreas­
ing it when Au is small. This is as desired when 1 has Pois­
son noise, but in this case it is e- f that has Poisson noise. The 
usual relation to signal strength and noise variance is inverted. 
Hence we replace the denominator of the second term with a 
more appropriate scaling: 

_V.~ +'\ATA1L-l +/3(u-w(n)-v(n»). (14) 
IV u(Tl)l - A u 1n ) 

We apply this approach to a simulated radiograph of a Na­
tional Ingnition Facility cryogenic target implosiont. The re­
sults are in Figure 3. We see that minimizing with respect 
to the nonnegativity constraint allows interior features to be 
preserved better than clipping. Using the Poisson noise ap­
proach of (13) results in better recovery of high density values 
(where transmission, hence noise, is lower), yet better noise 
removal in low density regions (where transmission, hence 
noise, is higher). We note further when a priori knowledge 
of the maximum density is available, using an upper bound 
constraint can further improve results. This is particularly so 
in the case of Abel inversion, since values near the axis are 
sensitive to the inaccuracies further from the axis. However, 
such knowledge was not available in this case. 

4. CONCLUSIONS 

Our proposed algorithm for bound-constrained TV regular­
ization provides a useful balance between flexibility and com­
putational efficiency; it is simpler to implement and faster 

I Simulation by Charles Celjan, LLNL. 



(a) TV-regularized Abel (b) constrained 
inverse, clipped at 0 TV-regularized Abel 

inverse 

(c) constrained 
TV-regularized Abel 
inverse, with Poisson 
noise model 

Fig. 3. Using a nonnegativity constraint (b) gives more de­
tail in the interior. The Poisson noise model (c) results in 
bener noise removal, without high-density features being di­
minished. 

than most competing algorithms [9,20], and capable of solv­
ing a wider range of problems than one algorithm which could 
outperform it computationally [21 , with our splitting added) . 
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