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ABSTRACT

We present a new algorithm for bound-constrained lotal-
variation (TV) regularization that in comparison with its
predecessors is simple, fast, and flexible. We use a splitting
approach to decouple TV minimization from enforcing the
constraints. Consequently, existing TV solvers can be em-
ployed with minimal alteration. This also makes the approach
straightforward to generalize to any situation where TV can
be applied. We consider deblurring of images with Gaussian
or salt-and-pepper noise, as well as Abel inversion of radio-
graphs with Poisson noise. We incorporate previous iterative
reweighting algorithms to solve the TV portion.

Index Terms— Total variation, bound constraints, non-
negativity constraint, image deblurring, Abel inversion.

1. INTRODUCTION

Total-variation (TV) regularization [ 1] has been invaluable for
image restoration and reconstruction. TV suppresses noise,
yet permils sharp edges. The convexity of the TV seminorm
means that local minima are typically not an issue. However,
the nonsmoothness of TV makes its implementation challeng-
ing. Numerous algorithms have been developed: primal-dual
methods |2], iterative reweighting [3, 4], dual methods [5, 6],
graph cuts [7], operator splitting [8], linear programming [9],
second-order cone programming [10], and more.

TV was originally formulated [1] as a constrained opti-
mization problem:

min/ |Vul, subject to j (u—f)? <o (N
L Q

Here, f is a grayscale image defined on @ ¢ R?, and o2
is the variance of Gaussian noise presumed Lo be present in
/. However, it is generally regarded to be computationally
simpler to solve an unconstrained formulation:

min/ |Vu| + %/(u - f)2. (2)
uw Q n

For any value of o, there is a corresponding value of A mak-
ing (2) equivalent to (1), though it is not typically possible to
determine the appropriate A a priori.
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Further extensions of TV are obtained by considering a
(typically linear) transformation A:

min/ V| + i\-f(Au-f)'*. (3)
v Jo '2 0

The most common instance is when A is a blurring operator,
in which case solving (3) is TV-regularized deblurring of f.
However, numerous other inverse processes have been simi-
larly regularized, including MRI [11] and CT [12] tomogra-
phy, Abel inversion [13], differentiation [14], among others.
We can often include information about the values of the
solution. The most common such constraint is that to be phys-
ically meaningful, the solution should be nonnegative. One
approach is to simply impose this after solving (3), by clip-
ping the solution. However, better results can be obtained by
enforcing the constraint during the solution process itself:

min/ |Vu|+i\/(Au-—f]2‘ subjectto u € |a,b], (4)
v Ja 2 Ja '

where u € [a,b] is meant pointwise (and similarly hence-
forth), and the interval may be unbounded. With a = 0 and
b = oo, we have a nonnegativity constraint. Algorithms for
solving (4) have been considered before, but in this work we
present a new approach that is conceptually simpler and com-
putationally faster.

2. SPLITTING ALGORITHM FOR
BOUND-CONSTRAINED TV

Our algorithm uses a splitting approach, which decouples the
tasks of minimizing TV from that of enforcing the constraint.
We enforce the constraint on a new variable, w, which we link
to u initially by means of a trivial equality constraint:

min/ |Vu| -I-ft [(Au— B,
uw fo 2 Q
subject tou = wand w € [a,b]. (5)

However, we now relax the constraint v = w, instead penal-
izing the discrepancy between u and w:

minf |Vu| + é/(Au. - )%+ E/(u--ur)g,
v Jo 2Jq 2 Ja

subject to w € [a, b], (6)



where [ is a new parameter. We proceed by alternate mini-
mization, fixing one variable and solving for the other.

We first fix the iterate w, and solve for u, leaving the un-
constrained problem

w

111in[}|V'u]+%/(;(Au—f)'z—kg [p(u—u-‘}g. N

The corresponding Euler-Lagrange equation is

Vu

Vo]

+ AAT (Au - f) + Bu — w). (8)
This differs from the Euler-Lagrange equation for (3) only
in the presence of the final term, which does not apprecia-
bly alter the difficulty of its solution. We solve (8) by using
the lincarization obtained by substituting the previous iterate
ul™ for u in the denominator of the first term. This is equiva-
lent to using v = u'™ to generate a quadratic approximation
to (7); see [4] for details of our iteratively-reweighted norm
(IRN) approach. Convergence for the cases we consider in
this paper has been established [ 15, 16]. Generally, most TV-
regularization solvers can easily be modified to solve this sub-
problem.
Now we fix u and solve for w:

f

min lz— [{u — w)?, subjecttow € [a, b]. (9)
w Ja

We have a trivial, separable, quadratic optimization problem,
with a simple solution: at each point z, w(x) is the closest
element of [a, bl to u{x) (hence a, b, or u(z) itself). Note that
it would be equally simple to use a separate interval at each
pixel, but will we not pursue this here.

An additional consideration is that we wish the constraint
w = wu 1o hold at convergence. For this, we use a method of
multipliers approach (cf. the split Bregman approach of [17]).
We incorporate a Lagrange multiplier v:

A S 5. 8 F .
min[ |Vu| + 5 / (Au - )+ = [ (u—w—v)?
0 - Ja

ww fo 2 0
subject to w € [a,b], (10)

which we update each iteration; p("H1) = p(7) 4 (41
u"*t1) - Standard method of multipliers theory guarantees
that w'™ — u!®) — 0 as desired. Note that the inclusion
of v does not increase the difficulty of either of the subprob-
lems, serving only to additively modify w when solving for
u, and vice versa.

Since the only nontrivial computation, that of solving for
u, reduces to a slight modification of a standard TV problem,
one can take advantage of previous instances where (3) has
been generalized. We consider two such cases in this paper, in
addition to TV-regularized deblurring: L*-TV for deblurring
images corrupted by salt-and-pepper noise [18, 19], and Abel
inversion of images corrupted by Poisson noise [13, 16].

3. EXPERIMENTS AND GENERALIZATIONS

We first consider a nonnegatively-constrained TV deblurring
problem. The 128 x 128 satellite image (Figure l(a)) is
blurred with a 9 x 9 Gaussian kernel o = 20), then white
Gaussian noise added (SNR 20 dB). We minimize (10), using
10 iterations of alternation and Lagrange multiplier update.
We compare our result with that of the primal-dual algorithm
(called NNCGM) of Krishnan, Lin, and Yip [20]. We obtain
similar restorations, but ours runs almost 3 times faster. Our
approach also has the flexibility to incorporate not only more
general constraints, but also alternate noise models, with little
alteration.

(a) Satellite image (b) Blurry, noisy (SNR 5.8 dB)
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(d) IRN, SNR 13.2dB, 36 %
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(c) NNCGM, SNR 13.2dB, 895

Fig. 1. Our reconstruction is similar to that of NNCGM [20],
but in much less time.

Now we consider another TV deblurring problem, but
with salt-and-pepper noise. It is by now well-known [18, 19]
that replacing the L*-norm data fidelity term in (3) with an L
norm instead gives substantially better results. Incorporated
into our approach, we obtain

' AS 8 a
min/ |Vu| + = / |.4u—fFT% /(u—w—u)‘,
ww Jo 2 Ja 2 Ja

subject tow € [a,b]. (11)

The subproblem of solving for u for fixed w is a trivial
modification of a standard L*-TV regularization. The same
approach of iteratively approximating (11) with a quadratic
problem works well here too, noting that now the data fidelity
term is approximated as well. The equation we solve for



u = u™*) becomes

Vu T Au ”_f L) (n)

-V
See | 19] for further details.

We apply this approach to the 256 x 256 cameraman im-
age (Figure 2(a)). We blur with a 7 x 7 Gaussian kernel (o =
5), and then corrupt 60% of the pixels with salt-and-pepper
noise. We compare with the linear programming, interior-
point method (called LAD) of Fu, Ng, Nikolova, and Bar-
low [9], as presented in [21]. We obtain similar results in
less time, especially for heavily corrupted images, despite the
LAD implementation containing some C code, while ours
is entirely Matlab based. The LAD algorithm is limited to

anisotropic TV (f (|uz| + |uy|), as opposed to [ | /u2 + u2),
as the usual isotropic TV would require a second-order cone
program. Our algorithm is also easily extended to data fidelity
terms not having a linear programming formulation, such as
the Poisson noise case we consider next.

(b) Blurry, 60% pixels corrupted
(SNR —0.4 dB)

(c) LAD, SNR | 1.1 dB, 239 «

(d) IRN,SNR 11.1dB. 855

Fig. 2. Our reconstruction is similar to that of LAD [9], but
in much less time.

It should be noted that in [21], Yang, Zhang, and Yin con-
sider a more aggressive splitting, decoupling the nonsmooth
minimization task from the differentiation and measurement
operators, Their L*-TV algorithm runs much faster than ours
in the previous example (17 s). This is without a nonnegativ-
ity constraint, but our constraint splitting can be incorporated
into their approach. However, their efficiency relies on the

fact that when A is a blurring operator, AT 4 can be diago-
nalized by a Fourier transform. Our approach can easily be
applied 1o operators without a useful Fourier representation,
such as the Abel transform [13] we now consider.

We examine the task of inverting radiographs of an ax-
isymmetric object. A reasonable approximation is that the
negative-log of the radiograph is the Abel transform of a ra-
dial half-slice of the object (this being sufficient to determine
the whole object, due to the symmetry). We thus may pro-
ceed with (10), with A being the Abel transform, and f the
negative-log radiograph. However, the noise in the radiograph
is Poisson distributed, and in particular is signal dependent.
Using a uniform regularization strength across the image will
result in underregularization where the transmission is high,
and/or overregularization where the transmission is low.

It is well known that a more appropriate data-fidelity
term for Poisson noise is [(Au — flog(Au)). The iterative-
reweighting framework was extended to this case in [16]. The
equation to be solved for u becomes

Au—f
|Au®|

The denominator of the second term serves to automatically
rescale the regularization strength, by decreasing the “effec-
tive” A when the current estimate of Au is large, and decreas-
ing it when Aw is small. This is as desired when f has Pois-
son noise, but in this case it is e~/ that has Poisson noise. The
usual relation to signal strength and noise variance is inverted.
Hence we replace the denominator of the second term with a
more appropriate scaling:

Vu Au— f
: AAT
va] T

We apply this approach to a simulated radiograph of a Na-
tional Ingnition Facility cryogenic target implosion'. The re-
sults are in Figure 3. We see that minimizing with respect
to the nonnegativity constraint allows interior features to be
preserved better than clipping. Using the Poisson noise ap-
proach of (13) results in better recovery of high density values
(where transmission, hence noise, is lower), yet better noise
removal in low density regions (where transmission, hence
noise, is higher). We note further when a priori knowledge
of the maximum density is available, using an upper bound
constraint can further improve results. This is particularly so
in the case of Abel inversion, since values near the axis are
sensitive to the inaccuracies further from the axis. However,
such knowledge was not available in this case.

+ AT

+Bu—w™=v").  (13)

-V + Blu —w™ — ) (14)

—Aylnl

4. CONCLUSIONS

Our proposed algorithm for bound-constrained TV regular-
ization provides a useful balance between flexibility and com-
putational efficiency; it is simpler to implement and faster

' Simulation by Charles Cerjan, LLNL.



(a) TV-regularized Abe! (b) constrained (c) constrained
TV-regularized Abel
inverse, with Poisson

noise model

inverse, clipped at 0 TV-regularized Abel

inverse

Fig. 3. Using a nonnegativity constraint (b) gives more de-
tail in the interior. The Poisson noise model (c¢) results in
better noise removal, without high-density features being di-
minished.

than most competing algorithms [9, 20], and capable of solv-
ing a wider range of problems than one algorithm which could
outperform it computationally [21, with our splitting added].
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