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Abstra_ct

Three sets of rock samples have been subjected to planar impact to characterize loading,
Hugoniot and release responses. A slate from Pennsylvania was tested over the stress
range of 5 GPa to 140 GPa. Phyllite from the Lupin Mine (Canada) was tested over the 14
- 50 GPa stress region. Finally, granite samples from the SHIST test site (New Mexico)
were tested over the 10 - 20 GPa stress region. The granite tests included a transmitted-
wave experiment at about 10 GPa. In 12 of the 13 tests, a reverse-ballistic configuration
(optimized for Hugoniot and release measurements) was used. The remaining test (con-
ducted on the granite) provided a transmitted waveform from which precursor, Hugoniot
and release properties were obtained. Velocity interferometry (VISAR) was used as the
primary diagnostic throughout. The slate data showed an unexpected inflection downward
in the Hugoniot at around 8 GPa. The slate and granite showed release paths lying below
the Hugoniot for lower stress levels (below ~60 GPa), while the slate release paths were
“normal” (above the Hugoniot) at higher stress levels. In addition, the granite releases
were found to lie substantially below the Hugoniot in the 30 - 40 GPa region; this may be
related to the quartz-stishovite transition. The present results are generally consistent with
earlier work. '
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Measuring the Dynamic Compression
and Release Behavior of Rocks
Associated with HYDROPLUS (Part ll)

1.0 Introduction and Technique

This report is intended as a follow-on to an earlier report [Furnish, 1993a], discussing
analogous measurements performed on a variety of tuffs, rhyolites, carbonates, grouts, as
well as a quartzite permafrost and an epoxy-alumina gauge potting material. That docu-
ment presented a detailed discussion of experimental method, so only a brief summary of
the method will be included here.

1.1 Motivation

These tests were conducted in support of the Defense Nuclear Agency HYDROPLUS
project, whose aim is to measure the yield of underground nuclear tests by means of near-
field particle velocity and stress gauges. Alternative means of performing such measure-
ments include CORRTEX (a wave-velocity diagnostic) and far-field seismic measure-
ments. The end goal of such measurements is to ensure compliance of the testing party
with the 1974 Threshold Test Ban Treaty, which limits yields to 150 kilotons, while adher-
ing to the 1990 Protocols [USACDA/USOSIA, 1990]. The Protocols impose a large num-
ber of restrictions on the verification method; much of the effort of the HYDROPLUS
program has been to satisfy those restrictions while making a credible yield measurement.

Important to such a yield measurement is an assessment of the dynamic loading and
release properties of the country rock near a test, as well as of gauge emplacement grouts.
These measurements are then used to constrain computations of the groundshock, which
are compared to observed values to determine the yield.

Three rock materials were studied in the present portion of the Sandia effort supporting
HYDROPLUS, generally in a reverse-ballistic configuration which is optimized for Hugo-
niot and release property measurement (see Section 1.2). Slate from Pennsylvania was
tested over the stress range of 5 GPa to 140 GPa. Phyllite from the Lupin Mine (Canada)
was tested over the 14 - 50 GPa stress region. Finally, granite samples from the SHIST test
site (New Mexico) were tested over the 10 - 20 GPa stress region, including a transmitted-
wave experiment at about 10 GPa.

1.2 Experimental techniques

The present section contains a brief review of the experimental techniques used for
dynamic materials properties measurements on rock materials. It is included to make this




report self-contained. More detailed discussions of wave interactions, data reduction
methods and uncertainties may be found in Furnish [1993a, b] and Grady and Furnish
[1988]. Details of data reduction methods will be presented where appropriate in the
remainder of this report.

1.2.1 Considerations for impact studies of geological materials

The impact characterization of geological materials poses special challenges. Most impor-
tantly, samples are likely to contain heterogeneities (mm or larger scale). These affect
experiments in several ways. Often a buffer must be used between the sample and the
gauge or reflecting surface to protect it from the effects of an uneven shock, as well as to
average a signal passed through the heterogeneous sample. On the other hand, buffers
inevitably perform some shock processing, so it is preferable to eliminate them if possible.
Samples must be selected with an eye toward having results represent the bulk of the
available material, but at the same time the samples must be uniform enough to allow a
meaningful experiment (restrictions which may be difficult to satisfy simultaneously).
Sample selection generally favors the most homogeneous and competent samples, and as
such may bias the results of any dynamic study of these materials in that direction.

The effects of heterogeneities are more important at lower pressures. As interest shifts
from groundshock behavior at high stress levels (o > 10 GPa) to groundshock behavior in
the stress region only slightly above the elastic limit (o' ~ 0.1 GPa), both small-scale inho-
mogeneities such as selectively altered crystals and large-scale inhomogeneities such as
joint systems become important. In the present study, the majority of the tests were con-
ducted at stress levels above 10 GPa. Related tests (e.g. Gaffney and Smith [1994]) were
conducted primarily at low enough stress levels that this was an issue.

Often water is an important component of the material of interest. When it is, the experi-
ment may need to isolate the sample from vacuum, and possibly from gauges or reflective
films as well. The sample may need to be machined without being allowed to dry. If the
sample location is above the water table, the sample may be partially saturated. Such par-
tial saturations are extremely difficult to maintain, and the only practical avenue may be to
choose an end-member saturation for the tests. The samples in the present study, presumed
to have extremely low porosity, were exposed to room air and the vacuum in the gun sys-
tem. The effect of this potential drying was minor; the weight change of a sample of slate
subjected to vacuum for 30 minutes was negligible (see Section 2.2).

Final, the sample may be friable or cracked. Such a sample may not machine well, or may
require containment to withstand the kilogravity to megagravity environment of a gun
launch without damage. The 1990 Protocols do not allow a large amount of rock sam-
pling, so a team performing gas gun testing may be required to use some imperfect sam-
ples.

1.2.2 Experimental configurations of interest
Forward ballistic (transmitted wave) configuration

In the most generally usable configuration for gas-gun testing, the sample is placed in the
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target (Figure 1-1). This configuration is especially appropriate for measuring loading
wave profiles, Hugoniot states and strength properties (Hugoniot Elastic Limit for loading,
the strength at the Hugoniot state, and the tensile or spall strength). If a window material
can be chosen which is an approximate shock impedance match for the sample (such as Z-
cut sapphire for iron, or lithium fluoride for slate or granite), a continuous release path can
be measured; otherwise the pressure and particle velocity of a single point on the release
(or reshock) path of the sample can be determined. If a window material is chosen which
has a much lower shock impedance than does the sample, spall properties of the sample

can be measured as well as Hugoniot properties.

Analysis of the velocity profile from such a test consists of determining the precursor and

Gun Barrel

Velocity and Ground Pins

4 Flush Pins

Velocity of
this spot is
monitored

\ Buffer (optional)
To VISAR
Window

(LiF, Sapphire,
fused SiO,

. or PMMA)
Aluminum
Target Fixture
i Impactor Sample
Foam (e.g. aluminum)
or void .
Observed
Velocity
}?nVave _ ‘smuﬁ:gte History  Spall pul-
teractions - {  Sample Window A ; back (for
5 g . * spall calc)
£lg |
ola |[E
wLlg |2 Plateau
gl Wy, ol (for partial
- o) = release cal-
Loading E ({\“‘ culation)
--------- b\‘
Release o~ \ Arrival (for
Hugoniot
N calculation) X
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Figure 1-1. Forward ballistic configuration (a) Release or reshock
from sample/buffer interface; (b) Reshock from sample/cup inter-
face (and cup/impactor for non-aluminum impactor)
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Hugoniot states from the transit time across the sample (hence velocity of the observed
waves), then extracting available release or spall information [Furnish, 1993a]. If the win-
dow is a fairly close impedance match to the sample and the waveforms entering and leav-
ing the sample are known (easiest if no buffer is used), Lagrangian integration of the wave
velocities yields a table relating stress, strain, time, shock velocity and wave velocity [Fur-
nish, 1992]. For many materials, the strain rate during loading varies approximately as the
fourth power of the Hugoniot stress [Swegle and Grady, 1985]. If buffers are used, wave-
code modeling of the experiment to match the observed waveform may yield the pressure-
volume path, although this procedure is somewhat more laborious. If the window is a poor
impedance match for the sample, the average amplitude of the waveform “plateau” may
be used with the Hugoniot of the window to calculate a single partial release or reshock
state of the sample. Finally, if the sample has spalled, the amplitude of the pull-back signal
may yield the spall strength of the sample [Chhabildas, et al, 1990].

Reverse ballistic configuration

For conditions where a window whose shock impedance matches the shock impedance of
the sample cannot be found, Hugoniot and continuous release paths can be measured
using the geometry shown in Figure 1-2. Wave interactions and a typical velocity history
are indicated. This configuration, called “reverse-ballistic,” has been used extensively for
measuring Hugoniot and release properties of rocks and grouts. It can be used with water-
saturated samples (as can the forward-ballistic configuration). It does not give any infor-
mation about loading characteristics, such as precursors and material strength, and in fact
can give erroneous Hugoniot density and shock velocity values if incorrect assumptions
about precursors are made [Furnish, 1993a]. It is normally most useful if the dynamic
strength of the material is small compared to the Hugoniot stress.

1.2.3 Strengths and limitations of gun impact tests for EOS measure-
ments

Let us make several general comments about planar impact tests (generally performed on
precision gun systems, and hence referred to as “gun impact tests”). Fundamentally these
tests are uniaxial tests of hand-specimen-sized samples. This raises two issues.

First, because of sample size limitations, such tests cannot readily assess large-scale prop-
erties of heterogeneous bodies. Various studies have been performed to assess the roles of
heterogeneities, generally aimed to model or observe a system with one or a few simple
structures, although the behavior of families of these features under high strain rates
remains unclear (but of considerable importance for stresses near the elastic limit of these
materials).

Second, the present experiments are designed to measure only the uniaxial strain proper-
ties of samples. Wave divergence phenomena are found near the margins of samples in
planar impact tests. If such phenomena are of interest, however, the more traditional diver-
gent wave experiments (exploding wire or point charge) can allow a more straightforward
relation to physical systems of interest.

On the other hand, gas-gun tests conducted to separate shear and longitudinal properties
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Figure 1-2. Reverse ballistic configuration

can be useful experiments for benchmarking individual parameters in material models for
calculating nonplanar wave behavior. These tests normally require generating a plane
shear wave by a tilt-impact or anisotropic shock-processing material (e.g. Y-cut quartz),
then coupling this wave from the impactor or buffer into the sample and from the sample
into the window. For geologic materials, this coupling is difficult and hard to ascertain.
When such experiments can be made to work, they can constrain a large set of physical
parameters describing the dynamic behavior of the material [Aidun and Gupta, 1989].
They are able, as well, to separate volume effects (such as phase transitions) from
strength- and Poisson’s ratio- effects such as the Hugoniot elastic limit and strength effects
upon release. These effects generally cannot be separated in a simple longitudinal wave
impact experiment.

Various window materials remain transparent over different stress ranges. The most com-
mon window materials in use, and their useful upper stress limits, are lithium fluoride (160
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GPa +) [Wise and Chhabildas, 1985], Z-cut sapphire (elastic to 14 GPa; may recover
transparency above 30 - 60 GPa) [Barker and Hollenbach, 1970], PMMA (20 GPa; has
viscoelastic behavior) [Schuler and Nunziato, 1975), and fused silica (8 GPa; produces
ramp wave below 3 GPa) [Barker and Hollenbach, 1970]. At low stress ranges (1 - 3
GPa), lithium fluoride is slightly affected by its elastic-plastic transition.

Within these constraints, gas gun tests are able to produce a wide range of materials prop-
erties data for materials undergoing high strain-rate deformation.

In summary, the waveform shown in Figure 1-3 illustrates representative properties which
can be obtained for metallic or stony geological materials (represented here for a forward-
ballistic test).

+ High-Pressure Elasticity,
Longitudinal Sound Speed
Plastic Modulus Cyclic Loading,
2 => Hugoniot State Dissipation
8 | Phase Transition
> Bulk Release
§ Plastic Modulus = dP/dV
& | (Shock Velocity)
) Spall
= . Strength
Hugomot Post-Yield
Elastic 3
Timit % Flow
= Loading lastic wave velocity
Strength = Elastic Modulus

Time after impact

Figure 1-3. Correspondence between wave features and physical
properties for a forward-ballistic (transmitted wave) experiment.
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2.0 Impact Tests on Pénnsylvania Slate

2 1 Materials studied

Blocks of competent slate were obtained from a quarry approximately 14 miles north-
northwest of Allentown, Pennsylvania [Meyers, 1992] in November of 1992. This slate is
quarried from the Ordovician-age Martinsburg Formation. Seven blocks (approx. 125 x
125 x 65 mm in size) were obtained for use in HYDROPLUS testing. Five of these sam-
ples (designated S-3 through S-7) had been protected from freezing by storage in the mill
building at the quarry, while the other two (S-1 and S-2) had been stored outside and sub-
jected to freezing since excavation. Samples S-1 and S-2 were not used in this study.

Blocks S-3, 4 and 5 were chosen for impact testing (S-5 at Sandia and S-3 and S-4 at the
DNA Impact Facility). These had been cut from a single larger block, so the results of the
Sandia tests should be relatable to physical properties results from Terra Tek [Martin,
1993] (from Sample S-3) and to wave profile data from the DNA facility [Davies and
Smith, 1994]. No attempts were made to maintain water saturation or to desiccate.

The phgsical properties measurements by Terra Tek showed the bulk density to be 2.723
gm/cm”, grain density 2.778 gm/cm3, porosity 1.6%, P-wave velocity 3.742 km/sec, S-
wave velocity 2.384 km/sec, and Poisson’s ratio, 0.16. An XRD analysis [Martin, 1993]
revealed a mineralogy of 37% quartz, 12% plagioclase, 12% calcite, 7% ferroan dolomite,
3% pyrite, 8% chlorite, 16% illite/mica and 5% amorphous (poorly crystalline materials
and organic material).

The samples we tested were of comparable density (2.735 - 2.742 gm/cm3) to the Terra
Tek sample. They were homogeneous, massive and competent.

2.2 Experiments conducted

Six impact experiments were conducted at Sandia on this material. The test matrix is sum-
marized in Table 1. All of these experiments were conducted in the reverse-ballistic con-
figuration (sample in projectile). The powder gun and the two-stage light gas gun at the
Sandia STAR Facility were used for these tests.

The highest-velocity test was conducted with a tantalum buffer to reach higher pressures.
To avoid complications previously encountered with tantalum buffer experiments, associ-
ated with a ringing in the aluminum cup, the cup was eliminated and the sample impacted
the tantalum directly. The main disadvantage of this configuration is that the sample is
subjected to gun vacuum, and possible consequent desiccation. (An alternative, using a
tantalum cup as well as a tantalum buffer, was discarded because tantalum melting would
occur at the extremely high impact velocities of this experiment.) Prior to performing this
test, a scrap of slate was subjected to vacuum in a bell jar for approximately 30 minutes.
The loss of density was negligible (about 0.0008%), and could be attributed to loss of
adsorbed surface moisture as easily as to bulk water content decrease.
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2.3 Dynamic properties results

2.3.1 Observed velocity profiles

Figures 2-1 and 2-2 show the wave profiles observed for these tests. Tests SLP 1 - 4 and
SLP 7 show relatively clean profiles, similar to the idealized profile in Figure 1-2. A signa-
ture of a gap between the sample and the cup is present for tests SLP 1, 2, 4, and 7. Calcu-
lated gap widths are summarized in Figures 2-1 and 2-2. Late-time velocities (~4 ps after
impact) vary from 5% to 20% of the plateau velocity (~2 s after impact) with the density
of foam chosen to back the sample. The profile from SLP 6 (Ta buffer) is somewhat nois-
ier than the others, but the noise level is of sufficiently small amplitude and high frequency
that it did not reduce the usability of the data. Note that the form of this profile is different
from that of the others because there is no cup; the deceleration at 1.0 - 1.3 psec after
impact is a signature of the release propagated through the sample from the sample-foam
interface (modified by a spall in the tantalum).

Timing relative to impact is established through use of the shock properties of the buffer
materials, using values in Table 2.2.

Table 2.2 Ancillary material equation-of-state parameters assumed”

Material Po Co S Yo Y
(kg/m?)  (m/sec) (GPa)

Lithium Fluoride 2641 5148 1.35 1.63 0.2

Aluminum 2698 5370 1.34 2.1 0.3

Tantalum 16680 3293 1.31 1.6 0.7

*Assuming linear shock velocity/particle velocity relation (U= Co+ SUp). Y = dynamic yield strength
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Figure 2-1. Velocity profiles for powder gun tests on Pennsylvania Slate.
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Figure 2-2. Velocity profiles for 2-stage gun tests on Pennsylvania Slate

2.3.2 Hugoniot and release properties

Hugoniot conditions were calculated by standard impedance-match methods [Furnish,
1993a, b]. The input data for these calculations are the projectile velocity, the sample den-
sity and the observed plateau velocity on the measured velocity profiles (the level of the
long plateaus in Figures 2-1 and 2-2). As well, information is needed about the shock
properties of the cup, the buffer and the window.

Table 2.3 summarizes the Hugoniot conditions calculated from these tests, together with
uncertainties due to errors in projectile velocity measurement, measurement of the plateau
level on the waveforms, initial density error, and errors in the ancillary material equations-
of-state. Projectile velocity errors are the most important contributions to errors in the cal-
culated quantities, although uncertainties in the ancillary material EOS contributed signif-
icantly as well.
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Table 2.3. Hugoniot conditions for Pennsylvania Slate experiments

Hugoniot Conditions
- —p
Shot Proj. Observed Particle Shock Specific
# Velocity Vel Po Vel Pressure p Vel. p/pg Vol
km/sec km/sec gm/cm3, km/sec GPa gm/cm3 km/sec cm3/gm

0715@®) 0345(3) 2.741(2) 0376(9) 52(1)  2.96(1) 5.08(17) 1.080(5) 0.338(1)
1.161(14) 0.543(2) 2.742(2) 0.628(15) 8.6(1) 3.13(2) 5.00(14) 1.143(8) 0319(2)
1.95(2) 0939(3) 2.741(2) 1.03(2) 16.3(3) 334(3) 5.J77(16) 1.217(13) 0.30013)
304(4)  1.398(10) 2.735(2) 1.67@4) 26.6(5) 3.83(9) 5.83(18) 140(3)  0.261(6)
583(2) 2750(1) 2.734(2) 3.124) 65.7(9) 460(8) 7.7014) 1.68(3)  0217(4)
6 644(6) 24002 2737(2) 487(7) 139.7(2.5) 5.12(16) 10.48(26) 1.87(5) 0.195(6)

(Note that values in parenthesis represent uncertainties in the last 1-2 digits of the quantity. Experiment 6
was conducted with a tantalum buffer.)

QR W e

Release paths have been calculated from the waveforms, and are plotted together with the
Hugoniot points and associated uncertainties, in Figures 2-3 through 2-5. The procedure
for this calculation is presented in Appendix B. Model waveforms corresponding to these
release paths are shown in Appendix B (Figures B-1 and B-2). Release paths are tabulated
in Appendix A.

As mentioned above, related data were obtained at the DNA Impact Facility by Ktech
Corp. [Davies and Smith, 1994]. Nine tests, including 5 with carbon gauges and 4 with
VISAR, yielded wave profile and Hugoniot data over the stress range 0.4 - 10 GPa. These
are plotted against the present results (the 4 lowest-pressure tests) in Figures 2-3 through
2-5.

Test SLP-2 of the present series appears to have an anomalously low shock velocity; oth-
erwise the two sets of data are in good agreement. A similar dip, over the particle velocity
range 0.3 - 0.8 km/sec (stress range 3 - 8 GPa) was observed by Anderson et. al. [1995] in
a suite of measurements on Yellow Shale obtained from Marble Mtn., CA. If a two wave
loading structure occurs under the conditions of test SLP-2, our data reduction method
would lead to an erroneous calculation of the Hugoniot shock velocity and sample density.
However, there is no evidence for such a structure in the Ktech wave profiles acquired for
a forward-ballistic geometry (sample in target) [Davies and Smith, 1994]. Hence there is
no obvious reason to suppose that the calculated Hugoniot state for test SLP2 is in error.

The releases appear to be slightly hysteretic (i.e. below Hugoniot) for pressures less than
30 GPa, and normal (i.e. above Hugoniot) for pressures greater than 60 GPa, consistent
with the behavior observed for tuffs and granites [Furnish, 1993b]. Typically this change
from hysteretic to normal release behavior occurs at between 40 and 60 GPa in rocks.

Several sensitivity studies were undertaken. As a measure of the hysteresis of the release,
the two lowest-pressure tests were modeled using an assumed Mie-Griineisen release
behavior (no strength). The resulting model waveforms and stress-density release paths
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Figure 2-3. Hugoniot and release results for Pennsylvania Slate (P vs. p/pg )
(Top) Entire range of experiments; (Bottom) Detail of lower portion of range.

are shown in Figure 2-6. The Mie-Griineisen release behavior assumption gives a much
poorer match to the observed wave profiles than does the modulus fit. Note that a smaller
slope in the release (lower dP/8p) gives a later release arrival.
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(Top) Entire range of experiments; (Bottom) Detail of lower portion of range.

For the tantalum-buffer experiment, four parameters were perturbed: (1) The tantalum
strength was changed to 4 kb from 7 kb; (2) An alternative fit to the tantalum Hugoniot
was used (Cy =3.414 km/sec, S = 1.201, po = 16.650 gm/cm3, vs. Cp=3.293 km/sec, S =
=16.680 gm/cm3); (3) The tantalum spall strength was changed to 4 GPa from 6

1.307, Po
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GPa; and (4) By was changed from 1700 GPa to 2000 GPa. The results are shown in Fig-
ure 2-7. Reassuringly, the only variation of the tantalum EOS which significantly affected
the calculated velocity profile in the interval of interest was the deliberate change in the
release modulus used (B adjustment).
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3.0 Impact Tests on Phyllite

3.1 Materials studied

As a portion of the HYDROPLUS project, DNA undertook to assess whether the equa-
tion-of-state of a relatively low-porosity rock which is frozen in-situ is changed signifi-
cantly by thawing or by thawing and refreezing. Several rock materials were recovered
from the Lupin mine in Canada, including samples of phyllite and of quartzite. These
materials underwent extensive mechanical and compositional characterization testing (see
Martin et al [1992]). Sandia performed a suite of impact tests on the quartzite over the 1 -
9 GPa stress range, combining forward and reverse-ballistic testing under various temper-
ature conditions [Furnish, 1993a]. Ktech Corp. performed a suite of tests on the phyllite
over the stress range 0.8 - 8 GPa [Davies and Smith, 1994]. In general, the conclusion was
reached that for these very-low-porosity materials, the frozen/thawed state does not affect

material behavior in a way that needs to be accounted for in the attenuation calculations.

In the present section, we document three additional, higher-stress tests on the phyllite. All
of these tests were conducted at room temperature. The samples were from the same batch
of cores as were the samples tested by Davies and Smith [1994]. The core designator (as
provided by Terra Tek [Martin, 1993a]) is Lu#2, 5.36-5.45". The samples were prepared to
Sandia specifications by Terra Tek. No attempts were made to preserve water saturation
or to desiccate the samples because of their low porosity.

The phyllite is from the (Archean) Contwoyto Formation. The lithologic description is as
follows [Martin et al, 1992, pp. 13]:

Grayish-black to black with greenish black tint; very hard, dense; trace
biotite; trace disseminated pyrite; foliation cuts core at 40 to 70° angle.
Rare 1 to 4 mm wide calcite-filled fractures, usually with disseminated or
intermittent pyrite fractures, typically tight with no visible porosity, and
vary from single planar fractures parallel to foliation to branching and
intersecting patterns crossing foliation. Several calcite and pyrite coated
core partings show slickenside lineations. A calcite filled fracture in LU
#A, run #6, 1 cm wide with vuggy porosity along center of vein; calcite
crystals up to 8 mm across; water ice fills void.

Although a compositional analysis is not available immediately adjacent to the core
tested, sample Lu#2 at the 9.11 m level was found to be 13 wt% quartz, 19 wt% plagio-
clase, ~2 wt% feldspar, 5 wt% calcite, 37 wt% muscovite and 24 wt% chlorite [Martin ez
al, 1992]. '

3.2 Experiments conducted

The test matrix is summarized in Table 3.1. Reverse-ballistic geometries were used
throughout. Impact conditions were chosen to provide nominal Hugoniot stress levels of
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150, 350 and 500 kb; this required the use of the powder gun (1 test) and the 2-stage light
gas gun (2 tests). The two lower-stress experiments were conducted with uncontained
samples, while the highest-stress experiment utilized an aluminum cup (as shown in Fig-
ure 1), primarily to insure sample survival during the launch. Sample survival was a con-
cern because the sample used in test Phy 3 had a slight crack near one edge (11.34 mm
from center).

Our measured densities averaged 2.77 gm/cm3, which is about 1% below the densities
quoted for the samples tested by Ktech. The samples were homogeneous, massive and
competent.

3.3 Dynamic properties results

3.3.1 Observed velocity profiles

Figure 3-1 shows the velocity profiles observed for these tests. Timing relative to impact
was accomplished by calculating shock transit time through the aluminum buffers and
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Figure 3-1. Velocity profiles for phyllite tests.
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shifting the traces accordingly. This is an accurate (~5 nsec) method which requires far
less effort than fiducial-based timing.

The most obvious variation between profiles, the higher initial plateau in test Phy 3 which
is lacking in the lower-velocity experiments, is due to the use of a cup in Phy 3. A gap
signature is also visible in the profile for Phy 3, indicating that a very slight gap (not more
than 100 wm) developed between the sample and the cup. Another variation is seen in the
corner structure at the start of the release (becoming sharper for the upper stress levels),
which may be an artifact of wave processing in the aluminum.

3.3.2 Hugoniot and release properties

The Hugoniot conditions were calculated using standard impedance-match methods [Fur-
nish, 1993a,b]. Results are summarized in Table 3.2 and Figures 3-2 and 3-3, together with

Table 3.2. Hugoniot conditions for phyllite experiments

Hugoniot Conditions
- >
Shot Proj. Observed Particle Shock Specific
# Velocity Vel Po Vel Pressure p Vel. p/pg Vol
km/sec km/sec gm/cm® km/sec GPa gm/cm3 km/sec cm’/gm

1 1.69(1) 0.814(3) 2.760 0.891(11) 13.73(8) 3.28(2) 5.59(9) 1.189(6) 0.304(1)

2 3732 1.738(4) 2.770 2.03(3) 35.19(12) 4.09(4) 627(7) 1.478(14) 0.244(2)

3 4892 2273(13) 2.772 2.65(2) 5044 4.52(7) 6.85(10) 1.632(24) 0.221(3)
(Values in parenthesis represent uncertainties in the last 1-2 digits of the quantity)
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Figure 3-2. P - Up representation of Hugoniot and release paths for phyllite tests.
“Ktech” data are from Davies and Smith [1994].
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uncertainties due to errors in projectile velocity measurement, measurement of the plateau
level on the waveforms, initial density error, and errors in the ancillary material equations-
of-state. A fit Hugoniot is included for interpretation. The release paths are derived in the
usual way (see Appendix B), through wavecode matches using an adjustable Lagrangian

release modulus. The wavecode fits to the velocity profiles are shown in Appendix B (Fig-
ure B-3).
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For comparison, the results of Davies and Smith [1994] are plotted against the present
data in Figures 3-2 and 3-3, labeled as “Ktech.” The lower-pressure data (13 forward-bal-
listic tests utilizing carbon gauges) from their set are well represented by the short dotted
segment, while the upper two Hugoniot points (forward-ballistic with VISAR diagnostics)
deviate somewhat from it. These data appear to be consistent with the present set, with no
evidence of significant phase transitions between the stress regimes spanned by the indi-
vidual data sets.

It is interesting how strongly lllgstcretic the two highest-pressure releases are. This may be
the effect of hysteresis in the ** SI &> Vigi phase transition observed for quartz and other
silicates (known as “quartz <> stishovite” for pure silica).
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4.0 Impact Tests on Granite

4.1 Materials studied

A granite from the SHIST site (White Sands, NM) was supplied for testing. These samples
were taken from Core Hole #2, depth interval 118.84 - 119.00 feet. Densities ranged from
2.552 t0 2.568 gm/cm3 (SNL measurements) or 2.564 to 2.574 gm!cm3 [Marquartd,
1993].

The mineralogy of an adjacent (Hole #2, 104.9°) granite was described by Martin [1993b]
as 32% (wt.) quartz, 22% plagioclase, 34% potassium feldspar, 2% calcite, 4% chlorite
and 6% illite/mica (last is probably dominantly biotite). Physical properties of samples
from two close samplings are presented in Table 4.1.

Table 4.1. Physical properties of SHIST test plugs*

Sample ID Hole #2 115.5° Hole #2 124.1’
Bulk Density (gm/cm’) 2.596 2.603
Effective Grain Density (gmlcm3) 2.616 2.613
Effective Porosity (%) 0.75 0.35

True Grain Density (gm/cm?) 2.636 2.635
Total Porosity (%) 1.45 1.25
Occluded Porosity (%) 0.7 0.9

*Properties are averaged values for samples acquired parallel and perpendicular to the hole at
approximately the specified depth. Data from Martin {1993b].

4.2 Experiments conducted

Four tests were conducted, designed to sample the stress range of 10 - 20 GPa. Three were
conducted in the reverse-ballistic mode. The fourth was conducted in the forward-ballistic
(transmitted-wave) mode to obtain loading data. The detailed test matrix is presented in
Table 4.2.

4.3 Dynamic properties results

4.3.1 Observed velocity profiles

Observed velocity profiles are shown in Figure 4-1. Timing in the reverse-ballistic tests
was established using the predicted shock transit time through the aluminum buffer.
Impact time for the forward-ballistic test (GR 4) was established by comparing fiducial
timing with that for the reverse-ballistic tests (error estimated as < 35 nsec). Since no

31

St s



(€ ‘2 ‘1 4O) sluswnadx3 sonsljjeg-9sionay

Iopng wnuiwngy
xmx1 Jo81e],
WNUIWNTY

SULJ YSnId ¥

Sunjy  wejdesoN IV

paIoIIOW
st jods sy :
30 KI00A unp
suid L190JOA €
weoq #0v 10 #07

(v 4o) swniadx3y soust|jeg-plemiod

ploA 10
(wnurwngy) weog

Joyoedwy

2ImXId 10816,
wnuwnry

suid ysnld ¥

€ig))]
MODUIA

JVSIA OL

Su14 punoIn

DU A9010A [o1reg ung

7-0=CA/AV Surunssy v SIA 9y} JO Sunies e o) spuodsari0d (4dA) 28ury 19d A1100[A ¢

JuswiLIadxa JSI[Eq-PABAIOJ € ST I5) 16T 0N

-£pmys SIy uf S159) [e JOJ SpLony wnnpg Jo pasoduiod st MOPUIM,,

-£|quiasse 1noySnoIy) 9L-1909 S1 Pash WNUIWNE PIEPUBIS,

LEBYO'T (A A4 By e e1o’s €86’V LSST FitonuelH 8~ (A% of €SE’T | ®pmod| ¥ ¥UD
LOIEYO0 8€€'ST | 80V v BU 6L6'V (43X goNURID G~ 90~ [€€T | wpmod| €O
80€5¢°0 78€'ST | 81Vl v el 66V 655°C zionueln G~ 90~ 8017 | Wpmod| TID
8¥0LT0 LIY'ST £6E’l v el 86V 895°C [#MNUEBID 8~ (4% o T6E'T | 1opmod 14D
(oas/ury) (ww) | (wu) wu) yyL| (ww)  |(wo/w3) (ww) | (;wo/ws) | (oas/ur)

oSumgiog | wowL | domL |rewerew [rowedwy | YowL | Ausueq dal YowL | Ansusq | AwoopeA | Amroed

(KIO0[RA [ MOPUTA wyng | sepng |/dnD IV sjdureg | ordureg gjdureg weoy ureo,J 1oedu) unp #10US

SOIEWAYIS YA ‘Auesd Jo satpm)s 1oedwul 1oy XINeWl 1S9, °T'p s|qel

32



1200 i ] ] i 1 I ] i i J l 1 L] ) 1 ' i 1 V i

—rh
0o o
o o
o o
T

]
]
]
: I
600 [ |fv v, !
[ I
i

Interface Velocity (m/sec)

™ —— GR 3 (2331 m/s)
400 | | -— - GR2 (2168 m/s)
. ) /
[ 1 ——— GR1(1393 m/s)
200 + 1, - .
3 \‘
\,
.\‘v
0 1 1 1 l 1 1 | 1 l (] (] 1 1 ‘T‘”lmh-k [] l 1 1 i [ I 1 [ 1 []
0 1 2 3 4 5 6
Time (usec; 0 = impact)

800 1 ] 1 ] I ] 1 L} ] I ] ] i 1 I i 4 1 1 | i L] i i
—— GR 4 (1353 m/s)

o

o

o
T

H

o

o
T

200

Interface Velocity (m/sec)

Time (usec; 0 = impact)
Figure 4.1. Observed velocity profiles for SHIST granite tests.

cups were used to enclose the samples in any of the tests, the reverse-ballistic velocity
profiles are simplified (there is no initial plateau). The plateau corresponds to the Hugo-
niot state of the sample, and the shape and position of the first release reflect the release
properties of the sample. A late-time (3.5 - 4 psec) velocity increase is a reshock caused
by the projectile nosetip behind the foam for these samples.
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The forward-ballistic waveform (GR 4) shows a classic 2-wave loading structure, com-
posed of an elastic precursor preceding a plastic wave. Although the velocity profile from
this test is noisier than those from the reverse-ballistic tests, it is still usable.

4.3.2 Loading, Hugoniot and release properties

The precursor, Hugoniot and reshock points are tabulated in Table 4.3, together with error
estimates. They are plotted, together with release paths, in Figures 4-2 and 4-3. The Hugo-
niot states for the reverse-ballistic tests were calculated by standard impedance-match
methods [Furnish, 1993a,b], as with the other tests in this report. In the present case, this
calculation assumed a precursor with the conditions calculated for the precursor observed
in test GR 4. For the forward-ballistic test (GR 4), the calculation is done by an imped-
ance-match method which requires the projectile velocity, the initial sample density and
thickness, the times-of-arrival of the first and second waves, the plateau velocity for the
first wave, and the equations-of-state of the impactor and the window. The plateau veloc-
ity is not required. Details may be found in Furnish [1993a,b].

Table 4.3. Precursor, Hugoniot and reshock states for SHIST granite tests

Reverse-Ballistic Tests
Hugoniot Conditions
- —
Shot Proj.  Observed Particle Shock Specific
# Velocity Vel Po Vel Pressure p Vel p/po Vol
km/sec km/sec gmlcm3 km/sec GPa gm/cm3 km/sec cm3/gm

GR1 1392(14) 0.605(5) 2.568(6) 0.798(16) 9.74(11) 3.103) 441(37) 121(1) 032303)
GR2 2.168(22) 0.947(10) 2.559(14) 1.239(25) 1645(22) 3.37(6) 5.06(21) 1.32(2) 0.297(5)
GR3 2331(23) 1.025(10) 2.552(16) 1.325(26) 18.10(22) 3.39(6) 5.26(18) 1.33(2) 0.295(5)

Forward-Ballistic Test
Precursor/Hugoniot Conditions
-t —
Shot Proj. Plastic Particle Shock Specific
# Velocity TOA Po Vel Pressure p Vel. p/pg Vol
km/sec  psec gm/cm3 km/sec GPa gm/cm3 km/sec cm/gm

GR 4 1.353(13) 1.085(35) 2.557(D
Precursor Conditions — 0.182 2.841(4) 2.635(7) 6.114 1.0305 0.3795(10)
Hugoniot Conditions »  0.776(12) 9.53(17) 3.04(2) 4.46(15) 1.189(9) 0.329(2)

Partial Reshock Conditions
- —>
Shot Plateau Particle
# Velocity Stress Vel.
GR 4 0.68(2) 11.44) 0.68(2)
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Note that there is a partial reshock of the sample generated by the impedance mismatch
between the sample and the LiF window. The window has a higher shock impedance than
does the sample. Impedance-match calculations provide the stress and particle velocity of
this reshocked state, but cannot provide the shock velocity of the reshock or the density of
the reshocked state. This is because the path from the Hugoniot to the reshock is not
known, and a Riemann integration may therefore not be performed from the Hugoniot to

the reshock (Furnish, 1993a,b].
20-llllllllllllllllllllllIlllllllllll'lll
OO Hugoniot states (Reverse balistic)
X Hugoniot state (Forward bdlistic)
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— |}
QU_ 5 d
o 10F | -
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O-Jllllllllllllllllll'llll'llll'llll'llll-
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Figure 4-2. Precursor, Hugoniot and reshock states for SHIST granite impact tests.
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Figure 4-3. Precursor, Hugoniot and reshock states for SHIST granite impact tests.

Release paths for the reverse-ballistic tests were calculated by a procedure described in
Appendix B and in Furnish [1993a,b], comprised of modeling the tests with the WONDY
V wavecode, and adjusting the parameters governing the release modulus (see Eq. B.1)
until the calculated and experimental wave profiles agree. There is one important differ-
ence in the modeling of the granite tests: A precursor chosen to match the stress/density
conditions observed for test GR 4 (2.841 GPa, 2.646 gm/cm3) was assumed.

The forward-ballistic test (GR 4) was modeled analogously. The calculated waveforms are
plotted against the experimental waveforms in Appendix B (Figure B-4). No attempt was
made to model the final reshock in tests GR 2 and GR 3, but most other features of the
profiles are modeled.

For the transmitted-wave experiment (GR 4), both WONDY modeling and a Lagrangian
wave-evolution analysis were conducted. The wave-evolution approach is based on a
comparison between the waveforms observed at the input and the output of the sample; a
Lagrangian integration yields a relationship between wave velocity and particle velocity,
from which the loading and unloading paths may be calculated in other convenient spaces
(see Furnish [1992] for details). The stress-density loops resulting from these two analyses
are compared in Figure 4-4, with the impedance-match result for the precursor and Hugo-
niot state plotted as well. Both analyses are complicated by the reshock (~14% stress
jump) caused by the interaction of the loading wave with the sample/LiF interface, and
propagating back through the sample. Nevertheless, they agree reasonably well.
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Figure 4-4. Comparison between two data reduction methods for test GR 4.
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5.0 Conclusions

Three sets of rock samples have been subjected to planar impact to characterize loading,
Hugoniot and release responses. A slate from Pennsylvania was tested over the stress
range of 5 GPa to 140 GPa. Phyllite from the Lupin Mine (Canada) was tested over the 14
- 50 GPa stress region. Finally, granite from the SHIST test site (New Mexico) was tested
over the 10 - 20 GPa stress region, including a transmitted-wave experiment at about 10
GPa. In 12 of the 13 tests, a reverse-ballistic configuration (optimized for Hugoniot and
release measurements) was used, while the remaining test, conducted on the granite, pro-
vided a transmitted waveform from which precursor, Hugoniot and release properties
were obtained. Velocity interferometry was used as the primary diagnostic throughout.
The slate data showed an unexpected inflection downward in the Hugoniot at around 8
GPa. The slate and granite showed releases lying below the Hugoniot for lower stress lev-
els (below ~60 GPa), while the slate releases were “normal” (above the Hugoniot) at
higher stress levels. In addition, the granite releases were found to lie substantially below
the Hugoniot in the 30 - 40 GPa region; this may be related to the quartz-stishovite transi-
tion (and analogous IVQ1 - VIQ] transitions in the feldspars. The present results are gener-
ally consistent with earlier work.
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Appendix A
Release Paths

Release paths for the tests discussed in this report are presented in a filtered form in this
Appendix. Calculation of the pressure/volume release paths utilizes the Lagrangian
wavecode WONDY V [Kipp and Lawrence, 1982], and is described in Appendix B.
Conversion to particle velocity is done via a Riemann integration from the Hugoniot state
[Furnish, 1993a,b]. Each path is represented by the first (Hugoniot), second and last points
on the valid portion of the release, with the interval between the second and last points
covered by five points equally spaced in pressure. Units are SI (Pa for pressure, m3/kg for
volume, kg/m3 for density, m/s for particle velocity Uy, and J/kg for specific energy).
Particle velocity is presented both incrementing upward and incrementing downward from
the Hugoniot value to facilitate comparison with the results of other experiments; the true
sense for the reverse-ballistic experiments is upward incrementation since the shock and
the release are propagating in opposite directions.

Shot names and numbers are the same as those used in the text and tables. They are
arranged alphabetically. The B; parameters are listed consecutively; e.g. for Phy 1, we
have B = 18.0x10'0 Pa, By = 0.85, By = 0.07and B3 = -0.05.

Phy 1 B = 18.0, 0.85, 0.07, -0.05 No Cup

Pressure
0.13858E+11
0.13838E+11
0.11987E+11
0.10137E+11
0.82862E+10
0.64356E+10
0.45850E+10
0.27344E+10

Pressure
0.34580E+11
0.34557E+11
0.31084E+11
0.27612E+11
024139E+11
0.20666E+11
0.17194E+11
0.13721E+11

Pressure

Volume
0.30410E-03
0.30414E-03
0.30806E-03
0.31248E-03
0.31756E-03
0.32349E-03
0.33055E-03
0.33912E-03

Volume
0.24561E-03
0.24563E-03
0.24819E-03
0.25112E-03
0.25462E-03
0.25890E-03
0.26431E-03
0.27150E-03

Volume

Density
0.32884E+04
0.32880E+04
0.32461E+04
0.32002E+04
0.31490E+04
0.30912E+04
0.30253E+04
0.29488E+04

Phy 2 B = 54.0, 1.3, 0,-0.3 No Cup

Density
0.40715E+04
0.40712E+04
0.40292E+04
0.39822E+04
0.39274E+04
0.38626E+04
0.37834E+04
0.36833E+04

Density

Up (+)
0.89100E+03

.0.89189E+03

0.97708E+03
0.10676E+04
0.11644E+04
0.12692E+04
0.13834E+04
0.15093E+04

Up (+)
0.20270E+04
0.20276E+04
0.21223E+04
0.22231E+04
0.23334E+04
0.24551E+04
0.25922E+04
0.27500E+04

Phy 3 B =90.0, 3.0, 2.9, 0.8 Gap = 0.10 mm

Up(+)

0.48986E+11 0.21814E-03 0.45842E+04 0.26540E+04
0.48825E+11 0.21820E-03 0.45829E+04 0.26572E+04

41

Energy
0.40341E+06
0.40286E+06
0.35371E+06
0.30745E+06
0.26344E+06
0.22253E+06
0.18631E+06
0.15746E+06

Energy
0.19952E+07
0.19947E+07
0.19165E+07
0.18369E+07
0.17534E+07
0.16645E+07
0.15685E+07
0.14633E+07

Energy
0.34929E+07
0.34898E+07

Up ()
0.89100E+03
0.89011E+03
0.80492E+03
0.71444E+03
0.61757E+03
0.51278E+03
0.39858E+03
0.27270E+03

Up ()
0.20270E+04
0.20264E+04
0.19317E+04
0.18309E+04
0.17206E+04
0.15989E+04
0.14618E+04
0.13040E+04

Up()
0.26540E+04
0.26508E+04




0.38902E+11
0.33941E+11
0.28980E+11
0.24018E+11
0.19057E+11

Pressure
- 0.98299E+10
0.98117E+10
0.84039E+10
0.69961E+10
0.55883E+10
0.41806E+10
027728E+10
0.13650E+10

Pressure
0.16534E+11
0.16521E+11
0.14616E+11
0.12711E+11
0.10806E+11
0.89007E+10
0.69957E+10
0.50906E+10

Gran3B =18,

Pressure
0.18186E+11
0.18178E+11
0.16073E+11
0.13969E+11
0.11864E+11
0.97593E+10
0.76547E+10
0.55500E+10

Pressure
0.96725E+10
0.96668E+10
0.84591E+10
0.72514E+10
0.60437E+10
0.48361E+10
0.36284E+10
0.24207E+10

Phy 3 B =90.0, 3.0, 2.9, 0.8 Gap =

0.22442E-03
0.22978E-03
0.23815E-03
0.25213E-03
0.27636E-03

Volume
0.32196E-03
0.32201E-03
0.32647E-03
0.33158E-03
0.33753E-03
0.34453E-03
0.35284E-03
0.36266E-03

Volume
0.29647E-03
0.29650E-03
0.30121E-03
0.30676E-03
0.31340E-03
0.32150E-03
0.33154E-03
0.34410E-03

1.1,0,-0.2

Volume
0.29409E-03
0.29411E-03
0.29898E-03
0.30460E-03
0.31124E-03
0.31927E-03
0.32930E-03
0.34232E-03

Volume
0.32779E-03
0.32781E-03
0.33143E-03
0.33552E-03
0.34017E-03
0.34552E-03
0.35172E-03
0.35894E-03

0.44560E+04
0.43521E+04
0.41990E+04
0.39662E+04
0.36184E+04

Gran 1 B =13.0,0.85,0,-0.2

Density
0.31060E+04
0.31055E+04
0.30631E+04
0.30158E+04
0.29627E+04
0.29026E+04
0.28342E+04
0.27574E+04

Gran2B =17.0,1.3,0.3,-0.2

Density
0.33730E+04
0.33727E+04
0.33200E+04
0.32600E+04
0.31908E+04
0.31104E+04
0.30163E+04
0.29062E+04

Density
0.34003E+04
0.34001E+04
0.33447E+04
0.32829E+04
0.32129E+04
0.31322E+04
0.30368E+04
0.29212E+04

Gran 4 (SHIST) B=17.5,1,0.5,0.4

Density
0.30507E+04
0.30506E+04
0.30172E+04
0.29805E+04
0.29397E+04
0.28942E+04
0.28431E+04
0.27860E+04

0.29042E+04
0.30670E-+04
0.32703E+04
0.35329E+04
0.38785E+04

Up (+)
0.79800E+03
0.79899E+03
0.87821E+03
0.96300E+03
0.10545E+04
0.11537E+04
0.12618E+04
0.13794E+04

Up (+)
0.12390E+04
0.12396E+04
0.13343E+04
0.14370E+04
0.15495E+04
0.16737E+04
0.18119E+04
0.19665E+04

Up (+)
0.13250E+04
0.13254E+04
0.14266E+04
0.15355E+04
0.16536E+04
0.17835E+04
0.19287E+04
0.20941E+04

Up (+)
0.77600E+00
0.10786E+01
0.67226E+02
0.13748E+03
0.21243E+03
0.29278E+03
0.37932E+03
0.47264E+03
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0.10 mm (Continued)

0.32322E+07
0.30447E+07
0.27901E+07
0.24314E+07
0.19250E+07

Energy
0.33151E+06
0.33099E+06
0.29124E+06
0.25295E+06
0.21701E+06
0.18452E+06
0.15724E+06
0.13869E+06

Energy
0.77963E+06
0.77913E+06
0.70697E+06
0.63260E+06
0.55703E+06
0.47997E+06
0.40323E+06
0.33037E+06

Energy
0.88896E+06
0.88864E+06
0.80645E+06
0.72350E+06
0.64080E+06
0.55724E+06
0.47335E+06
0.39044E+06

Energy
0.18898E+10
0.18898E+10

0.24038E+04
0.22410E+04
0.20377E+04
0.17751E+04
0.14295E+04

Up ()
0.79800E+03
0.79701E+03
0.71779E+03
0.63300E+03
0.54150E+03
0.44227E+03
0.33417E+03
0.21660E+03

Up ()
0.12390E+04
0.12384E+04
0.11437E+04
0.10410E+04
0.92845E+03
0.80431E+03
0.66614E+03
0.51150E+03

Up (9
0.13250E+04
0.13246E+04
0.12234E+04
0.11145E+04
0.99642E+03
0.86652E+03
0.72131E+03
0.55590E+03

Up ()
0.77600E+00
0.47340E+00

0.18898E+10 -0.65674E+02
0.18897E+10 -0.13593E+03
0.18897E+10 -0.21087E+03
0.18897E+10 -0.29123E+03
0.18896E+10 -0.37777E+03
0.18896E+10 -0.47109E+03



Pressure
0.52320E+10
0.51736E+10
0.43696E+10
0.35656E+10
0.27616E+10
0.19575E+10
0.11535E+10
0.34950E+09

Pressure
0.86120E+10
0.84761E+10
0.71859E+10
0.58958E+10
0.46056E+10
0.33155E+10
0.20253E+10
0.73515E+09

Pressure
0.16274E+11
0.16129E+11
0.13951E+11
0.11772E+11
0.95939E+10
0.74155E+10
0.52372E+10
0.30588E+10

Pressure
0.26580E+11
0.26253E+11
0.23940E+11
0.21627E+11
0.19314E+11
0.17000E+11
0.14687E+11
0.12374E+11

Pressure
0.13971E+12
0.13890E+12
0.12721E+12
0.11552E+12

Volume
0.33784E-03
0.33787E-03
0.34021E-03
0.34292E-03
0.34612E-03
0.34994E-03
0.35453E-03
0.35997E-03

Volume
0.31898E-03
0.31899E-03
0.32181E-03
0.32506E-03
0.32887E-03
0.33344E-03
0.33908E-03
0.34624E-03

Volume
0.29976E-03
0.29994E-03
0.30393E-03
0.30876E-03
0.31461E-03
0.32160E-03
0.32967E-03
0.33842E-03

Volume
0.26110E-03
0.26187E-03
0.26419E-03
0.26699E-03
0.27048E-03
0.27493E-03
0.28079E-03
0.28878E-03

Volume
0.19547E-03
0.19564E-03
0.19837E-03
0.20141E-03

Density
0.29600E+04
0.29597E+04
0.29393E+04
0.29161E+04
0.28892E+04
0.28576E+04
0.28206E+04
0.27780E+04

Density
0.31350E+04
0.31349E+04
0.31075E+04
0.30764E+04
0.30407E+04
0.29990E+04
0.29492E+04
0.28882E+04

SLP3 B =22.0, 1.35, 0.6, -0.2 No gap

Density
0.33360E+04
0.33340E+04
0.32902E+04
0.32387E+04
0.31786E+04
0.31095E+04
0.30334E+04
0.29549E+04

Density
0.38300E+04
0.38187E+04
0.37851E+04
0.37455E+04
0.36971E+04
0.36373E+04
0.35614E+04
0.34629E+04

SLP6 B =170.0, 1.35, 0.1, -0.3 No Gap

Density
0.51160E+04
0.51113E+04
0.50416E+04
0.49655E+04

SLP1 B = 13.5, 0.85, 0, -0.2 Gap=0.043mm

Up (+)
0.37600E+03
0.37744E+03
0.42080E+03
0.46748E+03
0.51819E+03
0.57360E+03
0.63429E+03
0.70040E+03

SLP2 B = 18.0, 0.85, 0.07, -0.05 Gap=0.0321mm

Up (+)
0.62800E+03
0.62898E+03
0.68931E+03
0.75402E+03
0.82416E+03
0.90096E+03
0.98617E+03
0.10822E+04

Up ()
0.10290E+04
0.10341E+04
0.11274E+04
0.12299E+04
0.13427E+04
0.14660E+04
0.15986E+04
0.17367E+04

SLP4 B = 41.0, 2.0, 0.9, -0.2 Gap=0.06mm

Up (+)
0.16670E+04
0.16829E+04
0.17562E+04
0.18366E+04
0.19264E+04
0.20277E+04
0.21441E+04
0.22798E+04

Up (+)
0.48720E+04
0.48840E+04
0.50624E+04
0.52508E+04
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Energy
0.70612E+05
0.70430E+05
0.59693E+05
0.49537E+05
0.39985E+05
0.31568E+05
0.25086E+05
0.21612E+05

Energy
0.19686E+06
0.19680E+06
0.17574E+06
0.15570E+06
0.13688E+06
0.12006E+06
0.10625E+06
0.97525E+05

Energy
0.52948E+06
0.52659E+06
0.46837E+06
0.40918E+06
0.34990E+06
0.29433E-+06
0.24854E+06
0.21764E+06

Energy
0.13893E+07
0.13691E+07
0.13132E+07
0.12526E+07
0.11843E+07
0.11069E+07
0.10177E+07
0.91314E+06

Energy
0.11868E+08
0.11843E+08
0.11517E+08
0.11193E+08

Up ()
0.37600E+03
0.37456E+03
0.33120E+03
0.28452E+03
0.23381E+03
0.17840E+03
0.11771E+03
0.51600E+02

Up ()
0.62800E+03
0.62702E+03
0.56669E+03
0.50198E+03
0.43184E+03
0.35504E+03
0.26983E+03
0.17380E+03

Up ()
0.10290E+04
0.10239E+04
0.93063E+03
0.82814E+03
0.71532E+03
0.59200E+03
0.45940E+03
0.32130E+03

Up ()
0.16670E+04
0.16511E+04
0.15778E+04
0.14974E+04
0.14076E+04
0.13063E+04
0.11899E+04
0.10542E+04

Up ()
0.48720E+04
0.48600E+04
0.46816E+04
0.44932E+04
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SLP6 B =170.0, 1.35, 0.1, -0.3 No Gap (Continued)

0.10382E+12 0.20487E-03 0.48814E+04 0.54520E+04 0.10857E+08
092131E+11 0.2089SE-03 047861E+04 0.56702E+04 0.10503E+08
0.80438E+11 0.21383E-03 0.46771E+04 0.59088E+04 0.10127E+08
0.68746E+11 0.21970E-03 0.45516E+04 0.61707E+04 0.97195E+07

Pressure
0.65713E+11
0.65175E+11
0.58990E+11
0.52805E+11
0.46620E+11
0.40434E+11
0.34249E+11
0.28064E+11

Volume
0.21744E-03
0.21747E-03
0.22101E-03
0.22513E-03
0.23008E-03
0.23610E-03
0.24371E-03
0.25365E-03

Density
0.45990E+04
0.45983E+04
0.45249E+04
0.44420E+04
0.43465E+04
0.42356E+04
0.41033E+04
0.39425E+04

Up +)
0.31220E+04
0.31261E+04
0.32740E+04
0.34336E+04
0.36084E+04
0.38013E+04
0.40181E+04
0.42658E+04

SLP7 B =70.0, 1.5, 0.31, -0.2 Gap=0.012mm Lockstep

Energy
0.48735E+07

0.48714E+07
0.46624E+07
0.44488E+07
0.42214E+07
0.39775E+07
0.37119E+07
0.34176E+07

0.42920E+04
0.40738E+04
0.38352E+04
0.35733E+04

Up ()
0.31220E+04
0.31179E+04
0.29700E+04
0.28104E+04
0.26356E+04
0.24427E+04
0.22259E+04
0.19782E+04



Appendix B
Model Wave Profiles Fit to Experiments

This Appendix shows the waveforms generated by the wavecode WONDY V [Kipp and
Lawrence, 1982] which best fit the experimental waveforms. The loading equation-of-
state for the sample is modeled by a single-shock Mie-Griineisen behavior. Precursors
(elastic or due to phase transitions) may also be included, but were not for the present
tests. The unloading behavior is governed by a stress-dependent longitudinal modulus

(Eq. B.1).

3P _ “Bo( 2 3) __P
57V 1+Bx+ByX +BgX |,where x—PHug

-1

(Eq.B.1)

In addition, if a pullback signature is observed in the waveform after the initial plateau, a
gap between the sample and the cup is assumed. For these cases, a gap of some width is
included in the model, with the width chosen to give a fit to the observed signature. This
does not apply for forward-ballistic tests or reverse-ballistic tests with no cup to contain
the sample.

Hence the adjustable parameters are the four B; and the gap width (where applicable).

The following figures each present an experimental waveform (plotted as small solid
squares) overlain by a model waveform calculated by WONDY V. The four B; and the gap
width used in the model (where applicable) are noted. By is in units of 10 GPa; all other B;
are unitless.
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