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DIFFEOMORPHISM GROUPS AND ANYON FIELDS

Gerald A. Goldin! and David H. Sharp?

! Departments of Mathematics and Physics. Rutgers University
New Brunswick, NJ 08903 USA

? Theoretical Division. Los Alamos National Laboratory
Los Alamos. NM 87545 USA

Abstract

We make use of unitary representations of the group of diffeomorphisms of the
plane to construct an explicit field theory of anyons. The resulting anyon fields
satisfy g-commutators, where ¢ is the well-known phase shift associated with a
single counterclockwise exchange of a pair of anyons. Qur method uses a realiza-
tion of the braid group by means of paths in the plane, that transform naturally
under diffeomorphisms of R?

1. DIFFEOMORPHISM GROUP REPRESENTATIONS AND ANYONS

The intrinsic structure of standard quantum mechanics includes representations of an
infinite-dimensional group, whose infinitesimal generators are the mass density operator
p(x.t) and the momentum density operator J(x.?). By examining the commutation
relations and other properties of p and J, one determines that the corresponding group is
the natural semidirect product G = S(M)x Diff (M ). where the manifold M is physical
space (typically R®). §(M) is the additive group of smooth. real-valued scalar functions
on M that together with all derivatives vanish rapidly at infinity (Schwartz’ space). and
Diff (M) is the group of diffeomorphisms of M under composition that. together with
all derivatives. become rapidly trivial at infinity!. -
Quantum-mechanical svstems are described by the continuous unitary represen-
tations {CURs) of G. or in certain cases (such as an ideal. incompressible fluid) par-
ticular subgroups of G (e.g.. the volume-preserving diffeomorphisms). This fact has
been established and used in our previous work to obtain a unified description of an
astonishing variety of quantum systems. ranging from extended objects such as vortex
configurations® to point particles obeying boson. fermion. and (in two space dimen-
sions) intermediate. or “anyon”. statistics’. The latter possibility had already been
conjectured from the topology of two-particle configuration space in the plane®: the
diffeomorphism group approach provided a rigorous prediction even without the as-
sumed exclusion of configurations where the particle coordinates coincide. From diffeo-
morphism group representations there also followed many of the fundamental physical
properties of anvons-the shifts in angular momentum and energy spectra. the connec-
tion with configuration space topology. the relation to charged particles circling regions
of magnetic flux. and the mathematical role of the braid group®®®. Anvon statistics




find application in physics to surface phenomena. particularly the fractional quantum
Hall effect’.

Based on the diversity of known quantum systems associated .ith CURs of the
diffeomorphism group or its semidirect product, we believe that G can be regarded as
a universal, or generic, group of local symmetries describing non-relativistic quantum
theory®. In the formulation of quantum mechanics based on diffeomorphism group
representations. canonical fields v and ©* do not play a fundamental role. While the
infinitesimal generators p and J can be constructed from canonical fields in specific mod-
els (see below). is not necessary to use this fact to obtain representations of Diff (M).
or to establish the physical interpretations of these representations.

It is nevertheless useful to reintroduce the field operators when that is possible:
for example, annihilation and creation operators provide a way to construct states with
specified numbers of particles, and fields are a starting point for many computational
methods. It is thus worth asking how canonical fields can be constructed. taking as a
starting point a collection of CURs of G.

We show here how creation and annihilation fields can be constructed. uniquely up
to unitary equivalence, as operators intertwining a hierarchy of representations of G.
So defined. these operators create or annihilate configurations, where the type of object
created is defined by the representations from which one starts. We take as a specific
example the construction of anyon fields from diffeomorphism group representations.
Then we are able to determine the algebra that the field operators satisfy. Thus we
obtain ¢-commutation relations for anyon fields not as a starting assumption. nor by
introducting a Chern-Simons potential into a canonical field theory, but strictly as a
consequence of the unitary group representations that describe anyons together with
the intertwining property defining the fields. In the course of doing this. we shall also
make clear how elements of Diff (R?) act on the braid group.

First we provide some basic facts about the infinite-dimensional Lie algebra of
mass and momentum density operators. and the corresponding Lie group of unitary
operators. in canonical nonrelativistic theories. One has formally,

p(x,t) = mYT(x, Hhuw(x.t),

J(x.t) = (h/20){"(x.8)[Vu(x.1)] — [V (x. t)jv(x.t)}. (1.1)

where the fields in (1.1) obey, at equal times ¢. for all x,y.
[w(x, ) vy iz = [7(x.1). 07y . 1)]x =0,

[W(x,t). ¢ (y. t)]s = 6(x = y). ' (1.2)

The subscript "- denotes the commutator. and “+" the anticommutator bracket. To
interpret p and J as operator-valued distributions on the spatial manifold ). define
p(f) = [y pix) f(x)dx and J(g) = [y, J(x) - g{x)dx: where f € S(M). and g is a
vector field whose components (together with all derivatives) vanish rapidly at infinity.
We shall call the set of such vector fields Vect(Al). We then obtain the same infinite-
dimensional semidirect product Lie algebra (a nonrelativistic local current algebra!
independent of which bracket is chosen in (1.1). namely:

plfi). plf2)] = 0. (). J(g)] = thp(g YV f).

J(g1). Ji&)] = —ihJ((81. 82)) - (1.3

where g - ¥V f = Lgf is the Lie derivative. and [g1. 82) = 81 - V82 — g2 Vg1 s the' Lie
bracket of the vector fields. The fact that the Lie algebra (1.3) is the same for fermions




and bosons means that the information about the particle statistics. formeriv encoadec

. in the algebra of fields. will now be contained in the choice of a representation satisfving
(1.3). We have shown that inequivalent representations. in spaces of dimension greater
than one. describe the different statistics®.

It is a standard result that the ('™ vector field g generates a unique one-parameter
group of C* diffeomorphisms. of : M — M (t € R) with of o o = ¢8 _, ; satisfving
the ordinary differential equation (8/8t)¢¥(x) = g(0:(x)). together with the initial
condition o%.4(x) = x. (The conditions on g at infinity are important to the global
existence of 0,.) Then, defining the unitary operators U(f) = exp|[(i/m)p(f)] and
V(68) = exp[(it/h)J(g)], we have the semidirect product group law,

U(fV(e)U(f2)V(e2) = Uf1 + a0 61)V(193) | (1.4)

where &1¢, = 0, 0 ¢, is the composition of the diffeomorphisms.

The simplest representations of (1.3) and (1.4) are the N-particle Bose and Fermi
representations. For specificity let M = R? or R® and let the wave function ®3° belong
to the Hilbert space HY" of symmetric (s) or antisymmetric (a) functions of V" variables
(X;....Xn) € M. square integrable with respect to Lebesgue measure y. Then these
representations are given by

N
pz\'(f)éi\:'a(xls s 7XN) =m Z f(xj) f‘\:’a(xls s wa) ’
=1
A N
J‘\-(g)éf\‘a(xl, e ,XN) = :)—z- Z{g(){]) VJQRra(X1 ..... X}\)
2i 47
+ V- [g(x) R (%1, - .. xN) ]} (1.3)
and correspondingly
N
Un(f)d (x1.. ... xn) = explt D f(x;)] DV (x1. ... xn).
=1
N .
VA (0)®3 (Xpn ... Xn) = B (6(x1).....o(xn)) [ To(x,)]2 . (1.6)

=
where J,(x) denotes the Jacobian of the diffeomorphism ¢ at x.

Note that the operators in (1.3) are self-adjoint and those in (1.6) are unitary.
They preserve the particle number .V. and are also manifestly symmetric with respect to
exchange of particle coordinates x,: thus they also preserve the wave function symmetry.
For V =0.1.2..... the N-particle Bose (respectively. Fermi) representations constitute
a hierarchy. in an obvious phyvsical sense that we make precise below.

2. HIERARCHIES OF REPRESENTATIONS AND THEIR INTERTWIN-
ING FIELD OPERATORS

The first step in our development is to establish the conditions that have to be s. -
isfied for creation and annihilation field operators to intertwine representations of the
diffeomorphism group. This allows us to specify a well-defined sense. satisfied by the
above examples. in which a collection of continuous unitary representations of the group
Diff (A forms a hierarchy. The representations in the hierarchy are labeled by the num-
ber .\ of elementary configurations: thus we establish the bracket that an intertwining
field must obey with the operators in the .V-configuration Hilbert space.

T
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The required conditions follow from the structure of the commmutation relations
between the fields v and ¥~ and the operators p and J. For bosons and fermions
(where we already know p. J. v, and v™). these commutation relations can be obtained
by direct formal computation starting from (1.1) and (1.2). To facilitate the calculation.
and in anticipation of the results of Section 3.2. we shall generalize this procedure from
the outset and start directly from the g-commutation relations for the fields. These
are based on the g-deformed bracket [A, B], = AB — qBA. where g is assumed to be
a complex number of modulus one. When ¢ = 1, we recover the commutator brackets
“." in (1.2), and when ¢ = —1. we have the anticommutator brackets “+". We write

[W(x, ). vly, t)], = [7(x.1). 0 (y, 1)}, = 0.

[(y, 1) 07 (x,t)]; = b(x ~y). (2.1)

Note that for the first two equations of (2.1) to be consistent when ¢ # =1. theyv cannot
be interpreted as holding for all ordered pairs (x,y), but only in a half-space H of
M x M. In the complementary half-space # = M x M — H, we have instead the
(1/q)-bracket. Then the equation for [v(x). v(y)], is consistent with the equation for
[v=(x). v™(y)],. since we are assuming that |¢| = 1. The third equation of (2.1) is
written as indicated for (x,y) € H: it may be written equivalently (using § = 1/q) as

[w(x,t). ¥ (y, g = 8(x = y). (2.2)

Now we are ready to obtain brackets for ¢v and ¢"* with p and J. We shall use the
algebraic identity,

[AB.C)- = A[B.C), + ¢[A.C1/,B . (2.3)

that relates the ordinary commutator to the g-commutator. Then we can calculate
the commutators of the field operators with the generators of the infinite-dimensional
group. We obtain. for field operators obeying (2.1) and (2.2) for any fixed value of ¢
having modulus one,

(p(y.1). 0T (%, 1)] = mu™(y.1)é(x ~ ¥).
lo(y. t). w(x.t)] = —muw(y. t)é(x — y). (2.4)

A
J(y.t). v (x,t)] = E{ﬁv'(y,t)vyé(x —-y) = 8(x—y)Vyui(y.t)}.

h \ .
J(y.thvix.t)] = —g{w(y,t)\"'yé(x —-y)=bdx=-y)Vyuly.t)}. (2.3)

The justification of these equations for all values of x and y involves performing the

calculation in each half-space separately. and noting that the answer is the same.
Next we multiply (2.4) by the test functions A(x) and f(y). and (2.3) by the test

function hix) and vector field g{y). and integrate over x and y. We thus obtain.

L) (] = v tmfh) . o1 lh)] = —wim A, 26
(@) (h)] = v {g TR+ T (gh)}).

h | _
[J(g). v(h)] = —-L'(%{g-Vh 4T (gh)}. (2.7)

The essential point is that we find the same commutator brackets independent of
whether we begin the calculation with Bose fields. Fermi fields. or even fields satis-
fving g-commutators: that is. equations (2.6) and (2.7) are representation-independent!




[t is also straightforward to verify that (1.3) together with (2.6 and (2.7) satisfy the

N Jacobi identity. as long as we do not include brackets of fields with each other in the
identity. However. v and v'" satisfv different relations with each other in the Bose and
Fermi cases. and (as we shall shortly see) in the anvon case. Only in the Bose case do
we have an actual Lie algebra of fields together with densities and currents.

For the cases of bosons and fermions. we can now look again at the V-particle
representations (1.5) and (1.6). and interpret v~ and v as creation and annihilation
operators respectively intertwining these representations. In the Bose or Fermi Fock
representations of the usual second-quantized nonrelativistic field operators. we have
Hilbert space vectors ®*¢ = (®3"). N =0,1.2..... with ®}3* € H®. For bosons (s).

[U(X)QS]N(X)_ vN+1 A+1 .XN,X) ,
[0 (x)®°)w(x; .. = \/_\725 X = %) B _1(x1.. %, xXN) (2.8)
where X, means that x; is to be omitted: for fermions (a),
[L(x)®%]n(xy .. VN +1@5 (X1 ... XN, X)),
o (x) @ (% - Z Noig(x —x;) ®%_y(xy ... %, ... xn) . (2.9)
J-l

When all but one of the N-particle components of ® vanish. we can see from (2.8) or
(2.9) that v= : HY® — HY.,, while v : HY%L, — HA". It is straightforward to verify
explicitly that both (2.8) and (2.9) satisfy (2.6) and (2.7).

Note next that the expressions mfh and (%/2:){g- VA + YV -(gh)}. which occur on
the right-hand sides of (2.6) and (2.7). are just the one-particle representations of p(f)
and J(g) respectively. applied to A (if we regard A as an element of the Hilbert space
H,i. Then we can rewrite (2.6) and (2.7) in the form

) et (h)] = pn=aa(f)R) . [J(g) w7 (h)] = v (In=i(g)h) .

() e(B)] = —vlonar(FIR) . [T(glu(h)] = —v Jyar(gh).  (210)
Finally we exponentiate p(f) and J(g ) (2. 10) and obtain

U (RUTH ) = eX(Una(HR). V(o) (AW o) = v™(Vr=i(0)h).
Cifieth) U f) = w(Unai(=fR) . Vielu(h)V 7 o) = v((Vvai(o7))h). (2.11)

When we make the dependence on .V explicit in (2.11). we have
Uva(fietth)y = et (Uva(HRUN() . Vvslo)e™(h) = v (Vvzi(0)h)x(o).

Uvifivthr = o(Unai{=HB) v (f) . Vvlo)uth) = v{(Vvsi(o™)A) Vnsalo). (2.12)

The preceding calculations for the case of canonical fields motivate the following
general perspective. For a collection of CURs of the diffeomorphism group f{or its
semidirect product) to form a hierarchy labeled by .\'. a necessary and sufficient con-
dition is that ¢~ and v can be constructed obeving (2.12). Especially noteworthy is
the fact that the argument of the fields v~ and v in these equations is a Hilbert space
vector from the .\ = 1 space in the hierarchy. This fact defines the .\ = 1 space. and
establishes the nature of the configuration that v~ creates and v annihilates.




We expect this general structure to occur not only for point-..ke configurations. but
also for configurations of extended objects such as vortex filaments or ribbons. With
vortex configurations. the argument of ¥* and v is a one-vortex Hilbert space vector. so
that the unsmeared creation and annihilation fields no longer depend on a single point
in space but on a spatially extended configuration. Only the currents. in unsmeared
form. have as their arguments individual points in space. In the case of quantum vortex
configurations. we also have additional complications associated with the possibility of
overlapping or knotted vortices. This is a topic of our current research.

In the next section we use the above results to construct explicit flelds for anvons
that obey (2.12), anticipating that the fields will satisfy different commutation rela-
tions from those satisfled by Bose and Fermi fields. It turns out that these are the
g-commutators written above.

3. CONSTRUCTING ANYON FIELDS

In this section. we construct anyvon fields from a hierarchy of continuous unitary rep-
resentations of the group Diff (R?). using the N-anyon representations®. We displav
these fields explicitly. using a convenient diagrammatic representation of the elements
of the braid group. It then emerges that the fields so obtained satisfy a ¢g-commutator
algebra. We stress that the g-commutator is not put in by hand, but is one of the
consequences of the diffeomorphism group approach, just as anyons themselves are a
consequence of the representation theory of the diffeomorphism group.

We construct anvon fields obeying the commutation relations (2.12) in the follow-
ing steps: First. we write the \-anyon representation of Diff(R?) and its semidirect
product. in the Hilbert space M’ of equivariant wave functions, defined on the univer-
sal covering space of \-particle configuration space in R?*. The equivariance is for a
one-dimensional unitary representation (a character) of the braid group Bx. Second.
we make this representation of Diff (R?) concrete by introducing a way of labeling an
element in the covering space by a set of .V paths in the plane. Third. we make use of
this to define v as a creation operator mapping Hx’ to Hy/,,. Finally we state the
results about v~ and v that are obtained in this framework.

To write the N-anvon representation. recall that an \-particle configuration 1s
an unordered set v of N distinct points in the plane: 7 = {x;...xx} C R?% the
indexing of the points is arbitrary. Let the configuration space Ay be the set of all
such configurations 4. and let y be a normalized measure on An locally equivalent to
Lebesgue measure. The fundamental group =;(Ax ) is the braid group By. An element
% of the universal covering space Ay can be labeled by a configuration 5. together with
a braid b € By that specifies the sheet in Ay to which the element belongs: we shall
write & = (~.b). This labeling is not unique. but conventional: the sheet associated
with the identity element ¢ € By may be selected arbitrarily. We denote by p the
projection mapping. p(3) = +. The braid group also acts on Ay: for b" € By. we
have b'(+.b) = (4.bb'). An equivariant wave function ¥ is a complex-valued function
on Ay that transforms in accordance with a character T of By: that is. W{~.bb'1 =

TV (~.b). Because ¥ is equivariant. the product (i)(—,. by (5. b) is independent of the
particular choice of b. Thus we can use the measure 4 on Ay to define square-integrable
wave functions and to introduce an inner product: (®.¥) = o, @ bW biduin,
The result is the Hilbert space M.

As we have emphasized strongly in our earlier work®. these ideas are not restricted
to complex-valued functions and one-dimensional representations of Bx: quantum theo-
ries based on higher-dimensional. irreducible representations are equally possible (braid




. parastatistics). However. we limit ourselves here to discussing the usual anyon case
where. when & is the braid for a single, counterclockwise exchange of two particles.
T(b) = exp1d.

Now the action of diffeomorphisms in the base space. which is given by o~ =
{o(xy)....0lxx)} for 0 € Diff (R?). lifts to the covering space in such a way that if
p(3) = +. then plo3) = 09. Denote by K, the stability subgroup of 4. Diffeomor-
phisms in A, act. as do braids, on the points (7.5) € p~'(~) belonging to the different
sheets in the covering space. There is thus a natural homomorphism from A’ onto
By: and T determines a CUR of K, in which distinct components are represented by
(in general) distinct complex numbers. The N-anyon representation of the semidirect
product group G may be written on Hy} as:

CN(£8(3) = exp (3 NEG) . Va(o)¥() = ®<o:>V/‘ffT;<:«>. 3.1)
where (3. f) = X, f(x,) when v = {x;...xn}, and where y, is the transformed mea-
sure given by duo(v) = du(o¥).

Next we introduce a concrete wav to label points in Ay that assists in understand-
ing the action of diffeomorphisms in this space. For x € R*?. write x in Cartesian
coordinates as (z'.z?). Choose a typical configuration v = {x,{j = 1...... \V'} in which
(for now) all the x; have distinct values of their first coordinates: i.e.. z} # r} for
J # k. For such a choice of 4. we consider a set I of N continuous. non-self-intersecting
and non-mutually-intersecting paths {I';[j = 1..... N}, coming in from infinity and
terminating at the x;. For specificity we shall take all the T'; at infinity to be parallel
to the r2-axis. and to extend in the direction of the negative r2-axis. For a fixed con-
figuration +. consider two such sets of paths. ' and %, terminating at <. Theyv are
said to be homotopic if the individual paths I'} can be continuously deformed into the
paths I' . without moving the terminal points x; € 4. without changing the direction
of the paths at infinity (though thev mayv be translated). and of course without any of
the paths intersecting each other. Denote the homotopy class containing I by {[i. An
element 4 of the covering space. with p(5) = . can now be identified with a class [T ]
whose set of termir. :: points is 5.

Given a configuration ¥ as above. we can make a canonical choice for an element <
of the covering space by letting all the T'; be straight half-lines parallel to the r*-axis.
We call this particular set of paths I’ .or I'g (see Fig. 1). Since the indexing of
the x, is to this point arbitrary. we can also label the paths and their terminal points in
accordance with the order of their 2! coordinates. Thus we have r] <z} < ... < .
with T, terminating at x,. The homotopy class [T ] is the element of p~'(+) that we
shall conventionally associate with the identity element in the braid group.

Now the important observation is that diffeomorphisms of the plane act not onlyv
on the configurations + but on the sets of paths I'. since these also lie in the plane. It is
also evident that a diffeomorphism that becomes trivial at infinity respects homotopy
equivalence as we have defined it. so that it actually acts on [T']. Thus. for fixed ~.
diffeomorphisms in the stability subgroup A, map the classes [T ] of paths terminating
at 4 into each other.

Suppose. for specificity. that we have a fixed pair of points {X;.X,} in the plane. and
consider the canonical paths [§*'™*’ constructed in accordance with Fig. 1. terminating
al {X;.x;}. Let o be a diffeomorphism. trivial at infinity. that exchanges the points:

i.e.. X; = o(X,) and X; = o{X;). One wayv in which o might act on the pair of paths
I‘ixl-xz}
0

is to map them to a pair of paths as in Fig. 2 (imagine o to have support
in the shaded region of the plane). Then we mav regard o as implementing a single

..




counterclockwise exchange of x; and X,. and associate with this diffeomorphism the
corresponding generator by, in the braid group. Alternatively, a diffeomorphism may
implement a clockwise exchange of the points. as in Fig. 3. With such a diffeomorphism.
we associate the inverse braid group generator b7, . Clearly a group homomorphism is
defined in this manner, from the stabilityv subgroup A, of Diff (R?) onto the braid
group. The example generalizes in the obvious way to V-particle configurations in R?,
We denote the homomorphism by A, : A, — By. and write h.(¢) = b for the braid
associated with o.

Figure 1. For ~ = {x;..... XN }. a canonical choice [ of paths {T,} terminating at {x,}.
»
X
2
X9 XN
. !
X3
X 2 e o o
1
X
L 1 [} ]
] [] [] [ ) e O [
1 L [} L]
1 ] [ ] 1
L] [] ] -
T Ty

Figure 2. A diffeomorphism with support inside the indicated region moves the paths to
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a different homotopy class. implementing a single counterclockwise exchange of two points
labeled originally as in Fig. 1.

oT,




Figure 3. A diffeomorphism implementing a single clockwise exchange, as distinct from the
counterclockwise exchange of Fig. 2.

oI’

1

1,

The above provides a faithful mapping from By to the homotopy classes [I']. Then
we can write T(I') in place of T(b). when b is the braid that takes (5] to [T'].

We shall next make use of this picture to define the anyon creation field "*. mapping
HY to Hp'., and satisfying the desired equations (2.12). To describe the way that
such an anyon field acts, we introduce one more important convention: a way to denote
the procedure for adding a single anyonic particle at x. not merely to an N-anvon
configuration, but to an element of the N-anyon covering space. Doing this. of course.
will break the homotopy equivalence, because points on many different sheets of the
(.N + 1)-anvon covering space correspond to the introduction of a a new anvon at a
point X. We therefore need a standard way to make the choice.

Given the homotopy class [ ]. and the additional point x. define a new set of
paths T X%} by placing the point x in the plane among the .V paths comprising I';.
and drawing a new path I'n ., that terminates at X, and comes in from infinity to the
right of the N existing paths without intersecting them (see Fig. 4). The homotopy

class [T ¥} is thus defined. specifving a particular element of the (N + 1)-anyon

pxocedure as a homotop\ class: but in order to define it, we needed to use not merelx
the class [ ]. but the actual element 'y within that class. )

We now have all we need to construct the anyon creation field acting on the Hilbert
space H{. in close analogy with the second-quantized. nonrelativistic Bose and Fermi
creation fields discussed above. Roughly speaking. we can already see from Figs. 1-4
how the ¢g-commutator will enter. Suppose {x,.x;} are as in Fig. 2. If we first create
an anyon at X;. we obtain the path ['; = I'{ 2} which is a straight hne parallel to the
r°-axis. terminating at X,. Creating the next anvon at x; gives us the paths in the
class (F{ /1. Such a pair of paths is depicted in Fig. 2. corresponding to the braid

group Generator On the other hand. if we first create the anvon at x;. we consider the
path I} = I*{ 1", Creating the next anvon at X gives us the paths in the class | I‘x2
which for this example is just the class Féx‘ X2} associated with the identity element of
the braid group. There will thus be a relative phase ¢ = T{b;3) occurring in the two
products of creation operators. where T is the one-dimensional unitary representation
of the braid group characterizing the anvons in the hierarchy.
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Figure 4. An anvonic particle is created at x. defining the element T{™ ">’ of the ( N + 1 -

anyon covering space.
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More precisely. consider an equivariant wave function ¥y in HT. We write Uy =
Uy(5.T}. where ~ = {xy..... Xy} and the paths in I' terminate at the points in ~. For
fixed ~ it is convenient to regard ¥y as defined for the indirvidual sets of paths I'. but
constant on the equivalence classes [I']. The equivariance of ¥y is put in by requiring

that if T is obtained from 'y by the braid 6 = A,(0). then
Uy(~.T) = T(6)Un(+.T3). (3.2)

or with an alternative notation. ¥x(~.T) = T(I)¥x(1.T7). That is. specifying T for
falmost) all values on a single sheet in the covering space A, defines its values on anv
other sheet. We see now that the condition we imposed earlier in defining I';. that
all the x, have distinct values of their first coordinates. can be regarded merely as the
omission of an arbitrarv boundary (having measure zero) associated with crossing from

one sheet to the next in Axy-.

Now we write. in analogy with Eqgs. (2.
creation fields. Let ¥ denote the sequence |
(¥ = T\ (Uy. ¥y < x. We define

8) and (2.9). the anyon annihilation and
Uy). N =0.1.2..... with ¥y € H. and

X v ({Xy. ... X b TP 230 = W ({xg. Xy x L TR
(X)W v {xg.. ... Xy} Oy X3
\ X X XN
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where as before X, means that the point x, is omitted. This defines (L (x)¥ \ and

[U"(x)¥]a on one sheet. We extend the definitions in (3.3) to the other sheets of Ax
(in general. infinitely many of them) using the equivariance property (3.2).

Comparing (3.3) with (2.8) and (2.9). note that the factors /N +1 and 1/V N
no longer appear. This is because. in the case of anyons. the inner product is defined
with respect to integration in the base space Ax (or. equivalently. over just one sheet
of Av). It must be defined so. as the number of sheets in the covering space is not V!
any longer. but is now infinite.

When all but one of the V-particle components of ¥ vanish, we see from (3.3) that
v HAL, = R and vt HY — HY,. Infact. v and U defined in this way are just
the intertwining fields obeving Egs. (2.12).

Finally. we are in a position to determine, by straightforward calculation from (3.3).
what commutation relations the anyon fields we have obtained satisfy with each other.
The answer is just the g-commutation relations given by Egs. (2.1). where q is the phase
specified by the representation T of the braid group generator. Furthermore. we recover
the operators p(x) and J(x) in terms of the anyon fields as the desired expressions given
by (1.1). with [(Uy, p(x)¥x)d*r = Nm.

4. CONCLUSION

To sum up we have proposed a way. beginning with a collection of diffeomorphism group
representations. to classify them into hierarchies based on the existence of intertwining
field operators. Our method works not only for the .V-particle Bose and Fermi represen-
tations. N = 0.1.2.... (by which it is motivated). but for the N-anvon representations
of Diff (R?) that we previously obtained. Anyons with distinct values of the phase
characterizing the intermediate statistics belong naturally to different hierarchies.

Then we obtain ¢g-commutation relations for the resulting anvon fields as a con-
sequence of our prescription. Assuming little more than the fundamental role played
by CURs of the diffeomorphism group. we thus arrive by entirely natural means at a
framework for treating the manyv-anyon system. Qur approach provides an alternative to
beginning with the introduction of fields obeving noncanonical commutation relations.
or to beginning with particles obeying canonical fields and introducing a Chern-Simons
potential to describe the anvons.

We expect this method to generalize to still other hierarchies of diffeomorphism
group representations. such as those describing extended objects like quantized vortex
loops and filaments.
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