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ABSTRACT

The development of faster more reliable techniques to detect radioactive contraband in a portal type scenario
is an extremely important problem especially in this era of constant terrorist threats. Towards this goal the
development of a model-based, Bayesian sequential data processor for the detection problem is discussed. In the
sequential processor each datum (detector energy deposit and pulse arrival time) is used to update the posterior
probability distribution over the space of model parameters. The nature of the sequential processor approach
is that a detection is produced as soon as it is statistically justified by the data rather than waiting for a fixed
counting interval before any analysis is performed. In this paper the Bayesian model-based approach, physics
and signal processing models and decision functions are discussed along with the first results of our research.

1. INTRODUCTION

The need to investigate new techniques and technologies that can provide for more sensitive detection of terrorist
threats around the world demand that meaningful approaches be developed to solving many critical security
problems for protection of valuable resources and people. With the advent of high power computing, one such
methodology that has evolved from pure theory and speculation is the probabilistic approach using Bayesian
methods. Here particular problems are cast into a Bayesian framework based on the well-known Bayes theorem of
statistics and solved using Monte Carlo simulation methods. One of the major challenges is to develop techniques
that can be applied to time/space dependent problems (e.g. cargo container monitoring in radiation detection—
a nonstationary problem) and provide a timely solution. This paper addresses the first step in investigating
the problem of enhancing radioactive contraband signals from noisy radiation measurements using a Bayesian
approach.

Radionuclide detection is a critical first line defense to detect the transportation of radiological materials by
potential terrorists. Detection of these materials is particularly difficult due to the inherent low-count emissions
produced. These low-count emissions result when sources are shielded to disguise their existence or, when being
transported, are in relative motion with respect to the sensors. Active interrogation with a low intensity neutron
source, as required by safety considerations, also produces low-count emissions. The basic problem we propose is
to detect, classify and estimate contraband from highly uncertain (noisy) low-count, radionuclide measurements
using a statistical approach based on Bayesian inference and physics-based signal processing.

The identification of radionuclide sources from their gamma ray emission signatures is a well-established
discipline using spectroscopic techniques and algorithms.1−3 Numerous tools exist to aid the analyst interpreting
these signatures. Historically, sufficient time existed to accumulate the data necessary to reasonably identify
these sources. Furthermore, highly accurate detectors exist that yield an accurate spectrum. Unfortunately,
these techniques fail on low-count measurement data. Contemporary tools reveal that the underlying algorithms
rely upon heuristic approaches based upon the experience of analyst. Most of these tools may even require the
intervention of a trained practitioner to analyze the results and guide the interpretation process. In a terrorist
type scenario, this is not acceptable, since timely and accurate performance is imperative.

Automatic radionuclide identification from low-count gamma ray emissions is a critical capability that is
very difficult to achieve. In an operational setting this becomes a particularly challenging problem because the
available data consists of low energy count, impulsive-like, time series measurements (energy vs time) in the
form of an event mode sequence (EMS). Moreover, the algorithm must cope with background noise, finite de-
tector resolution, and the heterogeneous media along the propagation paths between the sources and detectors.
Detection/classification/estimation, therefore, becomes a question of gaining signal-to-noise ratio (SNR) in this
case, since low-count emissions become buried in the background and Compton scattering noise, rendering a
meaningful detection highly improbable. However, with the advent of high speed, high throughput computers,



Figure 1. Gamma-ray evolution and measurement: Radionuclide source (EMS), medium transport (physics), detector
material interaction, detector temporal response (pre-amplification/pulse shaping) and A/D conversion with quantization
noise.

physics-based statistical models that capture the essence of the radionuclide detection/classification/estimation
problems can now be incorporated into a Bayesian sequential processor capable of on-line, near real-time opera-
tion.

Radiation detection, that is, the unique characterization of an unstable radionuclide based on its electromag-
netic emissions has been an intense area of research and development for well over 50 years.4−5) It is well-known
that a particular radionuclide can be uniquely characterized by two basic properties: its energy emitted in the
form of photons or gamma-rays (γ-rays) and its radioactive decay rate. Knowledge of one or both of these
parameters is a unique representation of a radionuclide. Mathematically, we define the pair, [{εi}, {λi}], as the
respective energy level (MeV) and decay rate (probability of disintegration/nuclei/sec) of the ith-component
of the elemental radionuclide. Although either of these parameters can be used to uniquely characterize a ra-
dionuclide, only one is actually necessary—unless there is uncertainty in extracting the parameter. Gamma ray
spectrometry is a methodology utilized to estimate the energy (probability) distribution or spectrum by creating
a histogram of measured arrival data at various levels (count vs. binned energy).5 It essentially decomposes the
test sample γ-ray emissions into energy bins discarding the temporal information. The sharp lines are used to
identify the corresponding energy bin detecting the presence of a particular component of the radionuclide. In
the ideal case, the spectrum consists only of lines or spikes located at the correct bins of each constituent energy,
εi, uniquely characterizing the test radionuclide sample. A search of the spectrum for the strong presence of
these lines is used for identification.

Our approach is different in that it models the source radionuclides by decomposing them uniquely as a
superposition (union) of monoenergetic sources that are then smeared and distorted as they propagate through
the usual path to the output of the detector for measurement and counting. The problems of interest are
then defined in terms of this unique, orthogonal representation in which solutions based on extracting this
characterization from uncertain detector measurements can be postulated. Using the recently developed particle
filters (PF) suggested by others,6−? and embedding the physics-based models, will lead to the formulation of
critical problems such as detection, classification and estimation of threat radionuclides. Using a sequential
Bayesian framework enables us to develop a near real-time approach to solving this suite of problems that are
based on the unique monoenergetic decomposition model.

This approach becomes more important especially when only low-count data is available or equivalently a
rapid detection is required. In general, the model-based approach to signal processing incorporates information
about the process (γ-ray transport), measurement system (semiconductor detectors) and uncertainty or noise
(background, random noise, amplitude fluctuations, time jitter, etc.) in the form of mathematical models to
develop a model-based processor (MBP) capable of enhancing or equivalently extracting signals from highly
uncertain environments5 for the radiation detection problem (see Fig. 1). Very little work has been performed
applying the Bayesian approach to this specific application primarily because of its difficulty and inability to
characterize the physics adequately; however, none has been performed based on the EMS representation of
γ-ray transport. We discuss the development of a physics-based deconvolution processor in Sec. 4—the first step
in improving the γ-ray spectral enhancements as well estimating the unknown radionuclide. In Sec. 5 we discuss
the results for both simulated and measured experimental data. We summarize our results in the final section.



Figure 2. Monoenergetic Source Decomposition: Individual constituent EMS and ideal composite EMS.

2. EVENT MODE SEQUENCE

In this section we develop a detailed representation of the event mode sequence in terms of its monoenergetic
decomposition. From this decomposition, we then develop the basic signal processing model in terms of the
random processes that govern its evolution. γ-ray interactions are subject to the usual physical interaction con-
straints of scattering and attenuation as well as uncertainties intrinsic to the detection process. Energy detectors
are designed to estimate the γ-ray energy from the measured (charge) voltage. A typical detector is plagued
with a variety of extraneous measurement uncertainty that creates inaccuracy and spreading of the measured
impulse (and therefore γ-ray energy). The evolution of a γ-ray as it travels through the medium and interacts
with materials, shield and the detector is shown in Fig. 1. It is important to realize that in the diagram, the
source radionuclide is represented by its constituents in terms of monoenergetic (single energy level) components
and arrival times as ξ(εi, τi). Since this representation of the source radionuclide contains the constituent energy
levels and timing, then all of the information is completely captured by the sets, [{εi} , {τi}] , i = 1, · · · , Nε. The
arrivals can be used to extract the corresponding set of decay constants, {λi} which are related. Thus, from the
detector measurement of EMS arrivals, a particular radionuclide can be uniquely characterized. The constituent
energy levels (spikes), {εi} and arrival times, {τi}, extracted from the EMS are depicted in Fig. 2 where we show
the union (superposition) of each of the individual constituent monoenergetic sequences composing the complete
radionuclide EMS. Note that there is no overlapping of arrivals–a highly improbable event.

So we see that the signal processing model developed from the propagation of the γ-ray as it travels to the
detector is measured and evolves as a distorted EMS. Next, we develop a representation of the event mode
sequence in terms of its monoenergetic decomposition. Define ξ(t; εi, τi, λi) as the component EMS sequence of
the ith-monoenergetic source at time t of energy level (amplitude), εi and arrival time, τi with decay rate, λi —as
a single impulse, that is, ξ(t; εi, τi, λi) = εiδ(t− τi) and rate λi. Thus, we note that the ideal EMS is composed
of sets of energy-time pairs, {εi, τi}. In order to define the entire emission sequence over a specified time interval,
[to, T ), we introduce the set notation, τ i := { τi(1) · · · τi(Nε(i)) } at the nth-arrival with Nε(i) the total number
of counts for the ith-source in the interval. Therefore, ξ(t; εi, τ i, λi) results in a unequally-spaced impulse train
given by (see Fig. 2)

ξ(t; εi, τ i, λi) =
Nε(i)∑

n=1

ξ(t; εi, τi(n), λi) =
Nε(i)∑

n=1

εiδ(t − τi(n)) (1)

The interarrival time, is defined by 4τi(n) = τi(n) − τi(n − 1) for 4τi(0) = to with the corresponding set
definition (above) of 4τi for i = 1, · · · , Nε(i) − 1.

Extending the EMS model from a single source representation to incorporate a set of Nε-monoenergetic
sources. Suppose we have a radionuclide source whose EMS is decomposed into its Nε-monoenergetic source
components, ξ(t; ε, τ, λ). From the composition of the EMS we know that

ξ(t; ε, τ, λ) =
Nε∑

i=1

Nε(i)∑

n=1

ξ(t; εi, τi(n), λi) =
Nε∑

i=1

Nε(i)∑

n=1

εiδ(t − τi(n)) (2)



Clearly, since the EMS is the superposition of Poisson processes, then it is also a composite Poisson process9

with parameters: λ =
∑Nε

i=1 λi, ε =
∑Nε

i=1 εi, Nξ =
∑Nε

i=1 Nε(i) for λ the total decay rate, ε the associated
energy levels and Nξ the total counts in the interval, [to, T ). Note that the composite decay rate is the superpo-
sition of all of the individual component rates. This follows directly from the fact that the sum of exponentially
(Poisson) distributed variables are exponential (Poisson). We note that the (composite) EMS of the radionu-
clide directly contains information about λ, but not about its individual components—unless we can extract the
monoenergetic representation (Eq. 2) from the measured data.

Statistically, the EMS can be characterized by the following properties:

• non-uniform arrival time samples, τi(n)

• monoenergetic source components, ξ(t; εi, τi(n), λi) having their own unique decay rate, λi

• unique energy level, εi

• gamma distributed arrival times, τi(n) ∼ Γ(k, τi)

• Poisson distributed counts, Nε(i) ∼ P(Nε(n) = m)

• exponentially distributed interarrival times, 4τi(n) ∼ E(λi4τi(n)).

• composite decay rate, λ

Next we consider the measurement of the EMS along with its inherent uncertainties.

3. GAMMA-RAY DETECTOR MEASUREMENTS

In this section we develop a physics-based γ-ray detector model illustrating the task of characterizing the physics
in terms of statistical signal processing models. Using the mathematical description of the EMS in terms of its
monoenergetic source decomposition model discussed previously, we show how this ideal representation must
be modified because of the distortion and smearing effects that occur as the γ-rays propagate according to the
transport physics of the radiation process.

Using the mathematical description of the EMS in terms of its monoenergetic source decomposition model
discussed previously, we show how this ideal representation must be modified because of the distortion and
smearing effects that occur as the γ-rays propagate according to the transport physics of the radiation process.
Typically, these are quantified in terms of γ-ray spectral properties of energy “peak width” and “peak amplitude”.
The uncertainties evolve from three factors inherent in the material and instrumentation: inherent statistical
spread in the number of charge carriers, variations in the charge collection efficiency and electronic noise.5 In
general, the energy resolution is defined in terms of a Gaussian random variable, εi ∼ N

(
ε̄i, σ

2
εi

)
.

Next we consider uncertainties created in the associated pulse processing system that consists of a pre-
amplifier and pulse shaping circuits. Here we concentrate on the amplitude output of the pulse shaper, since
it carries not only the quantified γ-ray energy information, but also it is used for the detector timing circuits
(gating pulses, logic pulses, etc.). The shaped pulse is converted to a logic pulse in order to extract precise timing
information (arrival times, interarrival times, etc.). We consider the pulse shaper circuitry capable of taking the
“raw” material pulse amplifying and shaping it to create a Gaussian pulse shape.5 Once the Gaussian pulse
amplitude, which is proportional to the original γ-ray energy, is digitized or quantized by the analog-to-digital
converter (ADC), the critical EMS parameters, [{εi}, {τi}, {λi}], energy level, arrival time and decay rate can
be extracted for further analysis and processing. From this data all other information can be inferred about the
identity and quantity of the test radionuclide.



Figure 3. Monoenergetic Source Simulation: (a) True Source EMS (3.086 keV). (b) Gaussian Filtered EMS. (c) Gaussian
Filtered with additive Process (Rww = 10−6) and Measurement (Rvv = 10−2) noises.

3.1 Physics Model Simulation

Before we close this section, let us consider the development of a “basic” physics simulator that will enable us
to generate the EMS for processing. Here the idea is to essentially generate an EMS that provides the source
input to the pulse shaping circuit, that is, to transport the γ-rays emitted by the radionuclide source through
the medium (shield) to the detector where the γ-ray energies are converted to electrons producing the charge.
The corresponding output voltage of this process is then amplified and shaped by the pulse shaping circuits for
input to the quantizer as depicted in Fig. 1.

The simple radiation transport synthesizer was developed by Meyer and others10 for signal analysis pur-
poses. It consists of specifying the radionuclide in terms of its EMS and corresponding monoenergetic source
decomposition then transporting this sequence through the medium (shield) along with its inherent scattering
to the detector. At the detector the “surviving” or escaping γ-ray photons are transported through the detector
material (semiconductor) again being absorbed and scattered with the final surviving photons providing the
current pulse input to the shaping circuitry as shown in Fig. 1. After initializing the radionuclide and its cor-
responding monoenergetic source decomposition, the simulator transports the “ideal” EMS through the shield
that incorporates both absorption (attenuation) and scattering (Compton) properties using the prescribed shield
parameters. The output of this step is specified by the percentage of the photons escaping the shield and those
captured or absorbed by the material and converted to thermal energy. The surviving photons escaping are then
transported to the detector material where they undergo further absorption and scattering with the survivors
converted to charge (electrons) provided as the input to the detector shaping circuitry. We show a typical ideal
EMS output of the synthesizer in Fig 3a and the corresponding pulse shaping circuit output in (b) along with a
noisy output in (c) represent the input to the quantizer.

Next we define a signal processing model that captures the major characteristics of the detector in order
to formulate our model-based approach to the radiation detection problem. Consider the diagram again of the
overall detector system shown in Fig. 1. Here we see how the EMS is transported through the medium (scattering
and attenuation) to the detector and each photon is deposited in the detector material, charge is collected and
a voltage created which passes onto pulse shaping electronics that are contaminated with random measurement
noise followed by the quantization to produce the noisy output measurement. Thus, from the ith-monoenergetic



component we have

pmi(t) =
Nε(i)∑

n=1

ξ(t; εi, τi(n), λi) ? r(t) + wτi (t) =
Nε(i)∑

n=1

εir(t − τi(n)) + wτi(t) (3)

where r(t) is a rectangular window of unit amplitude defined within τi(n) ≤ t ≤ τi(n − 1). The uncertain
(random) amplitude is Gaussian, ε ∼ N (εi, σ

2
εi

), with inherent uncertainty representing the material charge
collection process time “jitter” by the additive zero-mean, Gaussian noise, wτi ∼ N (τ i, σ

2
wτi

) and τ (n) →
τi(n); n = 1, · · · , Nε(i). Therefore, the material output pulse train for the ith-source is given by s(t) = HS(t) ?
pmi(t) + v(t). Extending the model to incorporate all of the Nε-sources composing the radionuclide leads to the
superposition of all of the monoenergetic pulse trains, that is, pm(t) =

∑Nε

i=1 pmi (t). The uncertain material
pulse, pm(t), is then provided as input to the pulse shaping circuitry. Here the preamplifier and pulse shaper are
characterized by a Gaussian filter with impulse response, HS(t) with output given by

s(t) = HS(t) ? pm(t) + v(t) (4)

where the uncertainty created by instrumentation noise is modeled through the additive zero-mean, Gaussian
noise source, v ∼ N (0, σ2

v). The shaped pulse is then quantized (tk → t) and digitally processed to extract
the energy levels and timing information for further processing. Due to quantization limitations the ADC
inherently contaminates the measured pulse with zero-mean, Gaussian quantization noise, vq(tk) while there
exists background radiation noise, b(tk) that must also be taken into account. At this point, we could also
develop a signal processing model of the background, but we choose simplicity. We just simply model it as an
additive disturbance at the output of the quantizer given by b(tk) giving us the final expression at the output of
the quantizer as

z(tk) = s(tk) + b(tk) + vq(tk) (5)

with vq ∼ N (0, σ2
q).

So we see that the entire EMS can be captured in a signal processing model with the key being the mo-
noenergetic source decomposition representation of radiation transport. Next we start with this model and
convert it to state-space Markovian form directly for Bayesian processing. In our problem, the EMS is the noisy
input sequence characterized by both input and noise processes, that is, ξ and wτ → w. The states are part
of the preamplifier and Gaussian pulse shaping system and the output is the quantized measurement, that is,
z(tk) → y(t). To be more specific, we use ξ(t; εi, τi, λi), the ith-monoenergetic source including both amplitude
and timing uncertainties as a Poisson input to our Markovian model above along with the matrices, A, B, C,
specifying the pulse shaping circuit parameters transformed to state-space form, HS → Markovian.

To see this consider the state-space representation for a single monoenergetic source is given by the following
set of relations:

ẋi(t) = Aixi(t) + biξ (t; εi, τ i, λi) + wiwτi (t) [Source]
y(t) = c′ixi(t) + v(t) [Pulse Shaper]

z(tk) = y(tk) + vq(tk); i = 1, · · · , Nε [ADC]
(6)

Expanding this model over i to incorporate the Nε-monoenergetic source components gives the extended
state vector, x(t) = [xi(t) | x2(t) | · · · | xNε(t) ]′ where each component state is dimensioned Nx and therefore,
x ∈ RNxNε×1. Thus, the overall radiation detection state-space model for Nε monoenergetic sources is given by:
A = diag[Ai], B = diag[Bi], C =

[
c′1 | c′2 | · · · | c′Nε

]
.



Figure 4. Model-Based Deconvolution Problem: (a) Deterministic problem. (b) Stochastic problem (Gauss-Markov for-
mulation).

It is interesting to note some of the major properties of this model. The first feature to note is that the
monoenergetic decomposition of the radionuclide source is incorporated directly into the model structure. For
instance, it we are searching for a particular radionuclide and we know its major energy lines that uniquely
describe its spectrum, we can choose the appropriate value of Nε and specify its corresponding mean energy
levels and decay rates directly—this is the physics-based approach. We also note that the corresponding noise
and statistics are easily captured by this structure as well. This formulation is a continuous-discrete or simply
“sampled-data” model, since the ADC in used in the detection scheme. So we see that the entire EMS can be
captured in a signal processing model with the key being the monoenergetic source decomposition representation
of radiation transport.

4. PHYSICS-BASED BAYESIAN DECONVOLUTION PROCESSOR

In this section we consider extending the MBP algorithm to solve the problem of estimating an unknown input
from data that have been “filtered.” This problem is called deconvolution in signal processing literature and
occurs commonly in seismic and speech processing11 as well as transient problems,1213.

In many measurement systems it is necessary to deconvolve or estimate the input to an instrument given that
the data are noisy. The basic deconvolution problem is depicted in Fig. 4a for deterministic inputs {u(t)} and
outputs {y(t)}. The problem can be simply stated as follows: GIVEN the impulse response, H(t) of a linear
system and outputs {y(t)}, FIND the unknown input {u(t)} over some time interval.

In practice this problem is complicated by the fact that the data are noisy and impulse response models
are uncertain. Therefore, a more pragmatic view of the problem would account for these uncertainties. The
uncertainties lead us to define the stochastic deconvolution problem shown in Fig. 4b. This problem can be
stated as follows: GIVEN a model of the linear system, H(t) and discrete noisy measurements {y(t)}, FIND
the minimum (error) variance estimate of the input sequence {u(t)} over some time interval.

The solution to this problem using the Bayesian MBP algorithm involves developing a model for the input and
augmenting the state vector.12 Suppose we utilize a discrete Gauss-Markov model and augment the following
Gauss-Markov model of the input signal:

u(t) = F (t − 1)u(t − 1) + n(t − 1) (7)



where n ∼ N (0, Rnn(t)). The augmented Gauss-Markov model is given by Xu := [x′ | u′]′ and w′
u := [w | n]:

Xu(t) = Au(t − 1)Xu(t − 1) + wu(t − 1)

and
y(t) = Cu(t)Xu(t) + v(t)

The matrices in the augmented model are given by

Au(t − 1) =
[

A(t − 1) B(t − 1)
0 F (t− 1)

]
Rwu =

[
Rww(t − 1) Rwn(t − 1)
Rnw(t − 1) Rnn(t − 1)

]

and
Cu(t) = [C(t) | 0]

This model can be simplified by choosing F = I; that is, u is a piecewise constant. This model becomes
valid if the system is oversampled (see [14] for details). The MBP for this problem is the standard Kalman filter
Bayesian algorithm with the augmented matrices given by the equations:

State prediction: X̂u(t|t − 1) = AuX̂u(t − 1|t − 1)

Innovation: e(t) = y(t) − ŷ(t|t − 1) where ŷ(t|t − 1) = CuX̂u(t|t− 1)

State correction: X̂u(t|t) = X̂u(t|t − 1) + K(t)e(t)

with K(t), the Kalman gain calculated using the inherent state error and innovations covariance matrices where
Xu(t|t) := E{Xu(t)|Yt}, that is, the conditional mean estimate of the augmented state given all of the previous
data up to time t. Note that this is an optimal estimator under Gaussian assumptions (see Candy13 for details).

One approach to estimating the unknown input sequence, u(t) is to use a Taylor-series representation,12?

given by

u(t + 4T ) = α0 + α1

(
4T

1!

)
+ α2

(
4T 2

2!

)
+ H.O.T. (8)

where αi = diu(t)
dti for u(t +4T ) ≈

∑
i αi

(
4T i

i!

)
. pulse shaper); and (ii) the pre-amplifier. In case (i) we assume

all of the required information about the EMS is available at the output of the pulse shaping circuitry and
the quantifier (A/D) merely extracts the maximum amplitude of the Gaussian shaped pulse and corresponding
arrival times, [{ξi}, {τi}]. However, we also consider case (ii) where we measure the output of the pre-amplifier
(separately). Here the energy deposited by the γ-ray and subsequent charge curves reveal more detailed informa-
tion about the photon physics (arrival times, multiple arrivals etc.). We digitize the actual pre-amplifier output
generating a time series of the pulse and then perform the deconvolution to extract an “enhanced” γ-ray pulse
as discovered through the recovered (deconvolved) charging curve leading to the enhanced EMS. Once the EMS
is deconvolved, it can be extracted (amplitudes and arrivals), counted or employed as the input to a parameter
estimator capable of providing an improved energy estimate and corresponding arrival time while minimizing
the noise and uncertainty.

In this paper we concentrate on the model and deconvolved EMS. We accomplish the deconvolution by
performing a system identification13 of both pre-amplifier and pulse shaper to obtain transfer function estimates
and then incorporate these estimates in the deconvolution algorithm. In this manner we will eventually be able
to construct the final Bayesian sequential processor.



5. RESULTS

In this section we discuss the results of developing the models for both pre-amplifier and pulse shaper and applying
them to perform the deconvolution operation. We injected a set of pulse into both systems individually obtaining
the required transfer function and then developed the physics-based deconvolution processor as discussed in the
previous section.

The test of the algorithm is on a simulated cobalt EMS with 1.17 and 1.33 MeV lines generating the random
detector input sequence. Here we convolved the simulator output (deposited energy) with the identified composite
transfer function. The results are shown in 5 where we see the transfer function validation run in (a) and the
actual deconvolution processor in (b). The processor is capable of extracting the EMS successfully and improving
the overall γ-ray spectrum significantly as shown in Fig. 6. In (a) we see the “true” spectrum indicating two sharp
energy lines at the correct energies (1.17 and 1.33 MeV), (b) the estimated (deconvolved) spectrum has captured
the line with some uncertainty (spreading shown) but its performance is quite reasonable and demonstrates the
enhancement as observed from the measured spectrum of (c). Thus, the Bayesian deconvolver works quite well
on the synthesized data set.

Next we performed a controlled experiment where we injected a known “pulse” synthesizing a photon arrival
into the preamplifier of the detector system. In 7 (a) we see the results of the Bayesian deconvolution processor
capable of extracting the excitation pulse with the corresponding histograms shown in (b)—again a very good
agreement demonstrating its performance. As a by-product of the processor we are able to produce an enhanced
estimate of the actual raw measurement which we show in (c) agreeing quite closely with the corresponding
histograms confirming this result in (d). Thus, it appears that the processor can reliably extract the input
excitation using this physics-based approach. Next we summarize and discuss our future work.

6. SUMMARY

We have shown that a physics-based Bayesian processor can be constructed that is capable of extracting the
event-mode sequence (EMS) from both simulated and measured data sequences. We demonstrated the Bayesian
deconvolution processor performance and show that it provides considerable enhancement over the raw data
sets providing an enhanced histogram. Our future efforts are aimed at acquiring EMS from Cesium, Cobalt
and combined radionuclide while incorporation motion into the point source location (e.g. cargo container
motion) to observe the tracking capability of the near real-time processor. Our future efforts will also include
the construction of the full Bayesian scheme and sequential detection of threat radionuclides using sequential
Bayesian processors14−.20
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Figure 5. Bayesian Deconvolution Processor Design. (a) System identification of composite (pre-amplifier and pulse
shaper) system. (b) Deconvolution processing using identified transfer function with synthesized (known) EMS (Cobalt:
1.17 and 1.33 MeV lines).
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Figure 6. Deconvolution Processor Performance/Enhancement (Cobalt: 1.17 and 1.33 MeV lines). (a) Histogram of True
EMS (synthesized). (b) Processed EMS histogram. (c) Raw (synthesized) measured detector output histogram.



Figure 7. Experimental Bayesian Deconvolution Processor Outputs. (a) Actual test input excitation pulse sequence and
estimated (deconvolved) input. (b) True and estimated (deconvolved) input excitation histograms. (c) Measured and
estimated preamplifier outputs. (d) Measured and estimated output histograms.




