

Microfabricated Gas Phase Chemical Analysis Systems

Gregory C. Frye-Mason, Ronald P. Manginell, Edwin J. Heller, Carolyn M. Matzke, Stephen A. Casalnuovo, Vincent M. Hietala, Richard J. Kottenstette, Patrick R. Lewis and C. Channy Wong

Sandia National Laboratories
P.O. Box 5800 MS-1425, Albuquerque, NM 87185-1425
rpmangi@sandia.gov

RECEIVED
AUG 18 1999

ABSTRACT

A portable, autonomous, hand-held chemical laboratory (μ ChemLabTM) is being developed for trace detection (ppb) of chemical warfare (CW) agents and explosives in real-world environments containing high concentrations of interfering compounds. Microfabrication is utilized to provide miniature, low-power components that are characterized by rapid, sensitive and selective response. Sensitivity and selectivity are enhanced using two parallel analysis channels, each containing the sequential connection of a front-end sample collector/concentrator, a gas chromatographic (GC) separator, and a surface acoustic wave (SAW) detector. Component design and fabrication and system performance are described.

μ CHEMLABTM

Chemical detection for purposes of counter-terrorism and nonproliferation is extremely challenging due to the need for trace detection of target analytes in environments containing more than 1000-fold higher concentrations of interferants. To address these applications, Sandia is developing a hand-held (palm-top computer sized) autonomous system (μ ChemLabTM) for rapid (1 min), sensitive (1-10 ppb), selective detection of CW agents [1-3].

The μ ChemLabTM includes both gas and liquid phase analysis modes; the former is described here, while the latter is the topic of reference [4]. A diagram of the system is given in Figure 1. Each of the two analysis channels contains a preconcentrator (PC), a GC separator and a SAW array detector, all of which were designed and microfabricated at Sandia (Figure 2). Commercially available diaphragm pumps and miniature valves are used. Pattern recognition tools developed at Sandia are used to analyze SAW array response data and identify detected compounds [5].

The PC consists of a polymer-coated microhotplate [3]. First, the analyte is selectively adsorbed on the coating. Then, rapid, efficient microhotplate heating (200°C in 10 msec) is used to thermally desorb the target analyte. Concentration factors of 100 for dimethyl methyl phosphonate (DMMP, a sarin simulant) in air have been demonstrated, while selectivity to xylene, a typical interferant, is better than 25 to 1. The microhotplate is fabricated by back-side Bosch etching, stopping on a low-stress silicon nitride membrane layer [6]. Pt heater lines are deposited and patterned on the front side of the membrane.

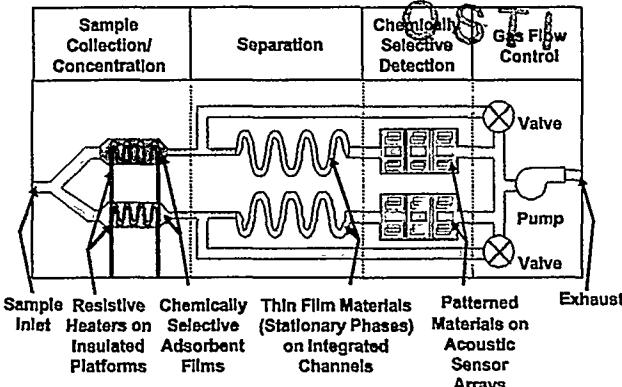


Figure 1: Schematic of the gas-phase μ ChemLabTM.

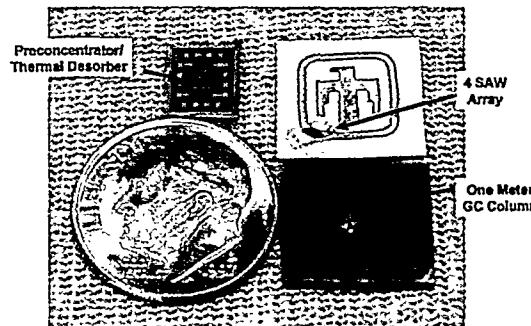


Figure 2: Proceeding clockwise, a U.S. dime (18 mm dia.), PC, SAW array detector and GC column.

GC columns are used for temporal separation of analytes, improving chemical discrimination. Conventional GC systems use circular cross-section glass microcapillaries, which are not easily integrated in miniature detection systems. In contrast, Bosch etching is used here to etch GC columns in silicon [7]. The high-aspect ratios afforded by this technique permit the microfabrication of spiral columns with channels that are up to 400 μ m deep and 40 μ m wide separated by 40 μ m thick silicon walls. A 1 m long spiral with these typical channel dimensions fits on a ~ 1 cm² chip. An example of a microfabricated GC column is given in Figure 3. To form closed channels, a Pyrex lid is anodically bonded to the surface of the silicon substrate containing the etched columns.

Stationary phase coatings are deposited on the GC walls by either conventional polymer solution techniques or sol-gel methods. The retention time of various analytes in the stationary phase determines the temporal separation of

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

the analytes arriving at the SAW detector array. The two channels of the μ ChemLabTM can be optimized for different analytes by placing different coatings on each GC (as well as on each PC and SAW, if needed). Alternatively, channels can be optimized for detection of the same analyte, providing redundancy and decreasing false alarm rates (Figure 4).

Figure 3: Cross-section SEM of a GC column fabricated in silicon by Bosch etching.

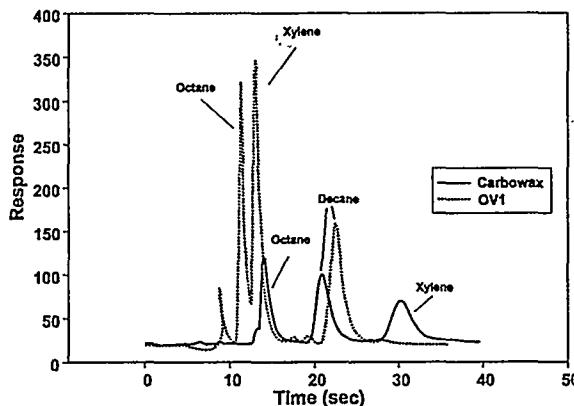


Figure 4: Elution times for two microfabricated GC columns, one with a polar coating, the other a non-polar coating. Peak reordering provides confirmation of results.

SAW delay lines can be used as sensitive mass detectors and can provide chemically selective detection when coated with sorbent materials [8]. Decreasing the SAW device area increases the operating frequency, f , and dramatically improves the mass sensitivity (the mass detection limit is proportional to $1/f^3$, assuming that noise is linear in f). Therefore, SAW sensors are ideal candidates for miniaturized sensors as their sensitivity improves with miniaturization.

SAW devices were microfabricated by patterning gold interdigitated transducers (IDT) on a quartz substrate. The μ ChemLabTM employs a four-element SAW array in each gas analysis channel. A centrally located input IDT initiates an acoustic wave in the substrate. Four smaller output IDTs detect the acoustic wave. The paths, or delay lines, between the input IDT and three of the outputs are coated with different materials; the fourth delay line serves as a reference. As analytes are adsorbed on the three sensor delay lines, the velocity of the SAW is altered as is its

phase relative to the reference. GaAs-based electronics are used to provide DC outputs proportional to the SAW phase.

An example of the collective performance of a PC, GC and SAW array is given in Figure 5.

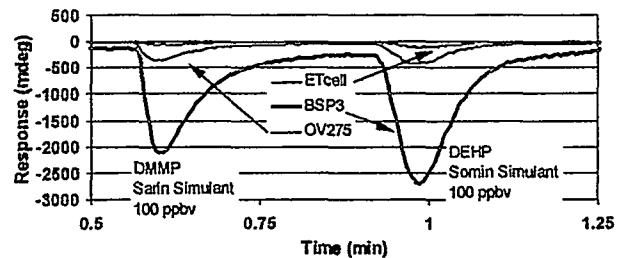


Figure 5: SAW response to a mixture of DMMP and DEHP after passing through microfabricated PC and GC components. Delay lines were coated with ethyl cellulose (ETcell), an H-bond acid modified polymer (BSP3) and a cyano-modified polysiloxane (OV275).

CONCLUSIONS

The use of microfabricated components in trace-level, gas-phase detection of chemical warfare agent simulants has been demonstrated. The gas-phase analysis subsystem of Sandia's μ ChemLabTM incorporates microfabricated preconcentrators, GC columns and SAW array detectors. Current work is focused on system-level optimization.

ACKNOWLEDGEMENTS

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. The authors would like to thank Jay Grate of Pacific Northwest National Lab for the BSP polymer.

REFERENCES

- [1] G.C. Frye-Mason, et. al., *μ TAS'98*, Banff, Canada, October 12-16, 1998, p477.
- [2] S.A. Casalnuovo, et. al., *1999 IEEE International Frequency Control Symposium*, Besançon, France, April 12-16, 1999.
- [3] R.P. Manginell, et. al., *International Conference on Modeling and Simulation of Microsystems*, April 19-21, San Juan, Puerto Rico, p663.
- [4] D.W. Arnold, et. al., *μ TAS'98*, Banff, Canada, October 12-16, 1998, p435.
- [5] G.C. Osbourn, et. al., *Accounts of Chemical Research*, 31 (1998) 297.
- [6] R.P. Manginell, et. al., *1998 SPIE Micromachining and Microfabrication Conference*, Santa Clara, CA, September 20-22, 1998, p269.
- [7] C.M. Matzke, et. al., *ibid*, p262.
- [8] D.S. Ballantine, et. al., *Acoustic Wave Sensors: Theory, Design, and Physico-Chemical Applications*, San Diego, Academic Press, 1997, Chpt. 3.