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Abstract

This paper presents an unsteady flow theory for flow-induced vibration of tubes
in crossflow. It includes a general description of motion-dependent fluid forces,
characteristics of fluid-force coefficients, and mathematical models. The detailed
results are presented for the constrained mode in the lift direction for various tube

arrangements.

1. Introduction

Various mathematical models have been developed to predict flow-induced
vibration and instability of tubes subject to crossflow (Chen 1987, Price 1993). At
this time, a number of issues have not been answered and several aspects of the
problems have not been resolved. This paper is to present an unified theory for

linear and nonlinear response of tubes in crossflow.

One of the key elements is the motion-dependent fluid forces. A water channel
is used to measure fluid forces on all tubes due to the motion of a tube. From the

measured fluid forces, fluid damping and stiffness for various tube arrays are




obtained. Tests have been performed for a single tube, two tubes, and tube rows.
These coefficients depend on reduced flow velocity, tube arrangement, oscillation
amplitude, and Reynolds number. Some general characteristics of these fluid-force

coefficients are observed.

Once fluid-damping and fluid-stiffness coefficient matrices are know, a
mathematical model simulating practical tube arrays can be established and
analyzed. The unsteady flow theory based on the measured fluid forces can be used
to study the detailed tube motions, including subcritical vibration, instability
threshold, and post-instability oscillations. It can also be used to assess the
applicable ranges of other simplified theories such as quasistatic and quasisteady
flow theories. Although fluid-force coefficients can not be obtained easily, the

unsteady flow theory can describe the motion in detail.

The unsteady flow theory has also been applied to study the nonlinear
vibration of loosely supported tube arrays. Tube displacements were analyzed to
characterize the tube behavior by RMS values, power spectral densities, phase
planes, Poincare maps, Lyapunov exponents, and fractal dimension. The analytical
results and experimental agree reasonably well (Cai and Chen 1993; Chen, Zhu,

and Cai 1994). This demonstrates the usefulness of the unsteady flow theory.

This paper presents an unsteady flow theory to study the import practical
problems with academic interest. It includes measurement of fluid damping and
stiffness, and mathematical model for tube vibration. Details are presented for a
single flexible tube in a rigid tube array. The general theory is applicable for an

array of elastic tubes.




2. Unsteady-Flow Theory of Motion-Dependent Fluid Forces

Consider a tube oscillating in a rigid tube array (see Fig. 1). The fluid is
flowing with a flow velocity U. The displacement components of the tube in the x
and y directions (or lift and drag directions) are u and v, respectively. The motion-
dependent fluid-force components acting on the tube in the x and y directions are f

and g, respectively, which can be written as (Chen 1987)

2 2 2
f= —anz[a (31:21 +cgt;’]+ pg (oc'%%+c‘%%)+pU2(a"u+c"v) (1)
= —prR2| 1 az +B pU2 (’t ﬂ+[3'a—v)+ U2(t"u+B"v) (2)

where p is fluid density, R is tube radius, t is time, and © is circular frequency of
tube oscillation. o, B, ¢, and © are added mass coefficients, o', B, ¢', and t' are fluid-

damping coefficients, and o", B", ¢", and 1" are fluid-stiffness coefficients.

Various methods can be used to measure fluid-force coefficients (Chen, Zhu,
and Jendrzejczyk 1994). In this study, the unsteady-flow theory was used. Fluid-
force coefficients can be determined by measuring the fluid forces acting on the tube
because of its oscillations. For example, if the tube is excited in the y direction, its

displacement in the y direction is given by (u = 0)

v = Vg cos wt. (3)

The fluid force acting on the cylinder in the x direction can be written




pUZ2¢ cos(wt + §)vg, 4)

DO | b

f=

where c is the fluid-force amplitude and ¢ is the phase angle by which the fluid force

acting on the tube leads to displacement of the tube.

With Eqgs. 1 and 3, we can also write the fluid-force component as

f= (anzo)zc + pUzc")vo cos ot — pUzo" v sinot. (5)

By combining Eqs. 4 and 5, we obtain
3
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and

L3

1
¢’ =5 csing, | (7

where Uy is the reduced flow velocity (U, = rU/@R).

The added mass coefficient 6 in Eq. 6 can be calculated by applying the
potential-flow theory (Chen 1975 and 1987). The values of ¢' and ¢" can be
calculated from Eqs. 6 and 7 when the force amplitude ¢ and phase angle ¢ are

measured. Fluid-force coefficients o', o", B', B", 7', and 1" can be obtained in the

same manner.




Fluid-force coefficients depend on the arrangement and pitch, oscillation
amplitude and frequency, and flow velocity. For a given tube arrangement, fluid-
force coefficients are a function of oscillation amplitude (d/D) and reduced flow
velocity (Uy) and Reynolds number, where d is vibration amplitude and D is cylinder
diameter. For small-amplitude oscillations and large Reynolds number, fluid-force
coefficients can be considered a function of reduced flow velocity only.

3. Measuring Fluid-Force Coefficients

A water channel was used to measure motion-dependent fluid forces. The test
setup and measurement technique are presented by Chen, Zhu, and Jendrzejczyk
(1994).

In this paper, the following cases are presented (Fig. 2):

a. A single tube.

b. Two tubes in tandem with a pitch to diameter ratio of 1.35.

¢. A tube in the wake of another tube.

d. Two tubes normal to flow with a pitch to diameter ratio of 1.35.

e. A tube row with a pitch to diameter ratio of 2.7.

f. A tube row with a pitch to diameter ratio of 1.35.




In each test, the excitation frequency ranges from about 0.2 to 2.2 Hz and the flow
velocities vary from about 0.05 to 0.17 m/s. The Reynolds number varies from about
1200 to 4200.

Note that in Eqgs. 1 and 2, o' and B, and " and B" are self fluid-damping and
stiffness coefficients associated with the fluid forces induced in the same direction
as tube oscillations. ¢' and 7', and ¢" and t" are mutual fluid-damping and fluid-
stiffness coefficients associated with the fluid forces perpendicular to tube
oscillations. In addition, when one tube is excited, motion-dependent fluid forces on
the surrounding tubes are also induced (Chen, Zhu, and Jendrzejczyk 1994). In this

paper these forces are not presented.
Fluid-damping coefficients o', B', ¢', and 7', and fluid-stiffness coefficients, a",
B", ", and 1", are obtained for all cases, see Fig. 2. To limit the length of this paper,

only the data for o' and o" are presented:

* Fig. 3: o' and o" for a single tube at a flow velocity equal to 0.127 m/s for

various rms excitation amplitude, d.

e Fig. 4: o' and " for two tubes in tandem at three flow velocities, 0.07,

0.11 and 0.15 m/s (Ug is gap flow velocity).

e TFig. 5-7: o' and o" for a tube in the wake of another for three pitch-to-

diameter ratios at a flow velocity of 0.11 m/s and various rms excitation amplitude,

d.




e Fig. 8: o'and " for two tubes normal to flow with T/D = 1.35 for a series

of gap flow velocities (Ug), 0.05, 0.07, 0.113, 0.146, and 0.166 m/s.

* Figs. 9and 10: o' and o" for tube rows with T/D = 1.35 and 2.7 for various

rms excitation amplitude, d.

From Figs. 3-10 and other data not presented in this paper, some general

characteristics of motion-dependent fluid-force coefficients are noticed:

* Reynolds Number: At low reduced flow velocity, fluid-force coefficients
depend on the reduced flow velocity, Reynolds number, and excitation amplitude.

This can be seen from the results given in Figs. 3-10.

¢  High Reduced Flow Velocity: When the reduced flow velocity is high, e.g.,
>20 and some >10, all fluid-force coefficients are approximately independent of
reduced flow velocity. This characteristic is not only valid for circular cylinders, but

also for other geometries (Chen and Chandra 1991).

® Drastic changes in the fluid-force coefficients occurred in the region
corresponding to vortex shedding for a single cylinder and tube rows. In the critical
region, the magnitudes of the coefficients also depended on the excitation

amplitude.
4. Mathematical Model for Flow-Induced Vibration

Once fluid-excitation and motion-dependent fluid forces are known, the

response of the tube can be predicted. Consider an elastic tube in a rigid tube array




with radius R (= D/2) (Fig. 1). The variables associated with the motion of the
elastic tube in the x and y directions are flexural rigidity EI, tube mass per unit
length m, structural damping coefficient C5, and displacements uand v. The
equations of motion for the tube in the x and y directions , respectively, are (Chen

1987)

4 2 2
EIa——ll +Cq 8u+m8_g+an2 d"u — +0_8 Z
ozt S ot ot2 ot ot

2
_pU du .Bv) 2 " ¢ 8)
i (oc Frden pU“(a"u+0"v) =g'(t)

and
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W + Sat+mat +pTT (1: 5 Bat2

2
—&(x'%‘{wg—‘t’)-pUz(x"u+B"v) =h'®), (9)

()

where g'(t) and h'(t) are forced excitations. Note that the fluid-damping and

-stiffness coefficients are functions of reduced flow velocity Us;.

The in-vacuum variables are mass per unit length m, modal damping ratio {y
(Cs/2mmy), and natural frequency fy (= ®y/2r). The values for f;, and {; can be
calculated from the equation of motion and appropriate boundary conditions or from
tests in vacuum (practically in air). The modal function ¢(z) of a cylinder vibrating

in vacuum and in fluid is




% [ f)(pz(z)dz =1, (10)
where / is the length of the cylinder. Let

u(z,t) = at) ¢ (z)
and (11

v(z,t) = b(t)p(z),

where a(t) and b(t) are functions of time only. Calculation of Egs. 8 and 9 yields,

respectively,
o . N . Y 2 w% [ 'y
a+ y(aa+ ob)+2§v(ova —TC—3UV — (oc a+o b)
+w2a - —13- U202(a"a+0"b)=f (12)
T

and

b+ y('céi + BB) +20,0,b - -1—:—;— U%[%z’—](fc a+p' B)

+02b - n—g U%co%(t" a+p"'b)=g,
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1 ¢2,,
g= — Iof ¢(z)dz

1 e, |
h= -n-l—fjog o(z)dz.

The dot denotes differentiation with respect to time. Natural frequencies, modal
dampings, and tube response can be calculated from Eqs. 12 and 13; i.e., can be

written as

[M]4 +[Clg +[Klq = p, (15)

where




11
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Natural frequencies and modal damping for coupled vibration can be calculated

from eigenvalues of Eq. 15 with p = 0.
5. Fluid-Damping Controlled Instability

When one of the tubes is allowed to oscillate in a specific direction while the
other tubes are rigid, the equations of motion can be simplified significantly. For
example, when a tube oscillates in the x direction, its equation of motion based on
Eq. 12 becomes

2,
d2+2§md +o?a=—2 ,
dt dt 1+ yo

(17)

where
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@ = mv(l""YCM)_O'S,
=S| (1490y)08 - YT (18)
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2 1]
CM =0+ 1:; .

Note that ® and { are the circular frequency and modal damping ratio, respectively,
for the tube in crossflow. Cy is called an added mass coefficient for the tube in flow;
when Uy = 0, it is equal to ;. When Uy is not equal to zero, CMm depends on Uy as

well as on o, which in turn, depends on Uy and oscillation amplitude.

From Eqs. 17 it is noted that when o' is positive, it will contribute to negative
damping to the system. In some cases, the resultant damping may become zero and
the system will become unstable. From Eq. 18 the critical reduced flow velocity at

which the modal damping ratio is zero can be calculated from

0.5

0.5 " 2
Ur=4m(§.) %(i)i\/(%) L (19)

where 8 is a mass-damping parameter (8 = 2n{ym/pD2). This is the critical flow

velocity for fluidelastic instability.

Equations 17-19 can also be applied to oscillations in the y direction. Replacing

all o by B in Eqs. 17-19 yields the equations of motion and stability criterion for

constrained mode in the y direction. From Egs. 17 and 18, it is noted that when the
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value of the fluid-damping coefficient, o' or B, is positive, the tube may become
unstable. The region depends on tube arrangement, location, and flow velocity.
From the fluid-force coefficients, a'is found to be positive in a region at lower

reduced flow velocity for all cases..

6. Conclusions

The unsteady flow theory has been used extensively in the aerospace industry.
In this paper, a direct-measurement technique for fluid damping and fluid stiffness
is a convenient way to characterize the fluid effects on tube vibration in cross flow.
Similar data have been used successfully in the prediction of fluidelastic instability
and chaotic vibration of tube arrays in steam generators (Tanaka and Takahara

1981; Chen 1983a, 1983b; Chen, Zhu, and Cai 1994).

Fluid-force coefficients depend on tube arrangement, pitch, oscillation
amplitude, reduced flow velocity, and Reynolds number. At high reduced flow
velocity and Reynolds number, fluid-force coefficients are practically independent of
reduced flow velocity and oscillation amplitude. Therefore, the mathematical model

for the coupled flow-tube systems is simpler at higher reduced flow velocity.

Once fluid damping and fluid stiffness are know, the response of tubes in
crossflow can be predicted on the basis of the unsteady flow theory. Tube response
characteristics depend on the fluid damping and fluid stiffness. The system may
become unstable due to fluid damping or fluid stiffness. For a constrained mode in

the lift direction, the fluid-damping-controlled instability can occur at lower reduced

flow velocity.
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Figure Captions

1.

10.

Circular tube oscillating in crossflow

Tube arrangements: (a) a single tube; (b) two tubes in tandem, P = 1.35 D;

(c) a tube in the wake of another tube; (d) two tube normal to flow, T = 1.35 D;

(e) a tube row, T/D = 2.7; and (f) a tube row , T/D = 1.35

Fluid-stiffness and fluid-damping coefficients for a single tube, U = 0.127 m/s

Fluid-stiffness and fluid-damping coefficients for two tubes in tandem

Fluid-stiffness and fluid-damping coefficients for a tube in the wake of

another, P/D = 2.70 and T/D = 1.35

Fluid-stiffness and fluid-damping coefficients for a tube in the wake of

another, P/D = 4.05 and T/D = 1.35

Fluid-stiffness and fluid-damping coefficients for a tube in the wake of

another, P/D = 4.05 and T/D = 2.70

Fluid-stiffness and fluid-damping coefficients for two tubes normal to flow

Fluid-stiffness and fluid-damping coefficients for a tube row, T/D = 2.70

Fluid-stiffness and fluid-damping coefficients for a tube row, T/D = 1.35
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