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Abstract

Both the increased complexity of integrated circuits,
resulting in six or more levels of integration, and [he
increasing use of flip-chip packaging have driven the
development of integrated circuit (IC) failure analysis
[OOISthat can be applied to the backside of the chip.
Among these new approaches are focused ion beam
(FIB) tools and processes for performing chip
edits/repairs from the die backside. This paper
describes the use of backside FIB for a failure analysis
application rather than for chip repair. Specifically, we
used FIB technology to prepare an IC for inspection of

voided metal interconnects (“lines”) and vias.
Conventional FIB milling was combined with a supec-
enhanced gas assisted milling process that uses XeFz
for rapid removal of large volumes of bulk silicon.
This combined approach allowed removal of the TiW
underlayer from a large number of M 1 lines
simultaneously, enabling rapid localization and plan
view imaging of voids in lines and vias with
backscattered electron (BSE) imaging in a scanning
electron microscope (SEM). Sequential cross sections
of individual voided vias enabled us to develop a 3-d
reconstruction of these voids. This information
clarified how the voids were formed, helping us
identify the IC process steps that needed to be changed.

Introduction

Performing FIB circuit modification from the backside
of a chip has become routine for flip-chip packaged
ICs, where backside access to the chip is required if
electrical operation of the IC is to be preserved in the
original package [I-4]. Backside FIB modification is
also being considered for making repairs at lower-lying
nodes (e.g., M 1) in multi-layer non-flip-chip ICS that
would otherwise require elaborate circuit modification
from the front side. Beyond this, backside FIB sample
preparation techniques offer a powerful new capability

which failure analysts are just beginning to exploit.
This paper describes one such failure analysis
application: the use of backside FIB milling combined
with conventional FIB milling, imaging, and cross-
sectioning to enable the investigation of voiding and
etch defects in a 2-level metal (aluminum) CMOS
technology.

The goal of our study was to identify and image
voiding at the Ml level and in the Ml to M2 vias
without performing any reprocessing steps that would
introduce additional voiding or alter existing voids.
BackScattered electron (BSE) imaging performed at the
highest primary beam energies (say, 30-40kV) of most
scanning electron microscopes (SEMS) can often be
used to characterize voiding from the front side of the
chip [5], but with limited resolution and only in the
uppermost interconnect layers. The resolution of BSE
void images suffers even for the top level metal due to
the thickness and, for unplanarized technologies, the
roughness of the passivation layer covering it.
Obtaining crisp images of voids in vias or deeper levels
of metal from the front side is problematic because of
the thickness of overlying materials and the nonplanar
topography in some IC technologies. In our case, the
M 1 to M2 vias were formed from aluminum as part of
the M2 deposition, resulting in a highly nonplanar
topography that produced marked shadowing in the
SEM images of the vias. More important, however, the
presence of a TiW layer at the bottom of M 1 prevented
imaging of the voids in M 1 and in the vi=. The strong
backscattered signal from the TIW overwhelms the
signal from the aluminum interconnect, obscuring any

evidence of voiding. While FIB cross-sections through
vias or buried metal layers can be used to image voids,
only one location or via at a time can be studied, and
this technique obviously cannot be used to locate the
voids in the first place. Thus. it was necessary to
remove the TiW underplayer ‘in order to successfully
perform BSE imaging of the voids in Ml and in the M 1
to M2 vias. The backside FIB technique described in
this paper exposes long lengths of interconnects and
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Abstract

Given a ground set S = {.sI,... , Sk} and a family of its subsets S = {S1,... , S’m} C
2s, the classical set cover problem consists of finding the minimum number of sets F C 2s
that cover all the elements in the ground set S.

Given a finite set of “red” elements R, a finite set of “blue” elements B and a family
S ~ 2~uB, the red-blue set cover problem is to find a subfamily C c S which covers all
blue elements, but which covers the minimum possible number of red elements.

We note that RED-BLUE SET COVER is closely related to several combinatorial op-
timization problems studied earlier. These include GROUP STEINER TREE, DIRECTED
STEINER TREE, MINIMUM COLOR PATH, MININUJMMONOTONE SATISFYINGASSIGN-
MENT, SYMMETRICLABEL COVER, etc.

We further show that unless P=NP, even the restriction of RED-BLUE SET COVER
where every set contains only one blue element can not be approximated to within
qrjogl-~ n ) , where 6 = 1/log log’ n, for any constant c. < 1/2 (where n = S). This
extends results of Dinur and Safra and answers an open question of Motwani and Gold-
wasser, placing LABEL COVER in the class MMSA3,

We give integer programming formulations of the problem and use them to obtain a
2@ approximation algorithm for the restricted case of RED-BLUE SET COVER in which
every set contains only one blue element.
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1 Introduction and summary of results

Let 1?= {rI,..., rP} and B = {bl, . . .. bp} be two (disjoint) finite sets, and let S ~ 2~uB be a family
of subsets of R U B. We call the elements of B Mue elements and the elements of R red elements.
The RED-BLUE SET COVER problem is to find a subfamily C = {Sil,..., Sim} G S wKIch covers all
blue elements, and which covers the minimum possible number of red elements. If the total number
of red elements contained in the sets of this subfamily is denoted by 1, then

l=min{lRfl(UjS~j)l I UjS~j ~13},

In the rest of the paper, we denote by n the size of the family S,

n = 1S[.

Note that every instance of RED-BLUE SET COVER may be transformed into an equivalent one
where every set contains only one blue element. Namely, given a set S ~ S, make a copy of S,
denoted by Sb, for each blue element b ~ S, and remove all other blue elements from Sb. We will use
this observation later. The RED-BLUE SET COVER problem arose naturally in considering certain
data mining problems. We describe some of these considerations in section 6. However, our reasons
for investigating the red-blue set cover problem come fkom complexity and approximation algorithm
theory.

We relate RED-BLUE SET COVER to several problems investigated in the literature. These
include the group Steiner tree, minimum monotone satisfying assignment and minimum color path
problems. Most of these are special cases of RED-BLUE SET COVER and these reductions supply
our hardness results. Two of our reductions place the label cover problem in the class MMSA3. This
extends the recent results of Goldwasser and Motwani [13] and Dinur and Safra [7], who showed
that LABEL COVER was either in MMSA3 or in MMSA4. The strongest hardness result we obtain
shows that unless P=NP the special case of RED-BLUE SET COVER where every set contains only
one blue element cannot be approximated to within 0(210g1-&‘)? where 6 = 1/ log loge n, for any
constant c < 1/2. The result is obtained via a polynomial-time approximation-preserving reduction
from SYMMETRICLABEL COVER.

On the other hand, we provide a polynomial-time 2@ approximation algorithm for the same
restriction of RED-BLUE SET COVER. The approximation algorithm is based on combining a simple
greedy algorithm and rounding a linear relaxation of the problem. The ideas can be extended to
obtain a 2@-approximation algorithm when lSi n BI < k. A O(nl–lj~ log n)-approximation
algorithm for the RED-BLUE SET COVER problem restricted \Si n RI < k is also presented. We
also consider a number of other natural linear programming formulations and discuss their merit in
the context of obtaining polynomial time approximation algorithms. All our positive results (linear
formulations, approximation algorithm) apply as well to the weighted version of RED-BLUE SET
COVER, where each red element has a nonnegative weight associated with it, and the goal is to
minimize the total weight of red elements in a cover of B by the sets from S.

2 Related problems

RED-BLUE SET COVER contains the classical set cover and several known generalizations of this
problem as its special cases.
Set cover. The SET COVER problem (Johnson [16]) can be viewed as the RED-BLUE SET COVER
problem where each set S c S contains exactly one red element, and no red element is contained
in more than one set. The goal is to cover all blue elements using the minimum possible number of
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subsets from S. This reduction shows that the RED-BLUE
as the classical SET COVER problem.
Group Steiner and directed Steiner problems.

SET COVER problem is at least as “hard”

Another special case of RED-BLUE SET
COVER is the (rooted, unweighed) group Steiner problem for trees studied by Garg, Konjevod
and Ravi [12]. Let a tree G = (V, l?) be given together with a family of subsets of vertices g =

{91}”””, 9m}j called grouPs. Let one vertex v E V be marked as the root. We call all vertices
belonging to some group terminals. The objective of GROUP STEINER TREE is to find a subtree
of G that contains the root and at lesst one vertex of each group, such that it has the minimum
possible number of edges. This problem can be modeled by RED-BLUE SET COVER. Let B = (7, let
R = E, and for each path P horn the root to a vertex v of some group g let SP be the set formed
by the edges of F’ and by g. We define S to be the family of all sets of the form SP for a path from
the root to one of the terminals. The resulting RED-BLUE SET COVER instance is equivalent to the
original GROUP STEINERTREE instance.

A similar reduction can be used to transform any instance of DIRECTED STEINERTREE (see for
example Charikar et al. [6]) into an instance of RED-BLUE SET COVER. However, in general, the
RED-BLUE SET COVER instance will have exponentially many sets (since there may be exponentially
many paths from the root to the terminals in a directed graph). Thus our reduction is only polynomial
in the case where there are only polynomially many root-terminal paths in the directed Steiner
instance,
Minimum color path. Krumke and Wirth [17] discuss approximability of the following problem
given a graph G = (V, E) with a function c : 1?+ C, where C is a finite set of colors, find a spanning
tree of G whose edges are labeled with minimum possible number of colors. They show that the
problem is as hard to approximate as set cover, and complement this result by an greedy algorithm
whose approximation guarantee (2 log IVI) essentially matches that of set cover.

This problem can be naturally generalized to the case where a feasible solution is a more general
subgraph, for instance a forest satisfying connectivity requirements between given pairs of vertices.
However, this problem (rein-color generalized forest) is at least as diificult to approximate as RED-
BLUE SET COVER. Even the simplest case where only one pair of vertices {s, t} ~ V is given and
the goal is to find an s-t path that uses fewest colors contains RED-BLUE SET COVER as a special
case. This problem was first considered in [15].

The reduction is as follows: given an instance of RED-BLUE SET COVER we construct an equiv-
alent instance of MINIMUMCOLOR PATH. First we create one color for each red element. Then we
create some vertices of G. Let there be a vertex vi for each blue element bi, and another vertex b..
We denote b. by s and bl~l by t, For each set S containing bi, we add a path between vi-l and Z+
whose length is equal to the number of red elements in S. We arbitrarily assign to each of the edges
in this path one of the red elements in S and color the edge with the corresponding color. Clearly,
every s-t path in this graph defines a collection of sets (the paths chosen between pairs of vertices
vi_ 1 and vi) and these sets form a red-blue cover. The cost of the cover is equal to the number of
different colors used in the s-t path. Similarly, every red-blue cover defines an s-t path of equal cost.

3 Hardness of approximation

We continue our discussion on relating RED-BLUE SET COVER to other combinatorial optimization
problems and as corollaries obtain stronger non-approximability results for RED-BLUE SET COVER
and related problems.

Let us use 111 <A 112 to denote that the problem 111 can be polynomial time reduced in an
approximation-preserving way to I_Iz.We also use III ~A HZ to denote 111<A IIz and IIz <A 111.
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Symmetric label cover. The label cover problem (see, for example, Arora and Lund [4])
was originally defined in order to make easier the use of the PCP theorem in proving approximation
hardness of SET COVER and related problems. One variant of this problem is described in Dodis and
Khanna [9], where it is called symmetric label cover.

A complete bipartite graph G = (U, W) (where U and W are the two parts of the bipartition
of G of n vertices each) is given, together with two finite sets A and B (called the label sets), and
for each edge uw 6 U x W, a (non-empty) relation &W ~ A x 1?. A feasible solution is a pair of
mappings (label assignments) (~, +), # : U ~ 2A, @ : W ~ 2B such that each edge uw is consistent,
that is there exists a pair (a, b) E +(u) x @(w) such that (u, b) c &W. The objective is to minimize

XKU 19XU)I+ Z@ Iww)l.
As discussed in [9] unless P = NP, even SYMMETRIC LABEL COVER cannot be approximated to

within 0(2’Og’-6n) , where 6 =1/ loglogcn, for any constant c < 1/2, where n = max{[Al, [Bl, [Ul}.
We use this to obtain the following result:

Theorem 3.1. SYMMETRICLABEL COVER <A RED-BLUE SET COVER. Thus, unless P=NP, RED-
BLUE SET COVEILcannot be approximated to within a ~acio~ 0(210g’-3’) , whe~e J = 1/ log loge n,

for any constant c < 1/2, and where n = [S[.

Prooj. Let an instance of SYMMETRICLABEL COVER be given using the notation above. We con-
struct an instance of RED-BLUE SET COVER such that (1) each feasible red-blue cover corresponds
to a label assignment of equal cost and (2) each feasible label assignment corresponds to a red-blue
cover of no greater cost.

For each edge uw G U x W, define a Mue element bUW.For each pair (u, a) G U x A define a
red element TUa,and for each pair (w, b) ● W x B a red element rWb. Finally, for each quadruple
(u,w,a,b) E 27x W x A x B such that (a,b) ~ I&, define a set ~UW.b= {bUW,rU.,rUW}.

Consider now a feasible red-blue cover C. We define a label assignment (+, ~) in the following
way:

@(u) = {a e A I r.. c USECS}, @(w)= {b c B I rwb E USE~S}.

Each blue element bUWis covered by a set in C. This means that in the cover, there is a set of the

form f%wab~ in which c~e~ (a! b) c &W. This implies consistency of the edge uw because %wab

contains rUaand rwb, and hence (a, b) G +(u) x @(w). Since

the total number of labels used for elements of U is equal to the number of red elements in the cover
that correspond to elements of U. Similarly, the number of labels used for W is equal to the number
of red elements corresponding to W, and thus the cost of the label assignment is equal to the cost
of the red-blue cover.

On the other hand, from a feasible label assignment we can construct a red-blue cover C of
no greater cost. Given a label assignment, we include in C exactly those sets Suwab such that
(a, b) G @(u) x #(w). Consider a blue element buw. Since uw is consistent, there will be at least
one pair (a, b) E 4(u) x +(w) such that (a, b) E RkW?which means that buw gets covered by the set
SUwabCC.

Let r.a c lJ~~c S (respectively, ‘rWb~ u~~c S). Then clearly a ~ #(u) (resp. b E +(w)). Hence

‘3



Finally, note that in the above reduction [S[ ~ m114, where m = max{[Al, [B[, IU[}. This implies
the theorem since a polynomial increase in the problem size can be neutralized by adjusting J. •l

An alternate way of showing inapproximability of RED-BLUE SET COVER is to use two-prover
proof systems and was pointed out to us by Feige [10].
Minimum monotone satisfying assignment (MMSA). This problem wss independently
introduced by Alekhnovich, Buss, Moran and Pitassi [3] and by Goldwasser and Motwani [13] (under
the name AND-OR scheduling). The problem MMSAk is specified by a monotone formula (that is,
a formula that uses no negations) of depth k (the formula has k levels of alternating AND and OR
gates, where the top level consists of an AND gate). The goal is to find a satisfying assignment that
minimizes the number of variables set to TRUE. General MMSA places no restriction on the formula
depth. Note that MMSA2 is the problem of determining the minimum satisfying assignment for a
monotone formula in conjunctive normal form and is equivalent to SET COVER. The variables in the
instance of MMSA2 are in one-to-one correspondence with the sets in the SET COVER instance. The
topmost AND gate corresponds to requiring that every element of the ground set must be covered,
and the OR gates underneath to allowing an element to be covered by any of the sets that contain
it.

Analogously, MMSA3 is equivalent to RED-BLUE SET COVER. Variables correspond to red
elements. There is an OR gate for each blue element, and AND gates below an OR gate correspond
to the sets that cover the corresponding blue element, Finally, a lowest-level conjunction contains
a variable iff the red element corresponding to the variable appears in the set corresponding to the
conjunction. Now the topmost AND gate requires that every blue element must be covered, the
layer of OR gates says that a blue element may be covered by any of the sets that contain it, and
the final layer of AND gates allows a set to be included in the cover only if all the red elements that
it contains have been counted by the objective function.

Alekhnovich’ et. al. [3] show that (unrestricted) MMSA is at least as hard to approximate as
LABEL COVER. Goldwasser and Motwani [13] reduce label cover to MMSA4, and Dinur and Safra [7]
further show a reduction horn MMSA3 to LABEL COVER. Denote RED-BLUE SET COVER by RBSC,
LABEL COVER by LC and SYMMETRICLABEL COVER by SLC. Then we have

MMSA3 ~~ LC SA MMSA4.

In contrast, combining the reduction of Theorem 3.1 and the above correspondence between RED-
BLUE SET COVER and MINIMUMMONOTONESATISFYINGASSIGNMENTwith the results in [7, 13],
we have

MMSA3 <A LC <A SLC <A RBSC -A MMSA3,

showing that LC -A MMSA3 and thus precisely placing LABEL COVER in the MMSA hierarchy.

Corollary 3.2. MMS& -A LG.

4

4 Linear programming relaxations

Consider the following natural formulation of the RED-BLUE SET COVER problem,
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min ~ yr
r

(1)
yr~xs b’(r, S): 7-CS

E Xs>l ‘db EB
S3b

x c {o,1}1~1,

This formulation is not very useful to us because the gap between the optimal integral and
fractional solutions may be huge. As the following example shows, the objective function value of the
linear relaxation of 1P (1) can be as much as Q(n) times smaller than the value of the optimal solution.
Consider B = {r}, B = {bl,..., bn} and the family S = {S1,..., Sri}, where S~ = {r} U B \ {b~}. All
feasible integral solutions must cover the red element r, and so have cost 1, but the linear program
may assign the value l/(n – 1) to each set and so the objective function value is only l/(n – 1).

We can improve the linear relaxation of 1P (1) by restricting the set of instances considered to
those where each set contains only one blue element (as described earlier). If this assumption is
satisfied, we may use the following inequality for each pair (r, b) E R x l?:

Note that these inequalities are not valid in general. There maybe feasible integral sohtions that
violate some of these inequalities (namely, those where more than one set covers some blue element).
However, in this case, all but one of the sets covering b can be discarded without increasing the cost
of the solution. In this way one obtains a “minimal” solution of no greater cost which satisfies these
inequalities. We refer to this improved integer program as 1P (1)’.

The new inequalities help eliminate some bad examples like the one described above. However,
before discussing this improved formulation further, let us consider a different relaxation of the red-
blue set cover problem. To give some intuition, we turn to the integer program used for approximating
the rooted group Steiner problem by Garg, Konjevod and Ravi [12].

For a set of vertices S c V, let J(S) denote the set of all edges with exactly one endpoint in S.

(2)

4.1 Improved Formulations

1P (2) requires that each cut separating some group from the root vertex be covered by at least one
edge. In view of the transformation fkom the group Steiner problem on a tree to the red-blue set
cover, this has a clear interpretation. We need to cover each blue element g. A cut around the group
corresponds to a set of red elements hitting all the sets that contain g.

To simplify notation, we write & for the family of all sets that contain b, and %b for the family
of all sets of red elements which form a hitting set for ~b. Since one of the sets in ~b must be chosen,

5
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we must pay for at lead one red element horn each hitting set for &. Defining % = U&~ %!byields
the following formulation.

(3)

Without variables corresponding to sets, we need to describe how to interpret a solution to 1P (3),
namely how to determine which sets in S should be included in the cover given a feasible O-1 solution
y*. We include in the cover all those sets S such that y: = 1 for all r 6 S. To show that this indeed
produces a feasible red-blue cover, suppose that some blue element 13is left uncovered. That means
that for every S 3 b there is a rs E S such that y~~ = O. But these red elements form a hitting
set H ~ %b for &. Since none of the terms in the inequality corresponding to H has value 1, this
inequality is violated by the given solution Y*.

The linear relaxation of 1P (3) is a hard problem itself. There are exponentially many constraints,
and the separation or&le (see Grotschel, Lov&z and Schrijver [14]) needs to be able to solve a hitting
set problem. (The question that a separation oracle needs to answer is: Does there exist a blue
element b c B and a hitting set for & whose cost, as defined by the given fractional solution Y*,
is less than 1?) Since HITTING SET is SET CoVE~ on the dual set-system, we can only provide
an approximate separation oracle with a factor of log-t, where t is the maximum number of sets
containing any pair of one red and one blue element (a simple upper bound on t is n = [S1.)
However, this allows us to find a feasible solution to the linear program which is at most log t times
more expensive than the optimal one.

Lemma 4.1. An a-approximate separation oracle O can be used to find in polynomial time an ct-
approximate solution to the linear relaxation of a 0-1 covering problem Ax ~ 1.

Proof. Use O as if it were an exact separation oracle and apply the ellipsoid algorithm. The algorithm
will finish when no more hitting sets of size less than 1 can be found. Let Z* be the resulting candidate
solution to the covering problem. Let

x: = min{x~ “ a, 1}, for all i.

Then x’ is a feasible solution to the covering linear program. (Otherwise, there exists an inequality
whose left-hand side adds up to less than 1. Since no term in this inequality was rounded to 1, all of
them were originally smaller than l/a, and further, the sum of all of these terms was smaller than
I/a. However, if there existed a hitting set of cost less than l/a, the approximation algorithm would
have found a hitting set of size less than 1.) Finally, the cost of Z’ is at most a times the cost of
x*. ❑

We next describe an extension of 1P (3). Instead of constraints based on hitting sets (covers), we
can use multiple hitting sets (multicovers). For instance, we can form constraints corresponding to
sets of red elements which contain at least two elements horn each set in & for some b. We may set
the right-hand side of such a constraint to 2, because every feasible solution must contain at least
two red elements from such a set.

In the same way we can form k-hitting set constraints for a blue element b, where k is any positive
integer no greater than the minimum number of red elements contained in a set that covers b. (In

6



fact, the minimum number of red elements contained in a set is not the critical obstacle to deriving
valid inequalities. We defer the details to the full version of the paper.)

The separation algorithm this time needs to solve a multicover problem, that is find a minimum-
cost family of sets such that each element of the ground set is covered at least k times by the
family. Efficient approximation algorithms for multicover problems were described by Dobson [8]
and by Rajagopalan and Vazirani [18]. The approximation guarantees achieved are log kn and log n,
respectively, where n is the number of elements in the ground set.

In order to write the constraints for this 1P, we denote the family of all k-hitting sets by Wk.

(4)

These inequalities are a strict superset of the inequalities used in 1P (3). For example, let
S1 = {rl, r2, b}, S2 = {r2, r~, b}, S3 = {7-3,rl, b}. Then 1P (3) has 3 inequalities,

Y1 +!/2 21

Y2+93 21

Y3+ ‘W >~,

and so the solution VI = y2 = y3 = 1/2 is feasible. However, 1P (4) also includes the inequality

because the set R = {rl, T-2,r3} hits every cover for b twice,
However, in some special cases, such as group Steiner problem on trees, the two formulations are

equivalent.

Lemma 4.2. For an insiance of the group Steiner problem on a tree, every inequality of 1P (4)can
be written as a convex combination of inequalities of 1P (3’).

4.2 Hitting-set LP versus improved simple LP

We relate LP (1)’ and LP (3) by showing that every fractional solution g of LP (l)’ also satisfies all
inequalities of LP (3). This implies that the improved simple LP (1)’ is a better formulation than
the hitting set LP (3), despite its conciseness.

Let y be a fractional
containing a fixed b c B.

solution to LP (l)’. Let H be a hitting set of red elements for all sets
Then for every r G H, g, z ~s2{r,6} xs. Thus,

~te~ ~ W2~3s21.
r~H rcli s~{r,b} S3b

The next-to-last inequality is satisfied because every set S a b contains a red element in H and so
the variable xs appears in the double sum.

Even though we cannot prove any “good” bounds on the integrality gap of either of the two
linear formulations, it is easily seen that LP (1)’ sometimes gives an objective function value at least
a factor log n higher (thus, better) than the hitting set LP (3), unless NP~TIME(n”IIOg 10gnJ). (As

7



before, n = ISI.) For suppose that the values of the two LPs were always within a logarithmic factor
of each other. Then, since LP (1)’ always has a higher objective value than LP (3), we could use
the optimum value of LP (1Y as an approximation to the optimal solution of LP (3). However, since
this optimum is hard to approximate, there must be an instance where the two linear relaxations’
optimal values differ by at least a logarithmic factor.

4.3 Multi-element inequalities and set cover

The inequalities described above are special cases of a class that completely specifies the optimal
value of an instance of RED-BLUE SET Covmz. Obviouslyj the inequalities we will now describe
can only be of restricted use since they are hard to separate, but some of their special cases may be
useful in practice.

Consider two blue elements, bl and ~. We may change our problem by replacing t.q and b2 by
a single blue element b12. We say that b12 is covered by any set that contains both bl and ~, and
add a new set S’ij = Si U Sj for each pair of sets Si and Sj such that bl ~ Si and bz E Sj. This
change creates a new instance of the red-blue set cover. Since both bl and b2 will be covered in any
feasible solution to the original instance, multi-hitting inequalities for the new instance are valid for
the original instance of RED-BLUE SET COVER

We will describe these inequalities in more detail in the full paper, but let us consider here the
last inequality generated by this procedure in the special case of a set cover problem, where, every
set contains a unique red element. First, all blue elements are merged into one. Then, for every
subfamily C ~ S that covers all blue elements we add a new set Se. Let us denote the cost of the
optimal set cover by Z*. The inequality produced has aU the variables corresponding to red elements
on its left-hand side, and since every cover contains at least Z* red elements, the right-hand side of
the inequality is Z*. Hence thk is a k-hitting set constraint where k = z*. Thus, the cost of the
optimal solution to this linear program is equal to the cost of the optimal integer solution of the set
cover problem.

5 Approximation Algorithms.

We begin the section with some simple propositions that yield approximation algorithms for restricted
cases of the RED-BLUE SET COVERproblem.

Proposition 5.1. The following statements hold:

(l.) The RED-BLUE SET COVER problem when restricted to instances in which Vi, ISil =2, has a
log n approximation algorithm.

(2?.) The RED-BLUE SET COVER problem when ISi ~ RI < k has a O(nl-l/k logn)-approxirnation
algorithm.

Proo}. Proof of Part (1) follows by direct arguments from SET COVER. We sketch proof of Part
(2) for k = 2. First by preprocessing we ensure that vi, Si n R are not identical. Then, for each

@}, we treat as if {r;, r?} covers {bj,...Si ={r~, r~,l$,... , s , /$} and perform a greedy set cover.
There is a loss of lg n factor horn the optimum. The optimum, however, can presumably do much
better by exploiting the overlap between ri’s. Letting K denote the optimal value of the modified
instance, we know that the standard greedy heuristic for set cover will out a solution of value no more
than K lg n. We claim that the optimum for the original RED-BLUE SET COVER instance is ~ ~.
This is because the maximum overlap it can achieve (because of the preprocessing) is precisely K’

s.t. (~’) = K, which makes K’ = O(w). This implies a O(filg n)-approximation algorithm. El
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Next we give a polynomial time approximation algorithm for the restriction of RED-BLUE SET
COVER where each set contains only one blue element, with guarantee 2@. The approximation
algorithm is based on the linear relaxation of 1P (1)’ discussed earlier. We denote by n the number
of sets S E S. Since every instance of RED-BLUE SET COVER may be reduced to one where every
set contains only one blue element, the algorithm is applicable to any instance of RED-BLUE SET
COVER. However, since the reduction (Section 1) may incresse the number of sets, the performance
of our algorithm is 2A (where lSi n B[< k);and hence in general is not o(n).

The algorithm first solves the linear relaxation of 1P (l)’, producing the optimal solution (z*, y“).
Let us call the blue elements b c B that appear in more than @ sets S G S, bad, and all the other
blue elements, good.

The algorithm proceeds in two phases. In the first phase, we multiply g’ by @, and then round
down to O or 1. Denote the resulting vector of red-element values by y’ We include in the cover all
the sets S such that y; = 1 for all r c S. The cost of this step is at most @ times the cost of the
optimzd red-blue cover.

We claim that the first phase covers all the blue elements. Fix a b ~ B and consider a hitting set
H for the sets containing & Since b is contained in fewer than W sets, at least one of the variables
y,, r G H must have value at least I/@. This variable will be rounded to 1, hence the rounded y’
will satisfy this inequality. Given a O-1 solution to LP (3), we have seen how to construct a cover of
no larger cost, so we apply that procedure to cover the good elements. Since each set S 6 S contains
only one blue element, there can be no more than @ bad blue elements.

In the second phase, we include in the cover the set of smallest cost that covers b, for every bad
blue element b. Since every blue element is covered by the optimal solution, every set added to the
cover in the second phase costs no more than the optimal solution, and thus the cost of the second
phase is no more than @.

Our algorithm does not provide an upper bound on the integrality gap of any of the linear
relaxations we have proposed so far. However, it is easy to amend LP (1)’ to provide such a bound.

We add to 1P (1)’ another inequality for each b c B. Let pb = mins~~ lSflR1. Then the inequality

is valid for all b E B. Denote the resulting improvement of 1P (l)’ by 1P (l)”. These added inequalities
guarantee that the second phase of the algorithm costs no more than@ times the optimal fractional
solution, and thus the integrality gap of 1P (1)~~is no more than 2@ We thus have

Theorem 5.2. The RED-BLUE SET COVER problem restricted to instances where each set contains
only one blue element, flSi n B/ = 1) can be approximated within a factor of 2@.

6 Practical motivation

We conclude the paper with a few practical motivations for the RED-BLUE SET COVER problem
and more generally its relation to classification problems.

6.1 Fraud and Anomaly Detection

Our original motivation for considering RED-BLUE SET COVER arose in the context of a data mining
project. The goal of the project was to detect possible fkaud/anomaly in Medicare/Medicaid data
(claims). The project was undertaken at the Los Alamos National Laboratory and was sponsored by
the HCFA (Health Care and Finance Agency) and the New York State University research Foundation
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[1, 2]. More details about this and related anomaly detection projects at the laboratory can be
found at http: //www. C3. lanl. gov. There is a large data base of records (claims). Each record4 is
a vector in feature space, with real/Boolean values correspond to individual features. The goal is
to use the information that is available from known fraudulent records to identify possible anomaly
in records for which no apriori information is available. Automating this process is complicated
by the fact that misclassifying a good record (false positives) often amounts to possible law suits
and other legal problems and thus needs to be avoided at all costs. Using standard terminology
from classification literature, we wish to build a model for determining the validity of a claim, that
uses known information. As training data we have a small subset of claims that are labeled as
valid (red) claims or fraudulent (blue) claims5. A number of classification methods were used to
design classification of the red and the blue points. These included Cluster analysis, classification
and regression tree (CART), logistic regression. E&h of the classification scheme yields subsets
containing both red and blue elements. The goal is to design a new classifier that is complete
(meaning that all blue points are covered) and minimally inconsistent (i.e. misclassifies minimum
number of red elements).

6.2 Information Retrieval

This example is a slight variation of the example discussed in [11]. A typical problem in this area
consists if classifying a kargecorpus of documents. Such a classification might be related to grouping
articles found during a web search (e.g. classifying news articles based on subject topic). We view
each word in our vocabulary as a feature and represent an article as a O-1 vector in this feature
space. Typically, the number of features is huge (on the order of 105) and it is intuitively clear that
most documents have only a small number of relevant features. Thus a natural way to overcome
the computational bottleneck of classifying in such a large feature space is to combine the results of
algorithms that classify documents bssed on very small subsets of feature space. In this example, we
have elements of different colors (corresponding to the subjects) and our goal is construct a combined
classifier.

6.3 Relationship to General Classification and Learning

RED-BLUE SET COVER can be thought of as a restricted form of a more general machine learn-

ing/ckwsification problem [19]. In this setting sets R and 13 can be regarded as a set of elements,

each of which has an m-dimensional vector of Boolean values. Component i of the vector for element

z equals true iff x G S;. Component i can be considered a Boolean variable Zi. The goal is to
construct a Boolean function ‘H of m variables, so that H applied to the vector for each blue element
is true, and the number of red elements whose vector maps to true is minimized. What makes the
problem nontrivial is that the space of Boolean functions under consideration is very limited. So, let
G’ be a collection of m-variable Boolean functions. Let us say that a given Boolean function 74 covers
an element x G R U E) iff W applied to the vector for element x is true. The G-Boolean-Classification
Problem is to find a function % c G that satisfies the constraint that ?4 covers all blue elements,
and the number of red elements covered is minimized.

RED-BLUE SET COVER can also be viewed as a problem of classifying (or predicting) by com-
bining the classification results (or predictions) of subordinate classification algorithms also referred
to as “experts” in the learning theory literature [11, 5].

4Each record is a line item claim
5Such a data is obtained in a variety of ways includhg past history, sample checks, etc.
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