

MCM-290 (or)

HYDROGEN DIFFUSION BEHAVIOR IN TITANIUM-CHROMIUM HYDRIDES WITH LAVES STRUCTURES

R. C. Bowman, Jr.*, B. D. Craft*, A. Attalla* and J. R. Johnson**

*Monsanto Research Corporation, Mound,
Miamisburg, Ohio 45342**Brookhaven National Laboratory, Department of Energy and Environment
Upton, New York 11973

ABSTRACT

Extensive NMR measurements of the proton relaxation times have been performed on low (i.e., α -phase) and intermediate (i.e., α' -phase) hydrogen concentrations in $TiCr_2H_x$ with both the hexagonal C14 and cubic C15 Laves structures. The relaxation times indicate rapid diffusion rates above 200 K for all the $TiCr_2H_x$ phases; however, large differences in the diffusion activation energies are observed. This behavior is associated with the hydrogen interstitial site occupancies and diffusion pathways becoming restricted in the C14 structure.

KEYWORDS

Metal Hydrides; Diffusion; Nuclear Magnetic Resonance; Hydrogen Storage; Laves-Structure Compounds; Proton Relaxation Times.

INTRODUCTION

Many intermetallic compounds with the nominal stoichiometry AB_2 have been found (Wernick, 1977) to possess C15 cubic (i.e., space group $Fd\bar{3}m$) or C14 hexagonal (i.e., space group $P6_3/mmc$) Laves crystal structures. As described in the recent papers by Shaltiel (1978) and Jacob and Shaltiel (1979), many alloys with the C14 and C15 Laves structures will reversibly react with gaseous hydrogen to form ternary metal hydrides that often have rather large maximum storage capacities. Hence, several Laves alloys are very promising candidates for various hydrogen storage and energy conversion applications. Based upon relatively limited (but apparently representative) published data of Arita and others (1981), Pourarian and others (1981) and Fujii and others (1981), many AB_2 alloys with either the C14 or C15 structure have good to excellent kinetics for both the absorption and desorption of hydrogen. Although the surface segregation of the AB_2 alloys during hydriding produces (Pourarian and co-workers, 1981, Jacob and Polak, 1981) free B metal particles that may catalytically decompose H_2 molecules at the alloy surface, a relatively rapid bulk hydrogen diffusion rate in the AB_2H_x phases is also an important factor in the favorable kinetics. In fact, recent nuclear magnetic measurements (NMR) of the proton relaxation times by Shinar and co-workers (1979, 1981) for the Laves hydrides $ZrMn_2H_x$ (C14), HfV_2H_x (C15), and ZrV_2H_x (C15) indicate relatively high hydrogen diffusion rates with correspondingly low diffusion activation energies E_a . However, there has not been any previous comparative evaluation of the diffusion behavior between the C14 and C15 hydrides while retaining the same nominal ratio of identical metal atoms.

The present paper reports on proton NMR studies of the hydrogen diffusion behavior in both the C14 and C15 allotropes of nominal $TiCr_2H_x$. The $TiCr_2$ alloys are particularly interesting since both the C15 and C14 structures have been shown by Johnson and Reilly (1978) and Johnson (1980) to form unstable hydride phases with rather large storage capacities that make these alloys suitable for applications involving temperatures well below ambient. The proton relaxation times indicate rapid diffusion rates above 200 K for the low (i.e., α -phase) and intermediate (i.e., α' -phase) hydrogen concentrations in both the C14 and C15 structures of $TiCr_2H_x$; however, the diffusion behavior is complex with non-Arrhenius temperature dependences as well as evidence for simultaneous slow and rapid motion processes below 170 K. Above 200 K the E_a values for the C14 and C15 α -phase samples are nearly identical while a large difference exists between the α' -phase samples. This behavior can be qualitatively associated with differences in hydrogen site occupancies and more restricted diffusion pathways in the C14 Laves structure.

EXPERIMENTAL SECTION

Extensive descriptions of the preparative procedures for the $TiCr_2H_x$ alloys with the C15 and C14 structures as well as thermodynamic quantities and tentative phase diagrams have been previously given by Johnson and Reilly (1978) and Johnson (1980) and, thus, only a brief summary of sample preparation will be given. The C15 Laves hydrides were prepared from a single-phase alloy of composition $TiCr_{1.8}$ while the C14 hydrides were from a single-phase alloy with the composition $TiCr_{1.9}$. Recent unpublished diffraction and density data from Brookhaven National Laboratory indicate the nonstoichiometry of the $TiCr_y$ alloys corresponds to substitutional disorder where some Ti-atoms occupy Cr lattice positions of the ideal C15 and C14 Laves structures. It has not been possible to prepare single phase alloys with the stoichiometric composition $TiCr_{2.0}$. The NMR samples of both the low hydrogen content (i.e., α -phase or solid solution) and the intermediate hydrogen content (i.e., α' -phase) were prepared by direct reaction with H_2 gas in the single-phase regions of the C15 ($TiCr_{1.8}$ -H) and C14($TiCr_{1.9}$ -H) phase diagrams. Because the $TiCr_yH_x$ samples will spontaneously decompose at ambient temperature or even much lower temperatures due to the combined effect of high dissociation pressures and rapid desorption kinetics, it was necessary to stabilize (Johnson and Reilly, 1978) the $TiCr_yH_x$ powders by exposure to high-pressure CO at low temperatures before removing the hydride products from the synthesis reactor. The CO forms a surface film on the $TiCr_yH_x$ particles that greatly inhibits the loss of hydrogen from the interior. Portions of the CO-stabilized $TiCr_yH_x$ were subsequently sealed in evacuated 7 mm-o.d. pyrex NMR sample tubes. To prevent accidental decomposition these samples were never heated above 300 K. The reported compositions of the $TiCr_yH_x$ samples were determined by volumetric analyses following completion of the NMR experiments.

Conventional pulse techniques were used to measure the various proton relaxation times over the temperature range 100 K to 300 K. The inversion-recovery sequence yielded the spin-lattice relaxation times T_1 while the phase-shifted rf pulse method with an applied magnetic field of 7.3 Gauss was used to determine $T_{1\rho}$, the spin-lattice relaxation time in the rotating frame. The simple two-pulse spin-echo sequence gave the T_2' values. The spin-spin relaxation times T_{2m} were determined using the CPMG sequence of Carr and Purcell (1954) and Meiboom and Gill (1958) with a spacing of 200 μ s between the π -pulses. All the measurements were performed at a proton resonance frequency of 34.5 MHz on a NMR spectrometer previously described by Bowman, Attalla, and Maeland (1978).

RESULTS

The proton relaxation times for the four CO-stabilized $TiCr_yH_x$ samples are summarized in Figs. 1-4. $TiCr_{1.8}H_{0.55}$ (α -phase) and $TiCr_{1.8}H_{2.58}$ (α' -phase) have the cubic C15 structure while $TiCr_{1.9}H_{0.63}$ (α -phase) and $TiCr_{1.9}H_{2.85}$ (α' -phase) have the hexagonal C14 structure. From the general relationships between nuclear relaxation times

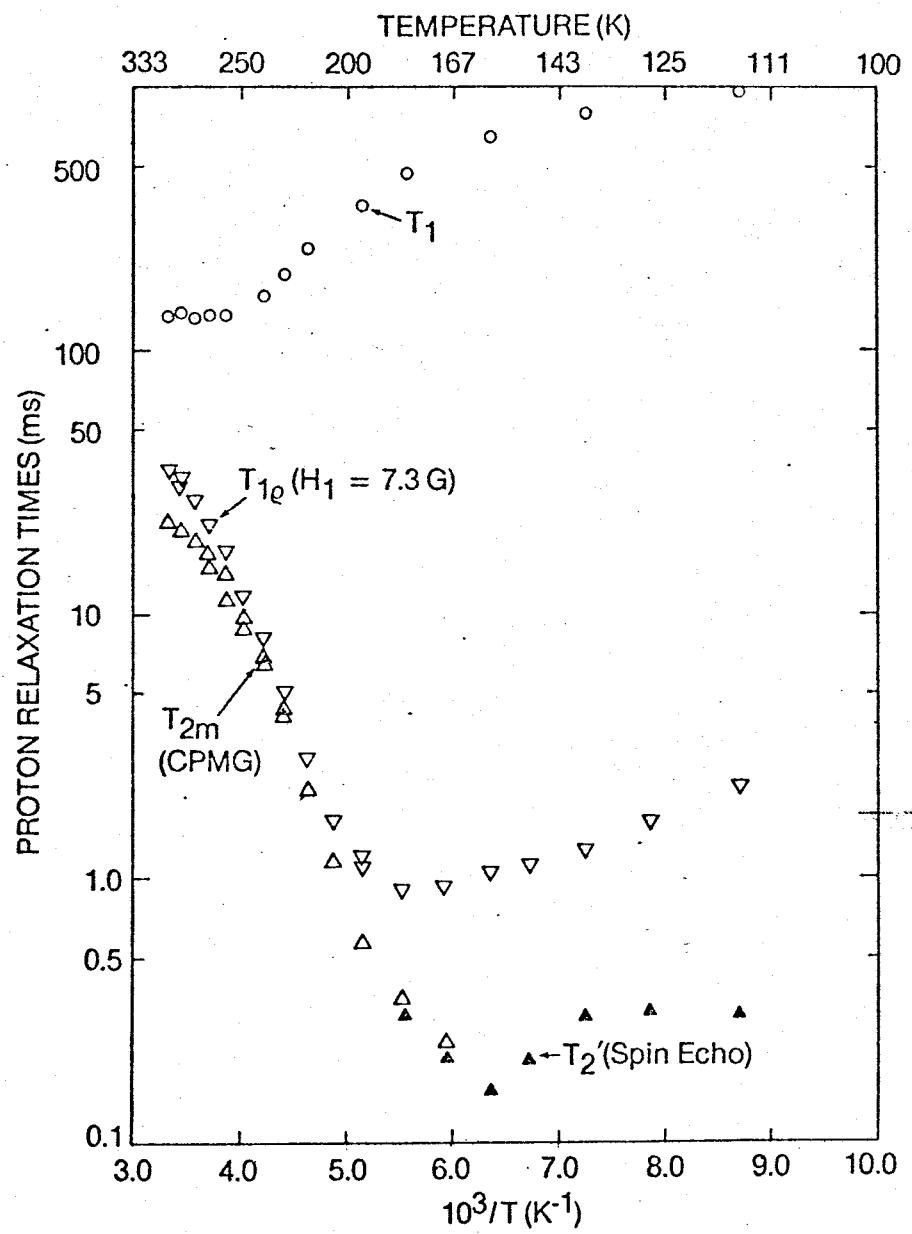


Fig. 1. The proton relaxation times T_1 , $T_{1\rho}$, T_2' , and T_{2m} for CO-stabilized α -phase $\text{TiCr}_{1.8}\text{H}_{0.55}$ with the C15 Laves structure.

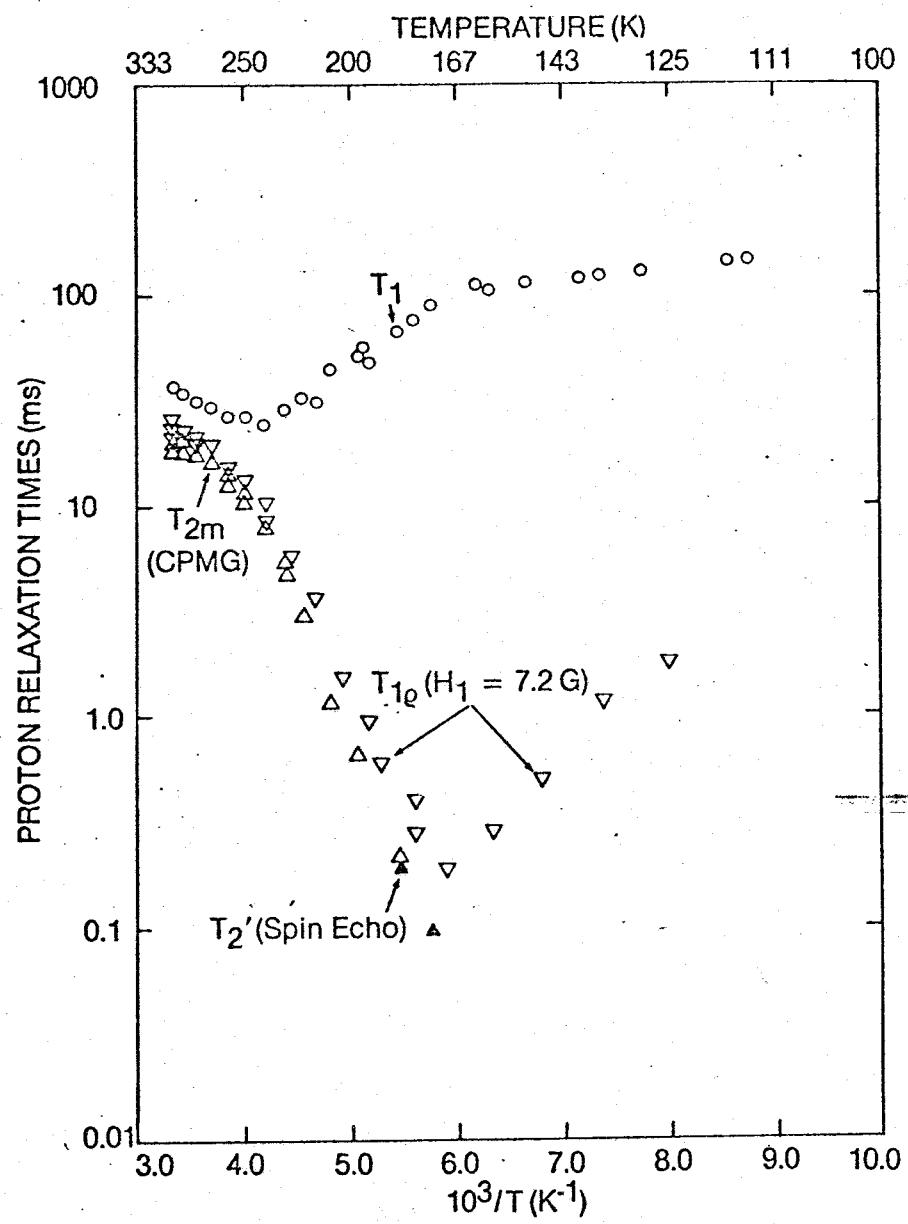


Fig. 2. The proton relaxation times T_1 , $T_{1\rho}$, T_2' , and T_{2m} for Co-stabilized α' -phase $\text{TiCr}_{1.8}\text{H}_{2.58}$ with the C15 Laves structure.

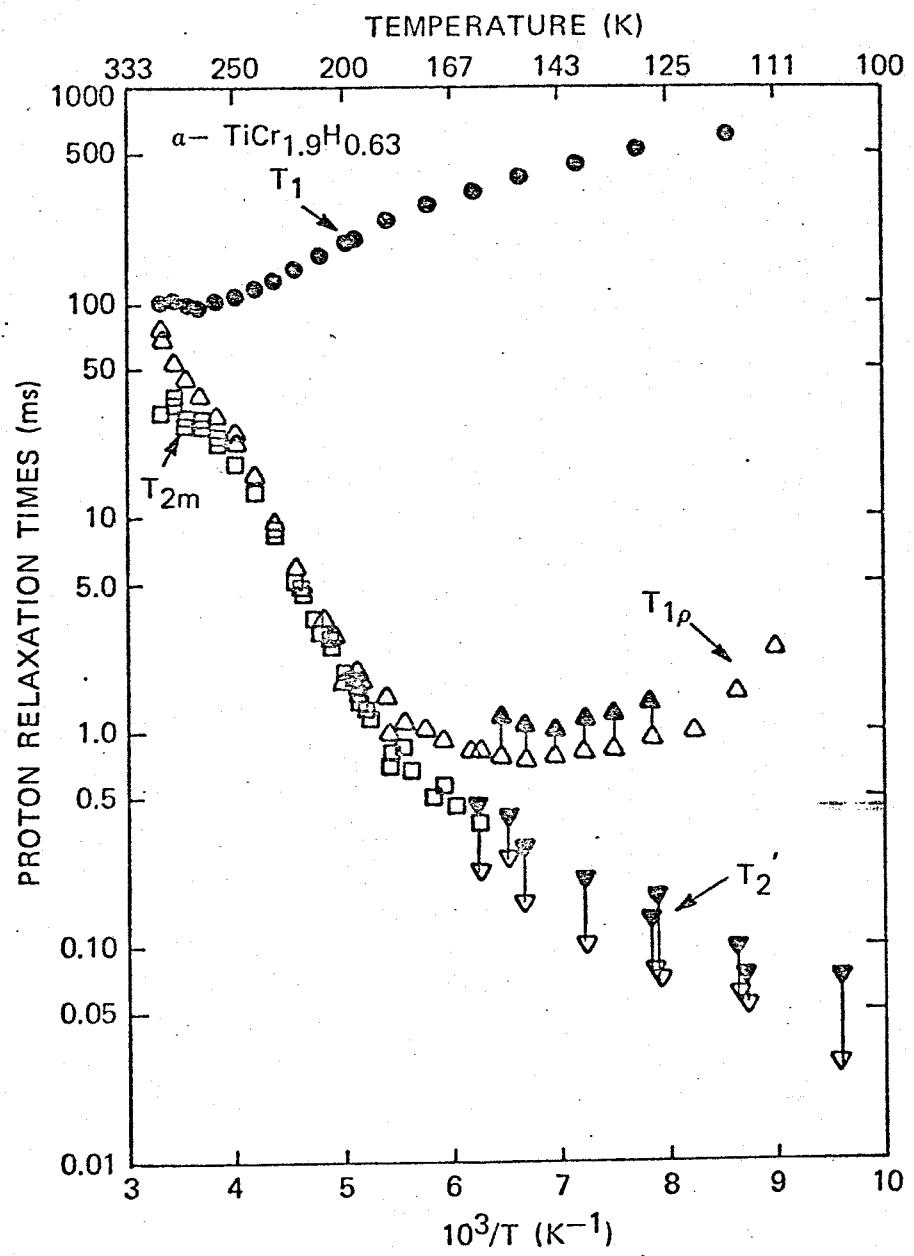


Fig. 3. The proton relaxation times T_1 , T_{1p} , T_2' , and T_{2m} for CO-stabilized α -phase $\text{TiCr}_{1.9}\text{H}_{0.63}$ with the C14 Laves structure. The short vertical lines connect limiting T_{1p} and T_2' values in regions of nonexponential recovery.

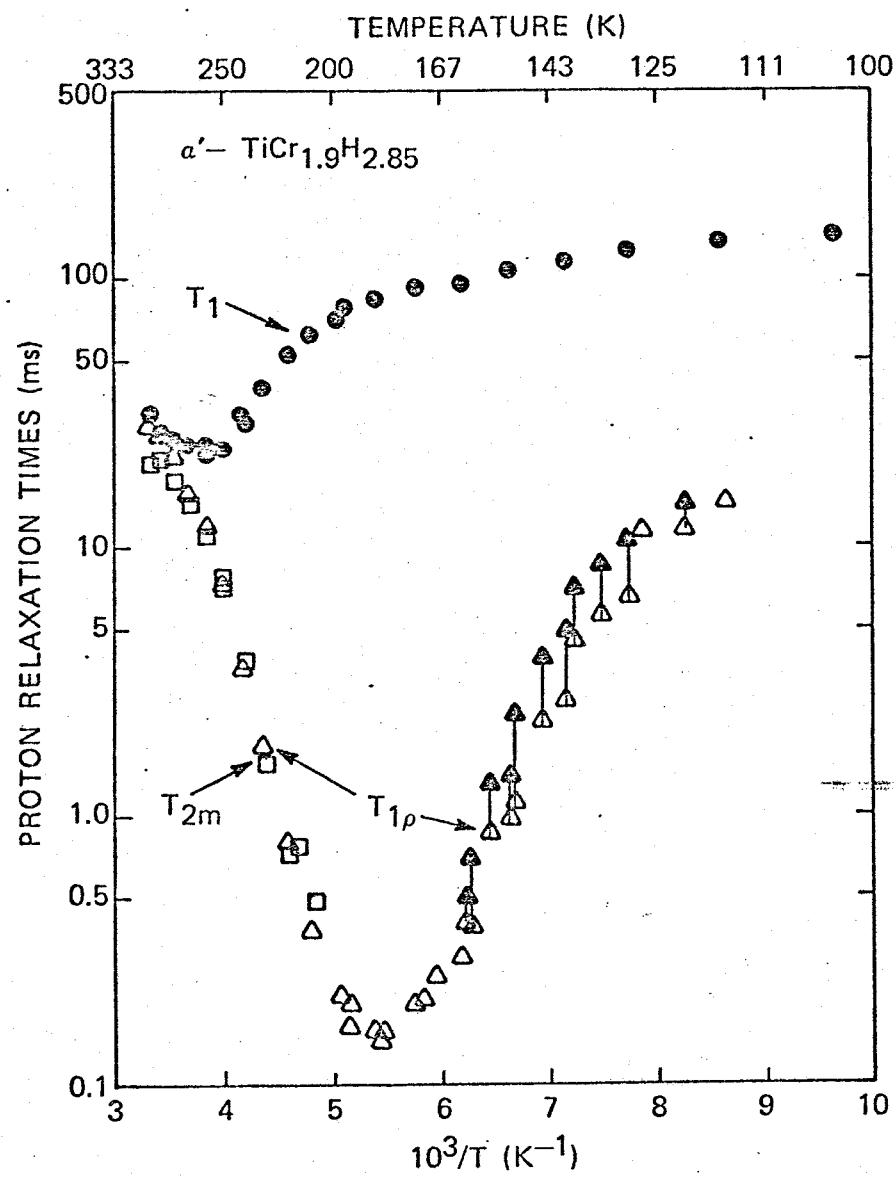


Fig. 4. The proton relaxation times T_1 , $T_{1\rho}$, and T_{2m} for CO-stabilized α' -phase $\text{TiCr}_{1.9}\text{H}_{2.85}$ with the C14 Laves structure. The short vertical lines connect limiting $T_{1\rho}$ values in a region of nonexponential recovery.

and the hydrogen diffusion rate that have been thoroughly described by Cotts (1972, 1978), the data in Figs. 1-4 indicate substantial hydrogen mobility is characteristic of both the C14 and C15 TiCryHx phases. The specific evidence for rapid hydrogen diffusion includes the following: 1) the T_1 minima, which correspond (Cotts, 1972, 1978) to a mean H-atom hopping rate of approximately $2 \times 10^8 \text{ sec}^{-1}$, occur at temperatures between 240 K and 260 K; 2) the T_{1p} minima, which correspond to a hopping rate of about $2 \times 10^6 \text{ sec}^{-1}$, occur in the temperature range 140 K to 170 K; and 3) the observed T_2 values from both the CPMG and spin echo techniques exceed the predicted dipolar rigid-lattice values to temperatures below 160 K for the α' -samples and to nearly 100 K for the α -phase samples. Combining these observations provides an unmistakable case of high hydrogen mobility as has been found by Shinar and co-workers (1979, 1981) in other C14 and C15 hydrides. Before proceeding to the quantitative analyses of the proton relaxation times, some unusual aspects of the data in Figs. 1-4 should be noted. First, the relaxation times T_{1p} and T_2' for the C14 $\text{TiCr}_{1.9}\text{H}_x$ samples are nonexponential below 160 K. Similar behavior has been observed in β -LaNi₅H₇ (Karlicek and Lowe, 1980, Chang, Lowe, and Karlicek, 1981) and β -LaNi_{5-y}AlyH_x (Bowman and co-workers, 1980) and is attributed to the simultaneous motion of inequivalent H-atoms with different hopping rates. The minimum in T_2' for α -TiCr_{1.8}H_{0.55} (see Fig. 1) is probably caused by an atomic exchange process (Goldman and Shen, 1966) between mobile and locally trapped H-atoms. The substitutionally disordered Ti atoms that occupy Cr positions are believed to be the trapping sites. This mechanism is currently under experimental study and will be described in more detail elsewhere.

Translational diffusion of H-atoms affect proton relaxation times through a time-dependent modulation of the dipolar interactions (Cotts, 1972, 1978). Since the ⁴⁷Ti, ⁴⁹Ti, and ⁵³Cr magnetic nuclei have small moments and low isotopic abundances, only the proton-proton dipolar interactions need be considered. However, the relaxation times in Figs. 1-4 require some corrections to remove the non-diffusion contributions. For example, T_1 in metallic systems will generally obey the relation:

$$T_1^{-1} = T_{1d}^{-1} + T_{1e}^{-1} \quad (1)$$

where T_{1d} is the diffusion contribution (Cotts, 1972, 1978) and T_{1e} arises from hyperfine interactions with the conduction electrons. The T_{1e} term is easily determined (Bowman and others, 1980) from the temperature dependence of T_1 at low temperatures where the T_{1d} contribution becomes insignificant (Cotts, 1978). Similar corrections are usually required (Bowman and others, 1980) for the T_{2m} and T_{1p} parameters as well. For rather general conditions (Cotts, 1978), these corrected proton relaxation times can be related to the diffusion correlation time τ_c through the expressions (Bowman and others, 1978, 1980):

$$T_{1d}^{-1} = C_1 \tau_c^{-1} \quad (\text{below the } T_1 \text{ minimum}) \quad (2)$$

$$T_{1p}^{-1} = C_2 \tau_c / (1 + 4 \omega_1^2 \tau_c^2) \quad (3)$$

$$T_{2d}^{-1} = C_3 \tau_c \quad (4)$$

where C_i ($i = 1, 2, 3$) are model-dependent constants (Cotts, 1978) and ω_1 is the angular frequency of the spin-locking field H_1 . Since τ_c is inversely proportional (Cotts, 1972, 1978) to the hydrogen diffusion constant D , the E_a values may be derived from the temperature dependence of the relaxation times given in eqns. (2)-(4) by assuming τ_c obeys the Arrhenius relation:

$$\tau_c = \tau_{c\infty} \exp(E_a/k_B T) \quad (5)$$

where $\tau_{c\infty}$ is the inverse of the attempt frequency and k_B is the Boltzmann's factor.

The E_a values that were obtained from the corrected proton relaxation times for the four $TiCr_xH_x$ samples are summarized in Table 1. It is immediately obvious that in each sample unique E_a values were not obtained from the different relaxation times. Although the T_{2d} and T_{1p} data for temperatures above the T_{1p} minima give nearly identical E_a values, the T_{1d} , T_2' , and low-temperature T_{1p} data yield significantly smaller E_a values. Similar behavior has recently been seen in several other metal hydrides including β - $LaNi_5H_7$ (Karlicek and Lowe, 1980) and β - $LaNi_{5-y}Al_yH_x$ (Bowman and co-workers, 1980). It has been suggested by Karlicek and Lowe (1980) and Bowman and co-workers (1980) that the various NMR relaxation times can respond differently to two types of motion. The smaller E_a values represent local hopping among closely spaced interstitial H-sites while the larger E_a values correspond to jump processes involved in long-range diffusion. The role of structure on this complex and currently incompletely developed diffusion mechanism will be briefly considered for the C14 and C15 $TiCr$ hydrides in the next section.

TABLE 1 Comparison of Activation Energies E_a from Proton NMR Measurements for $TiCr_2H_x$ Samples with the C14 and C15 Laves Crystal Structures.

Sample Composition	Laves Structure Type	NMR Parameter	Temperature Range (K)	E_a (eV)
$TiCr_{1.8}H_{0.55}$	C15 (α)	T_{1d}	180-250	0.13 ± 0.01
		T_{1p}	190-280	0.19 ± 0.02
		T_{1p}	115-170	0.03 ± 0.01
		T_{2d}	180-260	0.20 ± 0.01
$TiCr_{1.8}H_{2.58}$	C15 (α')	T_{1d}	180-240	0.135 ± 0.01
		T_{1p}	180-280	0.25 ± 0.02
		T_{1p}	120-170	0.10 ± 0.01
		T_{2d}	180-250	0.26 ± 0.01
$TiCr_{1.9}H_{0.63}$	C14 (α)	T_{1d}	170-250	0.088 ± 0.010
		T_{1p}	180-290	0.218 ± 0.010
		T_{2d}	180-260	0.205 ± 0.010
		T_2'	105-170	0.050 ± 0.005
$TiCr_{1.9}H_{2.85}$	C14 (α')	T_{1d}	200-250	0.28 ± 0.01
		T_{1p}	200-270	0.40 ± 0.02
		T_{1p}	125-175	0.18 ± 0.02
		T_{2d}	200-270	0.40 ± 0.02

DISCUSSION

In both the C14 and C15 Laves structures for AB_2 alloys the only interstitial lattice sites that are available (Magee, Liu, and Lundin, 1981) for occupancy by the hydrogen atoms have distorted tetrahedral symmetry with A_2B_2 , AB_3 , or B_4 as the nearest neighbor coordination. The recent calculations by Magee, Liu, and Lundin (1981) have demonstrated that A_2B_2 sites have the largest radii for both C15 and C14 structures. On the premise that H-atoms preferentially occupy the largest available sites

amenable with formation of reasonable metal-hydrogen bonds, it is expected that the A_2B_2 sites would be more readily occupied. Furthermore, since chromium can only form a hydride phase with difficulty while TiH_2 is a prototype stable transition metal hydride, the $TiCr_3$ and Cr_4 sites are unlikely to be significantly occupied. This view is in complete agreement with neutron diffraction studies of the C15 deuterides $ZrCr_2D_x$ ($x = 2.89$ and 3.08) by Fruchart and co-workers (1980), $ZrCr_2D_{3.5}$ by Yartys' and co-workers (1980) and $TiCr_{1.8}D_x$ ($x = 0.85$ and 2.20) by Reidinger and co-workers (unpublished results) where the best fits to all the powder patterns indicated only Zr_2Cr_2 or Ti_2Cr_2 sites contained deuterium. Although neutron diffraction data are not currently available for $ZrCr_2D_x$ or $TiCr_2D_x$ with the C14 structure, Didisheim and co-workers (1979) found the D-atoms to occupy only Zr_2Mn_2 sites in the C14 phase $ZrMn_2D_3$. Although all the A_2B_2 sites are equivalent in the C15 structure (i.e., subgroup 96g), there are four distinct A_2B_2 sites existing for the C14 structure (i.e., subgroups 6h, 6h₂, 12k, and 24l). From a consideration of the arrangements (Magee, Liu, and Lundin, 1981, Didisheim and co-workers, 1979) of the A_2B_2 sites in the C14 and C15 structures, it is clear that H-atom hopping paths involving only equivalent sites in the C15 structure will include two or more different sites for the C14 phase. This inequivalency among the A_2B_2 sites for the C14 structure may account for the nonuniform occupancy of deuterium atoms in the several Zr_2Mn_2 sites that has been found in $ZrMn_2D_3$ by Didisheim and co-workers (1979).

An examination of the E_a parameters in Table 1, which summarize the hydrogen diffusion behavior in $TiCr_yH_x$ ($y = 1.8$ and 1.9) as represented by the proton relaxation time data given in Figs. 1-4, illustrates that host metal structure appears to play a major role for the diffusion processes in the C15 and C14 Laves phases. This assertion is most exemplified from a comparison of the E_a parameters above 180 K for $\alpha'-TiCr_{1.9}H_{2.85}$ (C14) with the E_a values for $\alpha-TiCr_{1.9}H_{0.63}$ (C14) and $\alpha'-TiCr_{1.8}H_{2.58}$ (C15). In the C15 structure E_a increased by $\leq 20\%$ in going from α to α' phase. This increase may correspond to correlation effects (Mauger, Williams, and Cotts, 1981) in the H-atom jumps at the larger hydrogen concentration. However, E_a increases by a factor of two between the $\alpha-TiCr_{1.9}H_{0.63}$ and $\alpha'-TiCr_{1.9}H_{2.85}$ samples. Furthermore, the E_a parameter is significantly smaller in C15 $\alpha'-Ti_{1.8}H_{2.58}$ compared to that for the C14 α' -sample. The much larger E_a value for the C14 α' -phase sample must reflect a higher barrier to hydrogen diffusion compared to those pathways that are available to H-atoms in either the α -phase or the α' -phase with C15 structure. Since the E_a values are similar for α -phase samples with either C14 or C15 structure, the reduction in symmetry from cubic to hexagonal cannot be directly responsible for a large E_a increase. It is possible that preferential ordering of H-atoms on a portion of the inequivalent Ti_2Cr_2 sites in the C14 structure can occur above a minimum H-atom concentration. If some of these H-atoms occupy sites corresponding to deeply bound potential well minima that also block the more accessible diffusion pathways (Didisheim and co-workers, 1979), diffusion would necessarily proceed along alternative paths with larger E_a requirements. However, from analysis of proton T_2 relaxation times for $ZrMn_2H_x$ ($2.0 \leq x \leq 3.4$) with the C14 structure, Shinar and co-workers (1979) obtained $E_a = 0.16 \pm 0.03$ eV, which is apparently independent of hydrogen concentration. Hence, the restricted diffusion process suggested for $\alpha'-TiCr_{1.9}H_{2.85}$ does not appear applicable for isostructural $ZrMn_2H_x$.

Before a more comprehensive description of diffusion in the $TiCr_2H_x$ phases can be developed, further information on the low-temperature interstitial site occupancies should be obtained by neutron diffraction measurements on C14 and C15 $TiCr_2D_x$ to determine the distribution of D-atoms among the Ti_2Cr_2 sites. The contributions of the Ti-Cr substitutional disorder to the hydrogen diffusion mechanisms also need clarification. Extension of the proton relaxation time measurements to other AB_2H_x systems which can be prepared in the C14 and C15 forms would be valuable.

ACKNOWLEDGEMENTS

The work was supported by Division of Chemical Sciences, Office of Basic Energy Sciences, U. S. Department of Energy. MRC-Mound is operated by Monsanto Research Corporation for U. S. Department of Energy under Contract No. DE-AC04-76-DP00053. Brookhaven National Laboratory is operated for U. S. Department of Energy under Contract No. DE-AC-02-76-CH00016.

REFERENCES

Arita, M., N. Takashima, Y. Ichinose, and M. Somena (1981). Z. Metallkde., 72, 238-243.

Bowman, Jr., R. C., A. Attalla, and A. J. Maeland (1978). Solid State Commun., 27, 501-505.

Bowman, Jr., R. C., B. D. Craft, A. Attalla, M. H. Mendelsohn, and D. M. Gruen (1980). J. Less-Common Met., 73, 227-232.

Carr, H. Y., and E. M. Purcell (1954). Phys. Rev., 94, 630-638.

Chang, H., I. J. Lowe, and R. J. Karlicek, Jr. (1981). The anomalous spectral density function for diffusion motion of hydrogen in LaNi_5H_7 . In E. N. Kaufmann and G. K. Shenoy (Eds.), Nuclear and Electron Resonance Spectroscopies Applied to Material Science. Elsevier, New York, pp. 331-338.

Cotts, R. M. (1972). Ber. Bunsenges. Physik Chem., 76, 760-770.

Cotts, R. M. (1978). Nuclear magnetic resonance on metal-hydrogen systems. In G. Alefeld and J. Völkl (Eds.), Hydrogen in Metals I. Basic Properties. Springer-Verlag, Berlin, pp. 227-265.

Didisheim, J.-J., K. Yvon, D. Shaltiel, and P. Fischer (1979). Solid State Commun., 31, 47-50.

Fujii, H., F. Pourarian, V. K. Sinha, and W. E. Wallace (1981). J. Phys. Chem., 85, 3112-3116.

Fruchart, D., A. Roualt, C. B. Shoemaker, and D. P. Shoemaker (1980). J. Less-Common Met., 73, 363-368.

Goldman, M., and L. Shen (1966). Phys. Rev., 144, 321-331.

Jacob, I., and D. Shaltiel (1979). J. Less-Common Met., 65, 117-128.

Jacob, I., and M. Polak (1981). Mat. Res. Bull., 16, 1311-1318.

Johnson, J. R., and J. J. Reilly (1978). Inorg. Chem., 17, 3103-3108.

Johnson, J. R. (1980). J. Less-Common Met., 73, 345-354.

Karlicek, Jr., R. F., and I. J. Lowe (1980). J. Less-Common Met., 73, 219-225.

Magee, C. B., J. Liu, and C. E. Lundin (1981). J. Less-Common Met., 78, 119-138.

Mauger, P. E., W. D. Williams, and R. M. Cotts (1981). J. Phys. Chem. Solids, 42, 821-826.

Meiboom, S., and D. Gill (1958). Rev. Sci. Instrum., 29, 688-691.

Pourarian, F., H. Fujii, W. E. Wallace, V. K. Sinha, and H. K. Smith (1981). J. Phys. Chem., 85, 3105-3111.

Shaltiel, D. (1978). J. Less-Common Met., 62, 407-416.

Shinar, J., D. Davidov, D. Shaltiel, and N. Kaplan (1979). Z. Physk. Chem. N.F., 117, 69-77.

Shinar, J., D. Davidov, and R. D. Hogg (1981). Solid State Commun., 37, 175-178.

Wernick, J. H. (1977). Topologically closed-packed structures. In J. H. Westbrook (Ed.), Intermetallic Compounds. Krieger Publishing, Huntington, New York. pp. 197-216.

Yartys', V. A., V. V. Burnasheva, N. V. Fadeeva, S. P. Solov'ev, and K. N. Semenenko (1980). Sov. Phys. Dokl., 25, 888-890.