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ABSTRACT: Eleven dimensional supergravity compactified on 7*° admits classical so-
lutions describing what is known as billiard cosmology — a dynamics expressible as
an abstract (billiard) ball moving in the 10-dimensional root space of the infinite di-
mensional Lie algebra Ejg, occasionally bouncing off walls in that space. Unlike finite
dimensional Lie algebras, E;y has negative and zero norm roots, in addition to the posi-
tive norm roots. The walls above are related to physical fluxes that, in turn, are related
to positive norm roots (called real roots) of Ejy. We propose that zero and negative
norm roots, called imaginary roots, are related to physical branes. Adding “matter” to
the billiard cosmology corresponds to adding potential terms associated to imaginary
roots. The, as yet, mysterious relation between E;q and M-theory on 7' can now
be expanded as follows: real roots correspond to fluxes or instantons, and imaginary
roots correspond to particles and branes (in the cases we checked). Interactions be-
tween fluxes and branes and between branes and branes are classified according to the
inner product of the corresponding roots (again in the cases we checked). We conclude
with a discussion of an effective Hamiltonian description that captures some features
of M-theory on T,
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1. Introduction

Our setting is M-theory with all of space compactified by periodic boundary conditions.
When more than d = 8 dimensions are compact, there is no notion of moduli space of
vacua; the metric and even the topology of the compact directions should be allowed
to fluctuate and should be treated quantum mechanically. But a complete quantum
mechanical formulation of this setting is, of course, at the moment unknown.

It has been suggested over two decades ago that the infinite dimensional Kac-
Moody Lie algebra Ejj is relevant to the formulation of this theory [1]. Since then, the
possible connection between M-theory and Ejy has been discussed in various settings
(see [2]-[24] for a sample). There are also recent conjectures about a formulation of
uncompactified M-theory in terms of Eyo [25] and about a description of the behavior



of M-theory near spacelike singularities in terms of Ejg [26]-[30]. Ejp and other Kac-
Moody and Generalized Kac-Moody algebras also appeared in other contexts in string
theory (see for instance [31]-[35]) which we will not discuss here. Although a lot of
progress has been made [36]-[40], a full understanding of the connection of M-theory
to E4g is still an open problem.

One of the features that distinguish infinite dimensional Kac-Moody Lie algebras,
such as Ejg, from the finite dimensional ones is the existence of imaginary roots [41] in
the root space. From the physical point of view these roots are mysterious, and to the
best of our knowledge their physical interpretation has not been explored.

In this paper, we will study these imaginary roots from a physical perspective. We
will propose that they can be matched with actual branes.

We find it convenient to work with periodic boundary conditions, although our
proposal about the relation of imaginary roots and branes can be readily adapted to the
noncompact setting of [26]-[30]. The simplest way to set periodic boundary conditions
on all 10 spatial directions is to pick a topology of T'°. Classically, a homogeneous
Kasner metric on T1° of the form

10
ds’ = —dt* + Y Ri(t)’da}, 0<az;<2m,  i=1...10, (1.1)
i=1
can be a solution to Einstein’s equations if all log R;’s are linear in logt. We set the
slope to be a constant p; so that

R;(t) t .
log = p;log —, 1 =1...10. 1.2
R;(to) to (1.2)
Without matter, the Kasner metric (1.1) is a solution provided the constants py, ..., pio

satisfy > p; = > p? = 1. This metric describes a universe that is contracting in some
directions (where p; < 0) and expanding in other directions (where p; > 0). This
metric was extensively studied in [9], where it was shown that a classical treatment of
a Kasner metric (1.1) is asymptotically trustworthy in the far future if the vector of
powers P = (pi, ..., p1o) describes a timelike vector in R%! (unrelated to the geometrical
spacetime) with a suitably chosen metric

7P =3 r - (Xn) (1.3)

11> = 0 if S_p; = S.p2 = 1, and thus 7 can never be timelike unless we also include
matter. But before we add matter in the form of Kaluza-Klein particles and branes, let
us discuss the dynamics in the presence of fluxes. A flux in this context could be either
a constant G = dC' (where C' is the 3-form of 11D supergravity) or a U-dual field. A



U-dual field could describe, for example, a nontrivial fibration of one of the ten spatial
directions over the remaining nine. The fluxes are quantized and have discrete values,
and there are instanton effects that change the fluxes by integer amounts. Explicit
constructions of such instanton terms appear in [42].

With fluxes, the classical dynamics of the scale factors log R; is no longer linear in
log t. It was argued in [43][26]-[30] that the evolution of the logs of the scale factors can
be approximated by a piecewise linear function that describes Kasner epochs separated
by sharp changes in the vector p. The changes correspond to reflections off (abstract)
walls in (log R;)-space. The walls correspond to the various fluxes that are present. The
orientation of each wall is determined by the type of flux, and its position is determined
by the amount of flux. This evolution is called billiard cosmology since the dynamics is
analogous to that of a billiard ball in an abstract 10-dimensional space with coordinates
log R;, and the reflections are analogous to the ball bouncing off the walls. Even in the
absence of fluxes the walls above are present quantum mechanically. They represent
the necessary U-duality transformations that can be used to convert small dimensions
to large dimensions [9]. Without matter, these reflections lead to a chaotic evolution
26].

E\y makes its appearance when we identify the (“billiard table”) 10-dimensional
space with the Cartan subalgebra of the infinite dimensional hyperbolic Kac-Moody Lie
algebra, and identify each reflection off a wall with a fundamental reflection generator
of the Weyl group. The metric (1.3) can be identified with the Cartan metric of Ejq
[which has signature (9,1)].

The infinite dimensional noncompact group Gio that is defined as the exponen-
tial of a certain real form of the Lie algebra Fjq is a natural extension of the finite
dimensional noncompact groups G4 = exp Fy4 with d < 8 that appear as classical sym-
metry groups of the low energy limit of M-theory compactified on 7'%. On the classical
level, these symmetry groups are spontaneously broken, and Gy acts transitively on
the moduli space of vacua whose metric and topology can be summarized by writing
the moduli space as I)\G4/K4. Here K, is the maximal compact subgroup of G4 and
I, = SL(d,Z) C G4. For d = 8 we have Gy = Eg(s)(R), and K; = Spin(16)/Z, [44][45].
On the quantum level, these groups are explicitly broken by loop and instanton effects,
and are not good symmetries. This point is demonstrated in explicit formulas for low-
energy effective scattering amplitudes (presented as terms in the low-energy effective
action that contain, say, products of 4 curvature tensors) that appear in [42]. The
quantum moduli space also contains extra identifications which extend I, to the full
U-duality group I'y [5]. It is a discrete subgroup of G4 that preserves a lattice in an
appropriate representation of G4 [46]. The extension of I/, to I'y makes the volume of
the moduli space finite. For d = 8 we have I'y = Ey)(Z). It is therefore also clear that



G119 = exp Eyp cannot be an unbroken symmetry group of any formulation of M-theory
on T that includes instanton effects. It has to be either explicitly or spontaneously
broken.

Nevertheless, F1q provides a nice characterization of the instanton effects. It is well
known that a positive root +« of the Lie algebra E; corresponds to an instanton B, of
M-theory compactified on T¢ (see [47][48] and section §2.3 for a review). For example,
for d = 8, if the metric on 7% is diagonal and there are no fluxes, the instantons are
Kaluza-Klein particles, M2-branes, M5-branes, and Kaluza-Klein monopoles with a
Euclidean world-volume. We will review this correspondence between positive roots
and instantons in §2.3.

In this paper we will study the case d = 10. This case is unique in that the Lie
algebra FEyq is the first E; with a Cartan form that is not semi-positive definite. It
is a hyperbolic Kac-Moody algebra with a Cartan form of signature (9,1). We recall
that a Kac-Moody algebra with a simply-laced connected Dynkin diagram is said to
be hyperbolic if its Cartan form is of indefinite type and every connected subdiagram
of the Dynkin diagram is of affine or finite type [41]. Hyperbolic Kac-Moody algebras
have rank < 10, and in this sense the case d = 10 is also maximal.

If the Cartan form is of indefinite type, as is the case for Ejg, the roots a do not
necessarily square to 2. In fact the roots of an infinite dimensional Kac-Moody Lie
algebra can be classified as real and imaginary [41]. Real roots satisfy o = 2, and all
other roots are called imaginary and satisfy o? < 0. The Weyl group acts transitively
on the real roots. We will review these facts in more detail in §2.1.

The familiar instantons such as Kaluza-Klein particles, M2-branes, M5-branes, and
Kaluza-Klein monopoles all correspond to real positive roots of E1q. In fact, as will be
reviewed in §2.3, the Weyl group of Ej, formally acts as U-duality on the instanton
[47][48]. Hence, every object that can be obtained by U-duality from the above list of
objects is also related to a positive real root, and, vice versa, every positive real root
is related to an object that can be obtained by a formal U-duality transformation on,
say, a Euclidean M2-brane.

The question arises: what is the physical interpretation of the imaginary roots?

The purpose of this paper is to study the roots with a? < 0 and to relate them to
physical objects. We begin in §3 by associating a formal “action” to the root, and we
study the “combinatorial” properties of this action as a function of radii Ry, ... Rig. In
this section we explore a “naive” interpretation of imaginary roots simply as new types
of instantons with very large actions.

In §4 we propose a different interpretation, which is one of the main points of this
paper. We propose that certain imaginary roots correspond to Minkowski objects. To
support this claim, we construct the Minkowski objects — say branes — via a creation



process by pushing one instanton through another. For example, one can construct
an M2-brane by pushing an M5-brane through another M5-brane [49]. We use a Wick
rotated version of that process where one instanton is translated in time until it crosses
over another.

Once we accept the connection between imaginary roots and physical branes, we
can study the interactions of branes with branes and the interactions of branes with
fluxes from the Lie algebraic point of view. We characterize various interactions ac-
cording to the inner product of the participating roots.

Finally, we attempt to collect all the information together and construct an effective
Hamiltonian that describes the masses of the branes. The model is a o-model on a
coset G/ Ko of G1p. The Hamiltonian is, up to a sign, simply the Gio(= exp Eio)
left-invariant Laplacian H = —/ and the wave-function satisfies a Wheeler-DeWitt
equation H¥ = 0. Gyg is spontaneously broken to the U-duality subgroup FEj¢(Z) by
requiring ¥ to be F1o(Z) invariant. This suggestion is rather old, but the new point is
to try to analyze the modes that correspond to imaginary roots quantum mechanically.
Doing that, we discover a piece in the Hamiltonian that is analogous to a particle in
a magnetic field. We compare the n'* excited Landau level to a state with n branes
(or Kaluza-Klein particles). The energy separation between the Landau levels almost
matches the energy of a brane, but unfortunately there is a mismatch by a factor of 2.
There are also a few other puzzles, related to charge neutrality and zero-point energies.

The paper is organized as follows. In §2, we review the construction of infinite
dimensional Lie algebras as presented in [41]. We also review billiard cosmology and the
connection between M-theory on 7' and the Lie algebra F,. In particular we discuss real
and imaginary roots of Fg and their multiplicities. In §3, we explore the combinatorial
properties of branes that correspond to imaginary roots. In §4, we argue that certain
imaginary roots correspond to Minkowski branes and we study the various constructions
of such branes via a brane creation process involving two instantons. As an application,
in §4.8, we add matter in the form of Kaluza-Klein particles and branes to billiard
cosmology. The matter component corresponds to potentials in (log R;)-space oriented
in directions corresponding to imaginary roots. In §5, we study how interactions of
pairs of branes and the interaction of a brane with a flux are encoded in the product
of the corresponding roots. In §6, we show that each instanton defines a subgroup of
the maximally compact subgroup Ky C exp Eqo. This is an extension of the statement
for d = 8 that a BPS instanton preserves half of the supersymmetry generators, and
therefore defines a subgroup of the R-symmetry group Spin(16), which is the double
cover of the compact subgroup Spin(16)/Z, C Egs)(R). In §7 we explore a possible
Hamiltonian formulation and compare our proposal to the “small tension expansion”
of [25]. We conclude with some open questions and a few conjectures.



2. Preliminaries

2.1 Infinite dimensional Kac-Moody Lie algebras

In this subsection we will review the salient features of infinite dimensional Kac-Moody
Lie algebras. Our discussion is taken from [50][51][41].

Readers who are familiar with this subject and readers who are not interested in the
mathematical details are (reluctantly) advised to read §2.1.1 and then skip to §2.1.3.
In §2.1.1, we review the construction of Kac-Moody algebras, and demonstrate it for
the hyperbolic Kac-Moody algebra of interest Fy¢ and also for its subalgebra Ey which
is an example of an affine Lie algebra [52][41]. In §2.1.2, we explain the multiplicity
formula for level 0, 1 roots obtained in [51].

2.1.1 Review of Kac Moody Algebras and Root Spaces

We recall the definition of the Kac-Moody algebra F1q and distinguished subalgebras
Eg, Fy. The construction of Eg is a special case of the general construction of Kac
Moody algebras in [50]. We start with the Dynkin diagram of Ej,:

Eq Qg

a_10p 1 g Qg3 Oy OG5 Og A7

We then associate to the diagram a Cartan matrix Ao = (a;;), (4,7 = —1,0---8), by
defining
2if i = j
i < { —1if nodes i, J are connected by a line

0 otherwise

The matrix Ao is symmetric and det(A;9) = —1; therefore rank(Alo) = 10. Choose a
real vector space hg of dimension 10, and hnearly independent sets 1< {a_y, - ,ag} C
bz (where * denotes the dual space) and ITY 2 {a¥,, ..., ay} C hg and define o (a )< a,;.

We note that for general Kac-Moody algebras
dim hr = 2n — rank(A) (2.1)

where n is the number of nodes in the Dynkin diagram and A is the matrix associated
to the diagram.



The Kac-Moody algebra Ej, is the Lie algebra over C with the set of generators
br U {e;, fi}3__,, and relations

[h’ hl] =0, [6,’, f]] = 5,']'@;-/, [h’ 6,'] = a;(h)e;, [ha fz] = —a;(h) fi, h,h' € GRa

ad(ei)l_“ij €j = 0, ad(fi)l_“"j .fj = 0, Z 7é j, (22)
def

where ad(z)y 2 [z, y], ad(z)%y = [z, [z, ]], and so on. Since hg has a basis of dimension
10, there are 30 linearly independent generators. These are called Chevalley generators.
GR is called the Cartan subalgebra of Ejy and is an abelian subalgebra of maximal
dimension under which E) is completely reducible. !

We next identify an Ey subalgebra of Ejy as the Kac Moody algebra obtained from
the subdiagram of the Eo diagram by deleting the (—1)-node and the line connecting
it to the 0-node. Similarly we identify an Eg subalgebra by deleting the —1,0 nodes
and the lines connecting nodes —1,0 and nodes 0, 1.

E8 ag E9 ag

Qp Gy 3 Q4 05 Qg 07 Qp 1 Gy (3 g4 05 G 07

We then construct corresponding Cartan matrices Ag and Ag following the proce-
dure outlined above, and view these matrices as minors of A;g. The defining relations
for EFg and Fq are thus inherited from the relations for Ejg.
We let by denote the Cartan subalgebra (CSA) of Ex and b the CSA of Ey. We
note that det(Ag) = 1 and det(Agy) = 0. A basis for the kernel of Agis {(0,1,2,3,4,5,6,4,2,3)"}.
We then see from the adaptation of formula (2.1) to Ey that dimbhg = 10, and thus
br = hg. In keeping with the notation of [51], we define §= Eg with CSA br, g< E,
with CSA hg, and g Fy with CSA GR. We have the root space decompositions of
each algebra with respect to its CSA. For example, g = @aeiﬁi g, where

8. ={rcg:[ha]=alh)z, Vhecbhs}
and we define the root space

A¥{aehy 8. #0,a#0}

!There are abelian subalgebras that are bigger than br, but E1g is not completely reducible with

respect to those subalgebras. Examples can be deduced from the constructions of [53], and we are
grateful to the anonymous referee for pointing this out.



We let Q& Zz——l Za,, and Q, & Zf__l Ne;. (N will denote the non- negatlve 1ntegers )
Flnally, define A+ = ANQy, the set of p081tlve roots of . We then have A = A, UA_
where A_ = —A, [41]. We define Q C Q, A C A, ete., analogously for the algebras g,
and similarly for g.

The signature of the inner product on the root lattice of a finite-dimensional simple
Lie algebra is well known to be positive definite [41], so from the Eg subalgebra of Fj
and the fact that det(A;g) = —1, we see that the inner product on @ must have
signature (9,1).

We partial-order FA)]’IE by a = gif a— 0 € Q+. For a = Zf:_lkiai € Q we
define the height as ht( )= Z§=_1 k;. Finally, we introduce the Weyl group W of g as
the subgroup of Aut f)R (the group of metric preserving linear transformations of GR)
generated by simple reflections

N = A= ANa ), i=-1,...,8  Xebhi

A root a € A is called a real root if there exist w € W such that w(a) = a; for some
—1 <4 < 8; otherwise « is an imaginary root. As g is a finite dimensional Lie algebra,
all of its roots are real. In general, a root « is real if and only if (a|a) > 0. For Ey = g,
all the imaginary roots are integer multiples of the root

def

0 =g+ 2071 + 3an + 4oz + Hay + 6as + dag + 2a7 + 3ag € A. (23)

It satisfies
(0]ey;) =0, 1=0,...,8,

We denote the set of imaginary roots of Fyg as

AnE{ae A (ala) <0},

||‘l

and we define the set of positive (negative) imaginary roots as Al <A, NAL (A- ©A.N

A).

The adjoint action of g on itself is an integrable representation, which means that

Im Im

Ve € g dneZy: adley,)"(z) =0, ad(fs,)"(z) =0, i=-1...8

Among other things, it implies that the Lie group exp g can be defined. It also implies
that W preserves multiplicities of roots. Therefore, all real roots have multiplicity 1.
However, imaginary roots can have multiplicities greater than 1. The multiplicities of
the imaginary roots of g are given by

mult(nd) = 8, 0#neZ.



There is no known closed formula for the multiplicities of the imaginary roots of g =

E,o. However, a closed formula has been derived in [51] for roots of “affine levels” 1 and

2 (this term will be explained below). We outline the derivation of these multiplicities

in the next subsection. See also [36][38] for a list of many roots and their multiplicities.
We will make a few extra observations before we continue.

Proposition 2.1 (Lemma 5.3 and Theorem 5.4 of [41]). Every imaginary root
can be uniquely written as v = w(«a) for a Weyl-group element w € W and o =
S ki € Q satisfying: (i) (a|oy) < 0 for all simple roots (i = —1...8), and (ii)
the subdiagram of the Dynkin diagram consisting of all vertices such that k; # 0 is
connected.

Proposition 2.2. Every imaginary root o € A, that satisfies (a|a) = 0 is W-
equivalent to nd for some 0 # n € Z. Its multiplicity is therefore exactly 8.

Proof. This follows immediately from proposition 5.7 of [41], which uses Proposi-
tion 2.1. ]

Proposition 2.3. Every positive imaginary root oo € A, that satisfies (a|a) = —2 is
W -equivalent to a_q + 20 + 4oy + 6ais + 8az + 10ay + 12a5 + 8ag + 4y + bas.

Proof. We use the same technique as in the proof of proposition 5.7 of [41]. We set
o= Zf:_l kic; with k; > 1 (otherwise o? > 0). Using Proposition 2.1, we may assume
that (a|a;) < 0 for all i = —1...8. Then —2 = (aja) = 320 _, ki(a]a;). But every
term on the righthand side is negative or zero. Since all k;’s are positive we are left
with three options: (i) (o]as) = (a|ay) = —1 for some —1 < s <t < 8, and (a|a;) =0
for all i # s,t; (ii) (o]as) = —2 and ks = 1 for some —1 < s < 8, and («|a;) = 0 for all
i # s; (iii) (a|as) = —1 and kg = 2 for some —1 < s < 8, and («|a;) = 0 for all 7 # s.
Using the inverse of the Cartan matrix given in (2.6) below, we can solve all k;’s
in each case above, and check whether a?> = —2. It turns out that there is a unique

solution, and only for case (iii) with s = 2, which is the root given above. O

As we shall see in §2.1.2, the multiplicity of the root is 44. Therefore, all roots «
with o? = —2 have multiplicity 44.

Definition 2.1. We will say that a root a is prime if it cannot be written as a = nf3
for some integer n > 1 and a root (3.

All real roots are prime, but imaginary roots are not necessarily prime. Since all
roots with (a|a) = 0 are Weyl-equivalent to a multiple of the root 4, it follows that all
positive prime roots with (a|a) = 0 are Weyl equivalent to the root 6.

— 10 —



Let us summarize the various terms in the following table:

>
=

Cartan subalgebra of Fyq

Set of all roots of Eqg

Set of positive roots of E1q

Set of real roots (a? = 2) of Eg

Set of imaginary roots (a? < 0) of Ey
Root lattice of i

Weyl group of Fig

+

g

, O [ :l,> D> D>

partial order on by
height of a root

br  Cartan subalgebra of Fy
Set of all roots of Eq

=Y

e

) minimal positive imaginary root of Fy
hbr  Cartan subalgebra of Fg
A Set of all roots of Fg

2.1.2 Dimensions of Level-1 Root Spaces

For an element o = Y°°_ | ko € Q, —ko = (a|d) is called the affine level of . Here
5 € A C A was defined in (2.3). We denote the set of all roots of Eyq at affine level [
by A[l].

The formula

mult(a) = p(8)(1 — (aéoz))’ —ko=0,1.

is derived in [51] for o a level 0 or level 1 root of Ey. By definition, p® (k) is the
coefficient of ¢* in 1/ [0, (1—¢™)%. Up to numerical prefactors, the generating function
of bosonic objects [[°—,[1/(1 — ¢")] is ubiquitous in string theory, and its appearance
in this new context is very intriguing.

The derivation in [51] makes reference to Chapter 12 in [41], and we briefly fill in
those details here. Define the weights of Eyq as

pd:Cf{)\eﬁik%:()\|ai)€Z> i:_]-aoa"'>8}a
and define the dominant weights as

P e P (Ma) >0, i=—1,0,---,8} (2:4)

- 11 -



In [51], the dominant weights in the weight lattice Q are defined in a different way:

8
Py ={) kl;:k eN}

i=—1
where A; (1=—1,0,...,8) are the fundamental weights,
(AAO&j) :52‘,]', ’L,j = —1,0,...,8. (25)

The two definitions are equivalent. It is obvious that P D @, which is true for any
Kac-Moody algebra. For Ejg, since det(A;g) = —1, it follows that P=0Q.
The fundamental weights are calculated as follows [51]. Expand A; = Zi:—l Cile Ol -

Then we solve
8

8
Z Cik(Oék|Oéj) = Z Cikakj = 51',]'-

k=-—1 k=-1

Thus, the coefficients ¢; are the rows of the inverse of the Cartan matrix A9 = (a;;):

23456 423
4 6 81012 8 4 6
6
9

o = O

1
2
4 912151812 6 9
36 1216 20 24 16 8 12
4 8 1216 20 25 30 20 10 15
510 15 20 25 30 36 24 12 18
6 12 18 24 30 36 42 28 14 21
4 8121620242818 9 14
24 6 8101214 9 4 7
36 91215182114 7 10

We have

~

A_1 = —(5, AO = —_1 — 20.
- s W-

Im

From [41] (chapter 5) we know that the set of negative imaginary roots A
invariant. The orbit of W on an imaginary root of § = Fj, intersects ]5+ exactly
once; the intersection root p is the one that maximizes ht(u) [41] (chapter 5). Since
g is integrable as an adjoint representation of itself, the Weyl group W preserves root
multiplicities, so it suffices to find the multiplicities of Al_m N f?+, It is easily checked
from the second definition of 15+, given above (2.5), that dominant weights that are
also roots at level-1 are of the form

Am N P_;,_ = {]\0 + ]{5_1[\_1 = —_1 — (1{5_1 + 2)5 . ]{3_1 S N}



The idea in [51] is to determine the multiplicities of these level-1 roots.

Given A € by, denote by L(A) the irreducible representation of Fgy with highest
weight A (Chapter 9 of [41]). L(A) has weight space decomposition L(A) = @, Va,
where dim(V3) = 1. L(A) is integrable if and only if A € P, (Chapter 10 of [41]).

Note that A[lb defined at the beginning of this subsection, is a representation
of g = FEy. From now till the rest of this subsection we restrict attention to this
representation.

We note that —a_; = Ag + 26, and L(AO + 20) is an integrable highest weight
representation of Fy. The level of the representation, as a representation of an affine Lie
algebra, is (—a_1|d) = 1. In general, let P(A) be the set of weights of a representation
L(A) of g = Ey, with A € Py, where P, P, are defined as in (2.4) but for Ey:

PEEb: (M) €2, i=0,....8),

P, ={\eP:(Na) >0, i=0,...,8}.

Then A € P(A) is called mazimal if A+ ¢ P(A). We denote the set of maximal
weights of L(A) by
Max(A)={\ e P(A): A\ +6 ¢ P(A)}

Claim 2.4. Max(A) is preserved by the Weyl group W of g = FEy.

Proof. Suppose w(A) + 8 € P(A) for some A € Max(A) and w € W. Then w™ (w(\) +
§) € P(A). But A+ w™!(6) = A+ 4, so we have a contradiction. O

Any orbit of W on P(A) intersects P, once; the intersection weight p being the
weight such that ht(A — p) is minimal in its W orbit. In particular, any maximal weight
is W-equivalent to a maximal weight in P,. Since L(AO +2) = —a_1) is highest weight,
—a_1 446 is not in P(Ag+26); therefore Ag+ 20 is a maximal weight in P(Ag+26) NP,
It is the unique such weight [51]. From previous remarks it then follows that any weight
of Max(Ag + 20) is W-equivalent to Ag + 25. We now state

Proposition 2.5 (12.5(e) of [41]). For any pu € P(A), there exists a unique A €
Max(A) and unique n > 0 such that p = X\ — nd. Furthermore, for A € P(A), the
set {n € Z : X —nd € P(A)} is an interval [—p,00) with p > 0, and the function
t — multza) (A — td) is non-decreasing on the interval. Moreover, if 0 # x € g_s,
(where g_5 C g is the 8-dimensional subspace of the Lie algebra Eq of all the elements
r € g with weight —§) the map ad(x) : L(A)x—ts — L(A)r—@11)s given by y +— [z, y] is
mjective.
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These observations imply

P(A)= || {A—ns:n>=0} (2.7)

AeMax(A)

(The union is disjoint.)

We will now define a few characters. The expressions below are formal series in
the formal variables e# where p runs over all possible weights. They are of the form
> . kue! where k, are integers. Two such series can be multiplied to yield a series of
a similar form, and the integer multiplicities %k, can be read off the coefficient of e*.
(There are actually some restrictions on multiplying two series — it is required that each
resulting &, will have a finite number of contributions, but we do not need to worry
about that here.) We will also use the convention that (1—e™#)™t = 1+e #+e 2+ ...

First, for A € Max(A), define

Also, define the character Ch L(A) of P(A) as

ChL(A)= > (dimyp Ae.

AEP(A)

The above decomposition (2.7) of P(A) implies that

ChL(A) = Z eral.

AeMax(A)

We now return to the level-1 representation of interest, L(Ao + 20). We proved above
that any W-orbit in Max(A) intersects P, exactly once. Since P, N Ay = Ao + 26,
there is therefore only one W orbit. The character Ch L(A¢ + 20) therefore contains

the term
Ao+26

€A0+25
A0+25’

a

and a term with the same root multiplicities and the same values of (a|a) for each
maximal weight that is W-equivalent to Ay + 2. To proceed, we quote

Proposition 2.6 (12.13 of [41]). Let A € PL= P, N A[l}- Then (and, by the way,
this is true in general for affine algebras of type X}Q, where X = A, D or E),

aﬁ _ H(l . e—né)—mult(n&)'
n=1

— 14 —



Recalling the realization of the affine algebra g = FEq as a Lie algebra of regular
polynomial maps from C* to g = Fg, we know that dim(g,,s) = dim(hg ®¢") = 8. Since
Ao + 26 € P}, the above observation implies a term

Ao+26 H —n6

in the character Ch L(Ag + 26). Let a = Ag + 20 — k6 = —a_, — kd. We have
(o)
5
Define p® (k) to be the coefficient of e™° in [[°2 (1 — e™)~%, and we have that
mult(a) = p® (k). Putting this together gives Kac’s result

_ @ (oa)
mult(a) = p! )(1 — ?)

(ala) =2(1—k)=k=1—

for o a level-0 or level-1 root.

2.1.3 “Physical” basis for the Cartan subalgebra of Fg

It is convenient to pick a basis for the Cartan subalgebra of EFiq that exhibits the
sl(10) C Eyg subalgebra manifestly. In this basis a vector h € hg has components

h = (h1,ha,..., hao). (2.8)
The relation to the basis a_q,...,ag of §2.1.1 is given by
+2 1 9 1 10
Y% Y% Y%
Z;(;h)& + - ( Zh th)OéG +§<;hj—2h10)a7+§<;hj)a8.

(2.9)
Acting as a subgroup of the Weyl group W of E, the Weyl group of sl(10), which is
the permutation group Sy simply permutes the components hq, ..., hjy. The Cartan
metric can be written in this basis as

L, Q0 10 )
I1R1° =Y = (Xom) (2.10)
i=1 i=1
Similarly, we define a “physical” basis for 6]’{{ as follows:

a1 = (1,-1,0,0,0,0,0,0,0,0),
0 — (07 17_170707070707070)7

ar = (0,0,0,0,0,0,0,0,1, 1),
= (0,0,0,0,0,0,0,1,1,1),
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For any root «, we will frequently use the notation

2d£f<

a” = (a]a).

2.2 Billiard cosmology

We will now review the classical evolution of a universe constructed from M-theory

on T We used the term ”constructed from” because, as we shall see, inclusion of

generalized fluxes can change the topology. Our review is based in part on [9] and [28].
The initial ansatz is a Kasner-like metric

10
ds’ = —dt* + Y Ri(t)’da?,  0<mz; <2, i=1...10. (2.11)
1=1

Einstein’s equations are solved by

Ri(t) ¢
= Di lo —,
Rity) V%%,

log 1=1...10,

(for some fixed arbitrary ¢y) provided that

10 10
=) pi=1. (2.12)
i=1 i=1

For fixed

= log —
T Ogto’

define the ten-dimensional vector
h = (log[M,Ry], ... log[M,Ri]). (2.13)

It is convenient to interpret this vector as a point in the Cartan subalgebra GR C Ey
according to (2.8). The classical evolution of the universe is now mapped to an abstract
mechanical system of a single particle moving on a straight line in hg. If we identify
T = log(t/ty) as the time variable then the particle has constant velocity. Note that,
with the Cartan metric (2.10), the configuration space by is identified with R%L,
Excluding the very special case that one p; is 1 and the rest are 0, (2.12) implies
that at least one p; has to be negative and at least one other p; has to be positive.
This means that in the far past and in the far future at least one dimension shrinks to
zero, according to the classical solution. This observation invalidates the assumptions
of classical 104+1D geometry both in the far past and in the far future. As shown in
9], it is still possible to have a weakly coupled description after dimensional reduction,
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provided that dh/d7 is timelike in the Cartan metric (2.10). This will not be the case if
equation (2.12) is satisfied, but it could be true if we add matter. But first we include
fluxes.

Denote the 4-form field strength of 104+1D supergravity by G = dC. To start,
suppose we turn on only the component Gio34. Flux quantization requires it to be
an integer. It then contributes a potential term to the classical supergravity action
proportional to

G? G?
1234 1234
Vio =

GP= — 12y = Rs---Riw)?  Vie=Ri---Ru.
\/§| | (R1R2R3R4)2 Vvlo ( 5 10)7 10 1 10

Note that in the absence of fluxes, the condition (2.12) implies that

dt dt
dr = — = _ = .
7= CMZ}O‘/}()’ (G=0)

where C'is a constant. In the presence of fluxes, it is more convenient to define confor-

t dt/
T= _ 2.14
/to 2 MIVio(t') ( )

for some initial time ty. It then turns out that the classical equations of motion are

mal time as

encoded by the Lagrangian

_ 27TH H [(27)% Gl 1gga 262 (hshotha-ths o) (2.15)

with the extra constraint that only trajectories with total energy zero (defined with
respect to the conformal time) are allowed. The potential term that is proportional to
the square of the flux G234 can be modeled as a sharp wall at position

hs + -+ hig ~ —log G1a34.

The mechanical system is now described by a particle moving at constant velocity
(with respect to the conformal time 7) until it hits the wall. After the collision the
particle reflects off the wall, conserving energy and momentum parallel to the wall, and
continues at a constant velocity on its new trajectory. It turns out that the reflection off
the wall can be interpreted as a Weyl reflection in GR. That is, the reflection off the wall
defines a linear transformation on the velocity vector dh /d7, which is precisely a Weyl
reflection. The position of the particle is therefore confined to lie within a fundamental
Weyl chamber of Eyg [26][27][28]. We will return to this point in §4.8.
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U-duality [5] acts on the vector h. In fact the U-duality group has a subgroup that
is generated by permutations of the indices hq, ..., hig and by the transformation

h—s (h1—§h123> h2—§h123> hs—ghlzs, h4+%h123, "'h10+%h123), hi2s = hi+haths.

(The remaining U-duality transformation generators are transformations that enforce
periodicity of gauge fluxes such as Ci23.) It turns out that this subgroup is the Weyl
group of Eq [47][48]. These linear transformations preserve the kinetic term of (2.15),
since the Weyl group preserves the Cartan metric. But they can act nontrivially on
the potential term. As we have seen above, each potential term corresponds to a Weyl
reflection in BR. The Weyl group acts on these reflections by conjugation, and hence
changes the position of the walls.

Some of the new walls obtained this way correspond to other fluxes, while other
walls correspond to a topology change, because U-duality can turn the components
(1234 into components of the metric. For example, one can get a wall that corresponds
to the potential term

7T]€2 exp{2(h1 + h2 + hg + h4 + h5 + hﬁ + h7 + 2h10)} (216)

This wall describes a topology change from T to a circle fibration of the 10 direction
over the 8 and 9" with first Chern class ¢; = k. The metric is given by

9
ds? = —dt* + 3 Ry(t)*da? + Rig(t)*(dzo — fwodrs)?,
i=1

and the boundary conditions are such that g — xg9 + 27 must be accompanied by
X9 — T10 + k’!L’g.

Finally, consider two fluxes in transverse directions, say G134 and Gsgrg. The term
J C NG AG of 10+1D supergravity implies that G A G is a source of 3-form flux. Since
all 10 spatial dimensions are compact an anti M2-brane must be present to absorb the
flux [54]. The Kasner cosmology must now also contain matter in addition to fluxes.

2.3 Instantons and positive roots

We have mentioned in §2.2 that fluxes such as GG1934 correspond to real positive roots of
FE1y. We will now discuss this correspondence in more detail. Instead of discussing the
fluxes themselves, it is convenient to discuss processes that change the flux by one unit.
These are the instantons of M-theory. For example, the flux G934 can be changed by
one unit via an instanton that can be interpreted as an M5-brane with Euclidean world-
volume, wrapping the 5, ... 10" directions [55][56]. Analogous Euclidean branes can
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also be constructed in string theory and supergravity. In this context they are known
as S-branes [57]-[58].

Let us list the various possible Euclidean objects present for M-theory on T with
d < 8. These are: Kaluza-Klein particles, M2-branes, M5-branes, and Kaluza-Klein
monopoles. Let Ry,..., Ry be the radii of 7% and M, be the Planck mass. In the
absence of fluxes, the actions of these objects are, up to permutations of the indices,

2T R Ry ", 27TM§R1R2R3, 27TM§R1R2R3R4R5R6, 27TM§R1R2R3R4R5RGR7R§.
(2.17)
The correspondence with positive roots of Eg allows us to write down a simple formula
for such actions. Up to a 27 factor, the log of the action S, of instanton B,, is given by
(v, fz) where £ is the vector in the Cartan subalgebra by that is related to Ry,. .., Ry
by h = (log[M,R,], ... log[M,R,)), similarly to equation (2.13).

S, = omelh).

If hisin a region of hg such that (o, fz) >> 1 for all simple roots i = —1,...,8 then the
Euclidean objects can be safely interpreted as instantons. Generically, if the R;’s are
given by (1.2) with p’ timelike in the metric (1.3) then there is some choice of simple
roots for Eyg for which all the instanton actions above are large at very late times [9].

The FEuclidean objects contribute instanton terms to amplitudes. These instan-
ton terms could, for example, be corrections to R* terms (contractions of 4 curva-
ture tensors) or A\'® terms (contractions of 16 fermions) in the low-energy effective
action in the (11 — d) noncompact dimensions [48]. The instanton terms behave as
¢ = exp(—S, + iC,), where C, is the flux that couples to the object. For example: for
the Kaluza-Klein particle with action S, = 2w R; /Ry, this flux is the ratio of metric
components C, = 2mg12/ a2, for the M2-brane with action S, = 27TM5R1R2R3, the flux
is the M-theory 3-form component C, = (27)3C}a3.

Strictly speaking, the instanton actions in (2.17) are in the absence of off-diagonal
metric components such as ¢gps,..., and in the absence of 3-form fluxes such as (3,
etc. In order to avoid confusion with the 4-form flux G = dC' we will refer to all the
former collectively as 6-angles. In the presence of #-angles, the action S, is, in general,
modified. All the #-angles, together with the radii Ry, ..., Ry parameterize the moduli
space My = E4(Z)\Eq4(R)/ K, [44][45] where K, is the maximal compact subgroup of
E4(R). It turns out that ® = exp(—S, +1iC,) is a harmonic function on E4(R)/K, with
respect to the Ey(R)-left invariant metric [42][10].

Furthermore, actions of simple combinations of instantons, corresponding to Wick
rotated bound states, are also given by harmonic functions. This observation allows us
to algebraically relate bound states of Euclidean branes to the Lie algebra roots. For
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example, an M2-brane that is wrapping the diagonal of the R3 — R4 torus has action
S = 2w M?R, Ry\/R3 + Rj, in the absence of f-angles. In the presence of f-angles, this
action is, in general, modified to

S’:ﬁMIf’/ \/§d3:r+z'/ C,
M2 M2

where ¢ is the induced metric on the M2-brane and the integrals are performed on the
M2-brane worldvolume. Let us assume that the only nonzero #-angles are C, = (93
and Cg = C1a4, where we have introduced the two Lie algebra roots a and 3 with

Sa =2TMJR\RyR;,  Sg=2rM}R\RyR,.

The harmonic function then reduces to

N N )

The point is that we can determine S’ by calculating the absolute value of a harmonic
function whose phase behaves as exp{iC, + iCg}. (See [10] for more details.)

3. Combinatorics

As we have reviewed in §2.3, each positive real root a of Eyy corresponds to a unique
Euclidean brane, and the action of the brane, in the absence of fluxes, is given by
21 exp (a, E), where £ is the vector of logs of radii given by (2.13). The actions are
of the form 27 H;gl(MpR,-)"i where n; are positive integers, except for Kaluza-Klein
instantons in which case one n; is —1. From this action we can read off the dimension
of the brane by counting the number of powers for which n;, = 1. For example for an
M2-brane the action could be 27TM§’R1R2R3 and the dimension is 3.

Formally, we can define an action corresponding to imaginary roots of F in exactly
the same manner, 27 exp (a, i;) We can then ask similar questions, such as how many
n;’s are 1, about the imaginary roots as well. The purpose of this section is to study
such “combinatorial” properties of the real as well as the imaginary branes. In this
section we will naively interpret the imaginary roots as Euclidean branes. However, in
84, we will propose another interpretation that we believe is better.

3.1 Root properties

We will now work with the Lie algebra Ejy. As we have seen in §2.1, our convenient
basis for the weight space R!° is such that the root lattice I' C R is spanned by
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vectors
10

a = (ny, ng, N3, Ny, N5, Ng, N7, Ng, Ng, N1o), N; € Z, (i =1...10), E n; =0 mod 3,
=1

and such that the Cartan product is given by

10

N BT
i:lZ 9 Z 91< Z ’ 9 "

i=1 1<j<10 i=1

The action of the corresponding formal brane B, is 27 [[.(M,R;)"™ where R, are here
best thought of as abstract variables (formally, the radii of the 10 directions of T1°).
Strictly speaking, this is the action of an instanton in the absence of #-angles, i.e. off-
diagonal metric terms such as gq, ..., and in the absence of 3-form fluxes such as C'93,
etc.

The inner product of two roots o and «' is given by

10 10

(a, ') = ;nm; — %(Z n2> (Z ni)

i=1 i=1
We can translate the actions to type-IIA by defining

10
1
moz—n10+§;ni, m; = n;, 1=1...9, (3.1)

The action can then formally be written as 2wg,~™° H?:l(Msli)mi where g is the string
coupling constant, M, is the string scale, and [; are the formal compactification radii.
(These formulas again assume that all #-angles are zero.) The inner product can then
be written as

9

9 9
1 1
(o, ') = 2momy + Zmimg — 5o Zmi — §m6 Zmi
i=1 i=1 i=1

For future use we need to define

Definition 3.1. We say that a root «a with indices n; is thicker (thinner) than a root
o with indices n; if n; > n} (n, <nj) fori =1...10.

The roots given by
O1.0=(1,1,1,1,1,1,1,1,1,0)

and all its permutations are the thinnest among all the imaginary roots.
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Definition 3.2. we define the void count of the root a to be the number of i’s for
which n; = 0.

Definition 3.3. we define the singleton count of the root a: to be the number of i’s for
which n; = 1.

Definition 3.4. we define the doubleton count of the root o to be the number of ¢’s
for which n; = 2.

Claim 3.1. The only positive imaginary roots with void count > 0 are permutations of
the following:
(0,n,m,n,n,n,n,n,n,n), n > 0.

Proof. Without loss of generality we may assume that n; = 0. The root is then an
element of the g = Ey subalgebra. The claim immediately follows from the characteri-
zation of the imaginary roots of Ey as nd. O

Claim 3.2. A positive imaginary root has no negative n;’s. A positive real root has
negative n;’s only if it is a permutation of (1,—1,0,...,0).

The proof is given in the appendix.
Let us now describe the imaginary roots a up to the action of the Weyl group.

Proposition 3.3. Every positive imaginary root v € At of § = Eyy can be uniquely

Im

written as v = w(a) with w € W an element of the Weyl group, and o € Q given by

a = (ny,ng,...,Nn1p),
and satisfying
0<ni<ny<-- <, 2(ns +ng +nig) < ny+ng+ -+
Proof. This follows immediately from Proposition 2.1 and Claim 3.2. O

Theorem 3.4. The only imaginary roots with a singleton count s > 2 are permutations
of the roots given in the table of Figure 1. In that table, we have indicated the square of
the root, the singleton count s, the doubleton count d, and the multiplicity of the root
m. There is an infinite number of imaginary roots of singleton count s = 1.

The proofs are given in the appendix.

Our notation ©;,i,. i,:j1js..ju- indicates the indices iy, ..., that have n;, =--- =
n;, = 1, then the indices ji,j2,..., jq that have n; = --- = n;, = 2, and so on. By
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Root Square s | d | multiplicity
©s.10=(0,1,1,1,1,1,1,1,1,1) (@2,,,10)2 =0 910 | m=28
O1.8910 = (1,1,1,1,1,1,1,1,2,2) (@1,”8;910)2:0 812 | m=28
O1.56.10=(1,1,1,1,1,2,2,2,2,2) (@1,”5;6___10)2 =0 515 | m=28
O1234. 010 = (1,1,1,2,2,2,2,2,2,3) | (O1234.010)°=0 |3]6|m=38
O12.3 78910 = (1,1,2,2,2,2,2,3,3,3) (@12.3“.7.8910) =0|2|5|m=28
O12:305.10 = (1,1,2,2,3,3,3,3,3,3) | (O12:315.. 010)2=0122|m=38
O12.3. 010 = (1,1,3,3,3,3,3,3,3,4) (@12;;3.“9;10) =0 210 m=38
O12.3 10 =(1,1,2,2,2,2,2,2,2,2) (@12;3.“10) =—-2 28| m=44

Figure 1: Imaginary roots of Fyg with singleton count> 2.

analogy with instantonic branes associated to real roots, we will say that the imaginary
root is extended in directions iy, ... ,1s. Ironically, in §4 we will argue that such a root
corresponds to a brane that is not extended in these directions. But, for the naive
interpretation of the present section the terminology above is natural.
The formal actions associated with the imaginary roots are
Sa.10 = 27M Ry - - Ry,
Si.s910 = 2T MRy - - Ry(RyRyp)?,
S1..5:6..10 = 27TMpl5Rl - Rs(Rg -+ - Ryo)?,
S123:4..9,10 = QWM;SRleRg(R4 -+ Ry)* R},
S12;3.7,8910 = QWMglRle(R?, -+ R7)*(Rs Ry Ruo)?,
512;34;5...10 = 27TM§4R1R2(R3R4) ( "Rl(])ga
S12::3..9.10 = QWMI??Rle(R?, - Ry)*RY,,
S12:3..10 = QWM;SRle(R?, - Ryp)?.
(3.2)

For completeness we present:

Theorem 3.5. The only real roots with a singleton count s > 2 are permutations of
the roots given in the table of Figure 2. There is an infinite number of real roots of
singleton count s = 1.

The proof is also outlined in the appendix, and see also [7][47].

Note that @89 10 corresponds to an M2-brane, ©5 19 to an Mb- brane O3..9.10 to a

.....

on the 10*" direction, as in equatlon (3.1).
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Root Square s | d | multiplicity
Os910 = (0,0,0,0,0,0,0,1,1,1) (@8910)2 =2 310l m=1
©s..10 =(0,0,0,0,1,1,1,1,1,1) (@5.__10)2 =2 60| m=1
O3..9.10 = (0,0,1,1,1,1,1,1,1,2) (@3.__9;10)2 =2 71| m=1
Oz, 7.8910 = (0,1,1,1,1,1,1,2,2,2) (@2...7;8910)2 =2 63| m=1
Og345..10 = (0,1,1,1,2,2,2,2,2,2) (@234;5._.10)2 =2 316|m=1
©1.9.00=(1,1,1,1,1,1,1,1,1,3) (O1..9.10)° = 2 910|m=1
O1 678000 = (1,1,1,1,1,1,2,2,2,3) (O1..6.780; 10)2 = 2 63| m=1
O©1. 45 89010 = (1,1,1,1,2,2,2,2,3,3) | (01 45. 8910) 414 m=1
O193.456:7..10 = (1,1,1,2,2,2,3,3,3,3) | (O123,456:7...10 ) = 313 | m=1
O193.4.10 = (1,1,1,3,3,3,3,3,3,3) (@123”4___10) =2 310l m=1
O123.8010 = (1,1,2,2,2,2,2,2,3,4) | (O13,3.80010)°=2 [2]|6|m=1
©12.:345:6..9:10 = (1,1,2,2,2,3,3,3,3,4) (@12;345;6...9;10)2 =223 |m=1
O12.34.8910 = (1,1,2,3,3,3,3,3,4,4) | (O12:3.4. 89 0)?=212[1|m=1
O12.3. 6710 = (1,1,3,3,3,3,4,4,4,4) (@12;;3...6;7...10)2 =212|0|m=1
O12.34.10 = (1,1,3,4,4,4,4,4,4,4) (@12;;3;4_._10)2 =2 2(0|m=1

Figure 2: Real roots of E1g with singleton count> 2.

Definition 3.5. we define the hyperplane of the root to be the subspace of R!Y generated
by unit vectors in all directions ¢ for which n; = 1.

Obviously, the hyperplane of the root has a dimension equal to the singleton count.

In the notation and terminology of §2.1.1, the imaginary roots listed above can
be constructed as follows. We first write down all the positive real roots that can
be obtained from the simple root a_; (with corresponding action 2rR; Ry ') by Weyl
reflections in the Weyl group W of Ey. These reflections are generated by the simple
reflections 7, . . ., rg. The simple reflections ry, . .., r7; act simply as permutations of the
indices of Rs,..., Ry and we can ignore them. Successive application of the simple
reflection rg on ar_1, with suitable permutations of the indices in between, produces the
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following list of real roots:
Se_ , =2wR1 Ry,

5
rg - -7“]-(0(_1) = (Z Oéi) + ag = S = 27TM§R1R9R10;

i=—1

8
rg-- "f’j’f’g' . "l“k(Oé_l) = (Z Oéi) +Oé4 +20é5 +046 +Oég = S = 2WM£R1R6R7R8R9R10;

i=—1
Ty Ty TErs o r(ay) = sy 4+ 200 + 3a1 + 4(ag + as + au) + das + 3as + ar + 3as
= S =27 MR Ry Ry Ry R; Ry Ry Ri; (j,k,1=0...7).

We know from §2.1.2 that all of the remaining level-1 roots are simply translations of the

maximal Weights OfL(—Oé_l) by —no forn Z 1. [Recall that Sm; = 277'(M3R2R3R4R5R6R7R8R9R10)n.]
For n = 1 these translations give us the following imaginary roots with multiplicity

m = 8:

©13456789 10 (8 = 9)7 @12345678;9 10 (S = 8)7 @12345;6789 10 (S = 5), @156;234789;10 (8 = 3)7

For n = 2 these translations give us the following imaginary roots with multiplicity
m = 44:

O12,345678910 (S = 2),  O1.2345678:910 (s = 1),  Ora3as:673010 (s = 1), O156.234780,10 (s = 1),

The last three roots did not appear in our table in Figure 1 above since their singleton
count is smaller than 2.
Translating the root actions above to type-IIA notation we obtain

2 8 2T 10 2
- { ng Il % soms s { 2000 Dl

gS_SMsgll ly ;S—ngllll - Lr(Islg)?
( 2r A 15 2
LLE VAT N A
2_7TM813Z . l l l 2 953 S 1 3
S1..56789 10 — { %M 1411 3 -Z5El6 3 'ZQ;Q S'123.456789:10 — ;S—ZMswll s ly(ly - 1)
gsiits 0l 4\%5 9 \ %Msnllb(li’» . ls)zlg
( or A g 18 2 3
T Ml (lg - -1 lgl
25 MO0y (g - - - 1y)? e e iballs ) ()
S'12:3456789 10 — ggiM Tl - y)? St2334567:8910 — o5 Mo Lila(ls - - - 16)*(I7lsly)
9s°77° \ %Msmh(lz - 1g)* (I7lsly)?
;S—QM821Z1ZQ(Z3Z4)2(Z5 o lg)?
Si2;34:5678910 — %Msmlllzlg(h o lg)?

20 M2 (ol (1 - 1)
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3.2 Orthogonal roots

For two real roots «, 3, the condition («|3) = 0 has a physical interpretation in terms
of the corresponding instantons [59]-[66][10][12]. It means that the two instantons can
“bind at threshold,” [67][68] so that the bound instanton has only one time-translation
zero-mode and its action is the sum of the actions of the two individual instantons (at
least when all the f-angles are set to zero). For example, an M2-brane with action
2m M3 Ry Ry R can bind at threshold to an M2-brane with action 27 M3 Ry Ry Rs. It can
also bind at threshold to a Kaluza-Klein instanton with action 2rRyR;*, and so on.
We will now calculate which imaginary roots from the lists above are orthogonal to
various real roots.

An imaginary root that is extended in directions 1,.. ., s (see the definitions above)
is orthogonal to all the real roots corresponding to Kaluza-Klein instantons that have
actions 27rRle_1 for1<k<l<s.

As another example, let a be a real root that corresponds to an M2-brane instan-
ton. It is orthogonal to ©; ¢ if the M2-brane’s hyperplane is a subset of the O ¢’s
hyperplane.

The real root « is orthogonal to O g.91 if their hyperplanes intersect on a dimension-
2 plane. In this case, the intersection has co-dimension 1 inside the M2-brane’s hyper-
plane. It is therefore tempting to say that the M2-brane can end on the ©; sg.910-
instanton, just like an M2-brane can end on an M5-brane [69].

The real root « is orthogonal to ©; 5678910 if their hyperplanes intersect on a
dimension-1 hyperplane (a line).

There are two distinct possibilities for a to be orthogonal to ©123.456789:10. In one,
the corresponding hyperplanes intersect along a line, and in the other the hyperplanes
intersect only at the origin.

Similarly, an M2-brane root « is orthogonal to ©12.34567.8910 i two distinct cases.
In one, the intersection of their hyperplanes is exactly the origin, and in the other the
intersection is a dimension-1 hyperplane (a line).

An M2-brane root « is orthogonal to ©12.34.5678910 OF ©12:3456789 10 only if the inter-
section of their hyperplanes is exactly the origin.

We can perform a similar analysis for a root a that corresponds to an Mb-brane,
but we will not present it here.

4. Physical interpretation of imaginary roots

The discussion in §3 assumed that imaginary roots correspond to Euclidean branes. We
can always define the action corresponding to an imaginary root as 2w exp («, h), as we
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did in §3, and study its combinatorial properties. But this definition lacks sufficient
physical motivation.

In this section we would like to propose an alternative interpretation that, we
believe, is more physical. We propose that a prime positive imaginary root + with
+? = 0 corresponds to a Minkowski brane, and 2 exp <fz, ) describes its mass in units
inverse to conformal time. We will begin to study the imaginary roots v by looking for
two real positive roots o and 3 such that v = a + .

4.1 Prime roots with v =0

Let ©5._ 19 be the imaginary root that corresponds to the action

Soy. 1o = 2™ = 27 MY Ry Ry Ry Ry Re Ry Ry Ro Ryg.
It satisfies (O, 10)% = 0, and it is minimal in the sense that no other imaginary root is
thinner (see §3).
We will start with the roots that can be obtained from ©5_ ;9 by a Weyl reflection.
These are all the prime roots that square to zero. For a specific example, take «a, 3
corresponding to Mb-branes with actions

So = 2mel®M = 2r MO R\ RyRy Ry RsRg, S = 2me™™ = 27 MO Ry Ry Ry R Ry Ry,
(4.1)
Then v = a + 3 is an imaginary root with 42 = 0 and multiplicity m = 8 and

S’Y = 27TM;2(R1R2)2R3R4R5R6R7R8R9R10. (42)

Let J** and J*? be elements of Ej, that correspond to the real roots. Then the
commutator [J* JF] is in the weight space corresponding to 7.

Physically, a and 3 correspond to Mb5-brane instantons. Let « be an instanton at
time ¢, and [ at time ¢g. Now consider switching the time order of the two instantons
from, say, t, < tz to t, > tg (see Figure 3). In this “process” one M5-brane passes
through the other. But this is precisely the M2-brane creation process described in [49].
After the process there is an extra M2-brane stretched along the 1, 2" directions and
extended in time from t3 to ¢,.

The brane creation process has various versions for different roots. We will now
describe a few of the versions. In the setting that we described above, the creation of
the M2-branes can be argued as follows. The instanton at ¢z creates a jump in the flux
G'78910 and the instanton at t, creates a jump in the flux Gs456 so that

N for t < tg,
N+1 fOl"t>t5,

N —1 fort<t,,
N’ for t > t,,

(27)*Grs910 = { (27)*Gaus6 = {
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(a)

Figure 3: Two instantons associated with the real roots «, 3. Each instanton creates a jump

t

in the associated flux. The fluxes are depicted by the diagonal pattern. Instanton « creates a
jump from a nonzero value to 0, while instanton § changes another flux from 0 to a nonzero
value. (a) Instanton « occurs before instanton 3, and the different fluxes do not overlap;
(b) Instanton « occurs after instanton (3, and the fluxes overlap between times ¢z and ¢,. In
addition, a particle (the thick vertical line) associated to v = « + (3 is created between the

two instantons.

for some integers N, N’. As we recalled in §2.2, the [C' A G A G term of 10+1D
supergravity indicates that G A G is a source for M2-brane flux and there must be an
equal number of anti- M2-branes to cancel that flux [54]. Therefore, together with the
instanton at tg, N’ — 1 anti- M2-branes must also be present if {53 < t, and N anti-
M2-branes must be present if t3 > ¢,. Setting N = N’ = 0 we see that one M2-brane
is stretched between the two instantons if 5 < ¢,.

There is a U-dual process involving geometry alone [70][71]. In this case we take 3
to correspond to an M2-brane and « to correspond to a Kaluza-Klein monopole such
that

Sy = 2me @M = 2r MPRyRoRyg,  Sar = 2me!®® = 2w M2 R2R, Ry Ry R R Ry Rs,
(4.3)
Then v = o/ + (' the same as before. This time the process of M2-brane creation can
be understood entirely from the geometry of the Kaluza-Klein monopole. The Kaluza-
Klein monopole changes by one unit the first Chern class ¢; of the fibration of the 1%
circle over the 72 in the 9"* and 10** directions. Suppose that

0 fort<t,.
Ccl =
1 fort >t,.
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Then the M2-brane in the 2"¢, 9 10" directions cannot pass through the Kaluza-Klein
monopole. It must get “stuck” at some point along the 9" — 10" plane, and it is not
hard to see that an M2-brane that wraps the 1% and 2"¢ directions is created.

Another U-dual process involves passing a DO-brane through a D8-brane [72] or a
D4-brane through another D4-brane [73][74]. In these processes a string is created. To
relate it to our E1g conventions, we lift type-IIA to M-theory, taking momentum in the
274 direction to be related to DO-brane charge. We then take the roots o and 3" as
follows:

Sor = 2w M) — 2w R Ry, Sgn = 2me" M) = 2x M Ry RS Ry Ry Rs Rg R; Ry Ro Ry
(4.4)
Again, v = o’ + 3" is the same as before and also the object that is created is the same
M2-brane stretched in the 1% and 2"? directions.
We conclude that the root v with

-

Sy = 2me"M = 2r M)?(Ry Ra)* Ry Ry Rs Rg Ry Rs R Ryg

corresponds to a physical (temporally extended) M2-brane stretched in the 1% and 2"¢
directions.
For another example, take v with

Sy = 2me"" = 2w MY Ry Ry Ry Rs Rg Ry Ry R Ry (4.5)
We can decompose it as a sum of two real roots as v = a +  with
Se =2rMJRyR3Ry, S =27MJRsRsR;Rs Ry Ryp.

An instanton corresponding to « creates a jump by one unit in the flux Gges4 and an
instanton corresponding to (3 creates a jump by one unit in the flux G234. When the two
fluxes G234 and Ga34 are present together, we get a contribution to the field-theoretic
momentum P' = [, /gGo%ueisGl, . d"z. Since the total momentum must be zero,
there must be extra Kaluza-Klein particles with the opposite amount of momentum.
Thus, v corresponds to a Kaluza-Klein particle with momentum in the 1%¢ direction.
In §4.2 we will write down a mass formula for the physical objects corresponding to the
imaginary roots v that will allow us to immediately see that v above corresponds to a
Kaluza-Klein particle with mass R;'.

4.2 A mass formula

There is a simple formula that relates the imaginary root « to the action of the physical
brane. Let us list the branes that we found and their “masses,” i.e. actions per unit
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time dt. Let us write down the first four roots from Figure 1 or equation (3.2), together
with the masses of their corresponding branes (that we denote by M),

6<®2'“10’ﬁ> - M3R2R3R4R5R6R7R8R9R10> M = R1_1>
e(O1.5910.0) — NI2R\ Ry Ry Ry Ry Rg Ry Rs(RoR0)?, M’ = M>Ry Ry,
e(Orsisiorss 10,h) M,” Ry Ry Ry Ry R5(Rg R Rs Ry Ry)?, M’ = My Rg R+ Rs Ry Rao,
(O asamsoio F) _ M;SRleRg(R4R5R6R7R8R9)2R?0, M = M3R4R5R6R7R8R9R%O.
(4.6)

The roots in equation (4.6) correspond to a Kaluza-Klein particle, M2-brane, M5-brane,
and Kaluza-Klein monopole, respectively. The mass M’ can be written as

bl

= Vio = Ry -+ Rio.

The factor Vi might seem strange at first, but if we recall the definition of conformal
time (2.14), we can write the Minkowski action S, of the brane per unit conformal time

as ~
ds ds P
d—; = 27TM1?V10d—; = 27TM3V10M/ = 21el " (4.7)
We will refer to this equation as the mass formula.

The remaining roots from the table in Figure 1 or equation (3.2) are

6(912;34567;89 10, h) — M21R1R2
p
(©12,34:56789 10, B) __ 24
€ = Mp R Ry
6<®12;;3456789;107h> — M27R1R2
p

€<®12;3456789 10,h) _ MI}8R1R2

R3 s R7)2(R8R9R10)3> M/ - M;IPRS e R?(R8R9R10)2>

RsRy)*(Rs - -+ Ryp)?, M’ = M}’ R3Ry(Rs - - - Ryp)?,

Rs--- Ry)*Ri,, M’ = M}®(Rs- - Ry)*R},,

RsR4RsR¢R7Rg Ry R1)?, M' = M} R3RyRsRs R; Rs Ry Rio.
(4.8)

Py

The roots in equation (4.8) are unfamiliar objects, but the first three roots are Weyl
reflections (formally U-duals) of the roots of (4.6). Note that the expressions for the
masses of ©12.34567:80 10, O12:34:5678910 can be obtained from the actions of the real roots
Os. 7.8910, O234:5. 10 (see the table in Figure 2) as follows

S{O. 7.8010}

S {@234;5...10}
27TR2 ’ ‘

M'{O,. . =
{ 12,34567,8910} 21 Rs

M {®12:3456789 10} =

This is in agreement with our physical interpretation of the real roots as instan-
tons. The imaginary roots can be obtained by Wick rotating an instanton back to
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Minkowski space. If we replace R, with the time direction we can formally con-
vert the instantons to the Minkowski branes associated with the two imaginary roots
©12:34567;80 10, O12;34;56789 10-

The third imaginary root ©19..3456789:10 in (4.8) can be obtained in a similar way
from the real root ©a.3456780.10. The latter does not appear in the table of figure 2)
because its singleton count is s = 1, but it can be written as d 4+ O3 9.10, and O3 _g.10
appears in Figure 2 as the root corresponding to a Kaluza-Klein monopole.

The last root satisfies (©12.3456789 10)2 = —2 and so cannot be a Weyl reflection of
the other roots (that square to zero). It can be obtained by a Wick rotation similar to
the one discussed above, but we have to start with § = ©,_19 which is an imaginary
rather than a real root, and therefore does not correspond to an instanton. The physical
interpretation of ©12,3456789 10 is therefore different. We will return to it in §4.4.

4.3 The multiplicity

The imaginary roots that we studied in §4.1 have a multiplicity of m = 8. This means
that the Lie algebra F¢ has 8 different generators for the same root. The root deter-
mines the commutation relations of these generators with the Cartan subalgebra GR,
and determines the mass of the brane (4.7). Thus, all m = 8 generators with the same
root yield the same mass. In fact, from the brane creation process discussed in §4.1 it
is obvious that all m = 8 generators correspond to the same object.

For example, we constructed an M2-brane stretched in the 1% and 2"¢ directions
with ~ given by (4.2), using the two instantons «, § given by (4.1). The root v was
imaginary with multiplicity m = 8 and satisfied v = « 4+ (3. The natural Lie algebra
generator to associate with this root is (up to a multiplicative factor) the commutator
[J*+e, JP], where JT® and J* are the generators associated with the roots a, 3. They
are unique since «, (3 are real roots with multiplicity m = 1. But in (4.3) we decomposed
v =a' + 3 as a sum of different real roots. It is not hard to check that [J* J+7] is
linearly independent of [J*®, J*A]. (For this purpose, note that a Weyl transformation
in the Weyl group W can be found that simultaneously maps all the roots «, 3, o/, 3,
to roots inside g = Ey, which is tractable.) Similarly, in (4.4) we constructed yet a
third decomposition v = o” 4+ " which (as is easy to check) yields another linearly
independent generator.

Thus, it seems that it is the root that corresponds to the brane and not the gen-
erator. In the following subsection we will see that the situation is probably different
for roots with negative norm.
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4.4 Roots with 72 <0
Take v = o + 3 with

So = 2mel®" = 27 M? Ry R R R Ry Rs Ry Rio,

Sp = 2me"M = 2w M Ry Ry Rs Rs Ry Rs R Ry

Then +* = —2, and

-

S, = 2me™"" = 21 M'® R, Ry(Ry Ry Ry R Ry Rs Ro R1)*.

This is the root v = O19.3. 10 that puzzled us at the end of §4.2.

We need to understand what happens when instanton « is pushed past instanton
3. Instanton « creates a jump in the first Chern class ¢; of the fibration of the 4" circle
over the 1°¢ and 3™ directions while 3 creates a jump in the first Chern class of the
fibration of the 3"¢ circle over the 2"¢ and 4™ directions.

We are mainly interested in the topology of the manifold. Let (x1, 22, x3, 24) be the
relevant periodic coordinates with 0 < xy,... 24 < 27w. We will describe the manifold
as a T fibration over 72 with the base B spanned by x1, 25 and the fiber F' spanned by
r3, 4. We denote a generic point of the fiber by p = (z3,24). A point on 7% = B x F
is denoted by (x1, 22, p).

Let us first discuss the effect of a single instanton, say «. Pick an arbitrary coor-
dinate 0 < a < 2w. The geometry associated with « can be described by cutting the
base B along the circle 1 = a and gluing the part at z; = a — € (for some small € > 0)
to the part at 1 = a + € by

11
(@-cmmp) e ot am @), 0sm<zn peh M= 1),
Here Ms € SL(2,7Z) is a linear transformation acting on the T2 fiber.
Similarly, the effect of instanton 3 is described by picking an arbitrary 0 < b < 27,
cutting the base B along x5 = b and gluing according to

10
(21,0 —€,p) — (z1,b+ €, Ms(p)), 0<mz <2m, peF, Mg= (1 1) )
The resulting manifold is smooth except at points that project to (z1,x2) = (a,b) on
the base. If we go in a circle around (a,b) we discover that the fiber F' undergoes a
monodromy (see Figure 4)

3—1

M = MgM Mg M = (1 0

) € SL(2,7). (4.9)
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Figure 4: The monodromies in the T2 fiber, as we pass through cuts on the 72 base. M is
the resulting monodromy around the singular point (a, b).

So, we found out that by pushing instanton 3 past instanton a we create a sin-
gularity at (zy1,22) = (a,b) that extends in directions 5...10 and is described by a
monodromy (4.9) in SL(2,Z) for the torus in the 3" 4" directions. This is the same
type of monodromies of stringy cosmic strings [75] and F-theory [76]. In fact, setting
M = Mgﬁ with M = Ma.Mﬁ_l.MOj1 we see that, after reducing on the fiber F' to type-
[IB in the spirit of F-theory, the singularity is that of a (0,1) D7-brane (associated
with M3) and an anti- (1,1) D7-brane (associated with ]\7)

Note that a different decomposition of v = o/ + 3" with, say,

Ser = 21l = 2w MY Ry Ry RyR2 R Ry Ry Ry,
Sy = 2w = 2 M? Ry Ry Ry R2 Ry Rs Ry Ry, (4.10)

yields an apparently different singularity. However, the two decompositions v = o + (3
and 7 = o + [ define two different 1-dimensional subspaces of the 44-dimensional
space g, as follows. If we denote by J** J+# J+o' J*# ¢ & nonzero Lie algebra
elements in g,,...,8y (unique up to a multiplicative constant) then [J* J*7] € g,
and [J* J*P] € g, are linearly independent. Thus, in this case it would appear that
several different objects are associated with the same root v, but it might be possible
to associate them with different Lie algebra elements in the same space §g,.

In any case, the conclusion is that the imaginary root ~ is associated with a pair of
branes of different types (but perhaps not uniquely). It would be interesting to study
whether more complicated imaginary roots can be associated with more complicated
collections of branes. It is also interesting to note that the affine Lie algebra Ey and
the Kac-Moody Ej appeared in the context of configurations of (p,q) 7-branes in the
past [34][77][35] (and see also [78]).
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4.5 Nonprime roots with v2 = 0

According to Proposition 2.2 all imaginary roots with 42 = 0 (called isotropic) are W-
equivalent (U-dual) to a multiple of 6 = Oy 19. We will now discuss the roots v = nd
with n > 1.

Take the case n = 2 and decompose v = a + § with

Sy = 2mel®" = 27 M R2Ry Rs R Ry Rs Ry Ry,

-,

Sp = 2me"M = 2w M R R4 Rs Rs 7 Rs R Ry,

Then v = 26, and

-

S, = 21" = 27 M®(Ry Ry Ry Rs Rs Ry Ry Ro Ri).

In this case, an interpretation of v via a brane creation process does not work. If
we try to mimic the discussion of §4.4, we discover that the two instantons can pass
through each other unharmed. Indeed, this time instanton « creates a jump in the first
Chern class ¢; of the fibration of the 2" circle over the 1% and 3"¢ directions while /3
creates a jump in the first Chern class of the fibration of the 3¢ circle over the 1% and
2"? directions.

We can create a nontrivial circle fibration of the 3¢ direction over the 1 — 2 plane
by cutting a small disc around the origin of the 1 — 2 plane, say of radius € > 0, and
gluing it back with a twist

(1 = €cos,xy = €sinb, x3) — (ecosb,esinf, z3 + 0).

Now let us put the two instantons together. Start with 7% = S1x 81 x St with directions
1...3. We can simulate the effect of o as follows. Define

Yo ={(0,25,0): 0<zy <2r}C TP

Let NV, be a small tubular neighborhood of X,. Its topology is D x S! where D is the
2-dimensional disc. The boundary of N, has topology T?. We can pick N, such that

ON, = {(ecosf,xq,esin6): 0<mxy<2m, 0<60 <27},

for some small € > 0. Topologically, the effect of « is to cut out N, off T° and glue it
back after a Dehn twist:

(ecosB, xq,esinf) — (ecosb, z + 0, esinb).
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Similarly, 3 can be simulated by cutting a small tubular neighborhood Ny around
Yo Z{(0,0,25): 0< g <2m} C T

and gluing it back with a Dehn twist.

But ¥, and Xz are 1-dimensional. We can therefore deform them so that they do
not intersect inside 7. The two instantons can therefore pass through without affecting
each other. (If we had tried the same construction in §4.4 we would have discovered
that 3, and 33 are 2-dimensional and generically intersect at a point inside 7%.)

The nonprime roots must therefore have another interpretation. We do not know
what it is.

4.6 Decomposition of level-1 imaginary roots

We will now show that any level-1 imaginary root can be constructed in the manner
above, by interchanging the time order between two instantons.

Claim 4.1. Any imaginary root v € A[l] is W-dual to a sum of two positive real roots.

Proof. We have to show that there exists w € W (the Weyl group of Ejg) such that
w(y) = a+ 3 for a, f € Af. Recall from §2.1.2 that any v € Apj can be reflected into
A[l] N P, using the Ey Weyl group W. Recall that P, is the set of positive dominant
weights of Fy C FEjo and can be explicitly written as P, N A[l} ={a_1+nd:n>
0}. The latter roots are imaginary for n > 1. Then, for n > 1, we can decompose

ro(a_1 +nd) = a+ B with

a=a_1+ay+ a, 6 =n0 — .

4.7 Decomposition of arbitrary imaginary roots

Now let us discuss the decomposition of more general imaginary roots. Let v € AIJ;,
be an imaginary root of Ej5. Can we decompose it as a sum of two positive real roots,
v=a+[7

The problem of finding « that satisfies

=2, (y—a)P=2=+=2(y|a),

reduces to an inhomogeneous quadratic Diophantine equation in 9 integer unknowns.
(We can, for example, eliminate ni from the linear equation v = 2(y|a) and substitute
it in a? = 2.) For 72 < 0, it is not hard to see that the quadratic form is elliptic. (Over
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R, the metric on by is equivalent to the Lorentzian metric on R%'. The vector v is
timelike, and therefore the equations a? = 2 and v? = 2(y|a) define an 8-dimensional
ellipsoid.) We do not know the general answer, but we have tried to decompose several
imaginary roots by computer, and were successful each time.

For physical purposes, it is enough to address the weaker question of whether we
can find a Weyl-group element w € W such that w(y) = a+ F for some «, [ € A;g
We can actually drop the restriction of positivity for «, 3, because of the following

Claim 4.2. FEzistence of a decomposition w(y) = a —  with «, € At implies

Re?
existence of a decomposition w(y) = o + " with o/, 5" € AL

Proof. Suppose 7 = a— (3. First assume that the minimal number of simple reflections
needed to bring 3 to a simple root is smaller than or equal to the number required for
a. Then, applying this minimal list of simple reflections, we obtain w’(y) = o — «;, for
some " € At | and some simple root a; = Tay, © 0T, (3). To see that o € At we
have to use lemma 3.7 of [41] which states that the only way for a sequence of simple
reflections 7o, o7Ta, |
through a simple root at some stage a; = rq,, 0= 07, (a) (1 <t < s). But we

assumed that at least s simple reflections are required to turn « into a simple root, so

o---or,, to take a positive root to a negative root is by passing

o € At We can now write o w'(7) = a; 474, (@"). It is easy to see that o/ = rq, (")
cannot be a simple root (otherwise o’ + «; would be a real root of Ejg) and therefore,
by the same arguments as above, it cannot be a negative root and so must be positive.
Setting ' = «; and w = r,, o w’ we obtain the requisite decomposition w(y) = o/ 4+ 3.

If it is a that requires the smaller number of simple reflections to turn it into a
simple root then, following the same steps as above, we get a decomposition w(y) =
—a’ — 7. But, according to proposition 5.2 of [41], a positive imaginary root v cannot
be W-equivalent to a negative imaginary root —a’ — 3’ (in sharp contrast to real roots!).
So this case is ruled out. O

4.8 Billiard cosmology with matter

To conclude this section we will apply the relation between physical branes and imag-
inary roots to billiard cosmology. In §2.2 the matter component of the universe was
provided by the fluxes. In this section we will add physical Kaluza-Klein particles and
branes. In the absence of fluxes, we must make sure that the total charge of any type
must be zero. We can do that by adding an equal amount of branes and anti-branes.
As we have discussed in §4.1, the presence of fluxes can induce a brane charge. Let «
and ( be two real roots such that v = a+ [ is an imaginary root that is W-dual to
J [defined in equation (2.3)]. If we turn on N, units of flux corresponding to « and
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N3 units of the g-flux, then we get effective N,Njs units of v-charge which must be
canceled by N,Ng v-type anti-branes. The flux contributes a term of the form

—7TN262<°J‘> - 7rN562<ﬁ’ﬁ> (4.11)

to the effective Lagrangian (2.15). NN, branes (or anti-branes) of type corresponding to
~ contribute a term of the form
21 N, e (4.12)

to the Lagrangian.

In [26][27][28] it was argued that each potential term exp{2({a, h)} can be approxi-
mated by a wall in FL-space, and it was further argued that only the walls corresponding
to the simple roots a = a_1, ..., ag are important. Up to a finite piece, the other walls
are generically hidden behind the walls of the simple roots.

The new terms exp (7, fz) that come from matter correspond to potential terms
that are in general smaller than the terms related to the simple roots. If N, = |N, N3,
which is the minimal amount of branes necessary to balance the effective charge of the
fluxes, then ) ) )

2 N, e < mN2e2onh) 1 7TN§62<6’h>.
In principle, however, we can let N, be larger if we add pairs of branes and anti-branes.
In this case, since 7 is lightlike, the term exp (7, fz) cannot be replaced by a wall because
the billiard ball can penetrate the region where exp (7, FL) is large, as can be seen after
writing down the equations of motion. [What makes this possible is the fact that the
kinetic term in the Lagrangian (2.15) is not positive definite.]

In addition, the dynamics could be more complicated since the branes could interact
and annihilate. This topic is beyond the scope of this paper. (See [79] for a discussion
on the dynamics of strings and branes in cosmology.)

It is also interesting to compare the term (4.12) to the effective o-model proposed
in [28]. There, an effective potential which contained a sum over all positive roots
with terms of the form exp{2(y, i_i)} was proposed to describe M-theory near a spatial
Kasner-like singularity. Our term (4.12) is different by a factor of 2 in the exponent!
The o-model by itself does not appear to capture this term, as we will discuss in greater
detail in §7.

5. Interactions

We have seen that real roots of Ejy describe fluxes and instantons, and certain imag-
inary roots describe branes. In this section we will discuss combinations of roots. We
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will begin with a combination of two imaginary roots, and ask how the features of the
interactions of the corresponding branes are related to the algebraic properties of the
roots. We will then study the effects of a flux corresponding to a real root on a brane
corresponding to an imaginary root.

5.1 Brane interactions

Take two imaginary roots « and 3 that correspond to physical branes as above. What
can we say about the interaction between the branes from the algebraic perspective?
The inner product («|3) encodes the basic properties of the interaction. We have
discussed in §3.2 the relation between threshold binding of instantons and the orthog-
onality of their corresponding real roots. We can now ask what is the condition on
two imaginary roots o and (3 so that the corresponding physical branes could bind at
threshold. Let M, and Mgz be the masses (i.e. actions per unit time) of the individual
branes. The type of interaction we are interested in is characterized by the formation
of a bound state with mass M, + Mp, in the absence of §-angles. Take for example,

Sa =27 M)*VioR1 R, Sg = 2aM)*VigR3Ry.

In the absence of #-angles, the corresponding M2-branes can bind at threshold to form
an object with mass M;’(Rle + R3R,). We calculate (a|f) = —2.
We conclude that the condition for binding at threshold is

(a|3) = —2 = binding at threshold. (5.1)

This condition also applies for U-dual examples, such as a Kaluza-Klein particle with
mass Rl_l binding to an M2-brane with mass MI‘:’Rle, and so on. In particular, the fact
that an M2-brane can end on an M5-brane [69] can be traced back to the possibility
of the two objects to bind at threshold. For this example, take an M2-brane with
mass Mg’Rle and an Mb5-brane with mass M§R2R3R4R5R6; condition (5.1) is again
satisfied.

The next type of interaction is typically characterized by forming a bound state

with mass , /M2 + ME For example, take «, § with
Soa =2wM*VioR1Ry,  Sp=27M)*VigR Rs.
This corresponds to one M2-brane with mass MS’Rle and a second with mass MSRl Rs.

The corresponding M2-branes can bind to form an object with mass M} Ry+/R3 + R3,
according to the Pythagorean theorem.
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This type of interaction also occurs when a brane absorbs a Kaluza-Klein particle
and gains momentum in an orthogonal direction. For example, take «, 3 with

So =2nMVioRy',  Sg=2wM)*VioRoRs.

Here « corresponds to Kaluza-Klein momentum in the 1%¢ direction, and 3 corresponds
to an M2-brane in the 27¢ and 3"¢ directions. The M2-brane can absorb the momentum
and get an energy of \/(MSR2R3>2 + (Ry1)2.

A third example is furnished by an M5-brane absorbing an M2-brane which becomes

a 3-form tensor flux supported on its world-volume. In this case:
Sa = 27TM;2‘/10R1R2, Sg = 27TM;5‘/10R1R2R3R4R5.

This is also dual to D-branes with electric or magnetic fluxes [80][81][68]. Inspired by
the first example, we will refer to such an interaction as Pythagorean binding. In all
these cases we have

(a|3) = —1 = Pythagorean binding.

In the case of Pythagorean interaction, either a — 3 or § — «a is a positive real root.
For a third type of interaction, consider the process of brane creation. Take, for
example, the case of [49] with two M5-branes that pass through each other,

Sa =2 M) VioR1 RoR3RyRs,  Sg = 2w M,°VioR Rg R: Rs Ry.
In this, or any of its U-dual versions, we get
(| f) = —4 = Brane creation process.

We have covered the cases (a|3) = —1,—2,—4. It would be interesting to find the
physical interpretation of other cases.

5.2 Interactions of branes with fluxes

In the previous section we discussed the interaction of two branes associated to the
imaginary roots «, 5. In this section we will take o to be imaginary and 3 to be real.

We assume that the imaginary root a corresponds to a Minkowski brane B, and
the real root 3 corresponds to a flux. (The instanton associated with [ creates a jump
in that flux.) In this section we study the interaction of the brane B, with the flux.
We will again attempt to characterize it according to the inner product («|3).

We will assume that FL, the vector of (log R;)’s, is in such an asymptotic range that
the brane B, is described by low-energy field theory and that the effect of the flux can
be treated perturbatively, and we will restrict the discussion to first order.
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As a first example, use the 10" direction to reduce from M-theory to type-IIA and
take B, to be a D2-brane so that

Msll%

3
s

™) = MI2Vi Ry Ry = Rs Ry (5.2)

1

Where we have introduced the type-ITA string scale M, = Mp% R%), and coupling con-
stant g, = (MpRlo)%.

The D2-brane is described by a U(1) super-Yang-Mills theory with field strength
F. (pv=0...2), 7scalars ¢’ (I =1...7), and 8 Majorana fermions 1* (a = 1...8),
with Lagrangian

B P 40110, 967 + " ). (53)

Loyip = 10
The index a of the fermions corresponds to the spinor representation 8 of the R-
symmetry group Spin(7) and the index I corresponds to the vector representation
7.
Let us first take the flux to be an NSNS flux Hi93. The corresponding instanton is
an NS5-brane in directions 4...9, so that
. B 21 M,°

27T6<h’6>255— 3 R4R9:27TM£R4R9
Js

Note that («|3) = 0. The effect of such a flux is to “pin” the brane [82] and add a
mass term to ®!, &2, 3 and to the fermions. The term linear in the flux is a mass term
proportional to Hig31 23 where I'! (I = 1...7) are Dirac matrices of Spin(7). It is
worthwhile noting that after a series of U-dualities and a Penrose limit, the mass term
above can be traced [83] to the mass term in the lightcone string theory that describes
pp-waves [84][85].

For the second example, let us stay with the D2-brane but take the flux to be an
NSNS Hijzg. Now the flux has one leg along the D2-brane. The effect is [86](83][87] a
nonlocal deformation of 241D super-Yang-Mills theory to a dipole theory [88]. The
first order deformation is proportional to

nggFgu(CI)[la“(I)Z} + EFHO'Miﬂ),

where 9 is a direction on the brane, and ¢ is a 2+1D Dirac matrix.
In this case .
2me? = S5 = 2rMPRyRy - - - Ry,

and («o|f) = —1.
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For a third example, we will add a Chern-Simons interaction to the Lagrangian
(5.3). To get the Chern-Simons interaction we will start with type-IIB this time. Take
a D3-brane in directions 7...9 with a low energy effective action given by N = 4
super-Yang-Mills theory, L3, 1p = ﬁF w4 -+ and the scalars and fermions will
not concern us this time. To add a Chern-Simons interaction we need to recall the
coupling between the RR 0-form x of type-IIB and the 2-form field strength F. It is

/xF/\F:—/dx/\A/\F.

So, if we can find an instanton that creates a constant gradient in y in say the 7%
direction, we can get the Chern-Simons term [ A A F after dimensionally reducing
to 2+1D, by forgetting the 7" direction. (We also get a mass term for the fermions,
as is required for supersymmetric Chern-Simons theory.) The flux dx is created by
a D7-brane instanton. But it is more convenient to formally T-dualize along the 7
direction. The D3-brane becomes a D2-brane corresponding to the root « as before
(5.2). The D7-brane instanton becomes a D8-brane with formal action,

. 9
omethB) — Sp = 2w M,
Js

Rl cee Rg = 27TM;2R1 cee RQR?O.

Note that («|3) = —2. The D8-brane instanton turns type-IIA into a massive type-ITA
[89][90][91], and we can arrive at the same Chern-Simons term by studying D-branes
in massive type-1IA theory [92].

To conclude, we have found the following interactions of fluxes with branes (see
Figure 5),

(a]f) = 0 = Mass term,
(o] 3) = —1 = Dipole interaction,
(a|8) = =2 = Chern-Simons.
(5.4)

5.3 Interaction potentials

How can we connect the interactions on the righthand column of (5.4) with the algebraic
properties of the roots?

In this subsection we will write down formulas for the potential energies of the
interactions. The formulas are in the spirit of the mass formula (4.7) and relate the
derivative of the action with respect to conformal time 7 to the roots.
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(a) Mass term (b) Dipole term (¢) Chern-Simons term

(a|3) =0 (a|B) = -1 (a|3) = =2
1,2,3 1,2 1...7
H H
?] e, L
~ NF¢Q¢ ~ANF
(L o A
a 8,9 a 8,9 a 8,9

Figure 5: Three types of interactions of a D2-brane with flux. The D2-brane is in the plane
of the 8" 9" directions (and time). The imaginary root associated with it is o. The flux is
associated with the real root 3. The arrows indicate the directions of the flux: (a) A mass term
appears as a result of an NSNS flux orthogonal to the brane; (b) A dipole interaction appears
as a result of an NSNS flux with two legs orthogonal to the brane and one leg parallel to
the brane; (¢) A Chern-Simons term appears in massive type-ITA theory (the flux permeates
throughout space);

Let us start with the case of a D2-brane in the 8, 9** directions that is immersed
in His3 NSNS flux, as in Figure 5-a. We need to calculate the mass term that is
generated on the D2-brane world-volume. The magnitude of the flux is His3/ Ry RoR3,
and it therefore follows that the mass term is proportional to exp («, E), in units dual
to conformal time.

However, this formula does not tell us which degrees of freedom on the brane (i.e.
which components of the fermions) receive a mass term. In order to distinguish the
components, it will be more convenient to work with a mass term that preserves some
supersymmetry. This can be achieved by adding Hi45 so that we now have both Hjg3
and Hyy5 fluxes perpendicular to the brane. The magnitudes of the fluxes His3/R1 RoR3
and Hys5/Ry RyRs must be equal for some supersymmetry to be preserved. Since the
mass term is supersymmetric (both fermions and bosons get the same mass), the ground
state energy will not change. It will be simply the mass of the D2-brane. We need to
find some way to coax the mass term to show itself as a change in energy.

We have at our disposal the option to add more branes and fluxes, and this is
what we will do. We will adopt the same method used in [10]-[12]. We first note that
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the details of the Hio3-related mass term are such that every state on the brane with
angular momentum in the 2 — 3 plane (which corresponds to an R-symmetry generator
in the field theory on the D2-brane) gets an additional energy proportional to the
angular momentum. Similarly, the Hy45 term is related to angular momentum in the
4 — 5 plane. The ground state, having zero angular momentum, is not lifted.

Thus, to test the mass term we need to add angular momentum in the 2 — 3 plane,
say, and check the extra term in the energy of the state. But from the Ejy perspective
we can only easily add Kaluza-Klein momentum in some direction 1...7 perpendicular
to the brane, not angular momentum. We need to find a trick to convert angular
momentum to ordinary Kaluza-Klein momentum.

The trick is to add a “spectator” Kaluza-Klein monopole. Consider a type-1TA
Kaluza-Klein monopole in R®! x S! space, with S! corresponding to the 5 direction
and let the monopole be extended in the 1,6, ..., 9" directions. We will ignore the
1%, 6%, ..., 9" directions, for the moment. The Taub-NUT solution, corresponding to
the Kaluza-Klein monopole, is

-1

4 4
R
2 p2 2, 77-1 2 _ 5
ds* = R:U(dxs— g Aidx;)*+U E dz;, 0<uz;<2m, U=|1+ T

i=2 i=2 Yoo X

where A; is the gauge field of a monopole centered at the origin. The Taub-NUT
solution is a fibration of a circle (the 5 direction) over R?® such that at oo the circle
has a constant radius R5. The Taub-NUT solution is smooth at the origin. The relevant
point for us is that there is an isometry that looks like a translation in the 5 (the S'’s)
direction at oo and as a rotation in SO(4) of the R? tangent space at the origin. If we
place a D-brane at the origin (and allow it to extend in some of the other directions
1,6,...,9) we can convert angular momentum in directions 2,3, 4,5 perpendicular to
the brane to Kaluza-Klein momentum in the 5 direction at oo far from the brane.
The upshot is that together with the Kaluza-Klein monopole, states with Kaluza-Klein
momentum in the 5 direction should get extra energy.

Now let us rephrase the story in Fjg language. First, it will be convenient to
generate the NSNS fluxes Hio3 and Hyss not via an instanton, as we did in §5.2,
but via a f-angle. The spectator Kaluza-Klein monopole helps us with that too [86].
Suppose that far away from the origin we try to set up a constant NSNS By5-field. The
Taub-NUT geometry looks locally like R? x S' with a constant S', so unless we get
very close to the origin there is no problem in setting up the constant Bis-field. But if
try to extend Bis to the full Taub-NUT geometry we run into an obstacle. We have to
set the B-field to be proportional to the global angular 1-form of the fibration, but that
form is not closed, so there has to be an H = dB flux. In fact, at the origin the value
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of the flux turns out to be |H|?> ~ (By5/R1R?)?, where 0 < Bjs < 27 is the asymptotic
value of the B-field at infinity [86].

Now we are ready to translate to Ejp-roots. Let us lift back from type-ITA to
M-theory along the 10" direction. We have the imaginary root « that corresponds to
the D2-brane, the imaginary root o that corresponds to the spectator Kaluza-Klein
monopole, the imaginary root v that corresponds to Kaluza-Klein momentum in the
5t direction (to be converted to angular momentum by the Kaluza-Klein monopole)
and finally, we have the real root n that corresponds to the #-angle that is the NSNS
2-form flux C,, = By5. The corresponding actions are listed in the following table:

Object Root  Action/2m

D2-brane  « el = MI2VigRg Ry
Spectator o elrh) — M18V \Rs5/RaRs Ry
Momentum ek = Mo 2 Vio/ Rs

B-flux n emh) — M RiRsRy

The extra energy due to the interaction of the flux with the brane that we expect
is
AV ~ Gy = Gy :
MPRi\R?  MPRiRZRy
In the spirit of the mass formula (4.7), we write it as

O;il = 2T M) VoAV ~ el ”’E>Cn, (v|n) = —1. (5.5)

where S; is the extra term in the action due to the interaction. We see that the

spectator root o does not enter into the interaction formula. Note also that

(al)=-1, () =-1.

We can similarly study the case depicted in Figure 5-b. In this case, states with
2 — 3 or 4 — 5 angular momentum have an effective electric dipole on the D2-brane
worldvolume. The dipole vector is proportional to the angular momentum and is di-
rected along the 9" direction. To probe it we need to add an additional electric field
on the D2-brane, as was done in [86]. We can do it by adding an extra fundamental
string charge to the setting, but we will not do that here.

6. A note on supersymmetry

For M-theory on T®, each instanton that corresponds to a (real) positive root of Eg(s)
breaks half the supersymmetry. The supersymmetry generators transform in the vector
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representation of the double cover of the maximal compact subgroup Kg = Spin(16)/Zs
of Eg).? (Spin(16) has a Zy X Zs center. The first Z, factor is trivial in the spinor
representation, while the second factor is trivial in the vector representation. The Zo
factor in Ky is the second one, since the adjoint representation of Eg decomposes as the
120 adjoint of so(16) plus the 128 spinor of so(16), but does not contain the vector
16.)

Physically, each real positive root therefore defines a subalgebra of the Lie algebra
s0(16). This is the subalgebra that preserves the unbroken supersymmetry. We will
now study this relation from the group theoretic point of view. For a related discussion
see [93][18][19][20][24].

First, let us explain what we mean by the action of K. Classically, the low-energy
limit of M-theory on 7% is described by a supersymmetric o-model with target space
G/K where G = Egs) and K = Spin(16)/Z,. A point in the target space can be
parameterized as a coset gK with g € G. The o-model can be formulated as a gauged
o-model with target space G and gauge group K acting on G from the right. The
fermions 1) are in the vector representation of K. But this action of K from the right is
not physically interesting, because it is merely a gauge symmetry. We are interested in
the gauge invariant combinations gy on which K acts from the left as gy — xgv, for
x € K. (Note that g1 is defined only up to a sign ambiguity because of the Z, factor in
K, but bilinears in 1) are well defined.) This K-symmetry, being broken by instantons,
is not a good quantum symmetry. But this is precisely the point here — each instanton
term breaks a part of K and defines an unbroken subgroup.

Consider 10+1D uncompactified M-theory. The supersymmetry generators are
Majorana spinors of so(10,1). Under so(8) @& so(2,1) C so(10,1) they decompose as
32 = (8,®8,)®2, where 8. and 8, are the two real spin representations of so(8) and 2
is the real spin representation of so(2,1). Let V' be the 16-dimensional real vector space
8.@8;. Both 8, and 8; have an so(8)-invariant bilinear form that we denote by (+|-). and
(+|-)s, respectively. The supersymmetry generators are 2+1D spinors which take values
in V. The R-symmetry algebra so(16) acts on V' as the subset of ¢gi/(V,R) that preserves
the bilinear form (+|-). + (+|-)s. Choose a Majorana representation so that the Dirac I'-
matrices are purely imaginary. A massless particle with momentum g = (pg, p1, - - ., P10)
preserves the supersymmetry generators that satisfy (poI'® + Zio pil)x =0, forz € V.
Now consider a Kaluza-Klein instanton with momentum in the j** direction and world-
line in the k™ direction, so that the action is RkRj_l. After Wick rotating the massless
particle we find that the instanton preserves x € V that commute with I'*. It defines

2We are grateful to R. Borcherds for pointing out to us that Kg should not be denoted by SO(16).
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the subspace
Wi, ={x eV ilNr =2} CV.

We denote the subalgebra of so(16) that preserves Wi ; by
Uy = {g € s0(16) : T g = gI'™} C s0(16).

Uk,; is isomorphic to u(8).
Similarly, an M2-brane instanton stretched in directions jy, j2, j3 defines a subspace

def

Vle]é]'B = {l’ eV: 'éleijgl’ = l’} cV

We denote the subalgebra of so(16) that preserves Wj, ;,j, by
Ujrjnjs = {g € s0(16) : [717273g = gT'717233} C 50(16)

Ujjajs 18 also isomorphic to u(8).

To see this, let us take, without loss of generality, (ji, j2,j3) = (1,2,3), and let us
decompose the representation V' of so(8) under the Lie algebra so(3) @ so(5) C so(8).
We find that V' decomposes as the complex representation (2,4) of so(3) @ so(5). The
components of a vector z € V' can be written as 2** where o« = 1,2 and a = 1,...,4.
The bilinear form (-|-) = (:|-)c + (:|-)s can be written as (z|z) = >, [2**[*. We can
decompose each component into its real and imaginary parts as z%¢ = u(®® 4 (@9,
The elements of so(3) and so(5) mix the components u(®® with v(®® and i'**® acts
as 2% — i2°® and therefore as u(*® — —v(©@ and v(®® — (@ The subalgebra
Ui jais C s0(16) is therefore the subalgebra that commutes with the transformation
above and is isomorphic to u(8), as we claimed.

On the other hand, as we have reviewed in §2.3, the Kaluza-Klein and the M2-
brane instantons correspond to positive roots of Fg. Thus, in the same way as above,
every positive root v of Eg defines a subalgebra U, of so(16).

The subalgebra so(16) C FEg is generated by e; — f; (i = 1...8), where ¢;, f; are
Chevalley generators as in (2.1.1). Let u be a generator of the 1-dimensional root space
g, C FEs. The compact involution on FEg is defined by the generating relations

w(ei) = —fi, w(fz) = —€;, u)(hl) = —hl (61)

Define g, = u + w(u). Then U, is the subalgebra of so(16) that commutes with g.
To see this consider the subsets

Uirjn = 1{g € s0(16) : TV2g = gT192} C 50(16), 1< j; < jo < 8.
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corresponding to Kaluza-Klein particles. Note that if we drop the 8" node of the
Dynkin diagram of Eg, we get the subalgebra si(8) C FEs. This subalgebra is generated
by e;, fi, hi fori =1...7. The combinations e; — f; for i = 1...7 generate so(8) C sl(8).
The matrix [V172 can be identified with an so(8) generator on the spinor representation
V. It is easy to see that for j; =4, and j» = ¢ + 1, this generator can be identified with
e; — fi. Thus Uj,;, N so(8) C so(16) is the subgroup that commutes with e; — f;. It is
also not hard to see that the 8 generator egs — fs can be identified with iI'®"® acting
on V. The statement that U, is the subspace of so(16) that commutes with e; — f;
(fori=1...7) follows.

These constructions can be extended to the infinite dimensional Lie algebras g = FEy
and g§ = Eyg. For g, the algebra k is defined as the w-invariant subalgebra of g. It is
denoted by so(16)> [8] and is not to be confused with the affine 50(16) Lie algebra.?
Any root « of Ey defines the subalgebra

U, Z{vek: vu+wu)]=0 Yueg,}Ck

where g, is the root space of o, which could now be of dimension higher than 1 if « is
an imaginary root.

For a real root «, one can argue that U, ~ su(8)> @ u(1), where su(8)* is con-
structed from the affine Lie algebra Fy in a similar way to the construction of so(16)
from the affine Lie algebra g = E, that is, by considering the generators that are
invariant under an involution.® (To see this, take o = a_; without loss of generality,
and note that the only elements of the form eg — fs that commute with e, — f, are
such that 5 =nd + " with " a root of E; C Eg C Ey.)

For imaginary roots a = nd it is also not hard to see that U, is trivial.

It would be interesting to find a nontrivial extension of the definition of U, for
imaginary roots and to explore its relationship with its associated brane. Perhaps, one
needs to find an element u of the root space g,, such that the centralizer of u + w(u)
(i.e. all v € k such that [u 4+ w(u),v] = 0) is maximal in some sense. We will leave this
for future work.

7. Constructing a Hamiltonian

It is time to collect all the pieces into one framework. In this section we will construct
a Hamiltonian, based on E,g, that describes some of the features of M-theory on 7°,
that we discussed above. As we do not know the full details, we will only present a few
simple observations.

3We are grateful to A. Keurentjes for pointing out an incorrect statement we had made in a previous
version.
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The Lie algebra Ejq is integrable, which means that the Lie group Gi9 = exp Fio
can be defined. We can also define K1y = exp k. (Here k is defined to be the w-invariant
subalgebra of Fyy, where w is the compact involution, defined similarly to (6.1).) K is
not actually compact but seems to be what we need (see [8]). A natural starting point is
a 0+1D (quantum mechanics) o-model on the coset space G/ K19. The Gy invariant
metric on G1o/ Ky is “almost” positive definite. To see what this means, consider the
metric on the Lie algebra Ej. The Lie algebra has an invariant bilinear form [41], but
it is not positive definite. This form turns out to be negative definite in the directions
of k. In addition, the Cartan subalgebra GR has signature (9,1) which means that it
has a negative-norm element x. However, when restricted to the subspace orthogonal
to z and k, the invariant bilinear form is positive definite. (See theorem 11.7 of [41] for
more details.) Thus, after modding out Gy by Kjp we get rid of all the negative-norm
directions except the one in the Cartan subalgebra.*

We now take the effective Hamiltonian to be proportional to the Laplacian H = —A
on the infinite dimensional space G1o/K19. The wave functions are required to satisfy
a generalized Wheeler-DeWitt equation

HY = —AU = 0. (7.1)

The manifest GGy invariance could be spontaneously broken to the U-duality subgroup
E10(Z) by requiring ¥ to be only Ej¢(Z) invariant. This can be implemented by defining
the target space, on which the Laplacian A acts, as the coset F19(Z)\G10/Ko-

Before we proceed, we have to mention that equation (7.1) appeared in similar
contexts before. A o-model on the same coset space G0/ K19 was presented in [25] and
an extension to G; /K1y was presented in [13][15][22]. Furthermore, equation (7.1) was
also proposed in [10].

The new point of this paper is that we can identify a mechanism to go beyond
dimensionally reduced classical supergravity and to test the approximation (7.1) quan-
tum mechanically. We will attempt a quantum mechanical treatment of the variables
of G1p/ Ko associated with imaginary roots, and we will compare the resulting energy
levels to the energies of branes and Kaluza-Klein particles that can be introduced into
the evolving universe.

Specifically, “excited states” of the universe, with branes or Kaluza-Klein particles,
appear to be related to excited Landau levels of a certain effective magnetic field that
is naturally generated inside Eyo(Z)\G1o/ K10 when the canonical momenta dual to the
variables associated with imaginary roots are nonzero. The separation between Landau
levels roughly matches the expected energies of the branes, but unfortunately there is

4We are grateful to Edward Witten for raising this issue.
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a mismatch by a factor of 2w. There are also a few other puzzles, related to the zero-
point energy and to total neutrality. We present the ideas here anyway, in the hope
that there might be some way to “fix” the problems. Let us now construct the model.

7.1 The variables

The model is a 0+1D quantum mechanics. “Time” is taken to be M-theory’s conformal
time defined in (2.14).

Skipping the proof, which can be found elsewhere (see [28] and also [48] for the
finite dimensional case), the variables of the coset G19/ K19 can be described as follows.
We have 10 real variables, each taking values in R, given by the components of h that
are related to the physical radii as in (2.13). In addition, we have an infinite tower of
periodic variables with period 27; there is one variable C, associated with every positive
real root o of Eyg, and there are mult(y) variables C,; (j = 1...mult(y)) associated
with any positive imaginary root 7 of Ejg. Here mult(y) is the multiplicity of the root
~. Occasionally, it will be convenient to suppress the index j. In that case, it will be
understood that C, denotes some linear combination of the C, ;’s.

We will now construct the Hamiltonian. It is going to be convenient to identify the
charges of the variables under the R!® Cartan subalgebra GR of Fjy that acts as

hsh+&  &€bg
Under this symmetry
Co = e ®9C,,  C, s eiC, ;. (7.2)

This symmetry does not preserve the periodicity of C,,C, ;, but it is a symmetry of the
Hamiltonian.

The Hamiltonian is constructed from functions of f_i, Cq,C,,; and their first deriva-
tives 9/0h;, 0/0C,, 0/0C, ;. It is probable that we also need to include fermionic degrees
of freedom, but we will completely ignore the fermions in this section, for simplicity.

7.2 The Hamiltonian

The Hamiltonian H preserves G1g, and hence all the terms appearing in it conserve the
R charges of (7.2). Up to a factor of —1, it is the Fjp-invariant Laplacian H = —A\.
Explicitly, it contains the following terms.

First, there is a term that contains only h and is given by

10

» 1 pe 1/ 5 2 10 D
g Z&hf_@(;a—hk) P Rg ) )

k=1 k=1
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The linear term might appear strange, but it can be deduced by extrapolation from
the Eg case. [It is also required in order for the instanton terms exp(—S,, + iCqs,) to
be harmonic functions for the simple roots ay. See §2.3.] The apparent Sjp-asymmetric
form of (7.3) is also not a problem since the decomposition into positive and negative
roots already breaks this Sy permutation symmetry.

Then we have the terms

def
Ho= — E e2(ah)

Note that this term is invariant under (7.2) as 9/9C, has charge —a. (The factors of 7
appear because of our choice of periodicity of C,.)

mult(a)
a,h)

(7.4)

acj

a2<0 j=1 ’

In addition to Hj and Hy we have an infinite series of ever more complex terms,
so that

H=H,+Ho+Hi+Ho+---

where H,, is quadratic in 9/9C, (or 0/0C, ;) but is a polynomial of degree n in C, (or
0/0C, ;). The first terms look schematically like

. 82 . 02
~ (B+y—ah) _ 2(6,h)
Hy V;ﬁe Co C,0C. > ehe, 5C,0C. (7.5)

y=a+p

Note that the dependence on h is entirely determined by conservation of R!°-charge.
The expression H; can be deduced from the Ejy transformation properties of Hy and
the invariance of the total expression H. Similarly, each consecutive H,, can be deduced
from the Fjg-transformation properties of its predecessors. We will not do the explicit
computation here. It can be found in [28] (see also [12]).

The kinetic term Hy already contains all the “wall” potential terms required for bil-
liard cosmology without branes (see §2.2). A state with IV, units of the flux associated
with the real root « has a wave function that behaves as ~ exp i N,C,. It is an eigenstate
of 3/0C,. Setting 8/8Cq — iN, in Hy we obtain the potential 7 N2 exp(2(a, h)). That
leads to the expressions discussed in §2.2 for the wall potentials of billiard cosmology
[25].

The term H; is also interesting in that it tells us that the target space of the o-
model is not just a product R x S' x S! x ... — with each S* corresponding to a
different C, — but is a nontrivial circle bundle. For example, take two positive real roots
a, 3, such that v = o + 3 is also real. Being periodic, the associated variables C,,Cg
parameterize a T2, If v = a + 8 and the commutator of the Lie algebra generators
[J*+e, J*P] is proportional to J*7 then the circle associated with the periodic variable
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C., is nontrivially fibered over the T2. The first Chern class of the fibration is ¢; = 1.
This is easily seen by noting that the infinitesimal Ej, transformation exp(eJt*) acts
as ]

Co — Co + ¢, C,Y—>C,Y+%Cﬁ.

For real roots, this geometrical fact has some interesting physical consequences such as
Wess-Zumino terms, but we will not discuss this here (see for instance [10][28]). If v
is an imaginary root, we have to be careful because of its multiplicity. The statement
is that if the commutator of the Lie algebra generators [J*, J7] is proportional to a
generator JT77 in the root space g,, then C,; is nontrivially fibered over 7% with first
Chern class ¢; = 1. This fact will be crucial in §7.4.

To summarize, H is a quadratic differential operator (which also contains the linear
term in Hj,). It is essentially determined by FEjp-invariance.

7.3 Instanton effects

Universes with a flux C, turned on must have a wave-function of the form
W, = e SoTiCa (L) (7.6)

where (- --) is independent of C,. The prefactor expresses the tunneling amplitude from
a state without flux to a state with flux. A state with /N, units of flux is an eigenstate
of —i9/dC,. The action S, is in general a complicated expression of the fluxes and of fz,
but when all the fluxes (except C, of course) are set to zero, S, reduces to 2 exp (a, h)
— the simplified expression that we have been using throughout this paper. The fact
that the prefactor exp{—S, + iC,} is a harmonic function on Gyo/Kjq if « is a simple
root (see §2.3) is intriguing, but it seems that extra terms must be added to H in order
for (7.6) to be an eigenfunction.

7.4 Branes and Landau levels

In §4 we argued that a prime imaginary root v with v? = 0 corresponds to a Minkowski
brane. We found a mass formula (4.7) that expresses the mass (defined with respect
to conformal time) in terms of v, as 2w exp <H, ). If there are n branes, we expect a
contribution to the Hamiltonian of the form 27n exp <fz, 7). We will now suggest a way
in which such a term could come from quantizing the variables C, ;. Our result will
reproduce the correct n exp <FL, ) factor, but will be off by a factor of 27 as well as an
n-independent term.

Decompose v = a+ 3 as a sum of two positive real roots, and suppose that the Lie
algebra element corresponding to C,; is proportional to the commutator [J**, J™7].
Then, C,; is a local coordinate on a circle bundle over the C,,Cs torus, as explained
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in §7.2. Since the C, j-circle is nontrivially fibered over the C,, Cs torus, it follows that
the negative of the Laplacian /A contains terms of the form
82

" . o Co 0 \° Py O
r_ - 2ka) — e2hB) _ e — me2th) 7.7
N (acﬁ o1 oC, ) e, 2 (7.7)

[The h-dependent coefficients are determined by the R%-symmetry (7.2).]

Suppose we have a state W for which —id/dC,; = N, ;. Plugging that into (7.7)
we find that H’ describes the Hamiltonian of an abstract charged particle on a torus
(parameterized by the coordinates C,,Cs) with NN, ; units of magnetic flux. The “cy-
clotron” frequency is w = exp (h, o + B)|N, ;| = exp (h,7)|N,;|. Eliminating C, we get
“Landau levels” with energy

HN = 6<h’7>|N%j|(n + %) + 7T€2<h’fy>|N%j‘2

It is now tempting to compare these states with states of the universe that contain n
bound states of IV, ; branes. The n-dependent part of the energy is n|N, ;| exp (fz, v)-
According to the mass formula (4.7) this is similar to the contribution of n bound states
of N, ; branes to the energy, but unfortunately there is a 27 mismatch.

The remaining terms in H”, which include the zero-point energy and the C, ;-
flux contribution, are independent of n. We do not know how to interpret them, but
perhaps they behave like a cosmological constant. Perhaps they can be cancelled if
supersymmetry is properly taken into account. It might also be possible to consistently
leave the problematic terms exp(2(h, 7))9*/0C2 ; out of H.

We also have to mention, however, that when all of space is compact we cannot add
branes at will, because the total charge has to cancel. But we can add pairs of branes
and anti-branes. If there are IV, pairs we expect a contribution to the Hamiltonian
of the form 2N, x 27 exp <fz, 7). Furthermore, in §4 we constructed branes from pairs
of instantons corresponding to real roots o and 3 with v = o + 3 such that 72 = 0.
We argued that if there are N, units of flux associated with the real root o and Npg
units of flux associated with the real root (3 then, in the setting of §4.1, there must also
be a net number of N,Ns branes, for charge neutrality. At the moment, we do not
know how charge neutrality appears in the E;q formalism. In fact, it appears that the
o-model by itself cannot capture the term (4.12). It seems consistent to set to zero all
the operators 0/0C, ; for v > «, 3, but we will then get only the term (4.11).

Finally, let us show that the mismatch factor of 27 between the Landau levels
and the expected masses of branes is not an artifact of the conventions. To see this
compare the energy levels of a (nonrelativistic) free particle on 7% = S* x S with one
unit of magnetic flux, to the energy levels of the same particle on the same 72 without
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any magnetic flux. In the second case, the energy levels are of the form Cin? + Con3,
where C7,C5 are constants and ni,ne € Z. In the first case, the energy levels are
(2n+1)y/C1Cy/2m. The factor of 27 in the last formula is the source of the mismatch.

7.5 Comparison with the “small tension” expansion

In [25] a different interpretation for Ejy roots, including imaginary ones, was proposed.
The analysis of [25] was done for the case of uncompactified M-theory, at the level of the
supergravity equations of motion. We will now briefly compare that proposal to ours
by discussing a particular example of an imaginary root — the prime isotropic root
from (4.5). According to [25], the root 7 labels certain fluxes. These fluxes, 8 = mult vy
in number, were encoded together with 442 other fluxes, corresponding to other roots,
in the variable that was denoted by DA’le192as  where all indices b,aq,...,as are
spacelike (from 1...10), and the variable was antisymmetric with respect to a; ... as.
Our imaginary root ~ is related to this flux, up to factors of Ry, ..., Ry, by

— linear combination of DA?3-10 D A3124-10 1) A1012..9

.0
—i
acw’
where on the left we used the notation of §7.1. One of the main points of [25] is that
D Ablerazas can he written in terms of 11D supergravity fields as

3 2
DAb|a1nva,8 — §€a1,..agblb2 (Cbb1b2 + §6Fb1 C0b2}0> ,
where (', is the connection that is related to the zehnbein ¢ by
c 1 c a b
do° = 56’ awd® NO°.

For other values of the indices (b, ay, ..., ag), the flux DA% corresponds to: (i) an
isotropic imaginary root that can be obtained from ~ by an S;; permutation of the
indices, which is the case if b & {a;,...,as}, or (ii) a real root « that corresponds to a
“gravitational wall” of the form (2.16), if b € {ay, ..., as}. The square DAYu-as DA, . .
appears as a term in the Einstein-Hilbert action. This term is directly related to the
quadratic term —(9/dC, ;)? from (7.4), which is the quantized version of the classical
o-model that was used in [25]. When compactified on T, these terms are proportional
to exp(2(7, E>), if we assume that C, ; is periodic, as implied by Eyo(Z) U-duality.

The point of our paper is that in addition to such terms, there have to be terms

proportional to exp (v, h). In particular, this is the case in the presence of fluxes asso-
ciated with real roots «, 3 such that a + 3 = v, as we discussed in §4.8. Such terms
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cannot be deduced purely from classical supergravity, since they describe quantized ob-
jects such as particles and branes. Furthermore, it would be interesting to understand
why D Ablaa2as i quantized on T1°. This is clear for b € {ay, ..., as}, since the flux is
then related to the “gravitational wall” (2.16), and it would be interesting to study the
quantization condition for b ¢ {as,...,as}. (The quantization requirement of course
follows from Ey¢(Z) U-duality.) If indeed the flux is quantized then, as we have argued
in §7.4, terms that are proportional to particle masses naturally arise from the o-model
formalism.

7.6 Summary

Some features of M-theory on T are effectively described by a harmonic function on
the target space F19(Z)\G1o/ Ko satisfying

AV = 0.

The Wheeler-DeWitt wave-function ¥ is a sum of terms with different eigenvalues of the
various fluxes N, = —i0/0C,. The behavior of ¥ as a function of the radii (encoded in
E) crucially depends on N, . Different pieces of ¥ therefore describe completely different
evolutions of the universe and can thus be separated.

The term without fluxes (all N, = 0) describes possible Kasner evolutions with
11> = 0 (in the notation of §2.2) and, according to [9], can never describe a classical
universe in the far future. Terms in ¥ for which only the fluxes N, that are associated
to simple roots are nonzero describe a chaotic evolution as in [26] and are also never
classical in the far future.

But terms with nonzero quantum numbers N, associated to imaginary roots can
describe, as we suggested, universes with an ordinary matter component composed of
Kaluza-Klein states, or branes. These universes can have a classical evolution in the
far future (a “safe” region of moduli space, in the terminology of [9]). Unfortunately,
the brane masses that we obtain are smaller than the correct masses by a factor of 2.

8. Conclusions and discussion

The infinite dimensional Lie algebra Eyq is likely to play an important role in a funda-
mental formulation of M-theory. Its roots encode the kinematic properties of branes.
Real roots encode instanton actions, and, as we have proposed in this paper, certain
imaginary roots correspond to branes. We have also seen that the inner product of
two imaginary roots «, 3 encodes basic properties of the interaction between the two
corresponding branes. We have interpreted the values («|3) = —1, —2, —4. Similarly,
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we have seen that the inner product of an imaginary root and a real root encodes the
basic properties of the interactions of the corresponding brane with the corresponding
flux. We have interpreted the values («|3) = 0, -1, —2.

We have begun to construct a Hilbert space and an effective Hamiltonian that
can describe some features of M-theory in this setting. We have argued that this
Hilbert space has states that describe branes and Kaluza-Klein particles. The variables
associated to imaginary roots play an important role in the reproduction of the mass
of these branes and particles. Including branes corresponds, in this Hilbert space, to
exciting a certain subset of the variables to higher Landau levels of an abstract particle
in a magnetic field. Unfortunately, the masses of the branes are off by a factor of 2,
although their dependence on the metric is correct.

Many open questions remain:

1. What is the physical significance of the multiplicities of imaginary roots? The
imaginary roots that we studied all have a multiplicity of m = 8, but, as we have
seen in §4.3, all 8 generators that correspond to the same root also correspond
to the same brane. Could this multiplicity be related to the multiplicity of the
supersymmetric multiplets?

2. In 85 we classified some interactions between branes and fluxes and between
pairs of branes according to the inner product of the corresponding roots. We
covered the cases («|f) = 0,—1, —2 for branes and fluxes, and the cases («|3) =
—1,—2,—4 for pairs of branes. It would be interesting to study other values of
the inner products.

3. We have argued in §4.4 that a certain imaginary root is associated to a pair
of Minkowski branes of different types. It would be interesting to relate the
properties of the individual branes to the properties of the root.

4. Tt would be interesting to prove or disprove our general decomposition conjecture
that every positive imaginary root can be decomposed as a sum of positive real
roots. (See §4.7.)

5. Can the process used in §4.1 be generalized to other imaginary roots?

6. Can the process of passing one instanton through another, used in §4.1, be gen-
eralized to triple commutators such as [J71, [JT2, JTo3]]?

7. In §6 we explored various definitions for the subalgebra U, C k C Ey associated
with the root . It would be interesting to study the physical interpretation of
U, and its relation to the supersymmetry that is preserved by the brane.
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8. It would be interesting to extend the discussion to heterotic string theory where
the Kac-Moody algebra D Eg plays a role [11]. It is intriguing that D7-branes can
actually be created entirely with Fyq, since after the lift from type-I11B to M-theory
they correspond to imaginary roots, as in §4. Therefore, it might be possible to
rephrase the F-theory construction [76] entirely in terms of Eyo variables. It would
be interesting to find out how this works!

9. In the Hamiltonian formulation discussed in §7, can the zero-point energy be
cancelled? Can the condition of total charge neutrality be incorporated?

10. Perhaps the most intriguing question is whether we can create an arbitrary col-
lection of branes via a process as in §4.4, or using the formalism of §7. If true,
it would mean that an arbitrary state of the universe can be described with the
variables associated to imaginary roots of Fi!
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A. The singleton count of real and imaginary roots

In this appendix we will prove some of the theorems from §3. We start with Claim 3.2:
a positive imaginary root has no negative n;’s. A positive real root has negative n;’s
only if it is a permutation of (1, —1,0,...,0).

Proof. If at least one n; = 0, say for ¢ = 1, then the root is in an Ey subalgebra for which
the roots are completely classified. They are the roots of Eg plus an integer multiple
of (0,1,1,...,1). It is easy to verify that the theorem holds in that case. So we assume
that all n; # 0. Suppose without loss of generality that ng < ngy1 < --- < njo <0 and
0<ng <ng <---<my_; for some 2 < k <9. Then

10
1 1
1<i<j<10 i=1
1 1
S VICETES 1S VRIS 3D DRI > ot
1<i<j<k—1 k<i<j<10 2<k 15>k
1 1
=5 X mnfeg X ieneg Y Yaiy
1<i<j<k—1 k<i<j<10 2<k 15>k
k—1 10
1 1 1
— 10 — kYn? + = E—2)n? > ~[4(k —1)(11 — k) — 10] > 2.
+9 ( )m+9§] Ma_d( ) ) ]

<.
I
—

j=k

O

Next, we prove Theorem 3.4: the only imaginary roots with a singleton count s > 2
are permutations of

[

=(0,1,1,1,1,1,1,1,1,1),  a*=0, s=9
a=(1,1,1,1,1,1,1,1,2,2), o =0, s=38
a=(1,1,1,1,1,2,2,2,2,2), o’ =0, s=5
=(1,1,1,2,2,2,2,2,2,3), a*=0, s=
=(1,1,2,2,2,2,2,3,3,3), a? =0, 5=
=(1,1,2,2,3,3,3,3,3,3), a? =0, 5=2
=(1,1,3,3,3,3,3,3,3,4), a?=0, s =2
=(1,1,2,2,2,2,2,2,2,2), a’=-2, s=2

and there is an infinite number of imaginary roots with singleton count s = 1.

— 57 —



Proof. According to the previous theorem, n; > 0 for ¢ = 1...10. If n; = 0, for some
n;, then « is a root of an Ey subalgebra. But the only imaginary roots of Fy are given
by

a=(n,n,n,n,n,n,n,n,n), a?=0.

This has a singleton count s = 9 for n = 1 and singleton count s = 0 for n > 1. So,

suppose without loss of generality that ny = ny = --- = n, = 1 and that 2 < ngy <

ng < --- < mnyo for s > 1. In order for a to be a root we need s + ngﬂ n; € 3Z. Then

Oﬂzl Z (n-—n-)Q—linz
9 o 9"

1<i<j<10
10 10
1 s 1 s
2 2 2
=9 > (ni—nj)+§§ (nz’—l)—§ Ty
s+1<i<4<10 i=st1 i=st1

If s > 1 we can write

1 s—1 10 S 2 S
2 § 2 E
“ 79 (= ;)" + 9 (ni_s—l) Cs—1

s+1<i<j<10 i=s+1

There is only a finite number of sequences 2 < ngyq < --- < nyg for which the righthand
side is not positive. A quick exhaustive computer search yielded the 8 imaginary roots
stated above. For s = 1 we get

Z (n; —ny;)? — 2 n; + 8 (A-1)

2<i<j<10 i=2

Nell o

and there is an infinite number of imaginary roots with s = 1 because for any given
imaginary root a we can always change n; — n; + 1 for all ¢ = 1...9 and get a root
with a smaller a?. 0

Finally, we prove Theorem 3.5: the only real roots (a? = 2) with a singleton count
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s > 2 are permutations of

0,0,0,0,0,0,0,1,1,1), s=3
0,0,0,0,1,1,1,1,1,1), s=6

,0,1,1,1,1,1,1,1,2), s=7
0,1,1,1,1,1,1,2,2,2), s=6
0,1,1,1,2,2,2,2,2,2), s=3
1,1,1,1,1,1,1,1,1,3), s=09
1,1,1,1,1,1,2,2,2,

Y ) Y ) Y )

= ( )
= ( )
= (0 )
= ( )
= ( )
( )
( 3)
(1,1,1,1,2,2,2,2,3,3), s=4
( )
( )
( )
( )
( )
( )
( )

, §=0

1,1,1,2,2,2,3,3,3,3), s=3
1,1,1,3,3,3,3,3,3,3), s=3
1,1,2,2,2,2,2,2,3,4), s=2
1,1,2,2,2,3,3,3,3,4), s=2
1,1,2,3,3,3,3,3,4,4), s=2
1,1,3,3,3,3,4,4,4,4), s=2
1,1,3,4,4,4,4,4,4,4), s=2

(0%
(0%
(%
(0%
(0%
(%
(0%
(0%
(0%
(0%

and there is an infinite number of imaginary roots with singleton count s = 1.

Proof. The proof is very similar to that of Theorem 3.4. Note that to satisfy a? = 2
in equation (A-1), we can start by fixing some difference, say ns — ny, and pick an
otherwise arbitrary sequence 2 < n, < --- < nyg such that 1+ Z;O n; is divisible by
3 and the righthand side of (A-1) is positive. (It is not hard to see that there are an
infinite number of such sequences for any value of ng — ny.) It is also easy to see that
the righthand side is then an even integer (as it must, being an element of the F1y root
lattice Q) If we now change n; — n; + k for + = 2,...10 we see that we decrease
the righthand side of (A-1) by 2k. we can therefore find the appropriate k for which
a? = 2, and there is an infinite number of roots like that. O
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