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Experiences Using SciPy for Computer Vision Research

Damian Eads (eads@lanl.gov) ~ Los Alamos National Lab, MS D436 USA
Edward Rosten (edrosten@lanl.gov) — Los Alamos National Lab, MS D436 USA

SciPy is an effective tool suite for prototyping new
algorithms. We share some of our experiences us-
ing it for the first time to support our research
in object detection. SciPy makes it easy to inte-
grate C code, which is essential when algorithms
operating on large data sets cannot be vectorized.
The universality of Python, the language in which
SciPy was written, gives the researcher access to
a broader set of non-numerical libraries to support
GUI development, interface with databases, manip-
ulate graph structures, render 3D graphics, unpack
binary files, etc. Python’s extensive support for op-
erator overloading makes SciPy’s syntax as succinct
as its competitors, MATLAB, Octave, and R. More
profoundly, we found it easy to rework research code
written with SciPy into a production application, de-
ployable on numerous platforms.

Introduction

Computer Vision research often involves a great deal
of effort spent prototyping new algorithms code. A
highly agile, unstructured, iterative approach to code
development takes place. Development in low-level
languages may be ideal in terms of computational ef-
ficiency but is often time consuming and bug prone.
MATLAB’s succinct “vectorized” syntax and efficient
numerical, linear algebra, signal processing, and image
processing codes has led to its popularity in the Com-
puter Vision community for prototyping algorithms.
Last vyear, we started a completely new research
project in object detection using the SciPy+Python
[Jon01] [GvRO2] framework without any extensive ex-
perience developing with it but having substantial
knowhow with MATLAB and C+-+. The software had
to run on Windows and be packaged with an installer.
The research problem was very open-ended so a large
number of prototype algorithms needed development
but eventually the most promising among them had
to be integrated into a production application. The
project sponsor imposed short deadlines so the de-
cision to use a new framework was high risk as we
had to learn the new tool set while keeping the re-
search on pace. Postmortem, we found SciPy to be
an excellent choice for both prototyping new code and
migrating prototypes into a production system. Ac-
quiring proficiency with SciPy was quick: completing
useful, complicated tasks was achievable within a few
hours of first installing the software. In this paper, we
share some noteworthy reflections on our first experi-
ence with SciPy in a full-scale research project.

A Universal Language

One of the strengths of SciPy is that it is a library
for Python, a universal and pervasive language. This
has two main benefits. First, there is a separation of
concerns: the language {Python) is developed indepen-
dently of the SciPy tool set. The Python community
focuses strictly on maintaining the language and its
interpreter while the SciPy community focuses on the
development of scientific tool sets. The efforts of both
groups are not spread thinly across both tasks freeing
more time to focus on good design, maintenance, re-
liability, and support. MATLAB [Mwc82], R [Red04],
and Octave [Eat02] must instead accomplish several
tasks at once: designing a language, implementing and
maintaining an interpreter, and developing numerical
codes. Second, the universality of Python means there
is a much broader spectrum of self-contained communi-
ties beyond scientific computation, each of which solely
focuses on a single kind of library {e.g. GUI, database,
network I/0, cluster computation). Third-party li-
brary communities are not as common for highly spe-
cialized numerical languages so additional effort must
be spent developing tertiary capabilities such as GUI
development, database libraries, image 1/0, etc. This
further worsens the “thin spread” problem: there are
fewer time and resources to focus on the two core tasks:
developing the language and developing numerical and
scientific libraries.

SciPy does not suffer from the “thin spread” problem
because of the breadth of libraries available from the
many self-contained Python communities. As long as
a library is written in Python, it can be integrated
into a SciPy application. This was very beneficial to
our research in computer vision because we needed ca-
pabilities such as image 1/0, GUI development, etc.
This enabled a more seamless migration into produc-
tion system.

Operator Overloading: Succinct Syntax

Python’s extensive support for operator overloading is
a big factor in the success of the SciPy tool set. The
array bracket and slice operators give NumPy great
flexibility and succinctness in the slicing of arrays (e.g.
B=A[::-1,::~1].T flips a rectangular array in both
directions then transposes the result.)

Slicing an array on the lefi-hand side of an assignment
performs assignments in-place, which is particularly
useful in computer vision where data sets are large and
unnecessary copying can be costly or fatal. If an array
consumes half of the available memory on a machine,
an accidental copy will likely result in an DutOfMemory




error. This is particularly unacceptable when an algo-
rithm takes several weeks to run and large portions of
state cannot be easily check-pointed.

In NumPy, array objects either own their data or are
simply a view of another array’s data. Both array slic-
ing and transposition generate array views so they do
not involve copying. Instead, a new view is created
as an array object with its data pointing to the data
of the original array but with its striding parameters
recalculated.

Extensions

Prior to the project’s start, we wrote a large corpora
of computer vision code in C++, packaged as the
Cambridge Video Dynamics Library (LIBCVD) [Ros04].
Since many algorithms being researched depended on
these low-level codes, a thorough review of different
alternatives for C and C++ extensions in Python was
needed. Interestingly, we eventually settled on the na-
tive Python C extensions interface after trying several
other packages intended to enhance or replace if.

A briel description is given of the Image and ImageRef
classes, the most pervasive data structures within
LIBCVD. An Image<T> object allocates its own raster
buffer and manages its deallocation while its sub-
class BasicImage<T> is constructed from a buffer and
is not responsible for the buffer’s deallocation. The
ImageRef class represents a coordinate in an image,
used for indexing pixels in an Image object.

ctypes

ctypes {Hel00] seems the easiest and quickest to get
started but has a major drawback in that distutils
does not support compilation of shared libraries on
Windows and Mac OS X. We also found it cumber-
some to translate templated C++ data structures into
NumPy arrays. The data structure would first need
to be converted into a C-style array, passed back to
Python space, and then converted to a NumPy array.
For example, a set of (z,y) coordinates would be rep-
resented using std: : vector<ImageRef> where the co-
ordinates are defined as struct ImageRef {int x,
v:;};. The function for converting a vector of these
ImageRef structs into a C array is:

int *convertToC{vector <ImageRef> &xy_pairs,
int *num) {

int *retval = new int[xy_pairs.size(}*2];

*num = xy_pairs.size();

for (int i = 0; i < xy_pairs.size(); i++) {
retval[i*2] = xy_pairs[il.x;
retval[i*%2+1] = xy_pairs([i).y;

¥

return retval;

}

Not knowing in advance the size of output buffers is a
common problem in scientific computation. In the ex-
ample, the number of (z,y) pairs is not known a priori
so the NumPy array cannot be allocated prior to call-
ing the C++ function generating the pairs. One could

use the NumPy array allocation function in C+4--
space but this defeats one of the main advantages of
ctypes: to interface Python-unaware code.

Once the C-style array is returned back to Python-
space, the next natural step is to use the pointer as
the data buffer of a new NumPy array object. Un-
fortunately, this is not easy as it seems because three
problems stand in the way. First, there is no func-
tion to convert the pointer to a Python buffer object,
which is required by the frombuffer constructor; sec-
ond, the frombuffer constructor creates arrays that
do not own their data; third, even if an array can be
created that owns its own data, there is no way to tell
NumPy how to deallocate the buffer. In this exam-
ple, the C++ operator delete is required instead of
free(). In other cases, a C++ destructor would need
to be called.

We eventually worked around these issues by creating
a Python extension with three functions: one that con-
verts a C-types pointer to a Python buffer object, one
that constructs an nd-array that owns its own data
from a Python buffer object, and a hook that deallo-
cates memory using C++ delete. Even with these
functions, each C++ function needs to be wrapped
with a C-style equivalent:
int* wrap._find_objects(const float *image,
int m, int n, int *size) {

BasicImage <float> cpp(image, ImageRef(m, n));

vector <ImageRef> cpp.refis;

find_objects(cpp, cpp.refs);

*size = cpp.refs.size(};

return convertToC({cpp. refs);

¥

" This function takes in an input image and size, which it

converts to a BasicImage and calls the find_objects
routine, which is used to find the (z,y) pairs corre-
sponding to the locations of objects in an image, which
it returns as a C-style array. Since ctypes does not
implement C++ name mangling, there is no function
signature embedded in the shared library. Thus, type
checking is not performed in Python so a core dump
may result when not invoked properly. To avoid these
bugs, we needed to create a Python wrapper to do ba-
sic type checking of arguments and conversion of input
and post-processing of output. ctypes is intended to
eliminate the need for wrappers, yet two were needed
for each C+-+ function being wrapped. We found
ctypes inappropriate for our purposes: wrapping large
amounts of C++ code safely and efficiently. We did,
however, find ctypes appropriate for wrapping:

» numerical C codes where the size of output buffers
is known ahead of time and can be done in Python-
space to avoid ownership and object lifetime issues.

* wrapping non-numerical C codes, particularly those
with simple interfaces that use basic C data struc-
tures {(e.g. encrypting a string, opening a file, or
writing a buffer to an image file.)
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Weave

With SciPy weave, C+4-+ code can be embedded di-
rectly in a Python program as a multi-line string in
a Python program. MDb5 hashes are used to cache
compilations of C+-+ program strings. Whenever the
type of a variable is changed, a different program string
results, causing a separate compilation. weave prop-
erly handles iteration over strided arrays. Compilation
errors can be cryptic and the translation of a multi-
line program string prior to compilation is somewhat
opaque. Applications using weave need a C++ com-
piler so it did not fit the requirements of our sponsor.
However, we found it useful for quickly prototyping
“high risk” for-loop algorithms that could not be vec-
torized.

Boost Python

Boost Python is a large and powerful library for inter-
facing C++ code from Python. Learning the tool set is
difficult so a large investment of time must be made up
front before useful tasks can be accomplished. Boost
copies objects created in C+-+-space, rather than stor-
ing pointers to them. This reduces the potential of a
dangling reference to an object from Python space, a
potentially dangerous situation. Since our computer
vision codes often involve large data sets, excessive
copying can be a show-stopper.

SWiG

SWIG is a tool for generating C and C++ wrapper
code. Our time budget for investigating different al-
ternatives for writing extensions was limited. Several
colleagues suggested using the SWIG library to per-
form the translation and type checking. The docu-
mentation of more complicated features is somewhat
lacking. The examples are either the “hello world” va-
riety or expert-level without much in between. When
deadlines neared, we decided to table consideration of
SWIG. However, we encourage those in the SciPy com-
munity who have had success with SWIG to document
their experiences so others may benefit.

Cython

Cython is a Python dialect for writing C extensions.
Its development has been gaining momentum over the
past six months. Python-like code is translated into C
code and compiled. It provides support for static type
checking as well as facilities for handling object life-
time. Unfortunately, its support for interfacing with
templated C++ code is limited. Given the large num-
ber of templated C++ functions needing interfacing,
it was unsuitable for our purposes.

Native Python C Extensions

As stated earlier, we eventually settled native Python
C extensions as our extension framework of choice. A
small suite of C+-+-templated helper functions made
the C wrapper functions quite succinct, and performed
static type checking to reduce the possibility of intro-
ducing bugs.

We found that all the necessary type checking and con-
version could be done succinctly in a single C wrapper
function and that in most cases, no additional Python
wrapper was needed. A few helper functions were writ-
ten to accommodate the conversion and type checking:

s Basiclmage<T> np2image<T>{img) converts a rect-
angular NumPy array with values of type T to a
BasicImage object. If the array does not contain
values compatible with T, an exception is thrown.

s PyArrayObject +*imageZnp<T>{(img) converts an
Image object to a NumPy array of type T.

e PyArray0Object *vec_imagerefZnp(v) converts an
std: :vector<ImageRef> of N image references to a
N by 2 NumPy array.

¢ pair <size_t, T*> np2c(v) converts a a rectan-
gular NumPy array to a std: :pair object with the
size stored in the first member and the buffer pointer
in the second.

Shown below is a boilerplate of a wrapper function.
C++ calls go in the try block and all errors are caught
in the catch. All of the helper functions throw an
exception if an error occurs during conversion, allo-
cation, or type check. By wrapping the C++ code
in a try/catch, any C++ exceptions thrown as a
std::string are immediately caught in the wrapper
function. The wrapper function then sets the Python
exception string and returns. This solution freed us
from having to use Python error handling and NumPy
type checking constructs in our core C++ code:

PyObject* wrapper (PyObject+ self,
PyObject* args) {
try {
if (IPyArg_ParseTuple(...)) return 0;
// C++ code goes here.
}
catch(string err) {
PyErr_SetString (PyExc_RuntimeError, err.c_str());
return 0;

Shown below is an example of the np2image helper
function, which converts a PyArrayObject to a
BasicImage. If any errors occur during the type check,
a C+- exception is thrown, which gets translated into
a Python exception:




template<class I>
BasicImage<I> np2image(PyUbject #p,
const std::string &n="") {

if (!PyArray_Check(p)
|| PyArray _NDIM(p) != 2
Il tPyArray_ ISCONTIGUOUS(p)
Il PyArray TYPE(p) != NumpyType<I>::pum) {
throw std::string(n + " must be "
+ "a contig array of " + NumpyType<I>::name()
+ "(typecode ¥ + NumpyType<I>::code() + ")!"};
¥
PyArrayObject* image = (PyArrayUbject*)p;
int sm = image—>dimensions[1];
int sn = image->dimensions[0];
CVD::BasicImage <I> img((I*)image->data,
CVD: : ImageRef (sm, sn));
return img;

}

Parsing arguments passed to a wrapper function is re-
markably simple given a single, highly flexible native
extensions function PyArg ParseTuple. It provides
basic type checking of Python arguments, such as ver-
ifying an object is of type PyArrayObject. More thor-
ough type checking of the underlying type of data val-
ues in a NumPy array is handled by our C++ helper
functions.

Many of the functions in C++ are templated to work
across many pixel data types. We needed a solution for
passing a NumPy array to an appropriate instance of
a templated function without needing a complicated
switch or if statement for each templated function
being wrapped. A special wrapper function must be
written that generically calls instances of the tem-
plated function. We call this a “selector”, which is
encapsulated in a templated struct:

template<class List>
struct comvolution_ {
static PyObject# fun(PyArrayObject *image,
double sigma) {
// Selector code goes here.
}
¥

An example of a selector for a convolution function
is shown below. It works generically across multiple
pixel data types. An instance of the struct is gener-
ated for each type in a type list. We iterate through the
type list via a form of template-based pattern match-
ing, checking the type of the array with the type of
the type in the list’s head. If it matches, we call
convolveGaussian:
typedef typename List::type type;
typedef typename List::next next;
if (PyArray TYPE(image) == NumpyType<type>::num) {
Basiclmage <type> input
(np2image<type>(image, "image"));
PyArrayUbject *py_result;
BasicImage <type> result
(alloc_image<type>(input.size (), &py.result));
convolveGaussian(input, result, sigma);
return (PyObject*)py.result;
}

Otherwise, we invoke the tail selector:

else {
return _convolution<next>::fun(image, sigma);

¥

If the type is not supported because none of the types
matched, an exception must be thrown:

template<>
struct convolution. <PyCVD::End> {

static PyObject* fun(PyArrayObject *image,

double sigma) {
throw string("Can’t convolve with type: *
+ PyArray_TYPE(image));

}

EH

Finally, the native C wrapper function calls the convo-
lution selector. The selector is templated with a type
list of supported types:

extern "C" PyUbject =*convolution(PyObject #*self,
PyObject »args) {
try {
PyArrayObject *_image;
double sigma;
if (iPyArg_ParseTuple(args, "0Otid",
&PyArray_Type, &_image,
&sigma)) { return 0; }
return convolution_<CVDTypes>::fun(_image, sigma);
¥
catch(string err) {
PyErr_SetString(PyExc_RuntimeError, err.c.str());
return 0;
}
}

The TypeList construct is now defined. All type lists
terminate with a special End (sentinel) struct:

struct End{};

template<class C, class D> struct Typelist {
typedef C type; typedef D next;

}

Type lists can now be defined to specify supported
data types for a selector. The first type list shown is
for most numeric data types while the second one is
for floating point types:

typedef TypeList<char,
TypeList<unsigned char,
Typelist<short,
Typelist<ungigned short,
TypeList<int,
TypelList<long long,
TypelList<unsigned int,
Typelist<float,
Typelist<double, End>
>> > > > > > > CVDTypes;
typedef Typelist<float,
Typelist<double, End>
> CVDFloatTypes;

Lastly, in order to support translation between native
C data types and NumPy type codes, we need a macro
for defining helper structs to perform the translation:

#define DEFNPTYPE(Type, PyType) \
template<> struct NumpyType<Type> {\
static const int num = PyType; \
static std::string name(){ return #Type;} \
static char code(){ return PyType##LTR;} \
}
template<class C> struct NumpyType {};

Next, we instantiate a helper struct for each C data
type, specifying its corresponding NumPy type code:
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DEFNPTYPE (unsigned char , NPY_UBYTE );

DEFNPTYPE (char , NPY_BYTE );
DEFNPTYPE (short , NPY_SHORT );
DEFNPTYPE (unsigned short, NPY_USHORT);

DEFNPTYPE {int , NPY_INT )
DEFNPTYPE{long long NPY_LONGLONG) ;

DEFNPTYPE{unsigned int , NPY_UINT )};
DEFNPTYPE(float , NPY_FLODAT );
DEFNPTYPE(double , NPY_DOUBLE);

Comparison with mex

Prior to this project, the authors had some experi-
ence working with MATLAB’s External Interface (i.e.
mex). mex requires a separate source file for each
function. No function exists with the flexibility as
Python’s PyArg_ParseTuple, making it difficult to
parse input arguments. Nor does a function exist like
PyBuildValue to succinctly return data. Opening mex

files in gdb is somewhat cumbersome, making it diffi-

cult to pin down segmentation faults, When a frame-
work lacks succinctness and expressibility, developers
are tempted to copy code, which often introduces bugs.

Object-oriented Programming

Many algorithms require the use of data structures
than other just rectangular arrays, e.g., graphs, sets,
maps, and trees. MATLAB’s usually encodes such
data structures with a matrix (e.g. the treeplot and
etree functions). MATLAB supports object-oriented
programming so in theory one can implement a tree
or graph class. The authors have attempted to make
use of this facility but found it limited: objects are
immutable so changes to them involve a copy. Since
computer vision projects typically involve large data
sets, if not careful, subtle copying may swamp the sys-
tem. Moreover, it is difficult to organize a suite of
classes because each class must reside in its own di-
rectory (named @classname) and each method in its
own file. Changing the name of a method requires
renaming a file and the method name in the file fol-
lowed by a traversal of all files in the directory to
ensure all remaining references are appropriately re-
named. Combining three methods into one involves
moving the code in the two files into the remaining file
and then deleting the originating files. This makes it
cumbersome to do agile object-oriented development.
To get around these shortcomings, most programmers
introduce global variables, but this inevitably leads to
bugs and makes code hard to maintain. After many
years of trial and error, we found Python+SciPy to be
more capable for developing both prototype code and
production scientific software.

Python has good facilities for organizing a software li-
brary with its modules and packages. A module is a
collection of related classes, functions, and data, All
of its members conveniently reside in the same source
file. Objects in Python are mutable and all methods
of a class are defined in the same source file. Since
Python was designed for object-orientation, many sub-
communities have created OQ libraries to support al-
most any software engineering task: databases, GUI

development, network 1/0, or file unpacking. This
makes it easy to develop production code.

Data structures such as maps, sets, and lists are built
into Python. Python also supports a limited version
of a continuation known as a generator function, per-
mitting lazy evaluation. Rich data structures such as
graphs can easily be integrated into our algorithms by
defining a new class. Workarounds such as global vari-
ables were not needed. Development with Python’s
object-oriented interface was remarkably seamless.

In MATLARB, variables are passed by value with copy-
on-write semantics. Python’s support for pass-by-
reference gives one more flexibility by allowing one to
pass large arrays to functions and modify them. While
these semantics are not as easy to understand as pass-
by-value, they are essential for developing production
applications as well as for computing on large data
sets.

Conclusion

We started a new research project using SciPy without
having any previous experience with it. SciPy’s suc-
cinct, vectorized syntax and its extensive support for
slicing makes it a good prototyping framework. The
universality of Python gives one access to a wide va-
riety of libraries, e.g. GUI toolkits, database tools,
etc., to support production development. Its modules
and object-orientation allows for a clean organization
of software components. Pass-by-reference semantics
permit efficient and safe handling of large data sets.
With the flexibility of Python’s C extension interface,
one can interface with a large corpora of existing C++
code. Our design permits core C-++ algorithms to be
Python-unaware but with support for error reporting
back to the Python environment. Using C+-- generics
combined with a small suite of macros and helper func-
tions, instances of templated algorithms can be called
in a manner that is generic to pixel data type. Overall,
we found the Python+SciPy to be an excellent choice
to support our research.
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