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ABSTRACT

We present timing and performance numbers for a short-range
parallel molecular dynamics (MD) code, SPaSM, that has been
rewritten for the heterogeneous Roadrunner supercomputer. Each
Roadrunner compute node consists of two AMD Opteron dual-
core microprocessors and four PowerXCell 8i enhanced Cell
microprocessors, so that there are four MPI ranks per node, each
with one Opteron and one Cell. The interatomic forces are
computed on the Cells {each with one PPU and cight SPU cores),
while the Opterons are used to direct inter-rank communication
and perform 1/O-heavy periodic analysis, visualization, and
checkpointing tasks. The performance measured for our initial
implementation of a standard Lennard-fones pair potential
benchmark reached a peak of 369 Tflop/s double-precision
floating-point performance on the full Roadrunner system (27.7%
of peak), corresponding to 124 MFiop/Watt/s at a price of
approximately 3.69 MFlops/dollar. We demonstrate an initial
target application, the jetting and ejection of material from a
shocked surface.

1. INTRODUCTION

The power and heat dissipation challenges encountered with
steadily increasing microprocessor transistor densities and clock
frequencies have motivated the current trend towards multi-core
processors. Dual-core and quad-core commodity processors are
becoming commonplace, with continued increases in cores per
socket, such as Intel’s 80-core Teraflops Research Chip [1], on the
horizon. Special-purpose co-processors, or accelerators, have
already made significant progress in this direction, most notably
the graphics processing units (GPUs) driven by the personal
computer and gaming industries, The Cell Broadband Engine™,
developed jointly by Sony Computer Entertainment, Toshiba, and
IBM, combines a general-purpose PowerPC core (PPE) with eight
co-processors, termed Synergistic Processing Elements (SPEs)
[2]. First deployed in the Sony PlayStation 3 game console, the

Timothy C. Germann

T-12, Mail Stop B268
L.os Alamos National Laboratory
Los Alamos, NM 87545 USA
+1-505-665-9772

Gordon C. Fossum

iBM Corporation, Mail Stop 9065G018
11501 Burnet Road
Austin, TX 78758
+1-512-838-1629

Cell's potential usage spans a varicty of compute-intensive
multimedia, financial, and scientific applications.

In a collaboration between Los Alamos National Laboratory
(LANL) and IBM, the first Cell-based supercomputer was
assembled at IBM Poughkeepsie in mid-May 2008 and delivery to
LANL began in July and is expected to complete in November.
Named Roadrunner, it has a theoretical peak performance of 1.3
PFlop/s, achieved a sustained 1.026 Pflop/s on the Linpack
benchmark. To smooth the transition of legacy MPl-based codes
designed for parallel computer clusters, typically Linux-based, to
the novel muiti-core and accelerated architectures that are
expected to dominate the next generation of supercomputers,
Roadrunner has been designed as a Cell-accelerated cluster of
AMD Opteron x86 processors.

This additional level of heterogeneity means that the user is faced
with managing 3 types of cores (PPE, SPE, and Opteron}, each
with associated memory and a nonuniform connectivity, leading
to interesting programming challenges it one hopes to achieve
maximal efficiency. Although the initial porting of codes using a
‘function offload model’ is more manageable, a more drastic code
redesign is often necessary to take full advantage of the potential
performance offered by the Cell processors, which contribute over
96% of the aforementioned 1.3 PFlop/s theoretical peak.

We demonstrate that such a redesign is practical and can be worth
the effort, achieving ~28.3% of the theoretical peak performance
for our redesign of the SPaSM (Scalable Parallel Short-range
Molecular dynamics) code. The initial design of SPaSM, by
Beazley, Lomdahl, and coworkers {3,4], took place roughly 15
years ago and was targeted at the Thinking Machines Connection
Machine 5 (CM-3). Memory and floating-point performance
provided the chief design constraints, resulting in an algorithm
with frequent interprocessor communication of small messages to
conserve memory and avoid redundant computations.  This
algorithm has stood up well over the years, on architectures
ranging from Beowulf clusters [5] to the 212,992-core
IBM/LLNL BlueGene/L [6,7], demonstrating nearly perfect weak



scaling up to 10" atoms, and an excellent strong scaling for
system sizes of at least 10*-10° atoms per processor. However,
production simulations are almost always limited by wall-clock
time rather than memory constraints, and the steady advance of
processor performance by Moore’s Law is diminishing the
importance of floating-point performance relative to data
movement.

Motivated in the longer-term by this general trend, but in the
immediate term by the assembly of Roadrunper, we have
introduced a major redesign of the SPaSM algorithm. This paper
is organized as follows. In Section 2 we briefly summarize the
Roadrunner architecture and performance characteristics. Section
3 provides background on molecular dynamics simulations and
the historical SPaSM algorithm design. We tum in Section 4 to its
(re-)implementation on Roadrunner , first discussing our initial
“gvolutionary” port to a hybrid Opteron/Cell architecture, and
finally the “revolutionary” redesign leading to greatly improved
performance, presenting specific performance results. We also
discuss two side benefits of this redesign: allowing for much more
efficient load balancing and checkpointing. Section 5 describes
one of the initial scientific problems we performed on Roadrunner
at Poughkeepsie this summer, related to the Richtmyer-Meshkov
instability at a shocked surface, a problem that is important for
inertial confinement fusion (ICF) design but that is difficult to
address using conventional fluid dynamics calculations. Beyond
this initial example, the work described here paves the way to
tackle a wide variety of other scientifically relevant problems, in
solid state physics, fluid dynamics, biology, and even stochastic
agent-based modeling that can target areas such as infectious
disease spread and other social network-related problems.

2. ROADRUNNER ARCHITECTURE
Roadrunner is a petascale hybrid supercomputer buill for Los
Alamos National Laboratory (LANL) by IBM. To enable rapid
utilization by the broadest range of multiphysics computer codes
at LANL, Roadrunner is designed as an accelerated version of a
relatively conventional Infiniband-connected cluster of AMD
Opteron processors. The 1.3 Petaflop/s performance is primarily
provided by the addition of one Cell processor for each Opteron
core, to accelerate numerically intensive bottlenecks that can
hopefully be isolated for most codes. The Roadrunner system
(Table 1) is built up as a cluster-of-clusters, with 17 separate
Connected Units (CUs) linked together by eight 288-port
InfiniBand 4x DDR switches at the top level. In tumn, each CU
consists of 180 hybrid compute nodes and 12 1/O nodes that are
connected through a single 288-port InfiniBand 4x DDR switch.
The total power required to run the cluster is 2.35 MW, providing
a theoretical maximum of 437 Megaflop/s/Watt. Roadrunner is
installed in 278 racks weighing 500,000 lbs with 55 miles of 1B
cables, and has a footprint of 5200 fi*.

Each hybrid compute (“triblade”) node consists of two QS22 IBM
Cell Blades, each with two PowerXCell8i processors, and one
LS21 dual-socket Opteron blade, with one 1.8 GHz dual-core
Opteron chip per socket. The Opteron and Cell blades are
connected via four PCl Express X8 links, providing a total
effective bandwidth of 6.4 GB/s within each node. An InfiniBand
4x DDR link provides a 2.0 GB/s off-node bandwidth, for a full
bi-directional bandwidth of 384 GB/s between the 180 compute
nodes and 12 I/O nodes of each CU.

Each Opteron core is capable of issuing one fused multiply-add
instruction per cycle, providing a peak Opteron double-precision
(DP) floating-point rate of {2 operations/cycle) x (4 cores/node) x
1.8 GHz = 4.4 Gflop/s for each node. On the Cell side, each of
the four PowerXCell 8i cell blades has a peak DP floating-point
rate or 102.4 Gflop/s, leading to the peak performance rates per
node of 424 Gflop/s. A summary of performance numbers for a
single node, single CU, and the entire Roadrunner system reported
in Table 1. (The 1/0 nodes are not included in the memory or peak
Flop/s counts.) Although other arrangements are possible, the
approach that most code developers {including us) have taken is to
treat each Opteron core as a separate MPI rank, each
communicating in tum with a single Cell processor via the Data,
Communication, and Synchronization (DaCS) library.

Hybrid
Characteristic Compute Co:(\jne'cted Roadrunner
Node nit System
IBM eDP
PowerXCell8i 4 720 12240
Processors
1.8 GHz Dual- 5 360 compute + + 6120 compute +
core Opterons 24 1O 408 /O
Memory
(Opicron) 16 GB 288 TB 49TB
Memory. (Cell) 16 GB 2.8871B 49TB
Memory (Total) 32GB 576 TB 98 TB
Peak DP Flop/s | 14 4G | 2592 TF 44.1 TF
(Opteron)
Peak DP FIOP/S | 4006 GF | 73.73 TF 1.260 PF
{CelD)
Peak DP Flop/s
(Total) 424.0 GF 76.32 TF 1.304 PF

Table |. Summary of different components that make up
roadrunner showing the amount of memory on the Opterons
and the Cells and the contribution to the performance from
each element of the system.

3. MOLECULAR DYNAMICS WITH
SHORT-RANGE POTENTIALS

3.1. Background

Molecular dynamics (MD) simulations [8] integrate the classical
equations of motion for a collection of atoms interacting via some
prescribed analytic or tabulated interatomic potential energy
function. The method of molecular dynamics was developed and
applied for the first time in 1957 by Alder and Wainwright for a
simple system consisting only of on the order of hundred hard
sphere particles, which surprisingly was already sufficient to
exhibit a phase transformation from the solid to the liquid state
[9]: These first pioneers utilized vacuum tube architectures that
had on the order of 1000 Flop/s. The method was later used to
investigate the long-time tail of the velocity autocorrelation of
interacting particles, which could be explained by a hydrodynamic
analog [10], as well as to describe simple stationary non-
equilibrium flows that could be compared to hydrodynamic
modeling [11,12].



Since the invention of MD simulations a half-century ago,
improvements in  computational speed, efficient potential
functions that are able to describe metallic solids (subsection 3.1),
and computational algorithms ([8] and subsection 3.2) have
contributed to progress in fundamental material science. This is
particularly true for in regimes that are difficult to probe
experimentally, including extreme conditions of temperature,
strain, and strain rates. MD simulations have been used to provide
unprecedented insight into fundamental unit processes controlling
material strength and mechanical response, including the
interaction of dislocations [13] and their nucleation under shock
compression [14].  Atlomic-scale mechanisms of the solid-solid
phase transformation generated in shock-loaded iron have been
identified and directly compared to small scale experiments [15-
171, as well as the nucleation of pressure-induced solidification in
complex metals [18]. There are also numerous examples of
successes in the area of biology, chemistry, and bio-physical
systems that have been modeled using semi-empirical potentials,
not too dissimitar from the ones described below. Even more
broadly, we have adapted our molecular dynamics code §PaSM to
describe the spread of diseases using an ageni-based simulation
model, and used it to assess possible mitigation strategies in
support of the U.S. pandemic influenza planning process [19];
here each individual person in the United States is represented by
an agent (atom), and the interatomic potential function is replaced
by stochastic rules for disease transmission between individuals
that are in close proximity.

All the aforementioned examples illustrate that the present
implementation of a large-scale MD code based on short-range
potentials on hybrid architectures paves the way for potential
future applications in a whole variety of arenas. The initial
scientific application which we will discuss below (in section 5)
involves two physical processes that we have already
demonstrated can be successtully studied using MD simulations:
shock physics [14-17} and complex hydrodynamic flows such as
fluid instabilities [20-22]. The Rayleigh-Taylor instability arises
when initially a heavy fluid is placed on top of a light fluid under
the prescnce of gravity, leading to subsequent turbulent mixing
[23]. A similar instability, the Richtmyer-Meshkov instability, is
triggered by a shock waves passing through an interface between
two ditferent fluids, a fluid and a vacuum, or a solid that melts
due to the shock wave interfacing a gaseous medium [24]. These
two instabilities are very interesting to study from a fundamental
point of view, but they are also very important to understand in
the context of inertial confinement fusion (ICF), a potential future
energy source, in which a millimeter-sized capsule is imploded (o
initiate nuclear fusion between deuterium and tritium. It has been
shown previously that under extreme conditions the atomistic
description might be necessary to describe such instabilities; in
particular there is increasing evidence that fluctuations that are
normally ignored in continuum descriptions may in fact be
important [21,25].

With the potential now given by Roadrunner and our high-
performance implementation, we believe that we can successfully
tackle the Richimyer-Meshkov challenge — on the atomistic scale
for micrometer-sized samples — in connection with ejecta
formation at the interface of the two substances [26,27]. This
problem is extremely difficult, if not impossible, to describe by
regular  hydrodynamic descriptions because it involves a
discontinuous distribution of material and associated break-ups.
Again, the understanding of this problem is one of the building

blocks to the understanding and the success of ICF. The
understanding that we expect will be gained by our simulations
will further improve the engineering-scale modeling efforts in this
area.

3.2. Interatomic potentials

For metals and other systems that do not involve species with
ionic charges or dipole (or higher) electrical moments,
interactions are effectively screened such that each atom only
interacts noticeably with other atoms in its immediate
neighborhood. The interatomic potential, which is often
decomposed into two-body pair potentials, three-body angular
potentials, and so on, can be further simplified by introducing a
cut-off distance r., beyond which atoms do not intcract at all,
Large-scale simulations in which the system size greatly exceeds
re can thus be reduced from O(N?) computational cost to O(N) by
partitioning three-dimensional space [3,4,28], particles [18,25], or
force calculations [29] among processors.

Probably the most commonly utilized pair potential, and a
standard benchmark for MD codes, is the Lennard-Jones 6-12
potential.  The potential energy between each pair of atoms
(closer together than r.) is given by

12 6
o o
p(r))=4el|—| ~{—| | rysr.
di T

Although highly simplified, it has provided a great deal of insight
into fundamental statistical mechanics [8], materials science {14],
and fluid dynamics [20] issues. A much more realistic description
of metals, with only about twice the computational effort of a
pairwise potential, is provided by the embedded atom method
{EAM), which expresses the energy for each atom i as

E, =~;;2¢(*‘,})+F 20,0}

Here ¢{(r;;) nominally describes the repulsion between positively
charged nuclei, as in the r " term of the Lennard-Jones potential,
and the atiraction is described by the second term, a functional of
the pairwise additive electron density contributions from each
neighboring atom j, pi(rij). (As before, the summations only run
over neighboring atoms | within some cutoff distance r..)
Although this is the interpretation originally motivaied by density
functional theory, it has become much more commonplace in
recent years to include some degree of attraction in the pairwise
term, e.g. by a Morse or Lennard-Jones potential. The density
function py(ri;) and/or functional F(p) are then fit to reproduce
equation-of-state and other material properties, such as elastic
constants, zone-boundary phonon frequencies, vacancy energies,
either from experiments or ab initio calculations, The functions
¢(ryy), pilry), and Fip} are typically stored in tabular form, since
their analytic representations (if one even exists) are oflen
complex functions involving square root and exponential
operations, and are smoothly splined to zero at the cutoff
distance. Both simple metals and their alloys can be well-
described by EAM potentials, which have been used 1o study a
wide variety of liquid [22] and solid-state [13, 15-17] phenomena.



3.3. Numerical Precision Requirements

MD simulations traditionally utilize double precision for all
numerical values, i.e. 64 bits per floating point number. To our
knowledge, there are few detailed investigations of circumstances
under which single precision (i.e. 32 bits) might suffice, or
likewise whether there are situations where even double precision
is insufficient. Typically, there has been little to no performance
gain if one switches to single precision (i.e. 32 bits) [30], although
SSE and other vector instruction sets offer a potential
performance gain of 2x. It is pretty clear that the storage of a//
floating point information in double precision is probably overkill,
but on the other hand using exclusively single precision has been
shown to increase fluctuations of quantities such as the total
energy of the system, and therefore may result in a non-converged
result that can be misleading in terms of its physical interpretation
{8]. On configurable circuits it has been shown that the optimal
storage size required to obtain sufficient convergence lies
somewhere in between single and double precision for most
applications, a choice that we do not have on the present
architecture. Furthermore, it has been shown that for intermediate
data, i.e. data that is not used for analyses, the precision can be
less than double [31]. Another parameter that plays a significant
role in reducing the precision of floating point data is the applied
timestep, which is used to discretize the equations of motion
[8,30]. It has been shown that one can reduce the timestep and
reduce the precision to achieve the same result. However, there is
to date no general consensus on the reliability of single precision
floating point data storage, and associated parameters such as the
applied timestep. For this reason, we have chosen to utilize
exclusively double precision in our present implementation,
although we expect that we would be able to get close to a 2x
performance speedup (i.e. 737 TFlop/s peak performance for our
Lennard-Jones benchmark) by reverting to single precision.
Further in-depth studies are needed to address whether some or all
variables (e.g. forces but not distances) might be converted to
single precision. These studies would have to be done for
particular applications separately due the interplay of parameters
such as the timestep, temperature, shock velocity and the like. If
the timestep would have to be cut in half when using single
precision, the performance gain per timestep would be completely
lost. As the applicability of the code was one of the main
motivations we decided to use double precision first — which
allows us to use well-known parameters — and will investigate the
possibility of single precision for certain problems later. However,
it is expected that for problems involving steep gradients such as
shock waves and associated break-ups, double precision will
remain necessary.

3.4. MIMD Design Considerations, ca. 1993

The introduction of massively parallel supercomputers in the early
1990s led to a reconsideration of many high-performance
computer algorithms that were geared towards the earlier vector
era. A prime example is the case of molecular dynamics
simulation algorithms; on vector machines a “neighbor list” would
often be maintained for each atom, enabling a rapid evaluation of
the sums over neighboring atoms for potentials such as Lennard-
Jones or EAM. Arrays for each Cartesian position (x, y, z) and
velocity (vx, Vy, Vz) could be updated in-place during each
integration timestep. However, such an approach is not readily
adapted to distributed-memory MIMD architectures.  Several
groups recognized that a more natural parallelization strategy
would rely on domain decomposition of the 2D or 3D simulation
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Figure |: SPaSM algorithm and communication pattern, old
and new (examples for 16 CPUs in 2D). (Left) Lock-step
computation of force interactions within and between
subdomains using an interaction path, with synchronous
MPI_Sendrecv() calls when crossing a processor boundary.
(Right) Synchronous communication of a ghost subdomain
layer (blue) to each CPU at the beginning of each timestep
enables each CPU to compute all forces without further
communication.

space, taking advantage of the short-range nature of many
potentials to limit communication to neighboring processors on a
mesh or torus (for periodic boundary conditions) topology.

One of the most successful practical implementations of such a
strategy resulted in the SPaSM (Scalable Parallel Short-range
Molecular dynamics) code, developed by Peter Lomdahl, David
Beazley, and their coworkers at LANL [3,4]. The key insight of
the SPaSM code was to continue the domain decomposition
between processors, further dividing the space within processors
into subdomains. (The original terminology referred to these
subdomains as cells; we will avoid this terminology due to
possible confusion with the Cell processor.) Provided that each
subdomain is at least rc in length (in each dimension), neighbor
lists could be completely eliminated; instead, neighboring atoms
could be found on-the-fly during each timestep by examining
pairs of atoms within each subdomain (referred to as “self
interactions”), and between immediately adjacent subdomains
(referred to as “list interactions”). Newton’s Third Law can
further reduce this search to only half of the neighboring
subdomains (4 instead of 8 in 2D, and 13 instead of 26 in 3D) by
computing each pairwise force Fj; once and assigning +F;; to
atoms i and j, respectively. By organizing the computation of
interactions between the 4 neighboring subdomains in 2D (13 in
3D) by an interaction path, interprocessor communication is
readily coordinated by synchronously sending (and receiving) a
subdomain whenever its interaction path crosses a processor
boundary (Fig 1, left). C data structures are used to simplify
manipulation of subdomains (consisting of a pointer to a list of
particles, the number of particles, and perhaps some auxiliary
data) and particles (a structure with a type, position and velocity
vectors, and other quantities depending on the potential). After
positions (and velocities) are updated at the end of each timestep,
particles crossing subdomain boundaries are readily re-sorted by a
single memcpy() of each particle’s struct, into a buffer to be
sent to a neighboring processor if necessary. (Numerical stability
of the molecular dynamics integration routine requires that each
particle move only a small fraction of rc during each timestep.)



4. (RE-)IMPLEMENTATION OF THE
SPASM CODE ON ROADRUNNER

4.1. An Evolutionary Approach

An analysis of the profile of the existing SPaSM code shows that
we spend approximately 95% of the time in the force subroutine.
Given this, our first attempt at acceleration on hybrid architectures
such as Roadrunner was an ‘evolutionary’ approach, where we
accelerated the force computation on the Cells, leaving particle
updates and other steps (comprising over 80% of the code)
unchanged, to be carried out by the Opterons. However, even for
this port it was immediately apparent that the large number of
small messages arising from the interaction path approach would
be prohibitively expensive. This is because two steps are required
to transfer data from the Opteron to a SPE, or vice versa: a
send/receive pair of DaCS library calls to exchange particles
between the 4 GB associated with each Opteron core and the 4
GB main memory for each Cell processor, followed by a direct
memory access (DMA) instruction to fetch data from the Cell’s
main memory to the 256 kB local store on each SPE. Latency
overhead and data synchronization issues quickly eliminated the
interaction path as a viable approach.

Instead, we adopted a “ghost subdomain” approach in which each
Opteron core receives a boundary layer of subdomains from
neighboring processors in a six-step send-and-receive sequence at
the beginning of each timestep. The force computation, and
subsequent particle position and velocity updates, can then
proceed independently on each Opteron/Cell pair, with no further
MPI communication required until particles need to be
redistributed and the next timestep is reached. Thus at any given
point of time, either the Opterons or the Cells are doing
computations while the other sits idle.

Since this was our first foray into the field of Cell programming,
we decided that it was better to be correct than fast. For this
reason, we decided to forego some optimizations, such as using

Figure 2: Six-way sequence of MPI Sendrecv() calls to
transmit ghost subdomain. Planes of subdomains in the
+x direction are sent first, followed by planes in the +y
direction (including the extra rows provided by the +x
step). A final pair of calls in the £z direction completes
the communication of all neighboring subdomains,
including diagonal ones.

Newton’s Third Law (each action has an equal and opposite
reaction) for the force computation. This resulted in each
interaction being computed twice but reduced the complexity of
the Cell code. Additionally, the optimal data layout for the SPUs
on the Cell is a Structure of Arrays (SOA), where all the data for a
given variable is clustered together in memory, while the SPaSM
code uses an Array of Structures (AOS), where all the data for a
particle is clustered together. This required us to convert the data
from the SPaSM format to one that would be efficient on the Cell.
Furthermore, we needed to byte-swap all data, since the Opteron
uses little-endian byte ordering, and the Cell big-endian. To
achieve this, we initially performed these conversions on the PPU.
However, this approach led to a 50% overhead in the simulations.
Instead, sharing this responsibility between the Opterons and the
SPUs turned out to be the best solution. In our final
implementation we convert the AOS into an SOA, and convert the
Endianness of the positions on the Opteron. On the return, the
SPUs convert the Endianness of the force, while the Opteron
again converts the Cell SOA into the SPaSM AOS data layout.
With this modification, the overhead for Endian conversion fell
below 0.1% of the total time, making it essentially free.

For this approach, we find that the force computation on the Cell
takes about 60% of the time while the Opterons compute the
remaining 40% of the time. Of this 40% approximately 20% is
spent in the data conversion routines. Overall we obtained
approximately 2x speedup over SPaSM running on the base
Opterons. For' the Lennard-Jones potential, we measured a
performance of about 8 GF per node, giving a projected
performance of 98 TFlop/s on the complete Roadrunner system.

Our goal in all of this, though was to reduce the wall clock time as
much as possible, and so we decided to explore whether we could
get much better performance by redesigning the entire
communication infrastructure and data structures of SPaSM to
allow for better asynchrony between the processors. From Table 1
we note that over 96% of the theoretical peak performance of
Roadrunner comes from the Cell processors, meaning that they
should be kept as busy as possible. Our ‘evolutionary’ approach
of sending particle positions from the Opteron to Cell to compute
forces, which are then returned to the Opteron for position and
velocity updates (and particle redistribution) was clearly deficient
in this regard. We will now describe our ‘revolutionary’ approach,
where almost the entire code base is changed to accommodate the
Cell processor, and the unique multi-layer hierarchy of
Roadrunner’s architecture.

4.2. A Revolutionary Approach

In computing the interactions between particles using SPaSM’s
subdomain layout, interactions are computed between all particles
within a given subdomain, and then with particles in neighboring
subdomains. These are termed as ‘self” and ‘list’ interactions
respectively. In looking at this it is immediately evident that the
‘self” interactions do not depend on any ghost subdomains, since
they depend exclusively on the data local to the current processor.
Consequently it is possible to overlap the exchange of the ghost
subdomains with neighboring Opterons with the ‘self
computation on the SPU.

In this approach we have transferred all the computation to the
SPUs. The PPU coordinates data movement between the SPUs
and the Opterons, while the Opterons handle all the oft-
node (MPI) communications. Since this was a complicated data
flow, we decided to implement this first for the Lennard Jones



potential, which does not have to transfer data in the middle of the
iteration. This is shown schematically in Figure 3.

Timeline
Opteron Cell

to CBE: s—1» from Opt:s

——» to CBE: x,y.z—1» from Opt: x.y,z

MPI: share ghost x,y,z LJ - Self Interaction

to CBE: ghost x.y,z—1» from Opt: ghost x,y.2

LJ - List Interaction
from CBE: fx fy,fz-e{— to Opt: i fy.fz

integrate
MPI redistribute particles

Repeat

Figure 3: Simplified timeline for the acceleration of the
Lennard-Jones timestep within SPaSM on Roadrunner. The
self (within-subdomain) and list (between subdomain)
interactions are separated, allowing MPI communications
on the Opterons to overlap computation on the SPUs. All
computation is offloaded to the SPUs while the PPU handles
data transfers between the Opterons and the Cell, and the
Opterons conduct all MPI traffic. Thick lines in the image
are hard synchronizations between the Opteron and the Cell.

For this implementation, we also redid the interactions so that we
use Newton’s third law and are now evaluafing the same number
of interactions as the original Opteron version of SPaSM. For this
case we get a speedup of approximately 6x over the base Opterons
of Roadrunner.

4.3. Cell-specific optimizations

To achieve the high percentage of peak on the Cells, we had to do
several optimizations with regard to the transter of data to and
from the SPUs using DMAs and with regard to the computation
itself on the SPUs. The first of these was in the data layout.
These days conventional CPUs have very efficient cache systems.
So much so that one does not have to worry much about data
layout, or the pattern in which data is accessed from Main
Memory. On the SPUs however, the programmer is required to
design the transfers of data from Main Memory to Local Store.
Consequently it is extremely important to plan the data layout in
main memory to facilitate efficient access from the SPUs.

The approach we took to solve this problem was to preallocate
data for the maximum number of particles we could hold in each
subdomain at the beginning of the simulation. Thus, the data for
each array (position, forces, electron density, and energy per
atom) was subdomain order padded, by which we mean that for
each array the amount of space allocated was N,,..* ndx* ndy* ndz
doubles where N, 1s the maximum number of atoms allowed in
any subdomain, and ndx, ndy, and ndz are the number of
subdomains in x, y, and z respectively. The first Ny, entries in
each array belong to subdomain (0,0,0), the next Npu to
subdomain (0,0,1), and so on. This layout has two primary
advantages: first, the size of all subdomains is the same, and so

the addresses can be precalculated at the beginning of the
simulation and would remain valid for the entire simulation; and
second, when particles move between subdomains it is very fast to
pop particles off one subdomains and push them into another. As
an added optimization, the addresses of neighboring subdomains
were precalculated in the beginning and stored in a dma-list
format. This eliminated the need to do pointer math on the SPUs
when fetching particle data from disparate parts of memory.

Once the data layout was finalized, the force subroutine was
optimized in the following major steps: SIMD vectorization,
double buffered DMAs, a hand-optimized reciprocal subroutine,
manual loop unrolling, and function parameter culling. Using the
original sequential code on the Opterons as a baseline, the
speedups we got (in wallclock time) on each successive step for
the revolutionary approach are shown in Table 2. Of these five
steps, the two that provided the most return for the effort involved
were the SIMD vectorization and the manual loop unrolling.
Compiler choice makes a difference as well: in general, we found
that gce generated executables ran approximately 25% slower for
our code as compared to x/c.

Strategy factor | total
Serial on SPUs 0.5 0.5
SIMD Vectorization 2.0 1.0
double buffered DMAs 1.1 1.1
hand-coded reciprocal 1.25 1.38
manual loop unrolling 4.0 | 552
function parameter culling 1.12 | 6.18

Table 2: Relative contribution of different optimization
strategies for the revolutionary approach. The base line for
these optimizations is the original code running on a single
Opteron in serial mode, which runs twice as slow when
ported to the SPUs prior to any optimizations. The speedup
given by each strategy is given, as well as the cumulative
acceleration in the rightmost column. The main contribution
to the speedup was from SIMD vectorization and the manual
unrolling of the innermost loop. It should be noted that
without the SIMD vectorization, the unrolling sped up the
code by less than 25 %.

4.4, Performance Benchmarks

To compute elapsed times and diagnose performance without
excess overhead, we implemented a lightweight gettimeofday()
based timing method on the Opteron-level processes, with less
than 0.01% overhead. This method is event-based, with each call
to a timer recording the current time, an integer flag identifying
the timer, and an additional user-specified marker value. The
output is flushed to file whenever a buffer (typically set to 1
million events) is full. The file can be post-processed after the run
to determine the time spent in the different routines or in
subsections of different routines. The implementation allows one
to turn timers on and off at will, either one at a time, or all of
them. This allows us to sample the performance during a given
run either statistically or continuously, and also allows us to turn
on the timers on different processors at different times. For the
timings obtained here, we enabled timers on MPI rank 0, and left
them disabled on all other processors.

For the Lennard-Jones potential, for each atom / in a given
subdomain, we compute the distance squared, rif, to all other
atoms ; either in the same subdomain (self interaction), or in
neighboring subdomains (list interactions). Since branching on



the SPU is expensive we computed all interactions, but only kept
those that have a distance less than the potential cutoff distance,
r.. Thus, for each pair of atoms we must compute a distance
squared (3 sub, I mul, and 2 madd instructions) to obtain nf = (x-
xj)2+(yi—yj)2+(zi-zj)2). This is then inverted (/ reciprocal) and
multiplied (/ mul) by either 1.0 or 0.0 to set 1/ r* to 0.0 for rij* >
ro. The result it then cubed (2 muls) to get l/rijé, which is
subsequently squared (/ mul) to get 1/r;j'>. We then obtain the
potential energy ¢(ri;) with 2 madd and 2 add instructions, with
an extra addition (/ add) to shift the potential by the energy at the
cutoff for rij2 < r so that the potential energy vanishes
continuously at r.. Similarly, the force -dé(r;;)/dr;; is computed by
a total of 5 muls and 6 madds, for a total of 37 floating-point
instructions (flops). However, we found that recoding the
reciprocal as a Newton-Raphson loop starting with a single
precision floating point reciprocal estimate (frest) reduced the
wall clock time by over 10%. This hand-coded routine has 9
floating point operations (/ frest (not counted), 3 muls, 3 madds),
bringing the total number of floating point operations to 45 for
each pairwise Lennard-Jones interaction (both energy and force).
By counting the number Ny, of such interactions computed
during a series of timesteps (with a cumulative wall clock time
twai, We compute the performance as 45 N / Luall-

To compare our performance against earlier results, we utilize a
standard Lennard-Jones benchmark problem [3-7] in which the
sample is set up in a face-centered-cubic (fec) crystal lattice, at a
density (0.8442 atoms / o) corresponding to the triple point
(where gas, liquid, and solid phases coexist), but at an elevated
temperature (0.9 instead of 0.687 in reduced Lennard-Jones units
[8]). A short timing simulation is run, typically 20-200 timesteps,
counting the overall number of pairwise interactions computed
and the wall-clock time. To measure weak scaling, we sct up a
scries of such runs with one million fecc unit cells (4 million
atoms) per MPI rank, in a 100x100x100 cube of unit cells. They
thus range from 2.88 billion atoms on | CU (720 MPI ranks) to
48.96 billion atoms on 17 CUs (12240 MPI ranks). We have
found the weak scaling of this case to be linear on Roadrunner.
This is shown in Figure 4 as a function of number of connected
units. The symbols in Figure 4 are the measured values while the
solid black line is the best linear fit to the data. This linear scaling
is similar to our experience on a number of large machines, most
notably on BlueGene/L up to 212,992 processors [6,7]. For the
full 17 CU benchmark run, we measured 83.1 x 10'? intcraction
computations with 45 floating-point operations, giving us a total
of 3.74 x 10" floating-point operations for each timestep. The
wall-clock time for each such step was 10.14s, giving us an
aggregate performance of 368.6 TFlop/s.

We estimate that the main interaction kemel of the code is
running at 45% of peak for this run. This high percentage of peak
is achieved because we have implemented 49% of the kernel as
fused multiply-add instructions, which push through four flops in
each cycle on each of the eight SPUs. However, the overall force
subroutine on the Cell runs at 34 GFlop/s due to overheads
associated with data transfer and data movement. On the
Opterons, the MPI communications add to the overhead, and the
rate per Opteron core drops to 30.1 GFlop/s.

Strong scaling results, in which the problem size is held fixed and
the number of processors varied, is shown in Figure 5. We note
that communication overhead diminishes performance for
problem sizes smaller than ~1 billion atoms per CU, or ~1 million

atoms per MPI rank. The “sweet spot” thus appears to be between
1 and 4 billion atoms per CU, where we measure consistent
floating-point rates over 22 TFlop/s per CU, and iteration times
that are quite reasonable for production runs, a few seconds per
timestep. (Although the total amount of mcmory available on
Roadrunner is comparable to the IBM/LLNL BlueGene/L
platform, where we have demonstrated scalable performance up to
320 billion atoms [7], we have gladly sacrificed memory for
improved performance in our Roadrunner redesign, since in
practice MD simulations are always bound by computation time,
not memory.)

Figure 4: Weak scaling of SPaSM on Roadrunner for the
benchmark Lennard-Jones (LJ) problem, measured over 20
timesteps using the simplified revolutionary LJ approach.
The symbols are measured data while the solid line is the best
linear fit through all the data.
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Figure 5: Strong scaling of SPaSM on Roadrunner for the
benchmark Lennard-Jones (LJ) problem, measured as in Fig. 4.
Two problem sizes are shown, with the speedup relative to the run
time on | CU in both cases.


http:ofConnect.ed

A breakdown of the time spent within each timestep in different
parts of the code is shown in Figure 6. A quick analysis shows us
that 85% of the time is spent in the force subroutine, 9% in the
particle redistribution routines, 2% in the position update, and 1%
in the velocity update. Of these subroutines the force routine
exists primarily on the SPUs, whereas the rest of the routines
reside on the Opteron. We believe it is possible to improve the
performance of this code by implementing the marking of
particles for redistribution, and position and velocity integration
steps, on the SPUs. Since parallel communication occurs in the
redistribution step, it is not possible to recover the time spent in
this function fully. However, we believe that at least half the time
spent in this function is consumed by the marking of particles; this
work could be transferred to the SPUs, giving us at least a 10%
boost in performance, and pushing us over 400 TFiop/s.

Figure 6: Fraction of time spent in different subroutines for
the weak scaling results of Fig. 4 during a single timestep,
Jor different numbers of connected units (CUs). The force
subroutine exists entirely on the SPUs, while the rest of the
subroutines run on the Opterons.

4.5. Additional Benefits

Since the Cells “own” the particle data in the “revolutionary”
redesign just described, while the Opterons primarily conduct
traffic, it is possible to periodically copy the current state (particle
positions and velocities) to the Opterons and spawn a thread to
perform more time-consuming analysis, visualization, and
checkpointing of that snapshot in the background while timestep
integration continues normally. Further, the use of ghost
subdomains eliminates the requirement for a uniform rectilinear
spatial decomposition. This can be used to perform a rudimentary
load balancing by adjusting the (generally non-uniform)
rectilinear decomposition whenever we encounter large variations
in density across the simulation domain. Many of the problems
which we are interested in, including the Rayleigh-Taylor fluid
instability [20,21] and planar shock compression of materials [14-
17,27], involve large density gradients in one spatial dimension,
so we are currently implementing a simple one-dimensional
dynamic load balancing procedure that we expect to utilize by the
time Roadrunner delivery to LANL is completed later this fall.

5. MD SIMULATIONS OF SHOCK
EJECTION, JET FORMATION, AND
BREAKUP

The ejection of material from shocked surfaces is a problem that
has attracted increased attention both experimentally [17] and
theoretically [18] at LANL. Models are required that can predict
the amount of mass ejected from a shocked interface with a given
surface finish and loading history (peak shock pressure, either
from a supported square-wave or HE-driven Taylor wave), and
also the particle size and velocity distributions and their
evolutions (and correlations between the two). The total mass can
be inferred by measuring the resulting momentum transfer onto an
Asay foil or piezoelectric probe at some standoff distance, while
particle sizes larger than a micron can be measured using
y or X-ray radiography. However, there is no
n on the distribution of particle sizes below a micron,
correlation between size and velocity distributions.

Lennard-Jones potentials are extremely useful for
any basic physical processes, in order to more directly
our ejecta simulation project with a corresponding
tal effort at LANL we are using EAM potential to
ealistic metals, such as copper. We have implemented
olutionary” approach for the EAM potential on
er, shown schematically in Figure 7. The algorithm is a
rward extension of the Lennard-Jones one shown above
vith an added communication step (to exchange F’(p)) in
e of the computation, that can also be overlapped in a
ashion.  Although loop unrolling and several other
ions such as those in Table 2 have not been completely
ted and optimized, our Cell-accelerated EAM
tation already achieves a speedup of ~4x over the
nly version.

1strate this code for a problem of shock ejecta production
in copper, we carried out a series of runs using | CU (720 MPI
ranks), for different shock velocities. The sample is 500 x 500 x 2
nm (36 million atoms), with a thin third dimension just thick
enough to give realistic (3-dimensional) equation-of-state and
material response. The free surface opposite to the shock impact
plane contains three machining grooves, each with the same
volume but different shapes. Previous theories of shock ejecta
have been based on the assumption that defect volume is the
dominant variable, but our simulations clearly show significant
differences in the initial jetting from differently shaped defects
(Figure 8). These simulations are providing useful insight into the
initial formation of shock ejecta, leading to a model based on the
Richtmyer-Meskhov instability that appears to successfully
describe the bubble and spike dynamics, which determine the total
ejecta mass and peak velocity of the leading ejecta.

With the computational capabilities of Roadrunner and our
optimized SPaSM code, we will also be able to probe the next
step, the subsequent breakup of the jets (either liquid or solid,
depending on shock pressure) into fragments. This will enable a
direct (computational) measurement of the size and velocity
distributions of the sub-micron particulates that have thus far
eluded experimental measurement, complementing recent
experimental advances pushing down into the sub-micron length
scale. The fundamental phenomena of liquid jet breakup and
atomization have impacts in areas well beyond weapons science,
ranging from medical and agricultural applications to ink-jet



printing and jet engines. As two recent reviews have highlighted
[32,33], several competing theories exist even though very
fundamental questions are still unanswered, such as whether the
particle size distribution vanishes at some lower limit, or
continues smoothly to the atomistic scale. A few molecular
dynamics simulations have been performed to investigate the
basic hydrodynamics of the necking, or capillary, instability [25],
but thus far computational requirements have prevented the
collection of sufficient statistics to answer the size distribution
question.

Timeline
Opteron Cell

10 CBE: s—¥9 from Opt: s

!———b to CBE: x.y.z,d—1» from Opi: x.y,z.d

MP!: share ghost x.y,z.d Psef, Pself
o CBE: ghost x,y.z.d—1» from Opt: ghost x.y.z.d
Piist. Pist

F(P)sett, F(P)self
from CBE: F(p)<&{— 1o Opt: F(p)
Forces F'(D)self

MPI: share ghost F'(D)
to CBE: ghost F(p)—1 from Opt: ghost F(D)
Forces F(P)hst
integrate
mark redistributed particles
from CBE: xy,z.d<1— to Opt- x,y.zd
MPI redistribute particles

Repeat

Figure 7: Modified timeline for the Revolutionary Approach
for accelerating SPaSM on Roadrunner for the EAM
potential. The self (within a subdomain) and list (between
subdomain) interactions are separated allowing MPI
communications on the Opterons to overlap computation on
the SPUs. All computation is offloaded to the SPUs while the
PPU handles data transfers between the Opterons and the
blade, and the Opterons conduct all MPI traffic. Thick lines
in the image are hard synchronizations between the Opteron
and the Cell.

Roadrunner will enable such studies for two reasons: (1) the sheer
increase in performance (our 369 TFlop/s represents a ~4x
increase in SPaSM performance over the full 212,992-CPU BG/L
machine), but more importantly (2) the radical redesign of the
message-passing structure within SPaSM  that was required to
optimize performance on Roadrunner now enables us to load-
balance problems with significant density variations, as for a jet
expanding into vacuum.

The original (CM-5) implementation of SPaSM would send many
small messages between CPUs, as each process marched in
lockstep through its grid of subdomains. Consequently, the
overall computational cost was determined by the simulation
volume, rather then the number of atoms. (Most simulations were
chosen to maintain a relatively homogeneous density distribution,

so that there was little distinction between the two.) However, for
Roadrunner the latency overhead associated with sending large
numbers of small messages was prohibitive, so we have removed
this lockstep send-and-receive pattern and instead communicate
entire planes of ghost subdomains from one processor to
another. As such, there is no longer any fundamental restriction
that each processor simulate an equal volume (number of
subdomains), and we can vary the volume assigned to each
processor to balance the computational costs (number of atoms).
As mentioned in subsection 4.5, this one-dimensional dynamic
load balancing approach is currently being implemented in
preparation for the final delivery of Roadrunner later this year.

Figure 8: Demonstration run showing the ejection of
material from a shocked copper surface, run on 1 CU. The
sample is three-dimensional, but with a thin cross-section
into the plane; only a small section of the total sample height
is shown, at two different times during the simulation. (Top)
Free surface prior to shock arrival. (Bottom) Initial jet
formation after a shock wave has reflected from the free
surface. Three different surface defects are initially present,
with the same volume but different shapes, leading to
different jetting patterns that will subsequently break up into
ejecta particles with different size and velocity distributions.
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