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We a of magnetic in multiferroic hexagonal manganite HoMnO:l far-

infrared Low-temperature excitation spectrum of HoMn03 consists of 

transitions of Ho ions within the "o,,-'HvJ,'.A split J = 8 manifold and of the 

resonance of Mn ions. We determine the effective Hamiltonian 

for the Ho ion ground state. The JH~'hH""H'v­ of the Mn antiferromagnetic resonance 

allows us to measure the magnetic between the rare-earth and Mn ions. 
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FIG. 1: Power transmission spectra of HoMn03 with polarized far-IR light incident along the 

crystal's [110] direction at T=10 K. Arrows indicate magnetic absorption lines. The dotted line 

illustrates the simulation of the transmission spectrum using Eqs. (1) and (2). 

The HMO single crystals were grown using an optical floating zone furnace and character­

ized by static magnetization, electric polarization and dielectric constant measurements ll . 

The material's magnetic phase diagramll at temperatures above 5 K displays the reentrant 

phase discovered by Lorenz et al 14
. Polarized far-IR transmission of a 0.4 mm thick, (110) 

oriented crystal was measured as a function of temperature and applied magnetic field using 

a Bruker 66 Fourier-transform spectrometer coupled to an 8 Tesla split-coil superconducting 

magnet17 . Static magnetic field B was applied both parallel and perpendicular to the c axis. 

Figure 1 shows far-IR power transmission spectra of the HMO crystal at low temperatures 

and zero magnetic field for two polarizations of the light incident along the [110] direction ­

the magnetic h-field of the lightwave parallel (hll c) and perpendicular (h..lc) to the c axis. 

The spectra in Fig. 1 are normalized to the transmission through an empty aperture of the 

same size as the sample. The fringes with the period of ~ 3cm-1 seen in the spectra are due to 

multiple reflections of light within the sample. The transmission minima indicated by arrows 
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FIG. 2: Absorption maps for the (h...Le) polarization where darker color indicates higher absorption. 

Left panel - static field Bile, right panel - Bl..c. Symbols represent magnetic resonance positions 

extracted from fitting the measured transmission using Eqs. (1) and (2). Resonances are labeled 

by the same numbers used in Fig. l. 

our discussion to a qualitative description of the observed crystal field transitions, as the 

frequency range of 20 -80cm-1 in our far-IR measurements does not allow us to characterize 

all magnetic-dipole active crystal field transitions . For example, the 12.5 cm-1 transition 

observed by inelastic neutron scattering10 is outside of our accessible frequency range. 

The magnetic-dipole selection rule for the (h.lc) polarization follows from the action of 

perturbation -,nh,l-J± coswt on the crystal field eigenstates and allows only transitions with 

~m = ±l. This rule forbids transitions between singlets, but allows transitions between 

singlets and doublets and between different doublets . Transitions 1 and 2 are strong in the 

(h.lc) polarization (Fig. 2) but are very faint in the (hllc) polarization, which suggests that 

they are allowed in the former, but forbidden in the latter, polarization. Since we observe 

transition 2 in the highest applied magnetic fields , it must be the transition from the ground 

state. The final state of the transition could be either a doublet or a singlet. With a 

magnetic field B applied along the c axis (left panel of Fig. 2) the transition splits linearly, 

a characteristic of the Zeeman splitting of a doublet. The lower branch of the Zeeman-split 

transition disappears when the applied field increases beyond 3 T, which is indicative of a 

thermal depopulation of the upper branch of the Zeeman-split ground state doublet. The 
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FIG. 3: Field dependence of triangular AFMR frequencies at T=10 K. The measured splitting of 

the resonance by magnetic field is about twice the splitting calculated using the free energy of Eq. 

(3). 

The analytical expression for the frequency of the gapped mode in B lie was given by Palme 

et al 24
: 

2 _ ab b(a - b) 2 bB J 2 2 
w±--- ( )2B ± ( )2 Bb(b-2a)+2ab(a+b) , (4)

22a+b 2a+b 

where a = 2Hd, b = 3Hex , the exchange field Hex = AMo, the anisotropy field Hd = K Mo, 

and M o is the sublattice magnetization. Equation (3) is a molecular-field version of the 

Hamiltonian used by Vajk et al to describe the spinwave dispersion in HMO lO . In this 

picture, He,y = 3SJ = 127 T and Hd = SD = 5.75 T, where J and D are the exchange and 

anisotropy parameters measured by inelastic neutron scattering and S is the total spin of 

Mn ions. The value of Hd was lowered slightly to reproduce the zero-field AFMR frequency 

observed in our far-IR study. The field dependence of the AFMR calculated using Eq. 

(4) and the g-factor 9 = 2 is shown in Fig. 3. The calculated frequencies largely disagree 

with the measured ones as the measured splitting is about twice the calculated splitting. For 
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form J1Jllo . sMn 
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(3). 	 The total uW"F,"n,v"v on Mn ions is then the sum the external static 

and and can be or smaller 

the its effect on 

the 	 (3), we find that 

The ferromagnetic HM C;A'-,l1CL1l5C; causes induced 

Ho the c a.xis Lottermoser et 

HM may be for multitude of 8 



K) magnetic phases and the two [",in spin reorientation transitions in HM01o . The reentrant 

phase that is induced in HMO when the magnetic field is applied along the c axis displays 

a strong magnetodielectric effect l4 . Such ME behaviour was explained by the formation of 

magnetic domain walls during spin reorientation, which reduces the local magnetic symmetry 

and allows the coupling between magnetic and ferroelectric polarizations13,14. Theoretical 

descriptions of the domain-wall magnetoelectricity must include domain wall contributions 

to the free energy from lattice distortions and magnetic superexchange interactions. Such 

descriptions are incomplete without the contribution of the magnetic exchange between 

the rare earth and Mn ions. Thus, we believe that. the rare earth-I'v1n interaction plays 

a significant role in all aspects of the physics of multiferroic hexagonal manganites. Our 

measurement of the ferromagnetic Hl\l exchange provides an important contribution to the 

modeling of the interplay between magnetism and ferroeiectricity in hexagonal manganites 

with magnetic rare earth ions. 
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