LAUR. O0FP-5Y7/

Approved for public release;
distribution is unfimited.

Title: | First Time Experiences Using Scipy for Computer Vision
Research

Author(s): | Damian Eads
Edward Rosten

Intended for: | Proceedings of the 2008 Scipy Conference
California Institute of Technology
Pasadena, CA

> Los Alamos
NATIONAL LABORATORY
EST.1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396, By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06}

SciPy08 conference proceedings

First Time Experiences Using SciPy for Computer Vision Research

Damian Eads (eads@lanl.gov) — Los Alamos National Lab, MS B244, Los Alamos, NM USA
Edward Rosten (edrosten@lanl.gov) — Los Alamos National Lab, MS D436, Los Alamos, NM USA

SciPy is an effective tool suite for prototyping new
algorithms. We share some of our experiences using
it for the first time to support our research in ob-
ject detection. SciPy makes it easy to integrate C
code, which is essential when algorithms operating
on large data sets cannot be vectorized. Python's
extensive support for operator overloading makes
SciPy’s syntax as succinct as its competitors, MAT-
LAB, Octave, and R. The universality of Python,
the language in which SciPy was written, gives the
researcher access to a broader set of non-numerical
libraries to support GUI development, interface with
databases, manipulate graph structures, render 3D
graphics, unpack binary files, etc. More profoundly,
we found it easy to rework research code written
with SciPy into a production application, deployable
on numerous platforms.

Introduction

Computer vision research often involves a great deal of
effort spent prototyping new algorithms code. Com-
plicated tasks often demand an iterative approach to
code development. Developing such codes in low-level
languages may be ideal in terms of computational ef-
ficiency but is often time consuming and bug prone.
MATLAB’s succinct “vectorized” syntax and efficient
numerical, linear algebra, signal processing, and im-
age processing codes has led to its popularity in the
Computer Vision community. Last year, we started
a completely new research project in object detection
using the SciPy+Python [Jon01] [GvR92] framework
without any extensive experience developing with it
but having substantial knowhow with MATLAB and
C++. The project sponsor imposed short deadlines
s0 the decision to use a new framework was somewhat
“high risk” as we had to learn the new tool set while
keeping the research on pace. Postmortem, we found
SciPy to be an excellent choice for both prototyping
new code and migrating prototypes into a production
system, Acquiring proficiency with SciPy was quick-
-completing useful, complicated tasks was achievable
within a few hours of first installing the software. In
this paper, we share some noteworthy reflections on
our first experience with SciPy in a full-scale research
project.

A Universal Language

One of the strengths of SciPy is that it is a library
for Python, a universal and pervasive language. This
has two main benefits. First, there is a separation of
concerns: the language (Python) is developed indepen-

dently of the SciPy tool set. The Python community
focuses strictly on maintaining the language and its
interpreter while the SciPy community focuses on the
development of scientific tool sets. The efforts of both
groups are not spread thinly across both tasks freeing
more time to focus on reliability, maintenance, and de-
sign.

MATLAB [Mwc82], R [Red0d], and Octave [Eat02]
must instead accomplish several tasks at once: design-
ing a language, implementing and maintaining an in-
terpreter, and developing numerical codes. Second, the
universality of Python means there is a much broader
spectrum of self-contained communities beyond scien-
tific computation, each of which solely focuses on a sin-
gle kind of library (e.g. GUI, database, network 1/0,
cluster computation). Third-party library communi-
ties are not as common with highly specialized numer-
ical languages like MATLAB and Octave so additional
effort must be spent developing GUI capabilities, etc.
This further worsens the “thin spread” problem: there
is less time and resources to focus on numerical and
scientific libraries.

SciPy does not suffer from the “thin spread” problem
because of the breadth of libraries available from the
many self-contained Python communities. As long as
it is written in Python, it can be integrated into a
SciPy application. Computer Vision research often re-
quires image I/0, GUIs for basic tasks, etc. We were
pleasantly surprised by the wealth of Python libraries
available to us, and this enabled a more seamless mi-
gration into production system.

Operator Overloading: Succinct Syntax

Python's extensive support for operator overloading is
a big factor in the success of the SciPy tool set. The
array bracket and slice operators gives NumPy great
flexibility and succinctness in the slicing of arrays {e.g.
B=A[::-1,::-1].T flips a rectangular array in both
directions then transposes the result.)

Slicing an array on the left-hand side of an assignment
performs assignments in-place, which is particularly
useful in Computer Vision where data sets are large
and unnecessary copying can be costly. Array objects
can either own their data or be a view of another ar-
ray’s data, so slicing and transposition does not require
copying. Instead, a new view is created as an array ob-
ject with its data pointing to the data of the original
array but with its striding parameters recalculated so
the view can be used properly in further computation.

Extensions

Prior to the project's start, the authors had written
a large corpora of Computer Vision code in C+-+,
packaged as the Cambridge Video Dynamics Library
(LIBCVD) [Ros04]. Since many algorithms being re-
searched depended on these low-level codes, a thor-
ough review of different alternatives for C extensions
in Python was needed. Interestingly, we eventually
settled on the original Python C interface (call it
PythonExt) after trying several other packages in-
tended to enhance or replace it.

Note that the primary data structures in LIBCVD are
the Image and ImageRef classes. An Image<T> object
allocates its own raster buffer and manages its deletion
while its subclass BasicImage<T> is constructed from
a buffer and is not responsible for the buffer’s deallo-
cation. The ImageRef class represents a coordinate in
an image, which can be used to index a pixel in an
Image object.

ctypes

ctypes [HelOO] seems the easiest and quickest to get
started but has a major drawback in that distutils
does not support compilation of shared libraries on
Windows and Mac OS X. We also found it somewhat
cumbersome to translate templated C++ data struc-
tures into NumPy arrays. The data structure would
first need to be converted into a C-style array, passed
back to Python space, and then converted to a NumPy
array.
By way of example, a set of {z,y) coordinates would
be represented using std::vector<ImageRef> where
the coordinates are defined as struct ImageRef {int
x, ¥;};. The function for converting a vector of these
ImageRef structs into a C array is:
int *convertToC(vector <ImageRef> &xy_pairs,
int *num) {

int sretval = new int[xy_pairs.size()*2];

*num = xy_pairs.size();

for (int i = 0; i < xy_pairs.size(); i++) {

retval[i*2] = xy_pairs(i].x;
retval[is2+1] = xy_pairs(il.y;
}

return retval;

}
Since the number of {z,y) pairs is not known a priors

the NumPy array cannot be allocated prior to calling
the C+-+ function generating the pairs. One could use
the NumPy array allocation function in C+-+-space
but this defeats one of the main advantages of ctypes:
to be independent of PythonExt.

Once the C-style array is returned back to Python-
space, the next natural step is to use the pointer as
the data buffer of a new NumPy array object. Unfor-
tunately, this is not easy as it seems; three problems
stand in the way: first, there is no function to con-
vert the pointer to a Python buffer object, which is
required by the frombuffer constructor; second, the
frombuffer constructor creates arrays that do not own

their data; third, even if an array can be created that
owns its own data, there is no way to tell NumPy how
to deallocate the buffer. In this example, the C++ op-
erator delete is required instead of free(). In other
cases, a C++ destructor would need to be called.
We eventually worked around these issues by creating
a Python extension with three functions: one that con-
verts a C-types pointer to a Python buffer object, one
that constructs an nd-array that owns its own data
from a Python buffer object, and a hook that deallo-
cates memory using C+-+ delete. Even with these
functions, each C+- function needs to be wrapped
with a C-style equivalent:
int* wrap_find _objects(const float *image,
int m, int n, int *size) {

BasicImage <float> cpp(image, ImageRef(m, n));

vector <ImageRef> cpp_refs;

find_objects{cpp, cpp.refs);

*gize = cpp.refs.size();

return = convertToC{cpp_refs);

This function takes in an input image and size, which it
converts to a BasicImage and calls the find_objects
routine, which is used to find the {z,y) pairs corre-
sponding to the locations of objects in an image, which
it returns as a C-style array. Since ctypes does not
implement C++ name mangling, the function signa-
ture is not embedded in the shared library so a core
dump may result when not invoked properly since the
call is not safe-guarded with type checking. To avoid
these bugs, we needed to create a Python wrapper to
do basic type checking of arguments, conversion of in-
put, and conversion of output. ctypes is intended to
eliminate the need for wrappers. However, for each
C++ function, one wrapper function and conversion
code was needed in C to wrap C++ code, and one
wrapper in Python to wrap C code with type checking,.
Thus, we found ctypes inappropriate for our purposes:
wrapping large amounts of C++ code safely and effi-
clently. Insummary, our experience shows that ctypes
is appropriate for wrapping:

s numerical C codes where the size of output
buffers is known ahead of time and can be done
in Python-space to avoid ownership and object
lifetime issues.

¢ wrapping non-numerical C codes, particularly
those with simple interfaces that use basic C data
structures (e.g. encrypting a string, opening a
file, or writing a buffer to an image file.)

‘Weave

The SciPy weave package allows embedding C++ code
as a multi-line string in a Python program. MD5
hashes are used to cache compilations of C-++ program
strings. Whenever the type of a variable is changed, a
new program string is generated, causing a separate
compilation. weave properly handles iteration over
strided arrays. Compilation errors can be somewhat

SciPy08 conference proceedings

cryptic and it is not obvious how a multiline program
string is translated prior to compilation. Applications
using weave need a C+-+ compiler so it did not fit
the requirements of our sponsor. However, we found it
useful for quickly prototyping “high risk” for-loop al-
gorithms that we could not vectorize prior to investing
in a PythonExt implementation.

Boost Python

Boost Python is a large and powerful library for inter-
facing C++ code from Python. Learning the tool set is
difficult so a large investment of time must be made up
front before useful tasks can be accomplished. Boost
copies objects created in C4-+-space, rather than stor-
ing pointers to them, to avoid a dangling reference to
an object from Python space, a potentially dangerous
situation. Since our Computer Vision codes often in-
volve large data sets, excessive copying could be quite
costly.

Python C Extensions (PythonExt)

As stated earlier, we eventually settled on PythonExt
as our C extension framework of choice. A small suite
of C+--templated helper functions made the C wrap-
per functions quite succinet, and performed static type
checking to reduce the possibility of introducing bugs.

We found that all the necessary type checking and con-
version could be done succinctly in a single C wrapper
function and that in most cases, no additional Python
wrapper was needed. A few helper functions were writ-
ten to accomodate the conversion and type checking:

* Basiclmage<T> to_image<T>(img) converts a rect-
angular NumPy array with values of type T to a
BasicImage object. If the array does not contain
values compatible with T, an exception is thrown.

e PyArrayObject +*image2np<T>(img) converts an
Image object to a NumPy array of type T.

¢ PyArrayObject *vec_imageref2np(v) converts an
std: :vector<ImageRef> of N image references to
a N by 2 NumPy array.

e pair <size_t, T*> mparray2c(v) converts a a
rectangular NumPy array to a std::pair object
with the size stored in the first member and the
buffer pointer in the second.

All of these functions throw an exception if an error oc-
curs during conversion, allocation, or type check. By
wrapping the C++ code in a try/catch, any C++
exceptions thrown as a std: :string are immediately
translated into a Python exception. Thus, all C++
code could be free of Python exception constructs, as

the example illustrates:
PyObject* wrapper(PyObject* self,
PyObject* args) {
try {
if (1PyArg_ParseTuple(...))
return 0;

//C++ code goes here.
}
catch{string err) {
PyErr_SetString(PyExc_RuntimeError,
err.c_str{));
return 0;

}

Shown below is an example of cne of our helper
functions, which converts a PyArrayObject to a
BasicImage. If any errors oceur during the type check,
an exception is thrown, which gets translated into a
Python exception. Significant effort was invested in
to_image because it is used so much. However, the
version below has been shortened for brevity {e.g. we
omitted how the name of the offending variable gets
included in the exception message.):
BasicImage<float> to_image{void* p){
if {IPyArray_Check(p) || PyArray _NDIM{p) != 2
|} tPyArray_ISCONTIGUOUS(p)
|1 PyArray TYPE(p) != NPY_FLOAT)
throw "Bad PyArray”;
PyArrayObject* image = (PyArrayObject*)p;
int sm = image->dimensions([1];
int sn = image->dimensions[0];
BasicImage <I> img{(I*)image->data,
InageRef{(sm, sn));

L

return img;

}
Parsing arguments passed to a wrapper function

is remarkably simple given a single, highly flexible
PythonExt function, PyArg_ParseTuple. It provides
basic type checking of Python arguments, such as ver-
ifying an object is of type PyArrayObject. More thor-
ough type checking of the underlying type of data val-
ues in a NumPy array is handled by the C++ helper
functions.

SWIG

Ed do you want to write something here? I don’t really
have experience in this regard.

Comparison with mex

Prior to this project, the authors had some experi-
ence working with MATLAB’s External Interface (i.e.
mex). mex requires a separate source file for each
function. No function exists with the flexibility as
Python’s PyArg ParseTuple, making it difficult to
parse input arguments. Nor does a function exist like
PyBuildValue to succinctly return data, Opening mex
files in gdb is somewhat cumbersome, making it diffi-
cult to pin down segmentation faults. When a frame-
work lacks succintness and expressibility, developers
are tempted to copy code, which often introduces bugs.

Object-oriented Programming

Many algorithms require the use of data structures
than other just rectangular arrays, e.g., graphs, sets,
maps, and trees. MATLAB’s support for these data
structures is rudimentary as most of them are encoded
with a matrix (e.g. the treeplot and etree functions
accept input as a matrix). MATLAB supports object-
oriented programming so in theory one can implement
a tree or graph class. The authors have attempted
to make use of this facility but found it severly lim-
ited: objects are immutible so changes to them involve
a copy. Since computer vision projects typically in-
volve large data sets, if not careful, subtle copying may
swamp the system. Moreover, it is difficult to organize
a suite of classes in MATLAB because each class must
reside in its own directory (named @classname) and
each method in its own file. Changing the name of a
method requires renaming a file and the method name
in the file followed by a traversal of all files in the di-
rectory to ensure all remaining references are appropri-
ately renamed. Combining three methods into one in-
volves moving the code in the two files into the remain-
ing file and then deleting the originating files. This
makes it cumbersome to do agile object-oriented devel-
opment in MATLAB. To get around these shortcom-
ings, inevitably most programmers introduce global
variables but this lends itself to introducing bugs and
making code hard to maintain. After many years of
trial and error, overall it is very difficult to develop
highly capable production scientific software codes in
MATLAB.

Python has good facilities for organizing a software li-
brary with its modules and packages. A module is a
collection of related classes, functions, and data. All
of its members conveniently reside in the same source
file. Unlike MATLAB, objects in Python are muta-
ble and all methods of a class are defined in the same
source file. Since Python was designed for object-
orientation, many subcommunities have created OO
libraries to support almost any software engineering
task: databases, GUI development, network 1/0, or
file unpacking. This makes it easy to develop produc-
tion code.

Data structures such as maps, sets, and lists are built
into Python. Python also supports a limited version
of a continuation known as a generator function, per-
mitting lazy evaluation. Rich data structures such
as graphs could be easily coded as a class and inte-
grated into our algorithms. No work arounds, such
as global variables were needed. Development with
Python’s object-oriented interface, aside from the self
annoyance of which any seasoned Python programmer
is aware, was remarkably seemless.

Caveat

Python is a dynamically typed language, and as such,
does not offer many static guarantees offered by other
languages such as C++, Java, and Ocaml. Prior to

programming with Python, the authors had extensive
experience programming in a multitude of statically
typed languages including some study in typing the-
ory. It is generally good advice to the new programmer
to learn as many languages as possible, particularly
those with strong typing as they help develop good
programming practice, which will serve well when pro-
gramming in Python.

Plotting

matplotlib [Hun02] is the premiere plotting package
for the SciPy tool family provides an advanced plotting
facility with a syntax similar to MATLAB's. Thus,
many users already familiar with MATLAB plotting
should find matplotlib easy to learn.

The imshow command provided by matplotlib is sim-
ilar to both the scaleim and imshow commands.

Computer Vision research often involves collect-
ing higher-level meta-data from an image. Time-
consuming approaches requiring significant overhead
in terms of code are not worth it. matplotlib provides
some very simple call back mechanisms for developing
very simple annotation tools. Consider the problem
of marking (z,¥) locations in an image with a mouse.
The following class acheives this in matplotlib with
minimal code.:

class MarkImage:

def __init__ (self, img):
mplp.title("Mark-up GUI")
mplp. imshow(img)
mplp.connect(’button_press_event?,
lambda x: self.click_add(x))
mplp.show()
self.L = [

def plot_point(self, x, y):
mplp.plot([x], [y])

def click_add(self, event):
tb = mplp.get. current_fig manager().toolbar
if event.button==1 and
event.inaxes and
tb.mode == ?7:
X,y = event.xdata,event.ydata
self.L.append([x, yI)
self.plot_point(x, y)
mplp.draw()

def get_points(self):
return np.asarray(L)

A screenshot of the annotated GUI is shown in the
following figure.

SciPy08 conference proceedings

References

{Eat02] J. Eaton. GNU Oclave Manual. Network Theory
Limited Press. 2002.

{Hel00] T. Heller. ctypes: An Advanced For-
eign Functions Interface for Python.
http://python.net/crew/theller/ctypes/. 2000--

[Hun02] J. Hunter, wmatplotith: plotting for Python.
htep://matplotlib.sfnet/. 2002--.

[Jon01] E. Jones, T. Oliphant, P. Peterson, et al
“SciPy: Open Source Scientific tools for Python”.
http://www.scipy.org. 2001,

[Mwc82] The Mathworks Corporation. MATLAB.
http:/ /www. mathworks.com. 1984--.

[GvR92] G. van Rossum. Python. 1991,

[Red04] The R Core Development Team. R Reference
Manual. 2004--,

[Ros04] E. Rosten, T. Drummond, et al. Cambridge
Video Dynamics Library (LIBCVD). http://svr-
www.eng.cam.ac.uk/ twd20/. 2004--

