
LA-UR-
Approved for public release; 
distribution is unlimited. 

Title: 

Author(s): 

Intended for: 

First Time Experiences Using Scipy for Computer Vision 
Research 

Damian Eads 
Edward Rosten 

Proceedings of the 2008 Scipy Conference 
California Institute of Technology 
Pasadena, CA 

/A
• LosAlamos 

NATIONAL LABORATORY 
---EST,1943 --­

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC 
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-0SNA2539S. By acceptance 
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the LabOratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (7/0S) 



SciPy08 conference proceedings 

First Time Experiences Using SciPy for Computer Vision Research 

Damian Eads (eadsl!)lanl. gov) Los Alamos National Lab, MS 8244, Los Alamos, NM USA 
Edward Rosten (edrostenl!)lanl. gov) - Los Alamos National Lab, MS 0436, Los Alamos, NM USA 

SciPy is an effective tool suite for prototyping new 
algorithms. We share some of our experiences using 
it for the first time to support our research in ob­
ject detection. SciPy makes it easy to integrate C 
code, which is essential when algorithms operating 
on large data sets cannot be vectorized. Python's 
extensive support for operator overloading makes 
SciPy's syntax as succinct as its competitors, MAT­
LAB. Octave. and R. The universality of Python. 
the language in which SciPy was written, gives the 
researcher access to a broader set of non-numerical 
libraries to support GUI development. interface with 
databases, manipulate graph structures, render 3D 
graphics, unpack binary files. etc. More profoundly. 
we found it easy to rework research code written 
with SciPy into a production application, deployable 
on numerous platforms. 

Introduction 

Computer vision research often involves a great deal of 
effort spent prototyping new algorithms code. Com­
plicated tasks often demand an iterative approach to 
code development. Developing such codes in low-level 
languages may be ideal in terms of computational ef­
ficiency but is often time consuming and bug prone. 
MATLAB's succinct "vectorized" syntax and efficient 
numerical, linear algebra, signal processing, and im­
age processing codes has led to its popularity in the 
Computer Vision community. Last year, we started 
a completely new research project in object detection 
using the SciPy+Python [JonOl] [CvR92] framework 
without any extensive experience developing with it 
but having substantial knowhow with MATLAB and 
C++. The project sponsor imposed short deadlines 
so the decision to use a new framework was somewhat 
"high risk" as we had to learn the new tool set while 
keeping the research on pace. Postmortem, we found 
SciPy to be an excellent choice for both prototyping 
new code and migrating prototypes into a production 
system. Acquiring proficiency with SciPy was quick­
-completing useful, complicated tasks was achievable 
within a few hours of first installing the software. In 
this paper, we share some noteworthy reflections on 
our first experience with SciPy in a full-scale research 
project. 

A Universal Language 

One of the strengths of SciPy is that it is a library 
for Python, a universal and pervasive language. This 
has two main benefits. First, there is a separation of 
concerns: the language (Python) is developed indepen­

dently of the SciPy tool set. The Python community 
focuses strictly on maintaining the language and its 
interpreter while the SciPy community focuses on the 
development of scientific tool sets. The efforts of both 
groups are not spread thinly across both tasks freeing 
more time to focus on reliability, maintenance, and de­
sign. 

MATLAB [Mwc82]' R [Rcd04], and Octave [Eat02] 
must instead accomplish several tasks at once: design­
ing a language, implementing and maintaining an in­
terpreter, and developing numerical codes. Second, the 
universality of Python means there is a much broader 
spectrum of self-contained communities beyond scien­
tific computation, each of which solely focuses on a sin­
gle kind of library (e.g. CUI, database, network I/O, 
cluster computation). Third-party library communi­
ties are not as common with highly specialized numer­
icallanguages like MATLAB and Octave so additional 
effort must be spent developing CUI capabilities, etc. 
This further worsens the "thin spread)) problem: there 
is less time and resources to focus on numerical and 
scientific libraries. 

SciPy does not suffer from the "thin spread" problem 
because of the breadth of libraries available from the 
many self-contained Python communities. As long as 
it is written in Python, it can be integrated into a 
SciPy application. Computer Vision research often re­
quires image I/O, CUIs for basic tasks, etc. We were 
pleasantly surprised by the wealth of Python libraries 
available to us, and this enabled a more seamless mi­
gration into production system. 

Operator Overloading: Succinct Syntax 

Python's extensive support for operator overloading is 
a big factor in the success of the SciPy tool set. The 
array bracket and slice operators gives N umPy great 
flexibility and succinctness in the slicing of arrays (e.g. 
B=A [: : -1, : : -1] . T flips a rectangular array in both 
directions then transposes the result.) 

Slicing an array on the left-hand side of an assignment 
performs assignments in-place, which is particularly 
useful in Computer Vision where data sets are large 
and unnecessary copying can be costly. Array objects 
can either own their data or be a view of another ar­
ray's data, so slicing and transposition does not require 
copying. Instead, a new view is created as an array ob­
ject with its data pointing to the data of the original 
array but with its striding parameters recalculated so 
the view can be used properly in further computation. 

1 



Extensions 

Prior to the project's start, the authors had written 
a large corpora of Computer Vision code in 
packaged as the Cambridge Video Dynamics Library 
(LIBCVD) [Ros04]. Since many algorithms being re­
searched depended on these low-level codes, a thor­
ough review of different alternatives for C extensions 
in Python was needed. Interestingly, we eventually 
settled on the original Python C interface (call it 
PythonExt) after trying several other packages in­
tended to enhance or replace it. 
Note that the primary data structures in LIBCVD are 
the Image and ImageRef classes. An Image<T> object 
allocates its own raster buffer and manages its deletion 
while its subclass BasicImage<T> is constructed from 
a buffer and is not responsible for the buffer's deallo­
cation. The ImageRef class represents a coordinate in 
an image, which can be used to index a pixel in an 
Image object. 

ctypes 

ctypes [HeIOO] seems the easiest and quickest to get 
started but has a major drawback in that distutils 
does not support compilation of shared libraries on 
Windows and Mac OS X. We also found it somewhat 
cumbersome to translate templated C++ data struc­
tures into NumPy arrays. The data structure would 
first need to be converted into a C-style array, passed 
back to Python space, and then converted to a NumPy 
array. 
By way of example, a set of (x, y) coordinates would 
be represented using std: :vector<ImageRef> where 
the coordinates are defined as struct ImageRef {int 
x, y;};. The function for converting a vector of these 
ImageRef structs into a C array is: 

int *convertToC(vector <ImageRef> &xy_pairs, 
int *num) { 

int *retval = new int[xy_pairs.size()*2]; 
*num xy_pairs.size(); 
for (int i = 0; i < xy_pairs.size(); i++) { 

retval [i*2] xy_pairs[i] .x; 
retval[i*2+1] = xy_pairs[i].y; 

} 
return retval; 

} 

Since the number of (x, y) pairs is not known a priori 
the NumPy array cannot be allocated prior to calling 
the C++ function generating the pairs. One could use 
the NumPy array allocation function in C++-space 
but this defeats one of the main advantages of ctypes: 
to be independent of PythonExt. 
Once the C-style array is returned back to Python­
space, the next natural step is to use the pointer as 
the data buffer of a new NumPy array object. Unfor­
tunately, this is not easy as it seems; three problems 
stand in the way: first, there is no function to con­
vert the pointer to a Python buffer object, which is 
required by the frombuffer constructor; second, the 
frombuffer constructor creates arrays that do not own 

their data; third, even if an array can be created that 
owns its own data, there is no way to tell NumPy how 
to deallocate the buffer. In this example, the C++ op­
erator delete is required instead of free (). In other 
cases, a C++ destructor would need to be called. 
\Ve eventually worked around these issues by creating 
a Python extension with three functions: one that con­
verts a C-types pointer to a Python buffer object, one 
that constructs an nd-array that owns its own data 
from a Python buffer object, and a hook that deallo­
cates memory using C++ delete. Even with these 
functions, each C++ function needs to be wrapped 
with a C-style equivalent: 

int* wrap_find_objects(const float *image, 
int m, int n, int *size) { 

Basiclmage <float> cpp(image, ImageRef(m, n)); 
vector <ImageRef> cpp_refs; 
find_objects(cpp, cpp_refs); 
*size = cpp_refs.size(); 
return = convertToC(cpp_refs); 

} 
This function takes in an input image and size, which it 
converts to a BasicImage and calls the find_objects 
routine, which is used to find the (x, y) pairs corre­
sponding to the locations of objects in an image, which 
it returns as a C-style array. Since ctypes does not 
implement C++ name mangling, the function signa­
ture is not embedded in the shared library so a core 
dump may result when not invoked properly since the 
call is not safe-guarded with type checking. To avoid 
these bugs, we needed to create a Python wrapper to 
do basic type checking of arguments, conversion of in­
put, and conversion of output. ctypes is intended to 
eliminate the need for wrappers. However, for each 
C++ function, one wrapper function and conversion 
code was needed in C to wrap C++ code, and one 
wrapper in Python to wrap C code with type checking. 
Thus, we found ctypes inappropriate for our purposes: 
wrapping large amounts of C++ code safely and effi­
ciently. In summary, our experience shows that ctypes 
is appropriate for wrapping: 

• 	 numerical C codes where the size of output 
buffers is known ahead of time and can be done 
in Python-space to avoid ownership and object 
lifetime issues. 

• 	 wrapping non-numerical C codes, particularly 
those with simple interfaces that use basic C data 
structures (e.g. encrypting a string, opening a 
file, or writing a buffer to an image file.) 

Weave 

The SciPy weave package allows embedding C++ code 
as a multi-line string in a Python program. MD5 
hashes are used to cache compilations of C++ program 
strings. Whenever the type of a variable is changed, a 
new program string is generated, causing a separate 
compilation. weave properly handles iteration over 
strided arrays. Compilation errors can be somewhat 

2 



SciPy08 conference proceedings 

cryptic and it is not obvious how a multiline program 
string is translated prior to compilation. Applications 
using weave need a C++ compiler so it did not fit 
the requirements of our sponsor. However, we found it 
useful for quickly prototyping "high risk" for-loop al­
gorithms that we could not vectorize prior to investing 
in a PythonExt implementation. 

Boost Python 

Boost Python is a large and powerful library for inter­
facing C++ code from Python. Learning the tool set is 
difficult so a large investment of time must be made up 
front before useful tasks can be accomplished. Boost 
copies objects created in C++-space, rather than stor­
ing pointers to them, to avoid a dangling reference to 
an object from Python space, a potentially dangerous 
situation. Since our Computer Vision codes often in­
volve large data sets, excessive copying could be quite 
costly. 

Python C Extensions (pythonExt) 

As stated earlier, we eventually settled on PythonExt 
as our C extension framework of choice. A small suite 
of C++-templated helper functions made the C wrap­
per functions quite succinct, and performed static type 
checking to reduce the possibility of introducing bugs. 

We found that all the necessary type checking and con­
version could be done succinctly in a single C wrapper 
function and that in most cases, no additional Python 
wrapper was needed. A few helper functions were writ­
ten to accomodate the conversion and type checking; 

• 	 BasicImage<T> to_image<T> (img) converts a rect­
angular NumPy array with values of type T to a 
BasicImage object. If the array does not contain 
values compatible with T, an exception is thrown. 

• 	 PyArrayObject *image2np<T> (img) converts an 
Image object to a NumPy array of type T. 

• 	 PyArrayObject *vec_imageref2np(v) converts an 
std: : vector<ImageRef> of N image references to 
a N by 2 NumPy array. 

• 	 pair <size_t. T*> nparray2c(v) converts a a 
rectangular NumPy array to a std: :pair object 
with the size stored in the first member and the 
buffer pointer in the second. 

All of these functions throw an exception if an error oc­
curs during conversion, allocation, or type check. By 
wrapping the C++ code in a try/catch, any C++ 
exceptions thrown as a std: : string are immediately 
translated into a Python exception. Thus, all C++ 
code could be free of Python exception constructs, as 

the example illustrates; 
PyObject* vrapper(PyObject* self, 

PyObject* args) { 
try { 

if(!PyArg_ParseTuple( ... » 
return 0; 

//C++ code goes here. 

} 


catch(string err) { 

PyErr_SetString(PyExc_RuntimeError, 


err.c_strO) ; 

return OJ 


} 
} 

Shown below is an example of one of our helper 
functions, which converts a PyArrayObject to a 
Basiclmage. If any errors occur during the type check, 
an exception is thrown, which gets translated into a 
Python exception. Significant effort was invested in 
to_image because it is used so much. However, the 
version below has been shortened for brevity (e.g. we 
omitted how the name of the offending variable gets 
included in the exception message.): 

BasicImage<float> to_image(void* p){ 
if(!PyArray_Check(p) I I PyArray_NDIM(p) != 2 

I I !PyArray_ISCONTIGUOUS(p) 
II PyArray_TYPE(p) != NPY_FLOAT) 
throv "Bad PyArray"; 

PyArrayObject* image (PyArrayObject*)p; 

int sm image->dimensions[l]; 

int sn image->dimensions[O]; 

BasicImage <I> img«I*)image->data, 


1mageRef(sm. sn»; 

return img; 


} 

Parsing arguments passed to a wrapper function 
is remarkably simple given a single, highly flexible 
PythonExt function, PyArg_ParseTuple. It provides 
basic type checking of Python arguments, such as ver­
ifying an object is of type PyArrayObject. More thor­
ough type checking of the underlying type of data val­
ues in a NumPy array is handled by the C++ helper 
functions. 

SWIG 

Ed do you want to write something here? 1 don't really 
have experience in this regard. 

Comparison with mex 

Prior to this project, the authors had some experi­
ence working with MATLAB's External Interface (Le. 
mex). mex requires a separate source file for each 
function. No function exists with the flexibility as 
Python's PyArg_ParseTuple, making it difficult to 
parse input arguments. Nor does a function exist like 
PyBuildValue to succinctly return data. Opening mex 
files in gdb is somewhat cumbersome, making it diffi­
cult to pin down segmentation faults. When a frame­
work lacks succintness and expressibility, developers 
are tempted to copy code, which often introduces bugs. 

3 



Object-oriented Programming 

Many algorithms require the use of data structures 
than other just rectangular arrays, e.g., graphs, sets, 
maps, and trees. MATLAB's support for these data 
structures is rudimentary as most of them are encoded 
with a matrix (e.g. the treeplot and etree functions 
accept input as a matrix). MATLAB supports object­
oriented programming so in theory one can implement 
a tree or graph class. The authors have attempted 
to make use of this facility but found it severly lim­
ited: objects are immutible so changes to them involve 
a copy. Since computer vision projects typically in­
volve large data sets, if not careful, subtle copying may 
swamp the system. Moreover, it is difficult to organize 
a suite of classes in MATLAB because each class must 
reside in its own directory (named <nclassname) and 
each method in its own file. Changing the name of a 
method requires renaming a file and the method name 
in the file followed by a traversal of all files in the di­
rectory to ensure all remaining references are appropri­
ately renamed. Combining three methods into one in­
volves moving the code in the two files into the remain­
ing file and then deleting the originating files. This 
makes it cumbersome to do agile object-oriented devel­
opment in MATLAB. To get around these shortcom­
ings, inevitably most programmers introduce global 
variables but this lends itself to introducing bugs and 
making code hard to maintain. After many years of 
trial and error, overall it is very difficult to develop 
highly capable production scientific software codes in 
MATLAB. 
Python has good facilities for organizing a software li­
brary with its modules and packages. A module is a 
collection of related classes, functions, and data. All 
of its members conveniently reside in the same source 
file. Unlike MATLAB, objects in Python are muta­
ble and all methods of a class are defined in the same 
source file. Since Python was designed for object­
orientation, many subcommunities have created 00 
libraries to support almost any software engineering 
task: databases, CUI development, network I/O, or 
file unpacking. This makes it easy to develop produc­
tion code. 
Data structures such as maps, sets, and lists are built 
into Python. Python also supports a limited version 
of a continuation known as a generator junction, per­
mitting lazy evaluation. Rich data structures such 
as graphs could be easily coded as a class and inte­
grated into our algorithms. No work arounds, such 
as global variables were needed. Development with 
Python's object-oriented interface, aside from the self 
annoyance of which any seasoned Python programmer 
is aware, wa.'l remarkably seemless. 

Caveat 

Python is a dynamically typed language, and as such, 
does not offer many static guarantees offered by other 
languages such as C++, Java, and Ocaml. Prior to 

programming with Python, the authors had extensive 
experience programming in a multitude of statically 
typed languages including some study in typing the­
ory. It is generally good advice to the new programmer 
to learn as many languages as possible, particularly 
those with strong typing as they help develop good 
programming practice, which will serve well when pro­
gramming in Python. 

Plotting 

matplotlib [Hun02] is the premiere plotting package 
for the SciPy tool family provides an advanced plotting 
facility with a syntax similar to MATLAB's. Thus, 
many users already familiar with MATLAB plotting 
should find matplotlib easy to learn. 

The imsho'll' command provided by matplotlib is sim­
ilar to both the scaleim and imsho'll' commands. 

Computer Vision research often involves collect­
ing higher-level meta-data from an image. Time­
consuming approaches requiring significant overhead 
in terms of code are not worth it. matplotlib provides 
some very simple call back mechanisms for developing 
very simple annotation tools. Consider the problem 
of marking (x, y) locations in an image with a mouse. 
The following class acheives this in matplotlib with 
minimal code.: 

class MarkImage : 

def __init__ (self, img): 
mplp.title("Mark-up GUI") 
mplp.imshow(img) 
mplp.connect('button_press_event', 

lambda x: self.click_add(x» 
mplp.show() 
self.L = [] 

def plot_point(self, x, y): 

mplp.plot([x],[y]) 


def click_add(self. event): 
tb mplp.get_current_fig_manager().toolbar 
if event.button==1 and 

event.inaxes and 
tb.mode •• ": 

x.Y" event.xdata,event.ydata 
self.L.append([x, y]) 
self.plot_point(x. y) 
mplp.draw() 

def get_points(self): 

return np.asarray(L) 


A screens hot of the annotated CUI is shown in the 
following figure. 

4 



conference n'r{")(',,,,",,,,rl 

References 

J. Eaton. GNU Octave Manual. Network Theory 
Limited Press. 2002. 

[HeIOO] Heller. An Advanced For­

Python. 


2000-­

[Hun02] J. Hunter. Python. 

[JonOlj E. Jones, T. Oliphant, P. Peterson, et aL 
Source Scientific tools ror 

2001--. 
MATLAR 

[GvR92] G. van Rossum. Python. 
[Rcd04] The R Core Development Team. R Reference 

Manual. 2004--. 
[Ros04] T. et a!. Cambridge 

5 


