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Abstract During the next decade and beyond, climate "ystem models will be challenged 
to scales and processes that are far beyond their current scope. climate sys~ 
tem componem has its prototypical example of an unresolved that may 
influence the global climate system, ranging from eddy activity within models, to 

SITeams within ice sheet models, to surface hydrologICal processes within land system mod-
to cloud processes within atmosphere models. These new demands WIll almost certamly 

result in the develop of multi-resolution that are able, at regionaL to faithflllly 
simulate these fine-scale processes. Centroidal Voronoi Tessellations (SCVTs) of-
fer one potential path toward the development robust multi~resolution climate system 
component models, SCVTs allow for the generation of high quality diagrams and 
Delaunay triangulations through the of an user-defined density function, 
each of rhe provided, rhis method results in high-quality meshes where the quaHty 
measures guaranteed to improve as the number nodes is increased, Real-world ex, 
amples are developed the Greenland ice and thl! North Atlantic ocean. Idealized 
examples are developed for ocean-ice shelf interaction and regional atmospheric model­
ing, In addition to defining, developing and exhibiting SCVTs, we pair this mesh generation 
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technique with a previously developed finite-volume method. Our numerical example is 
ba~ed on the nonlinear shal low-water equations spanning the entire surface of the sphere. 
This example is used to elucidate both the potential benefits of thi s multi-resolution method 
and the challenges ahead. 

Keywords Voronoi· Delaunay . climate modeling· multi-resolution 

1 Introduction 

Climate system models (CSMs) are an increasingly important tool for asses.sing anthro­
pogenic climate change. CSMs, along with observations and theory, form the ba')is for the 
IPCC Working Group I Asses ment Reports that detail the anticipated consequences of 
risiog concentrations of atmospheric greenhouse gases (I]. While CSMs have been highly 
successful in interpreting observations. confirming theory and providing gross estimates 
of climate sensi tivity, the climate modeling community will be challenged in the coming 
decade to extend the utility of CSMs well beyond their current scope. 

At least two drivers are pushing SMs into new and expanding roles. The first i~ the 
increasingly urgent need to resolve scales and processes that are far beyond the current scope 
of th~se models . There are likely to be unresolved proce. ses and currently misrepresented 
processes that have significant influence on the global climate system. Every component of 
the Earth system has its own prototypical example, ranging from eddy activity within ocean 
models (1.3]. to ice streams within ice sheet models (15] , to surface hydrological processes 
within land system models [22], to cloud processes with atmosphere models [32]. Each of 
these processes are not faithfully included in IPCC-cJass CSMs primarily due to lack of 
resolut ion; the degre~') of freedom required to comprehensively simulate these processes are 
computationally prohibitive given the current (and foreseeable) resources. 

The second driver pushing the evolution of CSMs is the rapidly growing demand for 
high-fidelity assessments of regional climate change driven by increasing concentrations of 
atmospheric greenhouse gases. As appreciation for the possible consequences of anthro­
pogenic climate change improves, we are confronted with the need to characterize the re­
gional aspects of climate change in order to support mitigation strategies. As indicated by the 
last chapter of the lPCC WG 1 Fourth Assessment Report (AR4 ). the push in this direction 
i ~ already underway (I). To be successful in providing the relevant information regarding 
regional climate impacts. SMs will require significant increases in resolution. at least re­
gionally, along with the incorporation of new processes. 

Climate system model components are presently u.tilizing various types of quasi-uniform 
tessellations (aka grids or meshes) to discretize the surface of the sphere. These quasi ­
uniform tessellations are a significant improvement over their predecessor, latitude-longitude 
grids, by removing both the strong grid-pole singularities ard the accompanying numer­
ical filters required to regularize these singularities. Various types of meshes have been 
proposed as altern atives to the traditional latitude-longi tude grid. For example , the cubed­
sphere. which offers the same topological structure as the latitude-longitude grid without the 
strong pole singularities. has been successfully implemented in various efforts (20). Voronoi 
tessellations (aka geodesic, icosahedral or hexagonal grids) have sometimes been chosen for 
thei r remarkable uniformity aJld isotropy (27] And finally. closely related to these Voronoi 
tessellations are the Ddaunay triangulations that have been success fuJJy implemented in an 
ideal ized setting and are now being integrated into full CSMs (4] . While each of these meth­
ods have succes. fully removed the grid pole si ngularities associated with latitude-longitude 



grids, it is not clear that any of these methods, as presently fonnulated, will be able to meet 
the challenges outlined above. 

By their nature, quasi-unifonn tessellations imply a substantial increase in computa­
tional costs to increase horizontal resolution . A halving of the nominal grid spacing implies 
an increase in computational cost of approximately a factor of eight; a factor of four arises 
from doubling the degrees of freedom in each of the horizontal directions and a factor of two 
arises due to halving the time step. The computational burden associated with increasing res­
olution everywhere within the domain quickly exhausts available computational resources. 
For example, conducting eddy-resolving ocean simulations as a part of century-long cou­
pled climate simulations are impracticable now and will likely continue to be so for at least 
the next decade or more. The current NCAR Coupled Climate System Model (5] uses an 
ocean component model with a 320 x 384 grid and a time step of approximately one hour. 
The eddy-resolving version of this ocean model uses a 3600 x 2400 grid and a time step of 
approximatel y six minutes (21]. The two configUrations differ by a factor of about 1000 in 
terms of their computational burden. Similarly daunting computational burdens are found in 
ice sheet modeling , surface hydrology modeling and atmospheric modeling. 

The obvious implication here is that CSMs will not be able to fulfill their expanding 
roles by solely using quasi -uniform tessellations. T he corollary to this assertion is that multi­
resolution schemes will be required if CSMs are to meet the growing challenges over the 
next decade. A host of scientific complexities arise as we begin to contemplate the construc­
tion of a multi-resolution IPCC-c1ass climate system model. 

The recent work of St-Cyr el al. (30] clearly indicates that a successful multi-resolution 
scheme requires attention to the combination of method and mesh. The authors develop a 
multi -resolution mesh by implementing an adaptive, hierarchical nesting technique in which 
quadrilateral elements are bisected to locall y increase resolution. When this adaptive mesh­
ing technique was llsed in combination with a high-order spectral method, the resulting 
multi-resolution scheme produced positive results. Alternatively. when the same technique 
was used in combination with a low-order finite-volume technique , the result s were equivo­
cal at best; adding degrees of freedoms did not reduce numerical solution error. The implica­
tion is that robust, multi -resolution climate system components will require close attention 
to both the quality of the variable-resolution meshes and to the numerical techniques we 
place "on top" of these meshes. 

An alternative to hierarch.ical nesting is to produce a smoothly-varying tessellation. By 
their design , smoothly varying tessellations provide strong control over the spatial patterns 
of nuncation error. While this control may be superAuous when used in combination with 
high-order methods, it may prove to be critically important when used with the low-order, 
finite-volume method s that are ubiquitous in IPCC-class component models (1]. The pri­
mary purpose of this paper is to develop a class of robu ~ t. variable-resolution meshes. called 
Spherical Ceotroidal Voronoi Tessellations, that have the requisite characteristics necessary 
to meet the present and future challenges of climate system modeling. 

Spherical Centroidal Voronoi Tessellations (SCVTs) contain a host of qualities that 
should produce tangible benefits in the context of climate modeling. First, SCVTs are a 
superset of the quasi-unifonn Voronoi tessellations currently being used in the climate mod­
eling community. Thus, SCVTs are a logical extension to meshes already being utilized. 
Second, as di scussed in Section 2, even non-uniform SCVTs always produce smoother, 
more locally-uniform meshes as the degrees of freedom are increased. The implication here 
is clear; SCVTs offer a robu st means of producing multi -resolution meshes that are guar­
anteed to increase in quality as computational resources grow. As discussed in Section 3, 
the technique to produce variable-resolution SCVTs is intuitive and straightforward to im-
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plement. And finaJJy , each SevT is uniquely associated with a Delaunay triangulation. The 
positive attributes associated with the SeVTs are also present in the associated Delaunay 
triangulation. While a tremendous amount of work is required to translated these positive 
attributes into robust climate simulations. we begin the task here by taking two steps. First, 
we develop example me, hes for several types of climate system components to demonstrate 
the method s ability to produce high-quality. variable-resolution meshes in a diversity of sys­
tems. Second. we will demonstrate the ability of these meshes to reduce solution errors , at 
least 10caJly. in the context of the shallow-water system. 

The two primary purposes of this paper are the following: I) to introduce the climate 
modeling community to the b<:l sic principles of SeVT and 2) to highlight the broad ap­
plicability of sevT to climate system modeling. Section 2 introduces and develops the 
mathematical foundation for SeVTs. Section 3 develops real-world SeVTs in the context 
of ice sheet and ocean modeling. Section 4 combines our SeVT technique for generation 
of mulli-resolutiou meshes with a low-order finite-volume technique to produce a prototype 
multi-resolution scheme that is broadly applicable to climate system modeling. We look 
toward future developments of SeVT and draw some conclusions in Section S. 

2 Centl'oidal Voronoi Tessellations 

2.1 De finitions 

Let Q denote an open domain or a piecewise smooth hyper-surface in IRd and II . II the 
corresponding standard Euclidean metric for Ile. Given a set of distinct points {Xi }j; l C Q , 

we define 

Vi ={y E Q I IIxi-yll< IIXj- y ll for j=L .. n and i 1"' i} 

for i = 1 ..... n. Clearly, {Vi };~' l forms a tessellation of Q, i.e. , the union of Vi spans 'IT 
written as U:~ IVi = Q . We refer to {Vi };'=I as the Voronoi tessellalion or Voronoi diagram 
[23J of Q associated with the point set {x;}:·'=I' A point Xi is called a generator and a sub­
region Vi is referred to as the Voronoi region corresponding to the generator Xi. The duality 
(in a graph-theoretical sense) of a Voronoi tessellation of Q is the well-known Defal/nay 
LesseliaLion which often consists of triangles/tetrahedra. Algorithms for the construction of 
corresponding Voronoi diagrams and Delaunay triangulations have been well developed [23, 
24J. 

Given a density function p (x) defined on Q. for any region V C Q . we call XC the 
rOl1sLrained mass cenlroid of V with respect to Q if 

(I) 

The existence of so lutions of (1) can be easil y obtained using the continuity and compacmess 
of the object functioll ; however, solution s may not be unique. It is worth noting that if Q is 
an open domain or a flat hyper-surface , then XC coincides with x', the stan.dard mass centroid 
of V defined by 



conslrained cenlroidal Voronoi lessellation (CCVT) 
if the POlllts which serve as the generators of the associated Varona! 

tessellation 
and only if 

are also the constrained mass centroids of regions. i.e., if 

Xi =xf· i= 1 (2) 

We often refer to the the CVT property. dual Delaunay glid then called 
constrained centmidal Vorono! DeiO/may Irianguialiol1 (CCVDT) We remark thar when 
fl is a open domain in is often JUSt called an/midal Voronoi tesSellallOn 

(CVT) [7J 
very important case should be specially addressed for the application of CVTICCVT 

to climate system that fl the surface of in or part of In 
this case, often refer to '1 as a spherical ('en/midal Voronoi lessellalion (SCVT). 
It easy to verify that 

(3) 

where denotes the radius the sphere, so that XC can be easily computed by fin.t deter-
mIning x*. 

General Voronoi tesseHations do not satisfy the CVT property, Figure I for a 
O·at;ol1. A square domain is randomly seeded with points (dots in Figure l. left panel), 

ten points serve generators for the Vonoroi tessellation (cell boundaries in Figure 
I, left panel). For each Voronoi region. the standard mass centroid (open cirel",s in Figure 
I, left panel) computed. As discussed below in Section a simple iterative calcula­
tion regularizes the initial Voronoi diagram on the left to the diagram shown to the In 
this example we used a constant density to compute the standard mass centroid; a variable 
density field would have biased the resulting generator points the region of high 
sity. This relationship between and generator pOSItion key aspect of this 
o"nf'.r·~tl()n method. 

2.2 Properties 

Given any set of points 
fLmctional 

on fl and any tesseltation of fL, we define the energy 

dy. 

The energy is often referred to as physical quantity as variance. cost, distor/ion 
error, mean square error in practical applications. A there no assumed rela-
tion between the point and the tessellation . However, it can be Shown 

that is minimized only if a CVT/CCVT [7,8]. Thus, CVTs/CCVTs 
Voronoi tessellations for which are, in some optimally distribllted. 

Let us if = d jf Q is an domain and if 1 it D is a hyper-,urface 
"""'Ad"Y, for SCVTs, have 2. As a consequence, CVT/CCVT 
many good properties, including the following [7,8,10]: 

- For constant density function, the generators 
Q 

uniformly distributed across 



- Most Yoronoi regions are (nearly) congruent (12,7] Specially, for SCYTs. they are 
primarily convex spherical hexagons. 

- The mesh size h is approximately proportional to n- I lei 

- For a non-constant density fUllction, the generators {x;};" I are still locally uniformly 
distributed and it is conjectured (and computationally verified) that, asymptotically, 

(4) 

- The relationship between the relative sizes of Yoronoi region s (ie. grid cells) is 
controll.ed entirely by the specified density function. 

- CYT/CCYT generators tend to accumu late in regions having relatively high values 
of p while remaining locally very regular. 

- Thus. in principle, one could control the di stribution of generators to minimize the 
error (either loca lly or globally) in the solution of a partial differential equation 
by. e .g., connecting the density function p(x) to some a priori or a posteriori error 
estimates. 

2.3 Algorithms 

Construction of CYT/CCYT is usually done by either probabilistic methods typified by 
MacQueen's random algorithm [19] (which is a simple iteration between sampling and av­
eraging points) or deterministic methods typified by Lloyd iteration [18] (which is a sim­
ple iteration between constructing Yoronoi diagrams and mass centroids). Due to the low 
convergence rate of Macqueen's method (19], much attention has been focused on Lloyd 
method described below : 

Algorithm 1 (Lloyd Method) Given a domain. Q , a density junClion p(x) defined on Q , 
and a positive integer /1. 

O. Select an initial set ojnpoints {Xi};'_1 on Q; 

l. Construct the Voronoi regions {V;};'- roj Q associated with {x;};~ l ; 
2. Detennine the Ironstrained) mass centroids of the Vorono; regions {V;};~l ; these cen­

troidsfonn the new Jet of POilllS {xi} i'- l ; 
3. If thl' new points lIIeet some cOl/vergence criterion, return {(Xi. Vi) };'~l and term.inate , 

otherwise, golo step I. 

Referring to Figure I , the process is as follows: The initial point set , shown as dots in left 
panel , represents Step O. Step 1 is shown by the solid cell boundary Jines in Figure 1 (left 
panel). Step 2, the location of the cell centroids. is shown by the open circles in Figure I (left 
panel) and form the new point set from which we compute the new Yoronoi diagram. The 
final resu.lt. after satisfying the convergence criterion in Step 3 is shown in Figure I (right 
panel). 

2.4 Quality Measure of Yoronoi Cells and Delaunay Triangles 

For the Yoronoi cell Vi associated with the generator Xi , we define its size to be 

hv, = 2max lixi-yll · 
yEVi 



can be used to measure the global non-uniformality of the Voronoi 
and hmin mini In order to measure local unformality 

or quality cells of the SCVT, we use the following <5 measure (9J. For the Voronoi 
cell Vi associated with the generator X,. 

<5(\1;) 

where x) denote Voronoi neighbors of Xi. Clearly 0 u I and u I corresponds to the 
equilateral polygons. We then set 

<5(V;l and 

where n denotes the number Vorono! cells. Umin the quality of the worst Voronoi 
cell and the average quality Vorono) mesh. 

triangulation the size of mangle. T, is defined to be its side 
length. We apply the commonly used q-measure (I to evaluate the quality dual 
triangular mesh (Delaunay triangles). where, any triangle T, q is defined to be twice 
the ratio of the radius of the largest inscribed circle and the radius 1'1' of the smallest 
clfcurnscribed i.e., 

(6) 

where a, b, and c side lengths of L Clearly 0 < q 
equilateral triangle. For a given triangulation, 

q(Y') and 
m 

q"un the quality of the werSt triarlgle and measures the average quality of the 
triangular mesh :3" 

It is wonth noting the energy .)( associated with the Veronoi tessellarion 
Ilt"::r~""'" monotonically during the iteration if has not reached 
yet. Tn certain systems, or with certain methods, may require nodes to be located on the 
boundary of the problem domain n CVTsfCCVTs and the above construction algorithrn 
can be easily generalized so that some of the generators are constrained to lie on the bound­
ary an (10,16]. 

3 Example Meshes 

3, I Land Greenland 

3.1.1 Motivation 

The Greenland and Antarctic lee Sheets are characterized by a wide range of spatial and 
temporal In terms of spatial scales, of sheets several thousand 
kilometers. Interior of these ice sheets characterized by relatlvely broad spatial 

on the order of 100 km or more. These interior regions are generally areas of net 
accumulation of mass due to precipItation of As this net source of 
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is exported toward the ocean in the form of ice. relatively fast-moving ice streams form 
withjn each catchment zone. ot unlike their liquid water counterparts on land. these ice 
streams are long and thin with along-stream scales of several hundred kilometers and cross­
stream scales often less than 10 km (15]. In addition, the shear zone separating the fast­
moving ice streams from the adjacent nearly-stationary ice is charac terized by scales of I 
km or less. These ice streams transpOlt the majority of ice volume from Greenland and 
Antarctica into the surrounding ocean (25]. As a result, robust predictions of sea-level ri se 
will require an accurate simulation of ice stream dynamics. [n fact. the recent IPCC WG I 
AR4 document declined to draw substantive conclusions on the likelihood of rapid sea level 
rise during the 21st century because. in part, ice stream dynamics are not include in current 
ice shee t models (1]. 

In addition to the kinematically-dI;ven need for locally enhanced resolution, there is also 
a desire for increased resolution at the ice margin due to significant seasonal ablation. Tills 
is particularly relevant for Greenland where intense melting occurs annually below 1200 
m. The subsequent transport of this meltwater to the bottom of the ice sheet may have a 
strong impact on basal sliding processes (3] . In the context of ice sheet modeling, we see 
both kinematics and physics JS driving the need for locally-enhanced resolution. Spatial 
resolutions below I km might be required for the accurate representation of these processes. 
When considering an entire ice sheet. a uniform mesll of 1. km combined with the emerging 
three-dimensional Stokes solvers is not computationally tractable. So. instead , we tum to 

variable-resolution SCVTs to discretize thjs system. 

3.1 2 Proxy /or SCVT Density 

In thi s example we will generate a mesh of Greenland that places enhanced resolution at the 
ice margin. Extensions of tills technique to accommodate ice streams are straightforward 
and we will explore such an extension in Section 3.3. Our target resolution for this grid is 2 
km in the vicinity of the ice margin and 50 km in the interior. Our estimates suggest that the 
resu lting mesh will be computationaUy tractable for climate change simulations, even when 
used in combination with a full three-dimensional Stokes sol ver. Figure 2 (left panel) shows 
an observational estimate of Greenland ice thickness at a spatial resolution of 5 km (2] . We 
use the distribution of ice tmckness in two ways. First, tms data set allows us to define the 
location of the ice boundary of Greenland as a set of piece-wise linear loops (see Figure 2 
(right panel)) witmn whjch we will develop the SCVT Second , witmn each loop we define 
the SCVT density function as 

( ( 
J )0.1) 

P = min 25 l . H (7) 

We limit the upper bound of SCVT density to maintain the ratio of nominal maximum grid 
spacing to nominal minimum grid spacing to be approximately 25. Figure 3 depicts the 
resulting Voronoi diagram using 29747 nodes. resuJting in a minimum resolution of approx­
imately 4 km. In Figure 3 we fi nd broad regions of low resolution throughout the interior 
of the ice sheet with the va:s t majority of the nodes positioned near the ice margin. 9 out 10 
cells are spaced less then 10 km from thei.r neighbors. We progressively add nodes into the 
domain until our target minimum grid resolution of 2 knl is reached. Figure 4 (top panel) 
compares a section of the low resolution mesh to its high resolution counterpart Figure 4 
(bottom panel) that is composed of 112896 nodes. As expected . the majority of the nodes 



are positioned near the ice margin. Table I presents the global quality metrics for the Green­
land SCVTs. The quality histogram s of the SCVTs are shown in Figure 5. The bulk mea­
sures of uniformity shown in Table I show improvement in every category as resolution is 
increased. The histograms shown in Figure 5 indicate a systematic shift toward higher mesh 
quality with increasing degrees of freedom. Equally imponant , as the number of nodes is 
increased the histograms exhibit a noticeable reduction in the proportion of cells residing in 
the "low-quality" end of the hi stograms. 

Table \: Mesh information of SCVTs for me Grcenlancl. 

3.2 Ocean: North Atlantic 

3.2.1 Motivation 

Incorporating eddies into lPCC-c lass global ocean simulations remains a computational 
challenge. Eddy-resolving simulations typically require grid resolutions of approximately 
10 km, implying approximately 5e6 degrees of freedom to s pan the global ocean surface. 
This is in stark contrast to typicallPCC simulations that currently use approximately 5e4 de­
grees of freedom to cover the same extent. The factor of 100 separating the two simulations 
is compounded by another factor of 10 since eddy-resolving s imulations require a signif­
icantly shorter rime step. The 1000-fold inc rease in computational burden to move from 
resolutions presently used in fPCC-class simulations to global, eddy-resolving resolutions 
is currently beyond reach and will likely remain so for a decade or more . 

An alternative and computationally-tractable approach is to employ variable-resolution 
grids, such as SCVTs, to permit eddy-resolving resolutions at targeted location s. These 
variable-resolu ti on grids could be employed in limited area domains or as part of a global 
ocean s imulation . The ability to readily generate variable-resolution meshes for the global 
ocean system allows us to consider the notion of an optimal spatial allocation of computa­
tion resources . [n addition, the scientific study of certain processes would cenainly benefit 
from the ability to support eddy ac tivity in certain regions while maintaining a global ocean 
domajn. Two supporting examples include the role of eddies in the North Atlantic on the 
thermohaline circulation and the role of eddies in the Southern Ocean in mediating the 
ocean's response to Changes in wind stress forcing. 

3.2. 2 Proxy for seVT densir) 

In this example we will derive a variable-resolution mesh of the North Atlantic Ocean with 
sufficient resolution to resolve eddies with.in the major current systems. The domain is iden­
tical to the Dominal 1/10 degree eddy-resolving s imulation discussed in Smith et at. [28]. 

Using data from these simulations, we compute the time-mean kinetic energy of the surface 
currents , as shown in Figure 6. As can be seen in Figure 6 , the regions of eddy activity are 
extremely localized. Based on the kinetic energy, KE. we defined the den sity iunction as 



[0 

p = max. [02. KE ] 8 

KErn" 
(8) 

where KE",ox is the maximum kinetic energy in the domain. The lower bound of 0.2 insures 
that a minimum resolution is maintained in the quiescent regions. This choice leads to a 
ratio of minimum to max.imum grid spacing of approximately 10. In addition, we enhance 
the density function near the land-:;C<l interface to insure that the boundary is adequately 
resolved. While we want the mesh to capture these regions of high activity via enhanced 
resolution, we also recognize the need to expand this region to aUow eddies to travel unin­
hibited by grid resolution. As such, we app lied a substantial amount of Laplacian smoothing 
to our density function (approximately 20 passes) to expand and smooth the regions of en­
hanced resolution . (Note that the RMS of sea-surface height is al so an accurate reflection of 
mesoscale ocean variability and we have developed global ocean SCYTs based on TOPEX 
remote sensing of sea-surface he ight.] 

A:; with the Greenland example, we produced a continuous. piece-wise linear repre­
sentation of the land-ocean boundary based on the land-sea mask used in the 0.1 degree 
simulation. This approach also identifi · all isJ.ands. Islands with a circum ference less than 
10 km were discarded: the resulting domain contains 58 islands. 

The Yoronoi diagram shown in Figure 7 uses 40162 nodes. This results in a minimum 
grid resolution of approximately 20 km. We continue to add nodes into the domain until we 
reach a minimum resolution of 10 km. Closeups of this high resolution mesh usiug 157366 
nodes and a s low resolution counte rpart are shown in Figure 8. 

Table 2 presents the results of our North Atlantic SCYTs. The corresponding quality 
histograms are shown in Figure 9. As with the Greenlaud example. the quality measures 
show a systematic improvement as we incre-1se the degrees of freedom . 

Table 2: Mesh information of SCVh for the Nonh Atlanuc. 

3.3 Ocean - Ice Shelf Interaction 

3.3.1 Motivation 

Our fina l example couples ocean and ice domains in the context of ocean-ice shelf interac­
tion. Ice shelves are ice flows that become ungrounded. buoyant and rest on top of ocean 
wa ter. The location at which ice transitions from resting on bedrock to resting on ocean 
water is referred to as the grounding Jine. As the ice shel ves are pushed outward into the 
ocean the ice is either melted along the ice-ocean interface or caJves from the main shelf 
into icebergs. These ice s helvc ~ provide a significant buttress ing force that resists the flow 
of upstream. grounded ice. As evidenced by (he Lar~en B ice shelf collapse. when the ice­
shelf buttress ing force is removed the upstream ice flow can increase by several hundred 
percent (26]. The accurate simulation of ocean-ice shelf interac tion is necessary in order to 
quantify the risk of rapid sea level rise (1]. 
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West Antarctic Ice (WATS) particularly relevant to the study of ocean-ice 
shelf interaction. Not only are Ice shelves primary outlet of grounded the grounded 
ice frequemly rests on bedrock that increasingly below sea-level as one toward 
ice interior region [29]. The physical geomecry is such that a rapid erosion of the WArS due 
to ocean-ice shelf interaction is a plausible scenario the 21st century. 

lee shelves connected to WATS have spatial of more than 1000 km the Ross 
Ice Shelf) down to less than km (e.g. the Thwaites Ice Shelf). embayments where this 
ice flows into ocean have similar ranges in spatial scale. While the ice Shelves not as 
dynamically active the ice that feed them. the structure and of the ice-ocean 
interface is a primary factor that drives mixing at this interface [141. Grid resolutions of 
than 5 km are often used when simulating ocean-ice shelf coupled Furthermore. 
analysis of gJoballllO degree simulations in the vicinity ofWAIS indicate that 
transport of heat into these embayments may be eddy-driven and episodic (Maltrud. personal 
communication, 2007) resolving ocean eddies in and around these embayments will 

required robust slmulations. 

The horizontal discretization of this system difficult part of the domain will be 
ice domain), part will be (ocean domain) and part wili be both ocean and (shelf 
domain). Furthem10re, characterization of a as ocean or will evolve over 
the time scales of decades to millennia. Due to complexity and the fact that only limited 
work has beel! completed on modeling coupled ocean-ice system, we will explore 
techniques to discretize this system m an idealized Figure !O shows our idealized 
domain with a spatial extent 1100 km by 550 km. domain is characterized by a region 
of grounded ice (to the left), of ocean (to the right) and an region (cemer). 
The ice domain an ice stream that the shelf region. As indIcated in the 
a robust simulation of this system will require enhanced resolution in the vicinity of 
shelf, ice and region of the m proximity to 

3.3.2 Prary/of sevr density 

Tn idealize example our iment is to produce tessellation with a minimum grid spacing 
of 2 km and a maXImum grid spacing of 20 km. opposed to our examples. we are 
not building our density function from physical characteristic of system. The generated 
density function has local maxima in vicinity of the ice in the region of the 
shelf and along the entire ocean-icc boundary. The resulting VoroDoi diagram this system 

9359 nodes shown in Figure II with a close-up of the shelf at both high and 
low resolution shown in Figure 12. 

Table presents the results on our SCVTs for the ocean-ice sheet and corre-
sponding quality histograms are shown in Figure ]3. Yet again. the quality measure show 

increasing mesh quality with increasing degrees of freedom. 

Table Mesh infmmallon of SCVTs lor ocean-ice 
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4 Example Numerical Method 

The large majority numerical methods utilized in IPCC-class models were devel­
oped in the context of uniform mc,siles. Implementing these numerical 
methods on nonuniform such as those developed above, will likely prove to be a 
dIfficult discussed in St Cyr et at. [30]. While numerical based on 
spectral 
natural choice when considering the multi-resolution 

approaches are reiatiH:iy new to climate system modeling 
finite volume methods, sole 

capable of producing robust when implemented nonuniform 
implication is that these meshes are immediately applIcable to current gener-

atIOn system model components, WIth thIS purpose mind, the below 
is not intended to exhaustIve, In many respects, developin.g numerical methods that 
fectiveiy utilize these nonuniform SCVTs i, a much richer and more difficult problem than 

the mesh While some effurts to explOIt the local uniformity of SCVTs 
have already completed [6]), much work remains Our progress on will 
be reported rn more detail at a later time. 

4. Continuous equations 

For thlS demonstration, we choose 
surface of the 

-I 

non]i near shallow water equations span nmg 

o 

where h fluid thickness, hs the height of the lower boundary, l! is the 

(9) 

(10) 

(I 1) 

velocity 

orthogonal to the local normal vector ~ I is the Coriolis parameter. The component of 

relative vorticity in plane normal to the surface of the sphere, w, defined in (II) 

4.2 Discrete equatrons 

We utilize the discrete method developed by Bonaventura and Ringler [4J. While the method 
developed in [4] is intended for use on multi-resolution meshes, to oUf this is the 
first demonstration. the Delaunay triangulation as the finite-volume ceil 
for the field is defined Oil the Voronoi Velocity 

in 
with l' representing the reconstructed 

prognostic equanon,. A SChematic 
All quantities with overhats are derived 

velOCIty required the Coriolis force 
ij representing the absolute vorticity (see [4J 
expressed 

a full discussion) The discrete system is 
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( 12) 

+ (13 ) 

where the summation in (12) over the edges of each triangle. In terms of solution en or, the 
scheme is nominally second-order accurate in space using centered-in-space reconstructions 
and fourth-order accurate in time usmg 4th-order Runge-Kutta time-stepping (see e.g. [4]). 
The simulations utilize no limiters, filters or explicit dissipation of any The center­
in-space numerics, along with the 4th order Runge-Kutta scheme, is used to minimize any 
implicit diffusion. 

We demonstrate this method on two SCVTs shown in Figure 15. Each mesh contains 
40962 nodes. The solid black line indicates the boundary of ,1n orographic feature that the 

forcing of the ,imulation (see below). The first mesh (tOp) is generated with a uniform 
density function leading to an grid spacing of 120 km The second mesh (bottom) 
generated with higher densities in the vicinity of the orographic feature. density func-
tion is chosen such that the three smaller (40 kmJ in the vicinity 
of the mountajn than compared its quasi-uniform counterpart. The solid colors indicate 
our domain-decomposition strategy for effiCient implementation on distributed memory sys­
tems: each block represents a different computational processor. 

4.3 Simulation 

We apply this numerical method to one the standard shallow-water developed 
by Williamson at [33] refened to as Test Case In this case flow in geostrophic 
balance is confronted with large-scale orographic feature at the start of 
t=O. The transient forcing at leads the generation of large amplitude 
and Rossby waves. The sole forcing mechanism the presence of the forcing. 
'.\lhite no analytical solution is known, results from resolution global spectral models 
are adequate reference solutions for the simulations conducted here (e.g. see [17]). 

Both simulations are stable over the course the 15 day lflregrarion. The kinetic energy 
field for each simulation Figure 16. Both simulation produce the large-
scale structure: an dominates in the region of orography with a strong. 
stationary low-pressure system residing immediately downstream. Both simulations produce 
velocities in excess of 40 mls in the jet region. 

Figure 17 shows how the error norms each these simulations over the 
course of the simulation. error is based on the deviation of the field from 
the high-resolution spectral results. panel the left shows the normalized Ll-cnor 
following the procedure in Tomita el at. [31] Eq. 17. The error norm is computed for 
two regions: a global domain and local domain defined by h, 0 that is coincident to the 
region of l'nhanced resolution. The panel on bottom depicts the with same 
layout. Since the L2 error normalized by the reference values, only compare norms 
within the same averaging domain. When comparing the global L2 error nomlS between 
the simulations, we find that the variable-resolution mesh provides marginal improvements 
only for times less than 24 hours. AI' the early stages of the simulation, the benefit of the 
variable-resolution is due mostly a better repre,entation of the initial condition. 
For remainder of the integration, the two simulations have nearly identical global 
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error values. When compare the local values, find a slightly different 
over the duration of the simulation the variable- resol ution mesh reduces the error 

by approximately 20 percent 111C I~ error values panel) exhibit similar tendency, 
The vanable-resolutIon mesh provides little benefit in context of global reduction, 
but does reduce the in the vicinity of the orography, In this case, the 
variable-resolution reduces the local norm by a of two as compared 
to the umform mesh simulation. The implications of these findings on merit of multi­
,,;o\JiLlU\JU climate system models will be discussed in the next section, 

5 Discussion and Coneillsions 

We have argued that tbe traditional paradigm of IPCC-class models 
based on quasi-uniform meshes strained in the decade by two mechanisms 

climate system model component currently one or more unresolved 
that may play an role in the dynamics of the global climate system, These 

eitiler omitted exemplified the omission of ice in ice 
sheet models, or highly parameterized, exemplified by the parameterization of 

the ocean. The current and foreseeable computational preclude notion of 
resolving these processes everywhere all of the Second, IPCC-class climate models 
will into role of simulating regional climate change with purpose of de-
veloping 'Strategies. resolution and computational resources required for the 
robust simulation of regional c.limate will force the climate modeling community 

develop an approach to compliment th,€: current suite quasi-uniform global 
system models. 
promising meet new challenges is based on the use 

Centroidal Voronoi Tessellations. (or meshes) offer many attractive 
in the cOntext system modeling, First, since meshes are a superset 

the commonly used we can conceptually consider SCVTs to 
be extension of meshes in use today. Second, SCVTs allow for the spatial alloca-
tion of in straight-forward, intuitive manner SCVTs are generated with to 

user-defined density function where nodes are "clustered" toward of density 
and away from regions of density, we understand a system well enough to know how 
to of freedom (and hence computational SCVTs of-

way to implement redistribution. Finally, and most importantly, SCVTs are 
amenable to rigorous allalysis from which we can make statements regardIng the regularity 
of given mesh how that regularity wHI Improve as we mcrease the nodes in a 

We demonstrated the potential for this technique by developing for 
components of bmh's climate the Greenland 

and a generic ice shelf-ocean interaction. Furthermore, our 
example numerical developed a multi-resolution mesh that characteristic of local 
resolution enhancement in regional atmospheric modeling, In each of examples we 
exhibited the to precisely manipulate the regions enhanced resolution 
our choice of SCVT density function, In two of the examples (Greenland and North 
Atlantic) the SCVT density function developed directly from physical characteristics 

the system, In the Greenland ex.ample, we used the observed icc thickness distribution 
to develop SCVT density function that places resolution at the ice margins. In 
the North Atlantic example, we constructed the SCVT density function in to obtain 
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meshes that are able to resolve eddy activity associated with the Gulf Stream and North 
Atlantic current. In each of these examples we computed metrics that measure the quality 
of the mesh. In all cases. and in agreement with the theoreticalllnderpinnings of SCVT, we 
found that increasing the degrees of freedom results in an uniform improvement in mesh 
quality. We found this consistent improvement in both the Voronoi diagrams as well as in 
the dual Delaunay triangulations. 

While the primaty purpose of this work is to demonstrate the potential for SCVTs to 
produce high-quality. multi-resolution meshes for climate system applications. we felt it im­
portant to also exhibit a traditional, finite-volume technique that can successfully exploit the 
benefits ofa variable-resolution mesh. While our results in this regard are far from sufficient, 
we have at least produced one positive example in the context of the global shaJlow-water 
equations. Even this simple example has provided some guidance on what we should and 
should not ex.pect from multi-resolution techniques such as the one developed here. For in­
stance. given the hyperbolic nature of many of the Earth's climate system components it 
will be extremely difficult to reduce formal solution error over a wide range of conditions. 
Eventually, the error will become dominated by some phenomena (transient or otherwise) 
occurring in regions of low resolution . While this problem occurs regardless of the numer­
ical method employed, it will likely be particularly evident when using the low-order finite 
volume methods that are ubiquitous in climate system models today. In contras t to reducing 
formal solution error, our emphaSis will be on the formulation of robust numerical methods 
that produce stable. long-time simulations over a wide class of phenomena without the need 
for ad hoc filtering or dissipation. The driving purpose for developing multi-resolution cli­
mate system components will be for the simulation of new phenomena requiring enhanced 
resolution, not necessari ly for the formal reduction in solution error. 

While this work has demonstrated the ability to generate high-quality meshes for a wide 
class of problems, the daunting challenge going forward to is develop numericallechniques 
that can effectively exploit these high-quality, multi -resolution meshes. 
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Fi g . 2: Top: DiItribUlion nfGrccIIlalld 'ee thit kllesI (melers)jrom 12/; BOlfOIll: A piece-wise linear represen­
,arion of/he ice bounda ry obwinedJivrn 'he ice thicklless diHribwion map. 
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Fig. 3: A SCVT oj the Greenland ice sheet IIsing 29474 nodes based on the denSityjitllClion gi!'en In (7). Note 
that grid cells near the ice margin are 100 small 10 be visible 
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Bot/om: 29474 "en"ators - . I :>SCV[rl,smg <:> orr: lop. I" . h Creenlalld S . . one reg ion WilllllT' e 10 -C_IiP on f 
Fig. 4: A c , 112896 generalor. Ihe SeVT IISlIIg 
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Fig. 5: QualifY hiSlOgroms oj SeVTs oj the Green/and ice sheer with 29474 nodes (lOp ) and 112896 nodes 
(bo/(ullI) . Left: Di.HribUlioT/ 01 qualifY lIIeaS1-I remtm of Varonoi ceils a: Righi: DisfribulioTl uIqllOlifY meo­
SlIn:meni of De/Gunay 117ang{es q. 
Note [he unl forn1 shift [Oward bi gher·quali ty as [he number of nodes is increased. 
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Fig. 6: Tillie lIIeon killeli c energr {rom a global 0.1 degree silllilialion o{lhe North Allanric Ocean [ 28] 



23 

Fig . 7: scvr of Nonh Allatllic ocean dOlf/oillllsing 401 62 /lodes. 
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Fig. 8: Clo,e- lip of Gulf Slreom region using 40162 nodes (top) Gild 157366 Ilodes (bournll) 
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Fig. 9: Quality hisro,~rams ofSCVTs olrhe Nonh Ariarrric wirli 40162 nodes (rop ) and 157366 nodes (borrolll). 
Left: Dislr;/)wioll 0/ quality meaSllrell1enr of Voronoi cells cr; Right: Disfribul/on. of qualify meaSlfrelf1('ru of 
Delourlay Iriangles q. 



26 

Fig. 10: An ideoli~ed ocean-ice she/f.'Yslem. r he ice dOll/ain ( Ielt! flo'n illlo Ihe shell res ion (sellli-circle) via 
an ice Slrcam. I~'nhallced resolution ill rhe I'icillity of the ire strealli, ice she{{ alld ire margin \1"i1l be required. 
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f ig. ll: scvr 0 oceoJJ· ice shelf system /Ising 9359 nodes. NOlt enhanced resvlm/o/l in the vicil1i,y of fhe itt' 
srre.[1 /J1, iet! shelf and ocenn ·ice inferl ace. 



2R 

Fig. 12: CIQ-ft-IJp %cean-fr- sltel[ .Y("\IT in Ihe n cinifY h'l! re lite ict! St rea/1/ enfen lhe slltd! ri!~~ ioll. Left: 
scvr /I sing 935911odes. Righi: cvr u., in!! 37157 nodes. 
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Fig. 13: Quality hislOgrams of SCVTs of the idenli:ed ocean-ice sheet "·ith 9359 nodes (lOp) nnd 37157 
I/odes (bollom). Left: Distribution of quality measurement of VO,VflOI cells <7; Right: DiStriVUliUI1 of quality 
II leasuremenl of Delatlnoy friclTI gies q. 
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iBackward 

• (hi,k) 

• 

iForward 

• 

Fig. 14: A sc/u.'mmic niT/ie finite- volullw system. ThickJ1 ess, II. and kinelir energr. K. (I re defined QT [he Ct'lllers 
of lite Iriangle" , 7/11' n(>fmo! cOIIIl'Onelll 0/ ,'eloeil\", !Vj is deji'H'a m ear h cell edge, VorticilY, 1), is aefined at 

Ihe (riongle l'€l'lices , All quantilin wilh overhals are deri" ed fields, see f 4 J Jor details. 
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Fig. 15: LeIT: A sevY uSing 40962 nodes wilh a unijorm densllylunclion. RighI: A sevr also using 40962 
Hodes bllf using a nOTlufliform de!l :!Jiry junrriol7 with high values oj dell ,sir)" occurring ;n (he vieilliry of the 
omgraphy (showu by soLid black lillt) . The variable-resoittlion mesh resfI/{s in nominal grids spacing of 
appro.tilllalely 1/3 Ihar loul/d in Ihe ql,asi -ullilorrrl mesh. The colored background denoles groups 01 cells 
(biorks) Ihal are dis,ri/;",ed across 1f1U1l/ple processors. 
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Fig. l6: Kinelie energr f ield al day 10 of silllulQ/ion. RighI: Sil'lfulOlion /Ising quosi,unifonn II/esh. Left : 
SlIIlllJ.O!ioll /Is ing \'oriable- resolutio!l JII fSh. 
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Fig. 17: Le/I: L2 error nOl7ns/or bOlh fhe global domain and Ihi! local domain illlhe l'iciniry o/Ihe orography. 
Righf: f r .. norms jor Ihe same nt/o domains. Eath figllr~ compareS /he errors produced in !he IInifonn -mesh 
simlllaJion JO (he errors produced in 'he variabLe-mesh silllillalion. 


