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Strong profiling is not mathematically optimal
for discovering rare malfeasors

William H. Press!

'Los Alamos National Laboratory, Los Alamos, NM 87545, USA and Department of Computer

Sciences, The University of Texas at Austin, Austin, TX 78703, USA

In a large population of individuals labeled 7 = 1,2, ..., N, governments attempt to find the
rare malfeasor j = j, (terrorist, for example'*) by making use of priors p; that estimate
the probability of individual j being a malfeasor. Societal resources for secondary random
screening such as airport search or police investigation are concentrated against individuals
with the largest priors.® We may call this “strong profiling” if the concentration is at least
proportional to p; for the largest values. Strong profiling often results in higher probability,
but otherwise innocent, individuals being repeatedly subjected to screening. We show here
that, entirely apart from considerations of social policy, strong profiling is not mathematically
optimal at finding malfeasors. Even if prior probabilities were accurate, their optimal use
would be only as roughly the geometric mean between a strong profiling and a completely

uniform sampling of the population.

Racial profiling, as commonly defined®, occurs when an individual is randomly selected for
secondary security screening on the basis of his or her race, ethnicity, nationality, or religion. Sec-
ondary screening may take the form of airport luggage search, police investigation, physical search,

or other societally sanctioned but personally intrusive actions. What distinguishes racial profiling



and related so-called actuarial methods® from police investigational methods often perceived as
more acceptable is 1ts use of prior probabilities associated with the individual, and not associated

with evidence of actual criminal conduct.

For simplicity, assume that there is a single malfeasor 7 = 7,. An omnipotent authoritarian
government might enumerate all of the p;’s, 7 = 1, ..., IV, sort them from largest to smallest value,
and then screen individuals in the population, visiting each just once in the order of their proba-
bility. This strategy {(hereafter, “A”) can easily be shown to find the malfeasor with the smallest

average number of tests. That number 1s

pa =Y iny (1)

where py;y is the order statistic; that is, p;y 1s the ith largest value among the p;’s.

For moral or practical reasons, democratic governments (hereafter, “D") employ strategies
of sampling with replacement. That is, individuals are sampled with some sampling probability g;
determined in principle by a public policy. The sampling process is memoryless in that an individ-
ual may be sampled more than once, for example, whenever he goes through an airport security
checkpoint. In this case, the mean number of tests required to find the malfeasor is evidently 1/g;, .

The expectation of this over p;, which we want to minimize subjectto > g, = 1,1s
N
o =3 ps/4 2
j=1
A straightforward minnmization with a Lagrange multiplier gives the optimal choice for the ¢;’s

1‘\}’
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g =/ / S pl (3)
2=

2



and the mean number of tests per found malfeasor,

N ) E
jip = (Z pi»”) (4)

j=1
In words, equation (3) says that individuals should be selected for screening in proportion to the
square root of their prior probability. This does use the priors, but only weakly: It results in
secondary screening being distributed over a much larger segment of the population than would be
the case with strong profiling. Although equation (3) should be a well-known result, we are not
aware of any published reference earlier than Abagyan and collaborators in a completely different

context.”%.

It is instructive to compare the optimal result to what one might have guessed to be the obvi-
ous answer, namely ¢; = p;: screen in proportion to the prior p;, a strong profiling usually termed
“importance sampling™®. Substituting into equation (2) yields = /N. On average, importance
sampling tests the full population size before finding the malfeasor. Indeed, this version of strong
profiling does no better than random sampling without reference to the priors, which also yields
1 = N. The reason that this strong profiling strategy is inefficient is that, on average, it keeps
re-testing the same innocent individuals who happen to have large p,’s. The optimal strategy is

optimal precisely because it avoids this oversampling.

A figure of merit for the optimal “D” sampling is F.M. = up/ua, the factor by which
it is less efficient than the perfect authoritarian strategy “A”, above. We can compute F.M. for
various assumptions about the distribution of p;’s. Smaller F.M. 1s better. If the prior probability is

concentrated uniformly in some number of individuals Ny (out of V), then F.M. ~ 2, independent



of Ny. That is, D 1s only a factor of 2 less efficient than authoritarian A.

Another interesting case 1s the “scale-free” distribution p; o 1/7% For o < 2, this yields
FM. =~ 4/(2 —a). Fora > 2,itis FM. ~ ({«/2)?/((a — 1), where ( is the Riemann Zeta
function. This is &~ 4/{a — 2) for o of order unity, and ~ 1 for large «. In all these cases, for any
fixed value o not near 2, we are within a constant factor of strategy A. Only the case o =~ 2 gives

the unbounded result F.M. =~ log N, which is itself large only logarithmically.

A final case of interest is p; o exp(—7*/ 7). This occurs in cases where the j’s are ordered by
radius from the origin in a (say) high-dimensional space, and the probability decreases away from
the origin either exponentially or as a multivariate normal distribution. It also applies to a mixture
of such distributions, and thus to Gaussian mixture models generally. In all such cases 7 is related

to (and increases with) the dimension of the space. One readily calculates,
F.M. = 224171 + 3)%/T(1 + 28) (5)

with the limiting cases ~ 2 as § — 0 and = 2(73)'/? as [ becomes large, a surprisingly modest

increase for what might have been thought to be a dimensional explosion of volume.

The i1dea of sampling by square-root probabilities is quite general and can have many other
applications. It applies whenever a “bell-ringer” event must be found by sampling with replace-
ment, but can be recognized when seen. For example, one can thus sample paths through a trellis
or hidden Markov model when their number is too large to enumerate explicitly, but one path can

be recognized (e.g., by secondary testing) as the desired bell-ringer.



A generalization of the scenario already discussed is the case where the bell-ringer can be
recognized, when sampled, only with some probability s,. In that case (see Supplementary Meth-
ods) the optimal sampling ¢; (that minimizes the mean number of samples needed to find the
bell-ringer) is proportional to (p;/s,)'/. The optimal sampling thus expends relatively more sam-
ples on the less-likely-to-recognize cases. It is the direct opposite of the proverbial “looking under
the lamppost”! This may seem counter-intuitive, but it is correct under the assumptions stated. In
rough terms, if you don 't spend a lot of time “not under the lamppost,” then you provide excessive

sanctuary for the malfeasor who might be there,
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Supplementary Methods for
“Strong profiling is not mathematically optimal
for discovering rare malfeasors”

William H. Press

1 Mathematical Statement of Problem

v

There are a large number N of candidate objects numbered ¢ = 1,... N,
one of which (an unknown value ¢ = 1, ) i3 the desired “bell-ringer” that can
be recognized when examined closely. The difficulty is that N is large, while
close looks, sufficient to recognize that i = 4,, are expensive. The problem is
how to allocate our expensive looks among all the i’s.

If we know nothing else about the object i’s, then we must simply go
through all the objects in an arbitrary order until we find 7,. On average,
we will find it after N/2 locks. But what if we have prior information that
distinguishes among the objects? Suppose we can estimate a probability that
each 7 is the bell-ringer, p; = Prob(i = i.). Then the optimal strategy is to
order the p,’s from largest to smallest, and then look at objects in that order.
The average number of looks required is

ts = Y 1Dy (1)

where p(;, denotes the ith order statistic of the p;’s, that is, the ith largest
value. The subscript s on u, stands for “sorting”. There is no way to do
better than this.

However, we are interested in cases when the sorting strategy is, for one
reason or another, not feasible, and we must instead randomly sample with
replacement among the ’s. This might occur for reasons of policy (as in
the main text) or because N is so large that it is not feasible to enumerate
and sort all the p;’s. For example, the latter situation might occur if the
“objects” are complex hypotheses, each of which involves different choices of



sub-hypotheses. In that case N can be combinatorially large, but still easy
to sample from.

2 Biased Sampling by Square Root of Prior

2.1 Derivation

Suppose we sample the ¢'s with probabilities g;, with
Z@e =1 (2)

We control the ¢’s and want to optimize their choice. The probability of
missing the bell-ringer exactly on exactly m > 0 looks, and finding it on the
m+1Ist is (1 — g, )™q,., where ¢, = ¢;,. So the mean number of looks required
is

o0 . o 1
Y m+ 1)l -q)"q = — (3)
=0 =

(an answer that we could have written down by inspection in any case).

The expectation of equation (3) over the p;’s, which we want to minimize,
subject to the normalization constraint (2) is thus

B
= — 4
=2 (4)

Using a Lagrange multiplier A, we minimize with respect to g,

‘EZZ%LA(Z%*) (5)

This easily gives
1/2 1/2 1/2 ,
q; X pjf = p_;;; /Z?gg (6)

Equation (6) is a main result underlying the main text. It says that, under
the conditions posited, one should sample objects in proportion to the square

[



root of the prior probabilities of their being the bell-ringer. While this should
be (and perhaps is in some circles) a well-known result, we are not aware of
any reference earlier than 1999 (see main text).

2.2 Performance Comparison to Naive Sampling Strate-
gies

Substituting equation (6) into equation (4) gives, for square-root sampling,
the average number of looks

2

where subscript sr means “square root”. It is informative to compare this to
the corresponding results for two naive sampling strategies. First, uniform
sampling with replacement (ignoring the p;’s):

1 2 .
G: = ﬁ‘é oy = Z 1/N =N <8>

Second, sampling in proportion to p, {what would be called importance
sampling in the context of Monte Carlo integration): This seems like a natural
way of sampling likely objects more heavily. However, it gives

qi = Pis His = g N (9)
P
exactly the same as uniform sampling, equation (8)! The reason that impor-
tance sampling is far from optimal in for this problem is that it repeatedly
revisits the same high probability objects, even after they have been seen to
be not the bell-ringer.

To get an idea of how much better than (8) or (9) is the optimal result (7),
consider first a case where all of the probability is concentrated uniformly in
M of the p;’s, with the remaining N — M of the p;’s being zero. Then, one
easily gets from (7},



If M « N, this is < p, or u; equations(8) or (9), and is only on average a
factor of 2 worse than the perfect sorting strategy, equation (1).

3 Performance Comparison for Some Other
Distributions

3.1 Definition of Figure of Merit (F.M.)

Equations (7) and (1) suggest that we define as a figure of merit for the
square-root sampling strategy the ratio of its mean number of looks w, to
that of the perfect sorting strategy u,, that is,

2 N
FM. = (Zpi'”) / Db (11)
i gl

Smaller values of F.M. are better. The example of equation (10) can be
summarized as
F M. [concentrated uniform] = 2 (12)

As a computational shortcut, note that equation (11) is invariant under scal-
ing the p;’s by a constant factor, so we can test distributions without requiring
them to be normalized.

3.2 Power-Law Prior Distributions

Suppose (after sorting into monotonically decreasing order)

pioct az0 (13)



Consider first the case 0 < a < 2. Approximating the sums by integrals,
which is here accurate for large N, gives (using non-normalized p;’s, n.b.!)

N
> ipp) & " ey a L (N 1)
DGy R x ,1~2_&(1 F1)
41 d

%

1 2 N 41 / 2 2 2
. ~ L e afz g ~ AT 2
;pi A (/1 T dl) ~ (2—@) (N +1)

which implies

4
22—«
For exponent o bounded away from 2, this is a constant of order unity (that
is, independent of N); so, sampling by the square root of the prior is not
much less efficient than the perfect sorting strategy. In the case o = 0,
incidentally, we recover equation (12).

(15)

F.M.[power law < 2| ~

Next consider the case & > 2. The sums are now dominated by small
values of 7, so we can approximate by extending the sums to infinity. If ()
is the Riemann Zeta function, we have py) ~ i~%/({a) and

—1
Zép{“:} ~ gg_“l

(o)
2 (16)
s~ e/
—~ ¢(a)
which implies
/] fer ié o M ) a*fﬂ & — 2
F.M.[power law > 2] ~ AEEE {1 o (17)

Figure 1 plots equation {17) for intermediate values of cv. We again see that
for exponent « bounded away from 2, the figure of merit is a constant of
order unity, independent of V.

Finally, for power law distributions, we consider the case a = 2. In this
case »_ ipm ~ In N, while (3, pr/? (In N)?) so

2

F.M.[power law = 2] ~ In N (18)

This is not bounded as N — oo, but it increases only logarithmically with
N.



Figure 1: Figure of merit (ordinate) for power law distributions with (ab-
scissa) o > 2. The value 1 means “as efficient as the perfecting sorting
strategy”.

3.3 Exponential Prior Distributions

Suppose now that the monotonically sorted p;;)’s have the form
Dy o< exp(—ci/?), c,d >0 (19)

This is a form that can occur in various contexts, notably where the prob-
ability decreases as an exponential or Gaussian away from the origin in a
(say) high-dimensional space, and the i’s are lattice points (or uniformly dis-
tributed) in that space. The form is also relevant to a finite mixture of such
forms, i.e., to Gaussian mixture models with a finite number of components.
In these cases d is related to the dimension of the space D (e.g., d = D/2 for
Gaussians).

Approximating by integrals, we have

Zip(z) %/ z exp(—czdrc™dl (2d)
i 0
2 - 2 (20)
(va;m) = ( / exp(—écxl/d)da:) = 22D (d 4 1)
i 0
which gives
22d+1I\ 1 d 2
F.M.[exponential| ~ ¢ (21)

(1 + 2d)
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Figure 2: Upper curve: Figure of merit (ordinate) for the exponential distri-
bution equation (19) as a function of the dimension parameter d (abscissa).
Lower curve: Asymptotic form 2v/7d.

For d — 0 this becomes F.M. — 2, recovering the case of equation (12).
For large d, equation (21) is ~ 2v/7d. Intermediate values (along with the
asymptotic form) are plotted in Figure 2. The figure of merit is approximately
independent of the parameter ¢ in all cases.

4 Case of Probabilistic Recognition

Suppose now a slightly different setup: The bell-ringer object is still some
1 = 1,, but we may not recognize it the first time we look at it. This could
be because some additional random condition (not within our control) is
required for detection. Suppose that, on each look, the probability that we
recognize the bell-ringer is s;, i« = 1,..., N; and that (for simplicity) each
look is independently random.

4.1 Probabilistic Recognition Perfect Sorting Strategy

The perfect sorting strategy that led to equation (1) is now no longer valid,
since it looks at each object only once. What is the optimal sorting strategy
now?



If we have looked at object i already m; times, then its probability of
both being the bell-ringer and escaping previous detection is (1 —s;)™p;. So
the total remaining probability in which the bell-ringer is hiding is

Now suppose we look next at object j. Then the change in equation (22) is
AP = (1= 5;))"p; = (1= 8)" " p; = (1= )™ 8,0 = U,y (23)

Thus the greedy strategy, which can easily be seen to be also the opti-
mal strategy, is to visit the j's according to the order statistic of the two-

dimensional lattice wu,,;, with j = 1,..., N and integer m > 0. Denoting
that order statistic by wu(y, we have
Mddp = Z’é"&-m (24)
i

since one easily checks that

4.2 Probabilistic Recognition Square Root Sampling
Strategy

We derive the best sampling strategy as before. The mean number of looks

to success is (s,q;)7", s0 we want to minimize

p=y n (26)
i 5:4;

Now the same calculation as before gives,

P /i
%—\/;/Z /g (27)



Figure 3: Power-law distributions with denial and deception. The abscissa is
the power law exponent a. The ordinate is the figure of merit. Upper curve:
Figure of merit for s, = 1 (certain recognition, equation 15). Lower curves:
Figures of merit for s; = 0.95(0.05)0.05. Because even the optimal sorting
strategy must now resample, the square root sampling strategy is now closer
to optimal (F.M.= 1) than before.

Kdds = (Z \/?SLT) (28)

The figure of merit F.M. IS now figas/ ttadp-

and

4.3 Power Law Prior Distributions

We have evaluated the figure of merit for the case N = 1000, s; = constant,
and varying powers o as in section 3.2. Results are shown in Figure 3 for
0 < a < 1.6, and in Figure 4 for 3 < a < 8. In obtaining these results,
equation (28) is evaluated straightforwardly, while the evaluation of equation



4.5-

Figure 4: Same as Figure 3, but for larger values of the power law exponent
a. The uppermost (red) curve plots the case of certain recognition, equation
(17).

(24) requires the use of a heap data structure to iterate efficiently over the
(m, j) lattice, given the values of the p;’s and s;’s.

4.4 Exponential Prior Distributions

If the number of values of ¢ with with significant probabilities in equation (19)
is not too small, then the figure of merit remains approximately independent
of ¢; so we need compute only for a range of values d, and a range of values
s; (assumed constant over i). The results are shown in Figure 5. One again
sees that smaller values of s; bring the square root sampling strategy closer
to optimal (F.M.= 1), since even the optimal strategy must resample many
times.
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Figure 5: Figure of merit (ordinate) for exponential distributions with prob-
abilistic recognition, as a function of the dimension parameter d (abscissa).
The top (red) curve plots equation (21). The slightly lower (green) curve
plots numerical results for s; = 1. These differ slightly because of the effect
of finite N. The lower (blue) curves plot values of s; = 0.95(0.05)0.05. As
before, decreasing values of s; give increasing efficiency for the square root
sampling strategy relative to the perfect sorting strategy.
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