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Strong profiling not mathematically optimal 
for discovering rare malfeasors 

William H. Press1 

Alamos National Los Alamos, NM USA and Department 

The University at Austin, Austin, 

a large population of labeled j = 1,2, . , attempt to 

rare malfeasor j = for example l by use of priors that 

the probability of individual .i being a malfeasor. Societal resources for secondary random 

screening such as airport or police investigation are concentrated against individuals 

with the largest priors.s We call this "strong profiling" if the concentration is at 

proportional to for the Strong results in higher probability, 

but otherwise innocent, individuals being repeatedly to screening. We show 

that, entirely apart from considerations of social policy, profiling is not mathematically 

optimal at finding malfeasors. Even if prior probabilities were accurate, their optimal use 

would be only as roughly the geometric mean between a strong profiling and a completely 

sampling of the 

Racial profiling, as defined6
, occurs an individual is 

secondary security on the basis of his or her race, nationality, or 

ondary screening may form of airport luggage investigation, physical search, 

or other societally but personally intrusive What distinguishes 



and so-called methods5 from investigational methods perceived as 

more is its use of prior probabilities with the individual, and not 

with of conduct 

assume that is a single J = omnipotent authoritarian 

might enumerate all of the 1, ... ) N, sort them from to smallest 

and then screen individuals in population, each just once the order of 

(hereafter, "A") can 

average number of tests. number is 

where IS order IS, 

moral or reasons, 

be shown to find the 

N 

/1A::::: L 
i=l 

IS largest value the 

(hereafter, 

the 

(1) 

employ 

of sampling with replacement. is, individuals are sampled some sampling probability qJ 

by a public The sampling that an 

ual sampled more than once, for whenever security 

checkpoint. In case, the mean number of tests 

expectation this over ,which we want to minimize IS 

IV 

(2) 
]=1 

straightforward with a the optimal for the qj'S 

(3) 

2 



the mean tests found mal feasor, 

2 

(4) 

words, equation (3) that individuals should selected for III to the 

square root of probability. priors, but It results in 

secondary screening distributed over a much segment of the population than would be 

case with Although equation should be a we are not 

aware of any earlier a 

context. 7.8. 

It is instructive to compare the optimal to what one might have to be the obvi-

ous answer, namely : screen in proportion to the prior a profiling usually 

"importance yields JL 

sampling tests population size malfeasor. version of 

profiling does no than random without reference to which also yields 

The reason that strong profiling is inefficient is on average, it 

the same individuals who to have optimal strategy is 

optimal precisely U""~U.L'0 it avoids this 

A figure the optimal "D" sampling is F.M. the factor by which 

it is less efficient than perfect authoritarian "A', above. can compute F.M. 

distribution EM. is probability is 

concentrated some number of . (out of N), 

3 



is, D is only a factor 2 than authoritarian 

Another interesting case IS distribution ex 2, this yields 

F. - 0:). For 0: > 2, it is If I" 1 ), ( is the Riemann Zeta 

is;:::; 4/(0:-2) unity, and;:::; 1 for all cases, for any 

0: not near 2, we are a constant factor of strategy the case 0: ;:::; 2 gives 

result is itself large only 

final case of interest is . This occurs in cases J's are ordered by 

the origin in a (say) space, and probability away from 

either exponentially or as a multivariate normal distribution. It also applies to a mixture 

distributions, and to models all cases ,8 is related 

to with) the One readily 

1 + {3)2/f(1 + 

limiting cases;:::; 2 as o and;:::; 1/2 as /3 npf"ATV'I a surprisingly modest 

for what might have to be a dimensional of volume. 

idea of sampling by rp_rrVH probabilities is quite can have many other 

It applies event must be with 

but can be recognized example, one can through a 

or Markov model is too large to enumerate but one path can 

(e.g., by as desired 
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A generalization of already is the case bell-ringer can 

recognized, sampled, only with some probability Meth-

ods) optimal qi (that mean number 

bell-ringer) is proportional to 1/2. The optimal 

cases. It is the direct 

thus expends more sam-

on the the proverbial under 

the seem counter-intuitive, but it is correct assumptions 

rough terms, if 't spend a lot time "not lamppost," then excessIve 

for the might be 
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upplementary Methods for 
"Strong profiling is not mathemat 

discovering rare malfeasors" 

1 Mathematical Statement 

number N of candidate 
(an unknown value i is 

examined closely. The 
to recognize thati = i*, are 

our expensive looks among 

else about 
in an arbitrary 

N /2 looks. But 
the objects? 

Pi = Prob(i 

]V 

ith order 

we are interested in ca::;es 
reason or another, not feasible, and we 

among thei's. This 
or because N is so 

For example, 
hypotheses) 

1 

lIy optimal 

i*. On average, 
HUC,J.VH that 

(1) 

for one 
sample with 

policy m 

choices of 



can 
to from. 

2 iased San1pling by quare Root of Prior 

2.1 Derivation 

we sample with 

is 

+ 1 )(1 

answer we 

expectation equation (3) over 
to the 

a Lagrange A, we 

2 

1 

qil with 

1 

Pi which we want to 
is thus 

with 

the main text. It says that, 
objects in to the 

(2) 



2.2 

the prior probabilities 
perhaps is in some 

earlier than 1999 

number of 

subscript ST means "square 
results 

the same as uniform 

l 

, vve are not aware of 

Sampling 

1/2) 2 
P.i 

It is informative to compare this to 
strategies. First, uniform 

(8) ! reason that 
tance sampling is far from optimal in for problem is that it repeatedly 

the same high probability they have been seen to 
bell-ringer. 

or (9) is the optimal result (7), 
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3 

3.1 

sorting 

Performance Comparison 
Distributions 

of of ]\IIerit 

F.M. are 

F.M. 

Some 

.]\11.) 

2 

As a computational shortcut) note that equation (11) is invariant 
so we can test without 

3.2 Power-Law Distributions 

sorting monotonically order) 

ex 0'2':0 

4 

a 

(11) 

(12) 



Consider first case 0 
is here accurate for 

L 
i 

~ j.N+l 
. 1 

(~p;/2) 2 c; ((+1 

N ext consider the case ex 
of i, so we can 

is Riemann Zeta 

implies 

F.M.[power 

1 plots equation (1 
exponent a bounded 

unity, independent 

is not as 

2. Approximating the sums 
(using non-normalized 

~ _l_(N + 1)2-0: 
2 ex 

2 

2 

"'C~J 
• 4 

< 2j ~ 2 _ ex 

is a constant 
square root 
strategy. 

sums are now 
extending the sums to 

~ --'--

((ex) 

intermediate values of ex. VVe see that 
2, the figure of merit is a constant 

case ex 2. In 

= 2] ~ 

it 
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Figure 1: Figure of merit (ordinate) for power law distributions with (ab­
scissa) Q > 2. The value 1 means "as efficient as t he perfecting sorting 
strategy" . 

3.3 Exponential Prior Distributions 

Suppose now that the monotonically sorted P(n 'S have the form 

P(i ) ex: exp( _ Cil/d), c,d> 0 (19) 

This is a form that can occur in various contexts , notably where the prob­
ability decreases as an exponential or Gaussian away from the origin in a 
(say) high-dimensional space , and the i 's are lattice points (or uniformly dis­
tributed) in that space. The form is also relevant to a finite mixture of such 
forms, i.e., to Gaussian mixture models with a fini te number of components. 
In these cases d is related to the dimension of the space D (e.g., d = D /2 for 
Gaussians) . 

Approximating by integrals, we have 

L iP(i) :::::; 1"00 x- exp( -CX-
l

/
d dx-c- 2ddf(2d) 

i 0 

( ~:>:/,)' - (1,00 exp( - tcX'/d)dx )' ~ 22dc- 2dr (d + I)' 

(20) 

which gives 
22d+1 f(1 + d)2 

F.M. [exponential] :::::; ( ) r 1 + 2d 
(21) 
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Figure 2: Upper curve: Figure of merit (ordinate) for the exponential distri­
bution equation (19) as a function of the dimension parameter d (abscissa). 
Lower curve: Asymptotic form 2.J;Ci. 

For d ---) 0 this becomes F.M. ---) 2, recovering the case of equation (12). 
For large d, equation (21) is ~ 2.J;Ci. Intermediate values (along with the 
asymptotic form) are plotted in Figure 2. The figure of merit is approximately 
independent of the parameter c in all cases. 

4 Case of Probabilistic Recognition 

Suppose now a slightly diHerent setup: The bell-ringer object is still some 
i = i*, but we may not recognize it the first time we look at it. This could 
be because some additional random condition (not within our control) is 
required for detection. Suppose that , on each look, the probability that we 
recognize the bell- ringer is 8i, i = 1, ... , N; and that (for sim plici ty) each 
look is independently random. 

4.1 Probabilistic Recognition Perfect Sorting Strategy 

The perfect sorting strategy that led to equation (1) is now no longer valid , 
since it looks at each object only once. What is the optimal sorting strategy 
now? 

7 



If we 
both 

total 

one 

we next at 

_ (1 _ )mj 

, which 

1, ... ,N 
, we 

/Lddp 

vHvvH.0 that 

=1 

2 Probabilistic Recognition Square Root 
Strategy 

vVe derive 

the same as 

q= ] 

mean 

8 

(22) is 
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5 

Figure 3: Power-law distributions with denial and deception. The abscissa is 
the power law exponent 0:. The ordinate is the figure of merit. Upper curve: 
Figure of merit for S~ = 1 (certain recognition , equation 15). Lower curves: 
Figures of merit for Si = 0.95(0.05)0.05. Because even the optimal sorting 
strategy must now resample, the square root sampling strategy is now closer 
to optimal (F.M.= 1) than before. 

and 

(28) 

The figure of merit F.M. is now J.1dds/1Lddp' 

4.3 Power Law Prior Distributions 

We have evaluated the figure of merit for the case N = 1000, Si = constant, 
and varying powers 0: as in section 3.2. Results are shown in Figure 3 for 
o < 0: < 1.6, and in Figure 4 for 3 < 0: < 8. In obtaining these results , 
equation (28) is evaluated straightforwardly, while the evaluation of equation 
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4.5.--------,-----,-------r-----.------, 

4 

1 L---~---~--~---~--~ 

3 4 5 6 7 8 

Figure 4: Same as Figure 3, but for larger values of the power law exponent 
a. The uppermost (red) curve plots the case of certain recognition, equation 
(17) . 

(24) requires the use of a heap data structure to iterate efficiently over the 
(m,j) lattice, given the values of the p/ s and s/s. 

4.4 Exponential Prior Distributions 

If the number of values of i with with significant probabilities in equation (19) 
is not too small, then the figure of merit remains approximately independent 
of c; so we need compute only for a range of values d, and a range of values 
Si (assumed constant over i). The results are shown in Figure 5. One again 
sees that smaller values of Si bring the square root sampling strategy closer 
to optimal (F.M.= I) , since even the optimal strategy must resample many 
times. 
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Figure 5: Figure of merit (ordinate) for exponential distributions with prob­
abilistic recognition , as a function of the dimension parameter d (abscissa). 
The top (red) curve plots equation (21). The slightly lower (green) curve 
plots numerical results for Si = 1. These differ slightly because of the effect 
of finite N. The lower (blue) curves plot values of Si = 0.95(0.05)0.05. As 
before, decreasing values of Si give increasing efficiency for the square root 
sampling strategy relative to the perfect sorting strategy. 
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