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*Moving Vortex Phases, Dynamical Symmetry Breaking, and Jamming for Vortices in
Honeycomb Pinning Arrays

C. Reichhardt and C.J. Olson Reichhardt
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Dated: July 10, 2008)

We show using numerical simulations that vortices in honeycomb pinning arrays can exhibit a
remarkable variety of dynamical phases that are distinct from those found for triangular and square
pinning arrays. In the honeycomb arrays, it is possible for the interstitial vortices to form dimer
or higher n-mer states which have an additional orientational degree of freedom that can lead to
the formation of vortex molecular crystals. For filling fractions where dimer states appear, a novel
dynamical symmetry breaking can occur when the dimers flow in one of two possible alignment
directions. This leads to transport in the direction transverse to the applied drive. We show that
dimerization produces distinct types of moving phases which depend on the direction of the driving
force with respect to the pinning lattice symmetry. When the dimers are driven along certain
directions, a reorientation of the dimers can produce a jamming phenomenon which results in a
strong enhancement in the critical depinning force. The jamming can also cause unusual effects
such as an increase in the critical depinning force when the size of the pinning sites is reduced.

PACS numbers: 74.25.Qt
I. INTRODUCTION

Vortex matter in type-II superconductors has been ex-
tensively studied as a unique system of many interacting
particles in which nonequilibrium phase transitions can
be accessed readily [1-8]. In the absence of driving or
quenched disorder, the vortex-vortex interactions favor
a triangular crystalline ordering. If the sample contains
sufficiently strong quenched disorder in the form of ran-
domly placed pinning sites, the vortex lattice ordering
can be lost as the vortices adjust their positions to accom-
modate to the pinning landscape [1-3]. Under an applied
drive such as the Lorentz force from a current, the vor-
tices are immobile or pinned for low values of the external
drive; however, there is a threshold applied force above
which the vortices begin to move over the disorder. For
strong disorder, the initial moving state is highly inho-
mogeneous with the vortices flowing in meandering and
fluctuating channels, and there is a coexistence between
pinned vortices and flowing vortices [1, 2]. At higher
drives the vortices move more rapidly, the effectiveness
of the quenched disorder is reduced, and the fluctuations
experienced by the vortices become anisotropic due to the
directionality of the external drive [4]. The vortex-vortex
interactions become more important at the higher drives
when the quenched disorder becomes ineffective, and a
dynamical transition can occur into a moving smectic
state where the vortices regain partial order in one direc-
tion [5-7]. Here, the system has crystalline order in the
direction transverse to the vortex motion and liquid-like
order in the direction of vortex motion. Depending on
the dimensionality and the strength of the pinning, it is
also possible for the vortices to reorganize in both direc-
tions at high drives to form a moving anisotropic crystal
[4-9]. These different phases and transitions between the
phases can be inferred from signatures in transport [3]
and noise fluctuations [10, 11], and they have also been

imaged directly using various techniques (7, 8].

In addition to the naturally occuring randomly placed
pinning sites, it is also possible for artificial pinning sites
to be created in a periodic structure [12]. Recent ad-
vances in nanostructuring permit the creation of a wide
variety of periodic pinning landscapes where the period-
icity, shape, size and density of the the pinning sites can
be well controlled. Distinct types of pinning arrays such
as square [13-20] triangular [21, 22|, rectangular [23, 24],
honeycomb [25, 26], kagomé [25], quasicrystalline [27],
and partially ordered [28] structures have been created.
In these arrays the type of vortex structure that forms is
determined by whether the vortex lattice is commensu-
rate with the underlying pinning array. Commensurate
arrangements appear at integer numbers of the matching
field By, which is the magnetic field at which the vor-
tex density matches the pinning density, and in general,
ordered vortex states occur at matching or rational frac-
tional values of B/By [13-15, 29-32]. In samples where
only one vortex can be captured by each pinning site,
the vortices that appear above the first matching field
sit in the interstitial regions between the pinning sites,
and these interstitial vortices can adopt a variety of crys-
talline configurations [14-17, 19, 24, 29, 30, 32].

Since a number of distinct ordered and partially or-
dered vortex states can be created in periodic pinning
arrays, a much richer variety of dynamical vortex be-
haviors occur for periodic pinning than for random pin-
ning arrays [15-17, 33-49]. Several of the dynamical
phases occur due to the existence of highly mobile in-
terstitial vortices which channel between the pinned vor-
tices [15, 17, 35-37, 39, 40, 42, 43, 45, 49]. As a function
of applied drive, various types of moving phases occur,
including interstitial vortices moving coherently between
the pinning sites in one-dimensional paths [15, 17, 33—
36, 39, 43] or periodically modulated winding paths
[33, 35, 44, 45], disordered regimes where the vortex mo-
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FIG. 1: (a) Pinning site locations (open circles) for a triangu-
lar pinning array. (b) Pinning site locations for a honeycomb
pinning array constructed from the triangular array in (a) by
removing 1/3 of the pinning sites. (c) The pinning site lo-
cations and vortex positions (dots) for a honeycomb pinning
array at B/Bg = 1.5. The overall vortex lattice order is tri-
angular. (d) The pinning site locations and vortex positions
for a honeycomb pinning array at B/Bg = 2.0, where two
vortices are captured at the large interstitial sites and the re-
sulting dimers all have the same orientation. Here F), = 0.85,
R, = 0.35), and for the honeycomb array n, = 0.3125/A2,

tion is liquidlike [33, 35, 39, 43], and regimes where vor-
tices flow along the pinning rows [33, 38, 46-48]. Other
dynamical effects, such as rectification of mixtures of
pinned and interstitial vortices, can be realized when the
periodic pinning arrays are asymmetric [49].

Most of the studies of vortex ordering and dynamics in
periodic pinning arrays have been performed for square
and triangular arrays. Experiments with honeycomb and
kagomé pinning arrays revealed interesting anomalies in
the critical current at nonmatching fields which are as
pronounced as the anomalies observed at matching fields
in triangular pinning arrays [25, 26]. A honeycomb pin-
ning array is constructed by removing every third pin-
ning site from a triangular pinning array, producing a
periodic arrangement of triangular interstitial sites. In
Figs. 1(a,b) we illustrate a triangular pinning array of
pinning sites and the honeycomb pinning array that re-
sults after the removal of one third of the pinning sites.
The matching anomalies in the experiments coincide with
fields B/ By = m/2, with m an integer, where the vortex
density would match with the regular triangular pinning
array. At the matching anomalies for m > 2, a portion
of the vortices are located in the large interstitial regions
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[26], as illustrated in Fig. 1(c) for B/By = 1.5. The
overall vortex lattice structure is triangular and a strong
peak in the depinning force occurs at this field [50].

Recently we used numerical simulations to demon-
strate that vortices in honeycomb pinning arrays have
a rich equilibrium phase diagram as a function of vor-
tex density [50], with matching anomalies at integer and
half integer matching fields that are in agreement with
experiments. The large interstitial sites created by the
missing pinning sites can capture multiple interstitial
vortices which form cluster states of n vortices. For
1.5 < B/Bg4 < 2.5, dimer states with n = 2 form, while
for higher fields trimer and higher order n-mer states
form. At the integer and half-integer matching fields,
the n-mer states can assume a global orientational or-
dering which may be of ferromagnetic or antiferromag-
netic type; herringbone structures can also form similar
to those observed for colloidal particles on periodic sub-
strates [51-55] and molecules on atomic substrates [56].
These orientationally ordered states have been termed
vortex molecular crystals. Certain vortex molecular crys-
tals have ground states that are doubly or triply degen-
erate, such as the dimer state at B/Bg = 2.0 where the
dimers align in one of three equivalent directions [50].
As the temperature is increased, the n-mers undergo a
transition from an ordered state to an orientationally
disordered state in which the n-mers are rotating ran-
domly but are still confined to the interstitial pinning
sites. The rotating states have been termed vortex plas-
tic crystal states. At matching fields where the vortex
plastic crystals form, the anomalies in the critical current
disappear [50]. The predictions from the simulations are
in general agreement with the experimental observation
of the loss of certain higher order matching anomalies at
higher temperatures [26]. The formation of n-mers that
can be aligned along degenerate symmetry directions has
also been predicted for kagomé pinning arrays where ev-
ery other pinning site is removed from every other row
[50, 57].

The formation of dimer states in the honeycomb pin-
ning produces a variety of novel dynamical phases, in-
cluding a spontaneous dynamical symmetry breaking ef-
fect in which the moving vortices organize into one of two
equivalent states which have a component of translation
perpendicular to the applied drive in either the positive
or negative direction [58]. The transverse response ap-
pears when the external driving force is applied halfway
between the two directions of aligned dimer motion. The
dynamical symmetry breaking occurs when the equilib-
rium ground states have no global symmetry breaking.
At B/By = 2.0, the ground state is symmetry broken
and the dynamical moving state has the same broken
symmetry as the ground state. For incommensurate fill-
ings, when the dimer alignment is disrupted, there is no
global symmetry breaking in the ground state, and in-
stead a dynamical symmetry breaking occurs due to the
applied drive.

In this work we map the dynamical phase diagram for



vortices in honeycomb arrays. We focus on the states
1.5 < B/By4 < 2.5 to understand where the dynamical
symmetry breaking occurs and to examine what other
types of moving phases are possible. We study how the
dynamical phases change for driving along different axes
of the pinning lattice. We find that very different kinds
of dynamics occur when the driving direction is varied,
and that the value of the depinning threshold is strongly
directionally dependent. We also find that a novel jam-
ming phenomenon can occur due to the formation of the
dimer states. For certain directions of drive, the dimers
are anti-aligned with the drive, causing the dimers to be-
come blocked in the interstitial regions.

Although our results are specifically for vortices in
type-1I superconductors, the general features of this work
should also be relevant for other interacting particle sys-
tems where a periodic substrate is present. Examples of
such systems include vortices on periodic substrates in
Bose-Einstein condensates (BEC), where different kinds
of crystalline phases can occur which depend on the
strength of the substrate [59, 60]. It should also be possi-
ble to observe different types of vortex flow states in BEC
systems [61]. Our results are also relevant for colloids on
periodic substrates, where an orientational ordering of
colloidal molecular crystals occurs which is very similar
to that of the vortex molecular crystal states [51-55, 62].
Other related systems include charged balls on periodic
substrates [63] and models of sliding friction [64].

II. SIMULATION

We use the same simulation employed in the previous
study of vortex equilibrium states in honeycomb lattices
[50]. We consider a 2D system of dimensions L, and
L, with periodic boundary conditions in the = and y
directions. The sample contains N, vortices, giving a
vortex density of n, = N,/L? which is proportional to
the external magnetic field. In addition, there are N,
pinning sites placed in a honeycomb arrangement with a
pinning density of n, = N,/L?. The field at which the
number of vortices equals the number of pinning sites is
defined to be the matching field By.

The dynamics of vortex i located at position R;; is gov-
erned by the following overdamped equation of motion:

n% =F""+F”+Fp+FT. (1)
Here the damping constant is n = ¢3d/27r§2pN, where
d is the thickness of the superconducting sample, 7 is
the superconducting coherence length, py is the normal
state resistivity of the material, and ¢9 = h/2e is the
elementary flux quantum. The vortex-vortex interaction
force is

Ny .9 N
FP =S foky (%’—) R, @
J#i

where K is the modified Bessel function, A is the London
penetration depth, fo = ¢3/(2mpuoA?), Rij = |R; —R;| is
the distance between vortex ¢ and vortex j, and the unit
vector R,;; = (R;—R,;)/R;;. In this work all length scales
are measured in units of A and forces in units of f,. The
vortex vortex interaction decreases sufficiently rapidly at
large distances that a long range cutoff is placed on the
interaction force at R;; = 6A to permit more efficient
computation times. We have found that the cutoff does
not affect the results for the fields and forces we consider
here.

The pinning force F;? originates from individual
nonoverlapping attractive parabolic traps of radius R,
which have a maximum strength of F},. In this work we
consider the limit where only one vortex can be captured
per pinning site, with the majority of the results obtained
for R, = 0.35X. The exact form of the pinning force is:

Ny (p)
F; — R &
F;’P _ E fo (RZ) Rgz)e (Rp = ik )REZ)‘ (3)
k=1

Here, R?) = |R; — R{)|, R is the location of pinning

site k, the unit vector R = (R, —~R®)/R® and © is
the Heaviside step function.

The external drive Fp = Fp fOFD represents the
Lorentz force from an applied current J x B which is
perpendicular to the driving force and is applied uni-
formly to all the vortices. We apply the drive at various
angles to the symmetry axes of the honeycomb pinning
array. The thermal force FT originates from Langevin
kicks with the properties (F?") =0 and (FT(t)Ff(t')) =
2nkpTd;;06(t — t'). Unless otherwise noted, the ther-
mal force is set to zero. The initial vortex configura-
tions are obtained by simulated annealing, and the ex-
ternal force is then applied gradually in increments of
AFp = 0.0002 every 1000 simulation time steps. For
the range of pinning forces used in this work, we find
that this force ramp rate is sufficiently slow that tran-
sients in the vortex dynamics do not affect the overall
velocity-force curves. We obtain the velocity-force curves
by summing the velocities in the z (longitudinal) direc-
tion, (V) = N1 vaz"l v; - X, and the y (transverse) di-
rection, (V) = N,? ZIN” v; -y, where v; = dR;/dt.
In Fig. 1(c,d) we illustrate the pinning sites and vortex
configurations after simulated annealing for B/Bg = 1.5
[Fig. 1(c)] and 2.0 [Fig. 1(d)]. Here L, = L, = 24X and
np, = 0.3125/A2. In our previous work, Ref. [58], the
drive was applied along the z-direction for the geometry
in Fig. 1.

III. DYNAMICS AND TRANSVERSE
RESPONSE FOR DRIVING IN THE
LONGITUDINAL DIRECTION

We first consider the case for driving in the z or lon-
gitudinal direction, Fp = FpX, for the system shown in
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FIG. 2: (a) The average velocity in the z-direction (Vi) vs
external driving force Fp for the honeycomb pinning array
from Fig. 1(b) at B/B, = 2.0 with Fp = Fpxk. (b) The cor-
responding average velocity in the y-direction (V;) vs Fp. We
observe four phases: the initial pinned phase (P), a symmetry
broken phase (SB), a random phase (R), and a moving locked
phase (ML).

Fig. 1(b) with B/By = 2.0, R, = 0.35), and F, = 0.85.
In Figs. 2(a,b) we plot (V;) and (V},) versus Fp. At this
filling there are four distinct dynamical phases, with the
pinned phase P occurring at low Fp. The depinning
threshold F. occurs near Fp = 0.14 when the interstitial
vortices become depinned. For a system with random
pinning and ¥p = FpX, there would be no transverse
velocity response; the system would have (V,) = 0 and
only (V,,) would be finite. In contrast, for the honeycomb
pinning array there is a finite velocity both in the posi-
tive z direction and in either the +y or —y direction. In
Fig. 2(b) the transverse response (V,,) is negative, indi-
cating that the vortices are moving at a negative angle to
the z axis for 0.14 < Fp < 0.37. Figure 3(a) illustrates
the vortex motion at Fp = 0.25, where the vortices flow
in one-dimensional paths oriented at —30° to the x axis.
In Fig. 3(b) a snapshot of the vortex positions shows that
the vortex lattice remains ordered in the moving phase,
indicating that the vortices are flowing in a coherent man-
ner. We term the phase shown in Fig. 3(a) the symmetry
broken phase (SB), since the flow can be tilted in either
the positive or negative y-direction.

At B/Bs = 2.0 and Fp = 0, the interstitial vortices
form an aligned dimer configuration with a three-fold de-
generate ground state in which the dimers can be oriented
along the y-direction, as in Fig. 1(d), or along +30° or
—30° to the z-direction, as shown in previous work [58].
When a driving force is applied to the +30° or —30°
ground states, the vortices depin and flow along +30° or
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FIG. 3: The dynamics of the three moving phases from
Fig. 2 for the honeycomb pinning array at B/Bg = 2.0 with
Fp = Fpk. The vortex positions (filled circles), pinning site
locations (open circles), and vortex trajectories (black lines)
are shown in an zA Xz portion of the sample. (a) In the sym-
metry broken SB phase at Fp = 0.25, the interstitial vortices
move along a —30° angle to the x-axis while the vortices at
the pinning sites remain immobile. (b) Vortex positions only
in the SB phase at Fp = 0.25, showing the ordering present
in the vortex lattice structure. (c) In the random R phase at
Fp = 0.42, the vortex motion is highly disordered with vor-
tices pinning and repinning at random. (d) Vortex positions
only in the R phase at Fp = 0.42 indicate that the vortex
lattice is disordered. (e) In the moving locked ML phase at
Fp = 0.65, all the vortices channel along the pinning sites.
(f) Vortex positions only in the ML phase at Fp = 0.65 reveal
an anisotropic vortex lattice structure with different numbers
of vortices in each row.

—30°, respectively. In these cases, the symmetry break-
ing in the moving state is not dynamical in nature but
reflects the symmetry breaking within the ground state.
If the dimers are initially aligned along the y-direction
in the ground state, an applied drive induces an instabil-
ity in the pinned phase and causes the dimers to rotate
into the +30° or —30° directions, as we discuss in fur-
ther detail below. In this case the symmetry breaking is
dynamical in origin.

In Fig. 2(a,b) we find pronounced oscillations in both
(V) and (V,) just above the depinning threshold F, =
0.14. These oscillations are not intrinsic features but are
due to the fact that at B/By = 2.0 the interstitial vor-
tex lattice is perfectly ordered, so the interstitial vor-
tices move in a coherent fashion as shown in Fig. 3(a).
At depinning, the interstitial vortices are slowly mov-
ing through a periodic potential created by vortices that
remain trapped at the pinning sites. This periodic po-
tential causes the moving interstitial vortices to develop
an oscillating velocity. In Fig. 4(a), the instantaneous
time traces of the vortex velocity V, and V,, at constant
Fp = 0.25 show strong velocity oscillations. The os-
cillations are also visible in Fig. 2 at low drives due to
our choice of averaging time spent at each value of the
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FIG. 4: Time traces of vortex velocity at fixed Fp. Upper
curves: Vz(t); lower curves: V,(t). (a) The symmetry broken
SB phase at Fp = 0.25 from Fig. 3(a,b). Here pronounced
oscillations occur in both V; and V,, as the vortices move in
a coherent fashion. (b) The random phase R at Fp = 0.42
from Fig. 3(c,d). In this case the transverse motion is lost
and (V) = 0. Additionally, there are no correlated oscilla-
tions. (c) The moving locked state ML at Fp = 0.65 from
Fig. 3(e,f). Vz has been shifted down for clarity. There is a
weak oscillation in V; due to the periodic substrate. Since the
flow is strictly one-dimensional, as shown in Fig. 3(e), there
are no fluctuations in V.

driving current. If the averaging time is increased, the
oscillations in Fig. 2 disappear. We note that the loca-
tions of the boundaries between the different phases are
not affected by the value of the velocity averaging time.
At incommensurate fields, there is enough dispersion in
the velocity of the moving interstitial vortices that the
coherent velocity oscillations are no longer distinguish-
able.

As Fp increases the net vortex velocity in the SB phase
increases linearly until Fp = 0.365, where there is an
abrupt increase in (V). Fig. 2(a,b) shows that this in-
crease coincides with a jump in (V) to a zero average,
indicating that the vortices are moving only in the z-
direction on average. In Fig. 3(c) we illustrate the dis-
ordered vortex trajectories that occur in this phase at
Fp = 0.42. The vortices are continually depinning and
being repinned, and the order in the vortex lattice is lost,
as shown in Fig. 3(d). We term this the random phase R.
It resembles random dynamical phases that have previ-
ously been observed for vortices in square pinning arrays
when the interstitial vortices begin to depin vortices from
the pinning sites [29]. Figure 2 shows that there are pro-
nounced random fluctuations in (V) and (V}) in phase

R, and also that (V,) does not increase linearly with Fp
but has a curvature consistent with V, = (Fp — FCR)1/2,
where FF is the threshold value for the SB-R transition.
In the SB phase, the number of vortices moving is con-
stant and is equal to the number of interstitial vortices,
while in the R phase the number of moving vortices in-
creases with Fp.

At Fp = 0.53, the system organizes into a one-
dimensional flowing state where the vortex motion is
locked along the pinning rows, as shown in Fig. 3(e,f)
for Fp = 0.65. The onset of this phase also coincides
with the loss of fluctuations in (V,) and (V,). The loss
of fluctuations in Vj, can be seen clearly in Fig. 4(c). For
Fp > 0.53, all of the vortices are mobile and Fig. 2(a)
shows that the (V) versus Fp curve becomes linear
again. We term this the moving locked phase (ML) since
the vortex motion is effectively locked along the pinning
sites. When the vortices are rapidly moving, the pinning
sites have the same effect as a flashing one-dimensional
trough that channels the vortices [33, 38] The vortices
assume a smectic structure in the ML phase, since differ-
ent rows have different numbers of vortices which creates
aligned dislocations. The ML phase is essentially the
same state found in square pinning arrays at high drives
when B/Bg > 1.0 [33].

In previous studies of square pinning arrays with
strong pinning, the initial motion of the vortices for
B/Bg > 1.0 occured in the form of one-dimensional chan-
nels between the vortices trapped at the pinning sites
[33]. In the honeycomb pinning array, similar flow occurs
in the SB phase as shown in Fig. 3(a). For B/Bs < 1.5
in the honeycomb array, the initial interstitial flow for
depinning in the z direction consists of individual vor-
tices that flow in a zig-zag pattern around the pinned
vortices. Since there is no dimer ordering for these fill-
ings, no transverse response occurs for B/By < 1.5. For
B/Bg4 > 1.5, the interstitial vortices begin to form dimer
states when two interstitial vortices are captured in a
single large interstitial site. The dimers can lower their
orientational energy by aligning with each other in both
the ground state and the moving states. Dimers can only
remain aligned in the moving state if they are channeling
along one of the symmetry axes of the pinning lattice.
If the dimers were to move strictly in the z-direction,
they would be forced directly into the pinned vortex in
the pinning site to the right of each large interstitial site.
This would destabilize the rodlike dimers. Instead, the
dimers maintain their integrity by moving along +30°.
Within the moving state, if one of the dimers were to
move along +30° while the remaining dimers were mov-
ing along —30°, the two interstitial vortices comprising
the dimer would be forced close together, destabilizing
the dimer state due to the repulsive vortex-vortex in-
teractions. Instead, all of the dimers move in the same
direction.

The SB-R transition occurs when the combined forces
on the pinned vortices from the external drive and the
moving dimers are strong enough to depin the pinned



vortices. At the closest approach in the x direction be-
tween a dimer and a pinned vortex, the frontmost dimer
vortex is a distance ag/2 from the pinned vortex and
the rear dimer vortex is a distance 3ag from the pinned
vortex, where a, is the lattice constant of the undiluted
triangular pinning lattice. In addition to the force from
the dimerized vortices, the pinned vortex experiences an
opposing force from the neigboring pinned vortex a dis-
tance ag away. In a simple approximation, the driv-
ing force needed to depin a vortex at a pinning site is
Fp = Fp = [(Kl(a0/2) # K1(3a0/2)) == Kl(a())]. Set-
ting F, = 0.85 gives Fp = 0.41, close to the value of
Fp = 0.37 for the SB-R transition in Fig. 2. Once the
vortices can be depinned, the system enters the random
phase R, and since F)p is still considerably less than Fj,, it
is possible for vortices to be pinned temporarily in phase

R.

Studies of square pinning arrays have shown that after
the onset of a random dynamical phase, the vortices can
organize into a more ordered phase of solitonlike pulse
motion along the pinning rows, followed by a phase in
which all of the vortices channel along the pinning rows
[33]. At the transition to the one-dimensional pulse like
motion, a larger fraction of the vortices are pinned com-
pared to the random phase, so a drop in (V) with in-
creasing Fp occurs, giving a negative differential con-
ductivity. In the honeycomb pinning arrays for the pa-
rameters we have chosen here, we do not observe one-
dimensional pulse motion or negative differential con-
ductivity for driving along the z-direction. For the one-
dimensional pulse motion or the ML phase motion seen
in Fig. 3(e,f) to occur, the vortices must be moving at
a sufficiently high velocity for the pinning sites to act
like a flashing trough. When the vortices move along
the pinning rows, the vortex lattice structure adopts a
highly anisotropic configuration which would be unsta-
ble at Fp = 0. During the period of time when a vor-
tex passes through a pinning site, the vortex is pulled
toward the center of the pinning row, which stabilizes
the one-dimensional motion. When the vortex is mov-
ing between the pinning sites, it can drift away from the
one-dimensional path until it encountes another pinning
site. In Ref. [33], it was shown that for square pinning
arrays, increasing the pinning radius R, stabilized the
one-dimensional flow down to lower values of Fp. In the
honeycomb pinning array, the one-dimensional flow is less
stable due to the fact that the vortices must move over
the much wider large interstitial site, giving the vortices
more time to drift away from the pinning row. Since this
means that a larger value of Fp is required to stabilize
the one-dimensional motion, it should be more difficult
in general to observe the onset of one-dimensional soli-
tonlike motion or negative differential conductivity in the
honeycomb arrays.
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FIG. 5: The power spectra S(v) of the z component of the
velocity Vz(t) for the three phases in Fig. 4. (a) The SB phase
at Fp = 0.25 shows a pronounced narrow band noise signa-
ture. (b) The R phase at Fp = 0.42 has a broad band noise
signature. (c) In the ML phase at Fp = 0.65, a number of
different frequencies are present due to the fact that different
rows of the vortices move at different velocities.

A. Fluctuations and Noise Characteristics

In order to characterize the moving phases more quan-
titatively, in Fig. 4 we show time traces V(t) and V(¢) of
the vortex velocities at fixed Fp for the different phases
for the system in Fig. 2. In the symmetry broken SB
phase at Fp = 0.25, shown in Fig. 4(a), V, is greater
than |V,| by tan(30°) or about 1.7. Here both compo-
nents of the velocity show a pronounced oscillation which
arises when the interstitial vortices move in a coherent
fashion over the periodic potential substrate created by
the immobile vortices in the pinning sites. In Fig. 5(a),
we show the corresponding power spectrum S(v) of V,
obtained from

2

S) = i / Vi(t)e 2™ wtdt (4)

There is a pronouced peak in S(v) at the frequency of the
velocity oscillation in the SB phase, indicating that mode
locking effects could appear at B/Bs = 2.0 when the
symmetry breaking flow occurs. In square pinning arrays,
experiments [17] and simulations [36] revealed Shapiro
step-like mode locking of interstitial moving vortices at



B/By = 2.0. In the honeycomb lattice, since there is
also a strong oscillation in V;, in the SB phase, we expect
that transverse mode locking could occur if an additional
ac drive is applied in the y-direction. Such mode locking
would appear as steps in both (V;) and (V,,) versus Fp in
the SB phase. Transverse phase locking, which produces
steps that are distinct from Shapiro steps, has been ob-
served for the motion of vortices in square arrays [37]. In
general, if the vortices already have an intrinsic velocity
oscillation in the transverse direction, then pronounced
transverse phase locking is possible.

In Fig. 4(b) we plot the time trace of V; and V;, for
the random phase R at Fp = 0.42. In this case (V;) =
0, and although both V, and V show fluctuations, no
oscillations or washboard frequencies appear. In Fig. 5(b)
we show the corresponding S(v) for V,, where we find
a broad band noise feature consistent with disordered
plastic flow [3, 6, 11]. Since there are no coherent velocity
oscillations, mode locking should be absent in the random
phase R.

In Fig. 4(c) we plot V; and V, in the ML phase at
Fp = 0.65, where V,, has been shifted down by a factor
of 3 for clarity. There are no visible fluctuations in V}, due
to the one-dimensional nature of the flow, but there are
small periodic oscillations in V,, generated by the motion
of the vortices over the periodic substrate. Due to the
fact that different one-dimensional rows contain different
numbers of vortices, producing dispersion in the vortex
velocities, the oscillation in V,, is not as pronounced as
in the SB phase. The corresponding power spectrum in
Fig. 5(c) contains a rich variety of peaks due to the wide
range of frequencies present in this phase. The main peak
is smaller in magnitude than that found for the SB phase.
As Fp increases, the frequency at which the first peak
occurs also increases. It should be possible to generate
phase locking in the ML phase; however, it would likely
not be as pronounced as in the SB phase. These results
suggest that noise fluctuations can be a useful technique
for exploring the presence of different dynamical phases
in periodic pinning arrays.

B. Dynamical Symmetry Breaking in the Pinned
Phase

As previously noted, the ground state at B/By = 2.0
is three-fold degenerate. When the dimers are aligned at
either +30° or —30° to the z-axis in the ground state, the
subsequent SB flow is aligned in the same direction as the
ground state. It is also possible for the dimers to align in
the y-direction, as shown in Fig. 6(a). At Fp = 0.09, the
dimers and the vortices in the pinning sites are shifted
slightly to the right due to the applied drive. As Fp is
further increased, a symmetry breaking transition occurs
within the pinned phase. For Fp < 0.11 the dimers re-
main aligned the y-direction; however, at Fp = 0.11, the
rotational instability illustrated in Fig. 6(b) occurs. The
dimers rotate in such a way that they end up aligned in
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FIG. 6: Vortex positions (filled circles), pinning site locations
(open circles), and trajectories (black lines) for a system with
B/Bg = 2.0 and F, = 0.85 which started in the y-aligned
ground state. (a) The pinned phase at Fp = 0.09. Here the
dimers and the vortices in the pinning sites have all shifted
slightly to the right compared to the ground state due to the
applied drive. (b) A rotational instability occurs at Fp ~
0.11, when the vortices move in a manner that allows the
dimers to align along —30° to the z-axis. There is also a
small shift of the vortices in the pinning sites. (c¢) The pinned
state at Fp = 0.12 where the dimers are aligned in the new
—30° direction.
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FIG. 7: The velocity (V) (upper curve) and (V,) (lower
curve) vs Fp for the system in Fig. 6. The rotational in-
stability seen in Fig. 6(b) appears as a positive peak in (V,)
and a negative peak in (V) just above Fp = 0.11. The system
remains pinned until around Fp = 0.14.

the —30° direction. The interstitial vortex at the bottom
of the dimer moves in the +z direction and by a smaller
amount in the +y direction, while the vortex at the top
of the dimer moves in the —y direction and by a smaller
amount in the —z direction. There is also a slight shift
of the vortices in the pinning sites that are closest to the
bottom of each dimer. In Fig. 6(c) the rotation process
is completed and the dimers are aligned in a new direc-
tion, —30°. The vortices remain pinned until Fp = 0.14,
at which point the system enters the SB phase. At finite
temperatures, the dimer realignment occurs at even lower
values of Fp. The rearrangement can also be observed as
a jump in (V;) and (V,) as shown in Fig. 7, where there
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FIG. 8: Vortex positions (filled circles) and pinning site loca-
tions (open circles) for the system in Fig. 2 at (a) B/Bg = 1.91
and (b) B/By = 2.08. At these fillings, the long range orien-
tational ordering of the dimer state is lost.

is a positive spike in (V;) and a negative spike in (V})
near Fp = 0.11, in agreement with the motion shown in
Fig. 6(b). We term this a dimer polarization effect since
the driving force induces an alignment of the dimers.

C. Dynamics for 1.5 < B/By < 2.5

We next consider the effect of changing the vortex den-
sity for fillings where interstitial dimers are present and
the SB phase occurs. In Fig. 8(a) we illustrate the vortex
positions for B/By = 1.91, where a mixture of monomers
and dimers appear in the large interstitial sites. At this
filling, the overall orientational ordering of the dimers is
lost in the ground state, and the dimers are oriented only
in local patches. For B/ B, > 2.0, a mixture of interstitial
dimers and trimers is present, as shown in Fig. 8(b) for
B/ B, = 2.08, and the orientational ordering is again lost.
In Ref. [58] it was shown that the SB state still occurs
at incommensurate fields as long as some dimer states
are present. If Fp is suddenly increased from zero to a
finite value at which only the interstitial vortices depin,
the moving state for the incommensurate fields organizes
into a dynamically symmetry broken state where all of
the dimers flow along 4-30° or —30°. At the incommensu-
rate fields, only the dimers undergo dynamical symmetry
breaking; the monomers and trimers continue to move in
the direction of the drive, with some fluctuations in the
transverse direction.

In Fig. 9 we plot (V) for the system in Fig. 2 at
B/Bs = 1.89, 1.94, and 2.5. In Figs. 9(a,b), the same
four phases described above are labeled. The SB phase
has opposite sign in Fig. 9(a) and Fig. 9(b); the dy-
namical symmetry breaking can occur in either direction
since there is no symmetry breaking in the ground state.
If slightly different initial conditions are used, such as by
changing the initial annealing procedure, the dynamical
symmetry breaking has equal probability to occur in the
positive or negative direction, as shown previously [58].
In Figs. 9(a) and (b) the initial portion of the SB phase
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FIG. 9: (V,) versus Fp for (a) B/By = 1.89, (b) B/By =
1.94, and (¢) B/Bg = 2.5 for a system with the same param-
eters as in Fig. 2. P: pinned phase; SB: symmetry broken
phase; R: random phase; ML: moving locked phase.

has fluctuations in (V,) due to the fact that we are in-
creasing Fp at a finite rate and there is a transient time
for the moving state to fully organize into the SB state,
as studied previously [58]. The transient time increases
as |B/Bs—2.0| increases. If we decrease AFp, the fluctu-
ations at depinning are reduced; however, the boundary
between the phases does not shift.

In Fig. 9(c) at B/By = 2.5, (V) = 0 since there are
only trimer states present. The large oscillations in (V)
occur when the system forms a completely ordered trimer
ground state [50] and the vortex motion is highly coher-
ent, similar to the effect seen in Fig. 2. For the rate at
which we sample and average (V) versus Fp, the peri-
odic fluctuating vortex velocity is visible. For Fp > 0.5
the system enters a partially moving locked phase where
a portion of the vortices move along the pinning rows.
There are, however, too many vortices to form straight
one-dimensional chains of the type shown in Fig. 3(e) for
B/By = 2.0. A buckling instability of the chains oc-
curs since the amount of anisotropy that would occur if
one-dimensional chains formed is too large for the vor-
tex lattice to sustain. Instead, a partially moving locked
(PML) phase forms with a disordered moving vortex lat-
tice. This result is interesting since it indicates that
moving vortex phases do not always organize into or-
dered states. A time trace of a PML state at fixed Fp
shows much weaker velocity oscillations than thos shown
in Fig. 4(c) for the ML state. This suggests that phase
locking with PML states will be very weak or absent. In
previous work on phase locking for square arrays, it was
shown that the phase locking is most pronounced at com-
mensurate fields where the moving vortex structures are
more ordered. [REFERENCE?|



FIG. 10: The dynamic phase diagram for Fp vs B/Bg high-
lighting the different dynamical phases. P: pinned, SB: sym-
metry broken, R: random, and ML: moving locked. Here Fj, =
0.85, R, = 0.35), and np = 0.3125/)\%. For B/B, > 2.125, at
high Fp the system forms a partially moving locked (PML)
phase where not all of the vortices move along the pinning
rows.

By performing a series of simulations for varied B/By,
measuring the features in the velocity force curves and
observing the vortex structures, we construct the dynam-
ical phase diagram of Fp vs B/B, shown in Fig. 10. The
depinning force marking the end of the pinned phase P
show peaks at B/By = 1.5, 2.0, and 2.5, corresponding
to the commensurate and ordered ground states reported
previously [50]. The SB-R transition line is fairly flat
as a function of B/By with an enhancement to higher
values of Fp occuring near B/B, = 2.0, while at the
incommensurate fields, monomers or trimers create fluc-
tuations that cause the vortices at the pinning sites to
depin at slightly lower values of Fp. For B/By < 2.1,
upon increasing Fp the random state organizes into a
ML state where all the vortices move along the pinning
rows as shown in Fig. 3(e), while for B/By > 2.1, the
random state organizes into the PML state. The width
of the random phase, as determined by the fluctuations
in the velocity, increases and persists to higher values of
Fp for increasing B/By at B/By > 2.1. For B/By < 1.5
and By > 2.5, where dimers are no longer present, the
SB phase is lost and a new set of dynamical phases arises
which we discuss in more detail below.

D. Effect of Changing the Pinning Strength

We next consider the effect of changing the pinning
strength when B/Bg = 2.0. The four phases in Fig. 2
occured in a sample with F}, = 0.85. As F}, is varied, we
find several different kinds of ordering within the pinned
phase that affect the dynamics which occur at finite Fp.

FIG. 11: The critical depinning force F, vs F}, for a system
with B/Bg = 2.0, R, = 0.35), and n, = 0.3125/)\%. For F, <
0.45 a partially pinned (PP) state forms which is illustrated
in Fig. 12(a). For 0.45 < F, < 1.75 the system forms the
pinned (P) orientationaly ordered dimer state such as that
shown in Fig. 1(c). For F, > 1.75, the pinned herringbone
(PHB) state seen in Fig. 12(b) forms.

FIG. 12: Vortex positions (filled circles) and pinning site loca-
tions (open circles) for the system in Fig. 11. (a) The partially
pinned (PP) state at F, = 0.25. The vortex lattice structure
consists of a triangular lattice, and only half of the pinning
sites are occupied. (b) The pinned herringbone (PHB) state
at Fp, = 2.0. Here the dimers do not all align in the same
direction, but instead alternate in their alignment from row
to row.

In Fig. 11 we plot the threshold depinning force F, as
a function of F,. For F, < 0.35 the pinning is weak
enough that the vortex-vortex interactions dominate over
the pinning energy and a nearly triangular vortex lattice
forms, as shown in Fig. 12(a). In this arrangement, half
of the pinning sites are still occupied, so the vortex lattice
is partially pinned (PP) and there is a finite depinning
threshold. This type of partially pinned vortex lattice
was observed in previous simulations on honeycomb pin-
ning lattices [50], and similar partially pinned vortex lat-
tice states have been predicted for square pinning arrays



FIG. 13: Vortex positions (filled circles), pinning site loca-
tions (open circles), and vortex trajectories for the system in
Fig. 11. (a) Moving crystal (MC) state for F, = 0.25 and
Fp = 0.2. The partially pinned (PP) state from Fig. 12(a)
depins elastically into a MC where half of the vortices move
directly along the pinning rows and the other half of the vor-
tices move in winding paths between the pinning sites. (b)
Moving interstitial (MI) state for F, = 2.0 and Fp = 0.225.
The pinned herringbone (PHB) state depins into a MI state
in which interstitial vortices move around the pinned vortices.

[32] and observed for metallic particles on periodic struc-
tures [63]. The depinning transition from the PP state is
elastic, and all the vortices depin simultaneously to form
the moving triangular crystal (MC) shown in Fig. 13(a).
In the MC, half of the vortices move in one-dimensional
paths along the pinning rows while the remaining vor-
tices move through the interstitial regions with a small
transverse oscillation.

Figure 11 shows that the pinned ordered dimer state
(P) forms for 045 < F, < 1.75. Over the range
0.45 < F, < 0.55, the depinning from state P does not
occur by the initial flow of the the interstitial vortices into
the SB phase, unlike the case shown earlier for F,, = 0.85.
Instead, for 0.45 < F, < 0.55, both the interstitial vor-
tices and the vortices at the pinning sites depin simul-
taneously and rearrange into the moving crystal (MC)
state shown in Fig. 13(a). We also find a peak in F, at
F, = 0.5. This peak occurs due to both the change in
the pinning configuration and a change in the depinning
process. For F, < 0.45, only half of the pinning sites
are occupied and the vortex lattice depins elastically. At
0.45 < Fp < 0.55, all of the pinning sites are now oc-
cupied in the P state, but the vortex lattice still depins
elastically. The pinning energy that must be overcome to
depin the lattice is increased compared to the PP state,
leading to an increase in F.. For 0.55 < Fj, < 1.75, the
depinning process is plastic and only the interstitial vor-
tices flow at depinning to form the SB state. Since the
plastic depinning process does not require pinned vor-
tices to depin, the threshold force F, drops, producing
the peak in F at Fj, = 0.5.

For F, > 0.7 in Fig. 11, the depinning threshold F
slowly increases with increasing F, and a transition in
the pinned vortex structure occurs at F, = 1.75. For
F, > 1.75, the dimers in the pinned state are no longer
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aligned but form a pinned herringbone (PHB) type struc-
ture such as that shown in Fig. 12(b), where the dimers
are all tilted in the same direction in one row and tilted
in the opposite direction in the adjacent rows. Herring-
bone ordering of dimers has previously been observed for
colloidal dimers on triangular lattices [33] and for vor-
tices in kagomé arrays at 5/3 filling [50]. At depinning,
the PHB state does not form a SB phase but instead
forms the winding interstitial phase shown in Fig. 13(b).
The dimers break apart into two monomers, with one
monomer passing around the pinned vortices in the pos-
itive y direction and the other monomer passing the
pinned vortices in the negative y direction. We term
this state the moving interstitial (MI) phase.

In contrast to the herringbone state, the aligned dimer
or ferromagnetic ordering of the P state occurs when the
pinned vortices adjacent to the dimers are able to un-
dergo a periodic distortion within the pinning sites, re-
ducing the interaction energy between the pinned and
interstitial dimer vortices and permitting the dimer align-
ment. If the dimers are aligned along +30°, as in Fig. 5(a)
of Ref. [50], the two pinned vortices closest to each inter-
stital vortex in the dimer both splay outwards away from
the +30° direction. When F}, is increased, the pinned
vortices are pulled toward the center of each pinning site
and are no longer able to distort in order to accomodate
the aligned dimer state, so the herringbone state forms
instead. This result suggests that there may be other
types of ground state ordering for vortices in honeycomb
and kagomé arrays in addition to those that have been
reported previously. It may be possible to use the size
and shape of the pinning sites as a means of controlling
the type of crystalline structure that forms.

In Fig. 14, we plot (V) versus Fp for F, = 0.25, 1.125,
and 2.125. Figure 14(a) shows the elastic depinning pro-
cess for the PP state at Fy, = 0.25, which moves directly
into the MC phase after depinning. At F,, = 1.125 in
Fig. 14(b), (V) increases linearly with Fpp through the
SB phase. The slope of (V;) increases in the R phase,
and the velocity-force relationship becomes linear in the
ML phase. For F, = 2.125, Fig. 14(c) indicates that
the depinning occurs in two steps. The first depinning
transition of the interstitial vortices only takes the system
from the P phase into the moving interstitial (MI) phase,
while at the second depinning transition, the pinned vor-
tices depin and the sample enters the ML phase. Unlike
the behavior at Fj, = 1.125 in Fig. 14(b), at F, = 2.125
the intermediate random phase R is lost and is replaced
by a sharp jump into the ML phase.

By conducting a series of simulations we construct the
dynamical phase diagram as a function of F, and Fp, as
shown in Fig. 15. At high Fp, the MC phase forms for
F, < 0.45, while for F}, > 0.45 the ML phase appears
instead. The SB phase exists for 0.55 < F}, < 1.75, and
the SB-R boundary shifts to higher Fp with increasing
F, until it terminates at Fy, = 1.75. For F}, > 1.75, the
PHB state occurs at low drive, and the system depins
into the MI phase. The MI phase also extends as far



FIG. 14: (Vi) vs Fp for B/By = 2.0, R, = 0.35), and
np = 0.3125/\%. (a) At F, = 0.25, there is an elastic de-
pining transition between the partially pinned PP state and
the moving crystal MC state. (b) At F, = 1.125 the four dy-
namic phases are present. P: pinned; SB: symmetry broken;
R: random; ML: moving locked. (c) At F,, = 2.125 the pinned
herringbone PHB state depins into the moving interstitial MI
state illustrated in Fig. 13(b). The transition between the MI
and the moving locked ML state is much shaper than the R
to ML transition shown in (b).

down as Fj, = 1.5, where the system passes from the SB
phase into a narrow window of the random flow phase R
with increasing Fp before the vortices organize into the
MI phase. As Fp continues to increase, the vortices at
the pinning sites depin and the system passes through a

second narrow window of the R phase until the vortices -

organize into the ML phase. At high F},, the random R
phase becomes vanishingly small and the system passes
directly from the MI to the ML phase. The transition
into the ML state increases linearly with increasing Fj,
while the depinning force saturates with increasing Fj,.

E. Changing R, and By

We next examine the effects of changing the pinning
radius in a system with fixed F,, = 0.85 and B/By = 2.0.
In Fig. 16 we show the dynamic phase diagram for Fpp
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FIG. 15: The dynamic phase diagram of Fp vs Fj, for
B/Bgy = 2.0, R, = 0.35), and n, = 0.3125/\%. The three
pinned phases are: PP, the partially pinned phase shown in
Fig. 12(a); P, the pinned ordered dimer phase in Fig. 1(c);
and PHB, the pinned herringbone phase (PHB) illustrated
in Fig. 12(b). The dashed line separates the moving crystal
phase (MC) shown in Fig. 13(a) from the moving locked (ML)
phase of Fig. 3(e). The symmetry breaking (SB) phase illus-
trated in Fig. 3(a) occurs at intermediate vales of Fp, while
the moving interstitial (MI) phase shown in Fig. 13(b) forms
at higher values of Fy,. The random phase R is illustrated in
Fig. 3(c).

versus R, obtained from a series of simulations. For
0.2X < R, < 0.55\, we find the same three moving
phases, SB, R, and ML, as in Fig. 2. For R, > 0.55), the
pins are large enough to permit double vortex occupancy
at the individual pinning sites; in this case, a new set
of phases appears which we do not consider in this work.
For R, > 0.2}, the R-ML transition decreases in Fp with
increasing R, since the larger pinning sites make it eas-
ier for the vortices to localize along the pinning rows and
flow in the one-dimensional motion of the ML phase. For
R, < 0.2) at low Fp, we find the partially pinned PP
state illustrated in Fig. 12(a). The onset of the PP phase
coincides with a drop in F, at R, =~ 0.2\. Unlike the PP
phase that occurs at low Fj, in Fig. 15, which depins elas-
tically, the PP phase at small R, depins into a moving
interstitial phase that is distinct from the moving inter-
stitial phase shown in Fig. 13(b). In Fig. 17(a) we illus-
trate the vortex trajectories in the phase which we term
the moving interstitial phase 2 (MI2). The vortices flow
in winding interstitial channels; however, unlike the MI
phase, in the MI2 phase only half of the pinning sites are
occupied. In Fig. 17(b) we plot (V,.) vs Fp for a system
with R, = 0.15\. A clear two-step depinning transition
occurs, with (V,) increasing linearly with increasing Fp
in the MI2 phase. At high Fp and R, < 0.2), the pin-
ning sites are too small for the ML phase to occur, and
instead the vortices flow in the MC phase illustrated in
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FIG. 16: The dynamic phase diagram of Fp vs Ry, for B/Bg =
2.0 and F, = 0.85. PP: partially pinned phase; P: pinned
dimer phase; MI2: moving interstitial phase 2; SB: symmetry
broken phase; R: random phase; MC: moving crystal phase;
and ML: moving locked phase. For R, > 0.2\ we observe
the same phases illustrated in Fig. 15 at F, = 0.85. The
curves do not extend above R, = 0.55\ since for R, > 0.55),
multiple vortex pinning at individual pinning sites occurs. For
R, < 0.2), a partially pinned phase appears and the initial
depinning is into a new moving interstitial phase termed MI2,
illustrated in Fig. 17(a). The upper dashed line separates the
MC phase from the ML phase.

FIG. 17: (a) Vortex positions (filled circles), pinning site lo-
cations (open circles) and vortex trajectories (black lines) for
the system in Fig. 16 showing the moving interstitial 2 phase
(MI2) at R, = 0.15A and F, = 0.2. (b) (Vi) vs Fp for the
same system. A sharp transition from the MI2 phase to the
random R phase occurs.

Fig. 13(a).

We next consider samples with fixed B/Bs = 2.0,
R, = 0.35), and F, = 0.85, but vary the value of By
by changing the pinning density n,. This alters the av-
erage spacing between neighboring vortices. Up to this
point we have used n, = 0.3125/A2. In Fig. 18 we illus-
trate the dynamic phase diagram for n, versus Fp. As
np increases, F. increases since the depinning of the in-
terstitial vortices is determined by the potential created
by the vortices located the pinning sites, and as the vor-
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FIG. 18: The dynamic phase diagram Fp versus pinning den-
sity n,, which determines By, at B/By = 2.0, F, = 0.85, and
R, = 0.35). P: pinned dimer phase; MI: moving interstitial
phase; SB: symmetry broken phase; R: random phase; ML:
moving locked phase. The transition to the ML phase shifts
to higher Fp with decreasing n,. The SB phase appears only
for intermediate values of n,.

tex density increases, the depth of the interstitial pinning
potential also increases. The R-ML transition shifts to
higher Fp with decreasing n,. Since the distance be-
tween the pinning sites increases with decreasing n,, the
moving vortices spend less time in the pinning sites. This
destabilizes the ML phase and the vortices must move at
higher velocities for the effective trough potential to be
able to stabilize the ML phase. For n, > 0.78/)A2%, the
SB phase is lost, since at this pinning density the inter-
actions between the interstitial vortices and the pinned
vortices become sufficiently strong that the depinning of
the interstitial vortices also causes the pinned vortices
to depin. As a result, the system passes directly from
the P phase to the R phase. For n, < 0.14/)2, the
vortex-vortex interaction becomes weak enough that the
system depins into the MI phase illustrated in Fig. 13(b).
This also coincides with an increase in the value of Fp
at which the R phase appears, since the moving intersti-
tial vortices in the MI phase do not approach the pinned
vortices as closely as they do in the SB phase.

F. Effect of Finite Temperature

We next consider the effect of finite temperature on
the system in Fig. 2 with B/By = 2.0, F,, = 0.85,
R, = 0.35), and n, = 0.3125/A2. In Ref. [50], we showed
that a transition can occur at finite temperature in which
the vortex n-mer states lose their orientational ordering
and begin to rotate while remaining confined within the
large interstitial sites. This state was termed a vortex
plastic crystal. In Ref. [58] we demonstrated that the



FIG. 19: The dynamic phase diagram of Fp vs thermal
force FT for a system with B/By = 2.0, F, = 0.85, n, =
0.3125/A%, and R, = 0.35)\. P: pinned dimer phase; SB:
symmetry broken phase; R: random phase; and ML: moving
locked phase. Inset: (Vi) vs Fp at FT = 1.25 where a smooth
depinning transition occurs.

(d) X

FIG. 20: Vortex positions (filled circles), pinning site loca-
tions (open circles), and vortex trajectories (black lines) for
the system in Fig. 19 at FT = 1.25. (a) At Fip = 0.1, there
is appreciable creep of the interstitial vortices and the dimers
have lost their orientational ordering and are rotating within
the large interstitial sites. (b) At Fp = 0.2, the vortex flow
is disordered and vortices are continually depinning and re-
pinning. (c) At Fp = 1.0, all of the vortices are moving but
there is still diffusion in the direction transverse to the drive.
(c) At Fp = 1.6 the vortices are about to enter the ML state
where the motion is confined to one-dimensional channels.
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FIG. 21: The velocity force curves (V;) vs Fp for Fp = Fpy
for the system in Fig. 2 with F, = 0.85, R, = 0.35),
and n, = 0.3125/A2. P: pinned dimer phase; R: random
phase; 1DMI: one-dimensional moving interstitial phase, il-
lustrated in Fig. 22(a); ML: moving locked phase, illustrated
in Fig. 22(b). (a) B/B, = 2.0. (b) B/Bs = 2.15, where
an additional random flow phase occurs at depining due to
the presence of trimers. (c) B/Bys = 2.32, where there is no
longer a 1DMI phase.

SB phase disappears in the vortex plastic crystal state.
In Fig. 19 we plot the dynamical phase diagram of Fp
vs FT for the same system in Fig. 2. In our units, the
dimers melt at FT = 1.0. Above the melting tempera-
ture, there is appreciable creep of the interstitial vortices
as they hop from one large interstitial site to another, as
illustrated in Fig. 20(a) for Fp = 0.1 and FT = 1.25.
As F'p is further increased the system enters the random
flow phase shown in Fig. 20(b) for Fp = 0.25. At higher
drives, the vortices begin to localize along the pinning
rows in one-dimensional channels; however, there is still
appreciable hopping from one row to another as shown
in Fig. 20(c) for Fp = 1.0. At even higher drives, the
ML is recovered as illustrated in Fig. 20(d) for Fp = 1.6.
For FT > 1.35, the ML phase is lost and the high Fp
flow is in the random R phase shown in Fig. 20(c). In the
inset to Fig. 20 we demonstrate that at FT = 1.25, the
sharp features in the velocity force curve seen at F7 =0
in Fig. 2 disappear.



|
lo:oo oo } oto | - plidel tdplid

[ 10 [ ©:0 1 070 | ©10 ¢ plijdplidyp >
O 7 9:0 1 070 1 040 = Pl Ie plicd p #D

P OO0 T O30 T 010 T 010 aplidplidp ﬁb
;o!oc o0 0:0 = p < P ey cf
oo 1 oot oot oo |V J&plidpljdp ﬁi
10 7 010 [ 010 1 010 1 * pljd blid plid p

[ ©1C [ 910 | 90 [ 050 dplidpl {dplidp
10 [ 210 [ 910 | ©;0 plijdaplieplidp

[ ©10 [ 970 1 9(0 1 910 dblidplid p! jd
10 [ 910 1 o0 | 90 bl jd plid pl id p

[ 010 1 00 | 00 1 90 dplijdplidplidp
lo 1 oto 7 ®t0 7 o910 plidplidplidp

(a) X (b) X

FIG. 22: Vortex positions (filled circles), pinning site posi-
tions (open circles), and vortex trajectories (black lines) for
the system in Fig. 21(a) at B/Bg = 2.0. (a) One-dimensional
moving interstitial (1DMI) phase at Fp = 0.2. (b) The mov-
ing locked (ML) phase for Fp = Fp§y at Fp = 0.8.

IV. DYNAMICS FOR DRIVING IN THE
TRANSVERSE DIRECTION

We now consider the case where Fp is applied along
the y-direction, Fp = Fpy, for the same system as
in Fig. 1(d) with F, = 0.85, R, = 0.35), and n, =
0.3125/A\%. A different set of dynamic phases appear
that are distinct from those found for driving in the z-
direction. In particular, the SB phase is lost and the
dimers align in the y-direction with the initial depinning
occurring in one-dimensional interstitial flow paths. In
Fig. 21 we plot the velocity forces curves for B/ By = 2.0,
2.15, and 2.32.

Figure 21(a) shows the three phases, pinned (P},
one-dimensional moving interstitial (1DMI), and moving
locked (ML) that occur at B/By = 2.0. In the P phase,
if the ground state contains dimers which are aligned
at either +30° or —30° to the z-axis, a polarization ef-
fect is induced by the applied drive similar to the ef-
fect discussed earlier. In this case, however, the dimers
shift such that they are aligned in the y-direction. The
one-dimensional moving interstitial (1IDMI) state which
appears above depinning is illustrated in Fig. 22(a) at
Fp = 0.2, where the interstitial vortices move between
the vortices in the pinning sites. Near Fp = 0.55 there
is a sharp depinning transition for the vortices in the
pinning sites. After this depinning transition occurs,
the vortices very rapidly rearrange into a moving locked
(ML) phase where the vortices move along the pinning
sites, as shown in Fig. 22(b) for Fp = 0.8. In the
ML phases for driving along the z and the y directions,
the vortices travel in one-dimensional channels along a
row or a column of pinning sites, respectively. The pin-
ning rows followed by the vortices for z-direction driv-
ing are evenly spaced in the y-direction, so the vortices
flow through the centers of the pinning sites. In con-
trast, the pinning columns followed by the vortices for
y-direction driving are unevenly spaced in the z direc-
tion due to the symmetry of the honeycomb lattice. As
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FIG. 23: The dynamical phase diagram for Fp vs B/B, for
Fp = Fpy in a sample with F,, = 0.85, R, = 0.35), and
np = 0.3125/A2. P: pinned phase; 1DMI: one-dimensional
moving interstitial phase; R: random phase; ML: moving
locked phase. For B/ By > 2.3 the 1DMI flow is lost.

a result, for the y-direction driving the vortices do not
flow through the centers of the pinning sites, but are in-
stead shifted to the right and left of the pinning sites in
alternate columns, as seen in Fig. 22(b). This produces
a more even spacing between the columns of moving vor-
tices. Since different columns contain different numbers
of vortices, the ML phase for y-direction driving also has
smectic type characteristics. The velocity-force curves
for 1.5 < B/Bg < 2.0 have the same general form as the
curve in Fig. 21(a) and show the same three phases.

For B/Bg > 2.0 the appearance of trimer states dis-
rupts the 1DMI flow since the trimers cannot align com-
pletely in the y-direction. This produces random (R)
vortex flow at depinning, as shown in Fig. 21(b), with
diffusive vortex motion occuring along the z-direction.
There are more pronounced fluctuations in (V) in the
R phase, and the velocity-force curve is nonlinear and
lower than the extrapolated linear behavior in the 1DMI
phase that begins near Fp = 0.23. The trimers can block
the one-dimensional channels of flow shown in Fig. 22(a),
lowering the number of mobile vortices. At higher drives,
the trimers depin, straighten into a linear configuration,
and flow in the 1DMI phase. At Fp = 0.5, the vor-
tices in the pinning sites depin, resulting in a transition
from the 1DMI phase to the R phase. For sufficiently
high drives, the ML phase forms. For driving along the
z-axis at B/By > 2.0, we showed in Fig. 9(c) that the
ML phase is lost due to a buckling transition of the one-
dimensional chains of vortex motions, and that a par-
tially moving locked (PML) phase forms instead when a
portion of the vortices move through the interstitial re-
gions. For driving along the y-axis at B/By > 2.0, the
ML state remains stable for much higher values of B/By
than for the z-axis case. A comparison of Fig. 22(b) and



FIG. 24:
R, = 0.35)\, and n, = 0.3125/)%. (a) At F, = 0.35, there
is a single step elastic depinning transition from the partiall
pinned (PP) phase to the moving crystal (MC) phase. (b) At
F, = 1.25 we find the pinned (P), one-dimensional moving
interstitial (1DMI), and moving lattice (ML) phases. (c) At
F, = 2.25, there are sharp transitions between the pinned her-
ringbone (PHB), one-dimensional moving interstitial (1DMI),
and moving locked (ML) phases.

Fig. 3(e) shows that the interstitial region crossed by the
vortices in the moving channels is not as wide for y-axis
driving as for the z-axis driving, resulting in more stable
y-axis flow. As B/By is further increased, the random
regime grows until the 1DMI phase is completely lost,
as shown in Fig. 21(c) for B/By = 2.35. In Fig. 23 we
plot the dynamical phase digram for Fp versus B/By,
highlighting the onset of the different phases. The tran-
sition to the ML phase shifts to higher values of Fp with
increasing B/By since the ML vortex channels become
increasingly anisotropic as the number of vortices in the
sample increases.

A. Dynamics as a function of F, and Dimer
Jamming

We now consider the vortex dynamics in a system with
fixed B/By = 2.0, R, = 0.35), and n, = 0.3125/)?
for varying F, with Fp = Fpy. As noted above, for

(Vy) vs Fp for Fp = Fpy for B/By = 2.0,
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FIG. 25: The dynamic phase diagram Fp vs F, for Fp = Fpy
at B/By = 2.0, R, = 0.35), and n, = 0.3125/)%. PP: par-
tially pinned phase; P: pinned dimer phase; PHB: pinned her-
ringbone phase; 1DMI: one-dimensional moving interstitial
phase; MC: moving crystal phase; ML: moving locked phase.
A peak in the depinning threshold F. occurs near F, = 0.5 at
the PP-P transition. At the P-PHB transition, F. increases
by a factor of three. The dashed line separates the MC phase
from the ML phase.

F, < 0.5 a partially pinned (PP) vortex lattice forms. In
Fig. 24(a), the velocity-force curve for F, = 0.35 shows
that the depinning of the PP phase is elastic and oc-
curs in a single step transition to a moving crystal (MC)
phase, as seen earlier in Fig. 14(a) for driving along the
z-axis. In the MC phase, half of the vortices move along
the pinning sites. For 0.5 < F, < 1.75, at low drive
the system is in the pinned (P) phase of orientationally
ordered dimers, and as the drive increases, Fig. 24(b)
shows that the same 1DM1 and ML phases illustrated
in Fig. 21(a) appear. The rapid rearrangement of the
vortices from the 1DMI phase to the ML phase results
in a small jump near Fp = 0.8 which marks the 1DMI-
ML transition. For strong pinning F, > 1.75, Fig. 24(c)
shows that the ground state forms the pinned herring-
bone (PHB) phase illustrated in Fig. 12(b). The same
pinned state appears for z-direction driving at strong pin-
ning, as shown in Fig. 14(c). In Fig. 24(c), the velocity-
force curve at Fj, = 2.25 shows the abrupt nature of the
depinning transition from the PHB phase to the 1DMI
phase, which differs from the smoother depinning transi-
tion that occurs from the P phase to the 1DMI phase in
Fig. 24(b). The depinning threshold increases markedly
with increasing F}, once the system enters the PHB state.
In Fig. 25 we plot the dynamic phase diagram for Fy ver-
sus Fy. Near the transition from the PP to the P phase,
there is a peak in F, similar to the peak observed at the
PP-P transition for driving in the z-direction in Fig. 11.
For Fy, > 0.175 the strong enhancement of the depinning



FIG. 26: Vortex positions (filled circles) and pinning site loca-
tions (open circles) for the system in Fig. 24(c) at B/By = 2.0
and Fp = 0.56, just before depinning. Under the influence
of the driving force which is applied in the y direction, the
dimers align with the z direction and shift to the top of the
large interstitial sites. Because the dimers are not aligned
with the direction of the drive, a jamming phenomenon oc-
curs which is responsible for the large increase in F, seen in
Fig. 25 at [}, = 1.75. We call this the jammed state J. In (b)
only the vortex positions are shown and it can more clearly
be seen that the dimers are shifted in the positive y-direction.
The vortex configuration in the jammed state is distinct from
the pinned herringbone state.

threshold in the PHB state can be seen clearly.

In Fig. 26(a) we illustrate the vortex positions just be-
fore depinning for F, = 2.25. Even though the drive is
applied in the y-direction, the dimers have aligned with
the z-direction. When the dimers are oriented along
the z-axis, they cannot fit through the easy-flow one-
dimensional channel between the pinning sites, but in-
stead are essentially jammed by the two pinned vortices
at the top edge of the large interstitial site. In the or-
dered dimer pinned phase (P), the dimers all reorient in
the same direction under an applied drive. In contrast, in
the pinned herringbone phase (PHB) the dimers rotate
in opposite directions under an applied drive, so when
the drive is applied along the y-direction the dimers end
up aligning in the z-direction. In Fig. 26(b) only the
vortex positions from Fig. 26(a) are shown to indicate
more clearly the shift of the dimers in the positive y-
direction. This vortex configuration, which we term the
jammed state J, has a structure that is distinct from that
of the pinned herringbone phase shown in Fig. 12(b). The
jammed state configuration exists only in the presence of
the applied drive. For Fyy = 0 the dimers return to the
herringbone state. In the jammed state, the critical cur-
rent is up to three times larger than in the state where
the dimers are aligned in the y-direction. We also note
that at incommensurate fields for F, > 1.75, the net vor-
tex flow is reduced since some of the dimers align in the
z-direction and effectively block the motion of other vor-
tices along the y-direction.

In order to better characterize the enhancement of F,
in the jammed state, in Fig. 27 we plot the critical depin-
ning force in the y-direction, F¥, and in the z-direction,

FIG. 27: The critical depinning force in the z-direction, FZ
(open squares), and in the y-direction, F¥ (filled circles), vs Fp,
for B/By = 2.0, R, = 0.35), and np = 0.3125/A%2. PP: par-
tially pinned phase; P: pinned dimer phase; PHB: pinned her-
ringbone phase; J: jammed state. In the PP phase, Fy = FY,
while in the P phase, FY > FY. A large enhancement of FY
occurs in the PHB phase when dimer jamming occurs. Inset:
the ratio FY /FZ vs Fp. The dashed line indicates FY/FZ =1,
where the depinning thresholds are equal.

FZ, versus Fp. In the inset of Fig. 27 we show the ratio
FY/F? versus F,. In the partially pinned (PP) phase,
FY¥ = FZ, while in the pinned aligned dimer (P) phase,
F7 is slightly higher than F¥ since the vortices can depin
more readily into the 1DMI phase in the y-direction. In
the jammed state that forms from the PHB phase, FY¥ is

3.1 times higher than F for the same value of F},.

B. Effects of Changing R, and By

In Fig. 28 we plot the dynamical phase diagram Fp
versus R, for driving in the y-direction with B/ By = 2.0,
F, = 0.85, and n, = 0.3125/A. For R, > 0.2), the sys-
tem depins into the 1DMI phase and makes a transition
to the ML phase at higher drives. For R, < 0.2, the
system forms the partially pinned PP phase where only
half of the pinning sites are occupied. The PP phase de-
pins into a moving interstitial phase MI2Y that resembles
the MI2 state observed for driving in the z-direction in
Fig. 17(b), where half the vortices depin while the other
half remain pinned. The MI2Y phase is oriented 90° from
the MI2 phase. At Fp = 0.4 for R, < 0.2}, the vortices
at the pinning sites begin to depin and repin, giving a
regime of the random (R) phase until Fp becomes large
enough for all the vortices to depin into the ML phase.
For 0.2\ < R, < 0.3\, the jammed state discussed in
Fig. 26 occurs due to the formation of dimers aligned
in the z-direction, which is associated with a marked in-
crease in F,.. As discussed earlier, the pinned herringbone
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FIG. 28: The dynamic phase diagram for Fp vs R, with
Fp = Fpy, B/Bs = 2.0, F, = 0.85, and n, = 0.3125/)%.
PP: partially pinned phase; J: jammed state; P: pinned phase;
MI2Y: y-direction moving interstitial phase 2; 1DMI: one-
dimensional moving interstitial phase; R: random phase; ML:
moving locked phase. For R, < 0.2) the system forms the PP
phase. This depins into the MI2Y state for driving in the y-
direction, which is similar to the MI2 state shown in Fig. 17(a)
for driving in the z-direction. For 0.2A < R, < 0.3}, the
system forms the jammed J state shown in Fig. 26.

(PHB) phase and jammed (J) state occur when Fj be-
comes high enough that the vortices in the pinning sites
cannot shift to allow for dimer ordering to occur. Simi-
larly, as R, is reduced, the vortices in the pinning sites
have less room to adjust for dimer ordering, so the PHB
state forms. The jamming also produces the counterin-
tuitive effect that as R, increases above R, = 0.35, the
depinning threshold decreases.

In Fig. 29 we show the dynamical phase diagram for Fip
versus np, which determines the value of By, for B/ By =
2.0, R, = 0.35A, and F, = 0.85. As n, increases, the
critical depinning force into the 1DMI phase increases
since the repulsion from the pinned vortices experienced
by the interstitial vortices increases as the average vortex-
vortex spacing decreases. The transition from the 1DMI
phase to the ML phase shifts to higher values of Fp as
n, decreases since the distance between the pinning sites
which stabilize the ML flow increases.

V. DISCUSSION

Our results are for honeycomb pinning arrays where
it was shown in previous work that n-merzation of the
interstitial vortices into vortex molecular crystal states
occurs for B/By > 1.5. Many of the dynamical effects
presented in this work are due to the n-merization ef-
fect. In kagomé pinning arrays, similar types of vortex
molecular crystal states appear, so we expect that many
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FIG. 29: The dynamical phase diagram for Fp vs n,, which
determines By, for driving in the y-direction with B/By =
2.0, R, = 0.85), and F,, = 0.85. P: pinned ordered dimer
phase; 1DMI: one-dimensional moving interstitial phase; ML:
moving locked phase.

of the same types of dynamic phases described here will
also occur for kagomé pinning arrays, although we do ex-
pect that there will be certain differences as well. In
the kagomé pinning array, the vortex dimer state ap-
pears at B/B, = 1.5 and has a herringbone ordering
even for large, weak pins. There are no easy flow chan-
nels along +30° to the z-axis, so the symmetry breaking
flows should be absent. Additionally, since there is no
easy flow channel in the y-direction, the anisotropic de-
pinning dynamics may be different as well.

We have only considered B/By < 2.5 in this work.
At higher fields, a wide array of vortex molecular crystal
states occur that should also have interesting dynamical
phases. Since the low matching fields are more robust,
observing the dynamics near these low fields experimen-
tally is more feasible. Although our results are specifi-
cally for pinning sites with single vortex occupation, sim-
ilar dynamics should occur if the first few matching fields
have multiple vortices at the pinning sites. In this case,
the effective dimerziation of the interstitial vortices would
be shifted to higher magnetic fields.

Although true phase transitions are associated only
with equilibrium phenomena, the nonequilibrium phases
considered here have many analogies to equilibrium
phases. For example, several of the transitions between
the nonequilibrium phases have a continuous type be-
havior, while in other cases the transitions are sharp,
indicative of a first order nature. Future studies could
explore the possible emergence of a growing correlation
length near the transitions to see whether they exhibit
the true power law behavior associated with continuous
phase transitions or whether they show crossover behav-
jor. For transitions that exhibit first order characteris-
tics, it would be interesting to prepare a small patch of



pinning sites with different characteristics that could act
as a nucleation site for one of the phases in order to un-
derstand whether there is a length scale analogous to a
critical nucleus size.

We also note that the dynamics we observe should
be general to systems with similar geometries and re-
pulsively interacting particles. For example, in colloidal
systems, square pinning arrays with flat regions between
the pinning sites (muffin-tin potentials) have been fab-
ricated, and in these systems the interstitial colloids are
much more mobile than in washboard-type pinning po-
tentials. Honeycomb pinning arrays could be created us-
ing similar techniques for this type of system.

V. SUMMARY

We have shown that vortices in honeycomb pinning ar-
rays exhibit a rich variety of dynamical phases that are
distinct from those found in triangular and square pin-
ning arrays. The honeycomb pinning arrays allow for the
appearance of n-mer type states that have orientational
degrees of freedom. We specifically focused on the case
where dimer states appear. At B/By = 2.0, the dimers
can have a ferromagnetic type of ordering which is three-
fold degenerate. At depinning, the dimers can flow in
the direction in which they are aligned. For the case
of driving along the z-axis, the dimers flow at £30° to
the applied drive, giving a transverse velocity response.
At incommensurate fields where dimers are present, even
though the orientational is lost, the moving states can
dynamically order into a broken symmetry state where
the vortices flow with equal probability at either +30°
or —30° to the z-axis. As the driving in the z-direction
increases, there is a depinning transition for the vortices
in the pinning sites, and the transverse response is lost
when the vortices either flow in a random phase or chan-
nel along the pinning sites. As a function of pinning
force, we find other types of vortex lattice ordering at
zero driving, including a partially pinned lattice and a
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herringbone ordering of the dimers. These other order-
ings lead to new types of dynamical phases, including an
elastic depinning for weak pinning where all the vortices
depin simultaneously into a moving crystal phase, and
an ordered interstitial flow in which the moving dimers
break apart. The transitions between these flow phases
appear as clear steps in the velocity force curves, and we
have mapped the dynamical phase diagrams for various
system parameters. We also showed that the different
phases have distinct fluctuations and noise characteris-
tics. When the temperature is high enough, the dimer
states lose their orientational ordering and begin to ro-
tate within the interstitial sites. This destroys the sym-
metry breaking flow; however, the moving locked phase
can still occur at high drives.

The transition in the vortex ground state ordering as
a function of pinning force causes the critical depinning
force for driving in the z and y-directions to differ. When
driving along the y-direction, the initial depinning oc-
curs in the form of one-dimensional interstitial channels,
and at high drives the vortices can form an anisotropic
moving locked phase. We find a large enhancement of
the depinning force in the y-direction associated with the
pinned herringbone phase when the dimers align in the
z-direction and creates a jamming effect. The jammed
state can enhance the critical depinning force by a factor
of three, and can also arise for decreasing pinning size.
We expect that many of the general features we observe
will carry over to the higher matching fields in the honey-
comb pinning arrays and in kagomé arrays since ordered
n-mers states occur in for the kagomé lattice as well.
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