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'~ovillg Vortex Phases, Dynamical Symmetry Breaking, and Jamming for Vortices in 
Honeycomb Pinning Arrays 

C. Reichhardt and C.J. Olson Reichhardt 
Theoretical Division, Los Alamos National Laboratory, Los 'Alamos, New Mexico 87545 

(Dated: July 10, 2008) 

We show using numerical simulations that vortices in honeycomb pinning arrays can exhibit a 
remarkable variety of dynamical phases that are distinct from those found for triangular and square 
pinning arrays. In the honeycomb arrays, it is possible for the interstitial vortices to form dimer 
or higher n-mer states which have an additional orientational degree of freedom that can lead to 
the formation of vortex molecular crystals. For filling fractions where dimer states appear, a novel 
dynamical symmetry breaking can occur when the dimers flow in one of two possible alignment 
directions. This leads to transport in the direction transverse to the applied drive. We show that 
dimerization produces distinct types of moving phases which depend on the direction of the driving 
force with respect to the pinning lattice symmetry. When the dimers are driven along certain 
directions, a reorientation of the dimers can produce a jamming phenomenon which results in a 
strong enhancement in the critical depinning force. The jamming can also cause unusual effects 
such as an increase in the critical depinning force when the size of the pinning sites is reduced. 

PACS numbers: 74.25.Qt 

I. INTRODUCTION 

Vortex matter in type-II superconductors has been ex­
tensively studied as a unique system of many interacting 
particles in which nonequilibrium phase transitions can 
be accessed readily [1-8J. In the absence of driving or 
quenched disorder, the vortex-vortex interactions favor 
a triangu'ar crystalline ordering. If the sample contains 
sufficiently strong quenched disorder in the form of ran­
domly placed pinning sites, the vortex lattice ordering 
can be lost as the vortices adjust their positions to accom­
modate to the pinning landscape [1- 3J. Under an applied 
drive such as the Lorentz force from a current, the vor­
tices are immobile or pinned for low values of the external 
drive; however, there is a threshold applied force above 
which the vortices begin to move over the disorder. For 
strong disorder, the initial moving state is highly inho­
mogeneous with the vortices flowing in meandering and 
fluctuating channels, and there is a coexistence between 
pinned vortices and flowing vortices [1, 21 . At higher 
drives the vortices move more rapidly, the effectiveness 
of the quenched disorder is reduced, and the fluctuations 
experienced by the vortices become anisotropic due to the 
directionality of the external drive 14J. The vortex-vortex 
interactions become more important at the higher drives 
when the quenched disorder becomes ineffective, and a 
dynamical transition can occur into a moving smectic 
state where the vortices regain partial order in one direc­
tion [5- 7]. Here, the system has crystalline order in the 
direction transverse to the vortex motion and liquid-like 
order in the direction of vortex motion. Depending on 
the dimensionality and the strength of the pinning, it is 
also possible for the vortices to reorganize in both direc­
tions at high drives to form a moving anisotropic crystal 
[4-9] . These different phases and transitions between the 
phases can be inferred from signatures in transport [3] 
and noise fluctuations [10, 11], and they have also been 

imaged directly using various techniques [7, 8]. 

In addition to the naturally occuring randomly placed 
pinning sites, it is also possible for artificial pinning sites 
to be created in a periodic structure [12]. Recent ad­
vances in nanostructuring permit the creation of a wide 
variety of periodic pinning landscapes where the period­
icity, shape, size and density of the the pinning sites can 
be well controlled. Distinct types of pinning arrays such 
as square [13-20] triangular [21, 22], rectangular [23, 24], 
honeycomb [25, 26], kagome [25], quasicrystalline [27], 
and partially ordered [281 structures have been created. 
In these arrays the type of vortex structure that forms is 
determined by whether the vortex lattice is commensu­
rate with the underlying pinning array. Commensurate 
arrangements appear at integer numbers of the matching 
field B"" which is the magnetic field at which the vor­
tex density matches the pinning density, and in general, 
ordered vortex states occur at matching or rational frac­
tional values of B / B", [13-15, 29-32] . In samples where 
only one vortex can be captured by each pinning site, 
the vortices that appear above the first matching field 
sit in the interstitial regions between the pinning sites, 
and these interstitial vortices can adopt a variety of crys­
talline configurations [14-17,19,24,29,30,32]. 

Since a number of distinct ordered and partially or­
dered vortex states can be created in periodic pinning 
arrays, a much richer variety of dynamical vortex be­
haviors occur for periodic pinning than for random pin­
ning arrays ;[15-17, 33-49]. Several of the dynamical 
phases occur due to the existence of highly mobile in­
terstitial vortices which channel between the pinned vor­
tices [15, 17, 35- 37, 39, 40, 42, 43, 45, 49]. As a function 
of applied drive, various types of moving phases occur, 
including interstitial vortices moving coherently between 
the pinning sites in one-dimensional paths [15, 17, 33­
36, 39, 431. or periodically modulated winding paths 
[33, 35, 44, 45], disordered regimes where the vortex mo­
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FIG, 1: (a) Pinning site locations (open circles) for a triangu­
lar pinning array. (b) Pinning site locations for a honeycomb 
pinning array constructed from the triangular array in (a) by 
removing 1/3 of the pinning sites. (c) The pinning site lo­
cations and vortex positions (dots) for a honeycomb pinning 
array at B / B", = 1.5. The overall vortex lattice order is tri­
angular . (d) The pinning site locations and vortex positions 
for a honeycomb pinning array at B / B", = 2.0, where two 
vortices are captured at the large interstitial sites and the re­
sulting dimers all have the same orientation. Here Fp = 0.85, 
Rp = 0.35>', and for the honeycomb array np = 0.3125/>.2 

tion is liquidlike [33, 35, 39, 43], and regimes where vor­
tices flow along the pinning rows [33, 38, 46-48] . Other 
dynamical effects, such as rectification of mixtures of 
pinned and interstitial vortices, can be realized when the 
periodic pinning arrays are asymmetric [49]. 

Most of the studies of vortex ordering and dynamics in 
periodic pinning arrays have been performed for square 
and triangular arrays. Experiments with honeycomb and 
kagome pinning arrays revealed interesting anomalies in 
the critical current at nonmatching fields which are as 
pronounced as the anomalies observed at matching fields 
in triangular pinning arrays [25, 26]. A honeycomb pin­
ning array is constructed by removing every third pin­
ning site from a triangular pinning array, producing a 
periodic arrangement of triangular interstitial sites. In 
Figs. l(a,b) we illustrate a triangular pinning array of 
pinning sites and the honeycomb pinning array that re­
sults after the removal of one third of the pinning sites. 
The matching anomalies in the experiments coincide with 
fields B / B", = m/2, with m an integer, where the vortex 
density would match with the regular triangular pinning 
array. At the matching anomalies for m > 2, a portion 
of the vortices are located in the large interstitial regions 

[26], as illustrated in Fig. l(c) for B/B", = 1.5. Th~ 
overall vortex lattice structure is triangular and a strong 
peak in the depinning force occurs at this field [50]. 

Recently we used numerical simulations to demon­
strate that vortices in honeycomb pinning arrays have 
a rich equilibrium phase diagram as a function of vor­
tex density [50], with matching anomalies at integer and 
half integer matching fields that are in agreement with 
experiments. The large interstitial sites created by the 
missing pinning sites can capture multiple interstitial 
vortices which form cluster states of n vortices. For 
1.5 ::; B / B", < 2.5, dimer states with n = 2 form, while 
for higher fields trimer and higher order n-mer states 
form. At the integer and half-integer matching fields, 
the n-mer states can assume a global orientational or­
dering which may be of ferromagnetic or antiferromag­
netic type; herringbone structures can also form similar 
to those observed for colloidal particles on periodic sub­
strates [51-55] and molecules on atomic substrates [56]. 
These orientationally ordered states have been termed 
vortex molecular crystals. Certain vortex molecular crys­
tals have ground states that are doubly or triply degen­
erate, such as the dimer state at B / B", = 2.0 where the 
dimers align in one of three equivalent directions [50]. 
As the temperature is increased, the n-mers undergo a 
transi tion from an ordered state to an orientationally 
disordered state in which the n-mers are rotating ran­
domly but are still confined to the interstitial pinning 
sites. The rotating states have been termed vortex plas­
tic crystal states. At matching fields where the vortex 
plastic crystals form, the anomalies in the critical current 
disappear [50]. The predictions from the simulations are 
in general agreement with the experimental observation 
of the loss of certain higher order matching anomalies at 
higher temperatures [26]. The formation of n-mers that 
can be aligned along degenerate symmetry directions has 
also been predicted for kagome pinning arrays where ev­
ery other pinning site is removed from every other row 
[50,57]. 

The formation of dimer states in the honeycomb pin­
ning produces a variety of novel dynamical phases, in­
cluding a spontaneous dynamical symmetry breaking ef­
fect in which the moving vortices organize into one of two 
equivalent states which have a component of translation 
perpendicular to the applied drive in either the positive 
or negative direction [58]. The transverse response ap­
pears when the external driving force is applied halfway 
between the two directions of aligned dimer motion. The 
dynamical symmetry breaking occurs when the equilib­
rium ground states have no global symmetry breaking. 
At B / B", = 2.0, the ground state is symmetry broken 
and the dynamical moving state has the same broken 
symmetry as the ground state. For incommensurate fill­
ings, when the dimer alignment is disrupted, there is no 
global symmetry breaking in the ground state, and in­
stead a dynamical symmetry breaking occurs due to the 
applied drive. 

In this work we map the dynamical phase diagram for 
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trortices 'in honeycomb arrays. We focus on the states 
1.5 < B / B¢ < 2.5 to understand where the dynamical 
symmetry breaking occurs and to examine what other 
types of moving phases are possible. We study how the 
dynamical phases change for driving along different axes 
of the pinning lattice. We find that very different kinds 
of dynamics occur when the driving direction is varied, 
and that the value of the depinning threshold is strongly 
directionally dependent. We also find that a novel jam­
ming phenomenon can occur due to the formation of the 
dimer states. For certain directions of drive, the dimers 
are anti-aligned with the drive, causing the dimers to be­
come blocked in the interstitial regions. 

Although our results are specifically for vortices in 
type-II superconductors, the general features of this work 
should also be relevant for other interacting particle sys­
tems where a periodic substrate is present. Examples of 
such systems include vortices on periodic substrates in 
Bose-Einstein condensates (BEC) , where different kinds 
of crystalline phases can occur which depend on the 
strength of the substrate !59, 60] . It should also be possi­
ble to observe different types of vortex flow states in BEG 
systems [61]. Our results are also relevant for colloids on 
periodic substrates, where an orientational ordering of 
colloidal molecular crystals occurs which is very similar 
to that of the vortex molecular crystal states [51-55, 62]. 
Other related systems include charged balls on periodic 
substrates [63] and models of sliding friction [64]. 

II, SIMULATION 

We use the same simulation employed in the previous 
study of vortex equilibrium states in honeycomb lattices 
[50]. We consider a 2D system of dimensions Lx and 
Ly with periodic boundary conditions in the x and y 
directions. The sample contains Nv vortices, giving a 
vortex density of nv ~ N v / L2 which is proportional to 
the external magnetic field. In addition, there are Np 
pinning sites placed in a honeycomb arrangement with a 
pinning density of np = Np / L2. The field at which the 
number of vortices equals the number of pinning sites is 
defined to be the matching field B¢ . 

The dynamics of vortex i located at position ~ is gov­
erned by the following overdamped equation of motion: 

(1) 

Here the damping constant is Tf = ¢>6d/2rrePN, where 
d is the thickness of the superconducting sample, Tf is 
the superconducting coherence length, PN is the normal 
state resistivity of the material, and ¢>o = h/2e is the 
elementary flux quantum. The vortex-vortex interaction 
force is 

(2) 

where Kl is the modified Bessel function, >. is the London 
penetration depth, fo = ¢>6/(2rrfJ-o>.3), R;j = I~ - R j I is 
the distance between vortex i and vortex j, and the unit 
vector Rj = (~-R j ) / R;j . In this work all length scales 
are measured in units of>. and forces in units of fo. The 
vortex vortex interaction decreases sufficiently rapidly at 
large distances that a long range cutoff is placed on the 
interaction force at R;j = 6>' to permit more efficient 
computation times. We have found that the cutoff does 
not affect the results for the fields and forces we consider 
here. 

The pinning force F~P originates from individual 
nonoverIapping attractive parabolic traps of radius Rp 
which have a maximum strength of Fp . In this work we 
consider the limit where only one vortex can be captured 
per pinning site, with the majority of the results obtained 
for Rp = 0.35>.. The exact form of the pinning force is: 

Here R(p) = In . - R(p)1 R(P) is the location of pinning
'ik ....... k' k 


site k, the unit vector R~~) = (~ - Rr»)/R~~), and e is 
the Heaviside step function. 

The external drive F D = FDfoFD represents the 
Lorentz force from an applied current J x B which is 
perpendicular to the driving force and is applied uni­
formly to all the vortices. We apply the drive at various 
angles to the symmetry axes of the honeycomb pinning 
array. The thermal force FJ originates from Langevin 
kicks with the properties (Fi ) = 0 and (Fnt)FJ(t')) = 
2TfkB Tt5ij t5(t - t'). Unless otherwise noted, the ther­
mal force is set to zero. The initial vortex configura­
tions are obtained by simulated annealing, and the ex­
ternal force is then applied gradually in increments of 
t1FD = 0.0002 every 1000 simulation time steps. For 
the range of pinning forces used in this work, we find 
that this force ramp rate is sufficiently slow that tran­
sients in the vortex dynamics do not affect the overall 
velocity-force curves. We obtain the velocity-force curves 
by summing the velocities in the x (longitudinal) direc­
tion, (Vx) = N;;l 2::::1 Vi . X, and the y (transverse) di­
rection, (Vy) = N -1 2:~" Vi . y, where Vi = d~/dt .v
In Fig. l(c,d) we illustrate the pinning sites and vortex 
configurations after simulated annealing for B / B¢ = 1.5 
[Fig. l(c)] and 2.0 [Fig. l(d)]. Here Lx = Ly = 24>' and 
np = 0.3125/>.2. In our previous work, Ref. [58], the 
drive was applied along the x-direction for the geometry 
in Fig. 1. 

III. DYNAMICS AND TRANSVERSE 

RESPONSE FOR DRIVING IN THE 


LONGITUDINAL DIRECTION 


We first consider the case for driving in the x or lon­
gitudinal direction, FD = FDx, for the system shown in 
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FIG. 2: (a) The average velocity in the x-direction (V;r) vs 
external driving force FD for the honeycomb pinning array 
from Fig. l(b) at BIB", = 2.0 with FD = FDic. . (b) The cor­
responding average velocity in the y-direction (Vy ) vs FD. We 
observe four phases: the initial pinned phase (P), a symmetry 
broken phase (88), a random phase (R), and a moving locked 
phase (ML). 

Fig. 1 (b) with B / B,p = 2.0, Rp = 0.35'x, and Fp = 0.85. 
In Figs. 2(a,b) we plot (Vx) and (Vy) versus FD . At this 
filling there are four distinct dynamical phases, with the 
pinned phase P occurring at low FD. The depinning 
threshold Fe occurs near FD = 0.14 when the interstitial 
vortices become depinned. For a system with random 
pinning and F D = FDX , there would be no transverse 
velocity response; the system would have (Vy) = 0 and 
only (Vx ) would be finite. In contrast , for the honeycomb 
pinning array there is a finite velocity both in the posi­
tive x direction and in either the +y or - y direction. In 
Fig. 2(b) the transverse response (Vy) is negative, indi­
cating that the vortices are moving at a negative angle to 
the x axis for 0.14 < FD < 0.37. Figure 3(a) illustrates 
the vortex motion at FD = 0.25, where the vortices flow 
in one-dimensional paths oriented at -30° to the x axis. 
In Fig. 3(b) a snapshot of the vortex positions shows that 
the vortex lattice remains ordered in the moving phase, 
indicating that the vortices are flowing in a coherent man­
ner. We term the phase shown in Fig. 3(a) the symmetry 
broken phase (SB), since the flow can be tilted in either 
the positive or negative y-direction . 

At B / B ,p = 2.0 and FD = 0, the interstitial vortices 
form an aligned dimer configuration with a three-fold de­
generate ground state in which the dimers can be oriented 
along the y-direction, as in Fig. l(d), or along +30° or 
-30° to the x-direction, as shown in previous work [58]. 
When a driving force is applied to the +30° or - 30° 
ground states, the vortices depin and flow along +30° or 
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(b) (I) 

FIG. 3: The dynamics of the three moving phases from 
Fig. 2 for the honeycomb pinning array at BIB", = 2.0 with 
FD = FDic. . The vortex positions (filled circles), pinning site 
locations (open circles), and vortex trajectories (black lines) 
are shown in an x.x x x.x portion of the sample. (a) In the sym­
metry broken 88 phase at FD = 0.25, the interstitial vortices 
move along a -300 angle to the x-axis while the vortices at 
the pinning sites remain immobile. (b) Vortex positions only 
in the 88 phase at FD = 0.25, showing the ordering present 
in the vortex lattice structure. (c) In the random R phase at 
FD = 0.42, the vortex motion is highly disordered with vor­
tices pinning and repinning at random. (d) Vortex positions 
only in the R phase at FD = 0.42 indicate that the vortex 
lattice is disordered. (e) In the moving locked ML phase at 
FD = 0.65, all the vortices channel along the pinning sites. 
(f) Vortex positions only in the ML phase at FD = 0.65 reveal 
an anisotropic vortex lattice structure with different numbers 
of vortices in each row. 

-30°, respectively. In these cases, the symmetry break­
ing in the moving state is not dynamical in nature but 
reflects the symmetry breaking within the ground state. 
If the dimers are initially aligned along the y-direction 
in the ground state, an applied drive induces an instabil­
ity in the pinned phase and causes the dimers to rotate 
into the +30° or -30° directions, as we discuss in fur­
ther detail below. In this case the symmetry breaking is 
dynamical in origin. 

In Fig. 2(a,b) we find pronounced oscillations in both 
(Vx) and (Vy) just above the depinning threshold Fe = 
0.14. These oscillations are not intrinsic features but are 
due to the fact that at B / B ,p = 2.0 the interstitial vor­
tex lattice is perfectly ordered, so the interstitial vor­
tices move in a coherent fashion as shown in Fig. 3(a) . 
At depinning, the interstitial vortices are slowly mov­
ing through a periodic potential created by vortices that 
remain trapped at the pinning sites. This periodic po­
tential causes the moving interstitial vortices to develop 
an oscillating velocity. In Fig. 4(a), the instantaneous 
time traces of the vortex velOCity Vx and Vy at constant 
FD = 0.25 show strong velocity oscillations. The os­
cillations are also visible in Fig. 2 at low drives due to 
our choice of averaging time spent at each value of the 
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FIG. 4: Time traces of vortex velocity at fixed FD . Upper 
curves: V" (t) ; lower curves: Vy(t). (a) The symmetry broken 
SB phase at FD = 0.25 from Fig. 3(a,b) . Here pronounced 
oscillations occur in both V" and Vy as the vortices move in 
a coherent fashion . (b) The random phase R at FD = 0.42 
from Fig. 3(c,d) . In this case the transverse motion is lost 
and (Vy) = O. Additionally, there are no correlated oscilla­
tions. (c) The moving locked state ML at FD = 0.65 from 
Fig. 3(e,f). V" has been shifted down for clarity. There is a 
weak oscillation in Vx due to the periodic substrate. Since the 
flow is strictly one-dimensional, as shown in Fig. 3(e), there 
are no fluctuations in Vy • 

driving current. If the averaging time is increased, the 
oscillations in Fig. 2 disappear. We note that the loca­
tions of the boundaries between the different phases are 
not affected by the value of the velocity averaging time. 
At incommensurate fields, there is enough dispersion in 
the velocity of the moving interstitial vortices that the 
coherent velocity oscillations are no longer distinguish­
able . 

As FD increases the net vortex velocity in the SB phase 
increases linearly until FD = 0.365, where there is an 
abrupt increase in (Vx) . Fig. 2(a,b) shows that this in­
crease coincides with a jump in (Vy) to a zero average, 
indicating that the vortices are moving only in the x­
direction on average. In Fig. 3(c) we illustrate the dis­
ordered vortex trajectories that occur in this phase at 
FD = 0.42. The vortices are continually depinning and 
being repinned, and the order in the vortex lattice is lost, 
as shown in Fig. 3(d). We term this the random phase R. 
It resembles random dynamical phases that have previ­
ously been observed for vortices in square pinning arrays 
when the interstitial vortices begin to depin vortices from 
the pinning sites [29]. Figure 2 shows that there are pro­
nounced random fluctuations in (Vx} and (Vy) in phase 

R, and also that (Vx ) does not increase linearly with FD 
but has a curvature consistent with Vx = (FD - FeR)1 / 2, 
where FeR is the threshold value for the SB-R transition. 
In the SB phase, the number of vortices moving is con­
stant and is equal to the number of interstitial vortices, 
while in the R phase the number of moving vortic~s in­
creases with F D . 

At FD = 0.53, the system organizes into a one­
dimensional flowing state where the vortex motion is 
locked along the pinning rows, as shown in Fig. 3( e,f) 
for FD = 0.65. The onset of this phase also coincides 
with the loss of fluctuations in (Vx) and (Vy). The loss 
of fluctuations in Vy can be seen clearly in Fig. 4(c). For 
FD > 0.53, all of the vortices are mobile and Fig. 2(a) 
shows that the (Vx ) versus FD curve becomes linear 
again. We term this the moving locked phase (ML) since 
the vortex motion is effectively locked along the pinning 
sites. When the vortices are rapidly moving, the pinning 
sites have the same effect as a flashing one-dimensional 
trough that channels the vortices [33, 38] The vortices 
assume a smectic structure in the ML phase, since differ­
ent rows have different numbers of vortices which creates 
aligned dislocations. The ML phase is essentially the 
same state found in square pinning arrays at high drives 
when B I B<{> > 1.0 [33] . 

In previous studies of square pinning arrays with 
strong pinning, the initial motion of the vortices for 
B I B <{> > 1.0 occured in the form of one-dimensional chan­
nels between the vortices trapped at the pinning sites 
[33]. In the honeycomb pinning array, similar flow occurs 
in the SB phase as shown in Fig. 3(a). For BIB", < 1.5 
in the honeycomb array, the initial interstitial flow for 
depinning in the x direction consists of individual vor­
tices that flow in a zig-zag pattern around the pinned 
vortices. Since there is no dimer ordering for these fill­
ings, no transverse response occurs for BIB", < 1.5. For 
B I B<{> ~ 1.5, the interstitial vortices begin to form dimer 
states when two interstitial vortices are captured in a 
single large interstitial site. The dimers can lower their 
orientational energy by aligning with each other in both 
the ground state and the moving states. Dimers can only 
remain aligned in the moving state if they are channeling 
along one of the symmetry axes of the pinning lattice. 
If the dimers were to move strictly in the x-direction, 
they would be forced directly into the pinned vortex in 
the pinning site to the right of each large interstitial site. 
This would destabilize the rodlike dimers. Instead, the 
dimers maintain their integrity by moving along ±30°. 
Within the moving state, if one of the dimers were to 
move along +300 while the remaining dimers were mov­
ing along -300 

, the two interstitial vortices comprising 
the dimer would be forced close together, destabilizing 
the dimer state due to the repulsive vortex-vortex in­
teractions. Instead, all of the dimers move in the same 
direction. 

The SB-R transition occurs when the combined forces 
on the pinned vortices from the external drive and the 
moving dimers are strong enough to depin the pinned 
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vortices. At the closest approach in the x direction be­
tween a dimer and a pinned vortex, the frontmost dimer 
vortex is a distance ao/2 from the pinned vortex and 
the rear dimer vortex is a distance 3ao from the pinned 
vortex, where ao is the lattice constant of the undiluted 
triangular pinning lattice. In addition to the force from 
the dimerized vortices, the pinned vortex experiences an 
opposing force from the neigboring pinned vortex a dis­
tance ao away. In a simple approximation, the driv­
ing force needed to depin a vortex at a pinning site is 
FD = Fp - [(K1 (ao/2) + Kl(3aO/2)) - KI(ao)]. Set­
ting Fp = 0.85 gives FD = 0.41, close to the value of 
FD = 0.37 for the SB-R transition in Fig. 2. Once the 
vortices can be depinned, the system enters the random 
phase R, and since FD is still considerably less than Fp, it 
is possible for vortices to be pinned temporarily in phase 
R. 

Studies of square pinning arrays have shown that after 
the onset of a random dynamical phase, the vortices can 
organize into a more ordered phase of solitonlike pulse 
motion along the pinning rows, followed by a phase in 
which all of the vortices channel along the pinning rows 
[33]. At the transition to the one-dimensional pulse like 
motion, a larger fraction of the vortices are pinned com­
pared to the random phase, so a drop in (Vx ) with in­
creasing FD occurs, giving a negative differential con­
ductivity. In the honeycomb pinning arrays for the pa­
rameters we have chosen here, we do not observe one­
dimensional pulse motion or negative differential con­
ductivity for driving along the x-direction. For the one­
dimensional pulse motion or the ML phase motion seen 
in Fig. 3(e,f) to occur, the vortices must be moving at 
a sufficiently high velocity for the pinning sites to act 
like a flashing trough. When the vortices move along 
the pinning rows, the vortex lattice structure adopts a 
highly anisotropic configuration which would be unsta­
ble at FD = O. During the period of time when a vor­
tex passes through a pinning site, the vortex is pulled 
toward the center of the pinning row, which stabilizes 
the one-dimensional motion. When the vortex is mov­
ing between the pinning sites, it can drift away from the 
one-dimensional path until it encountes another pinning 
site. In Ref. [33], it was shown that for square pinning 
arrays, increasing the pinning radius Rp stabilized the 
one-dimensional flow down to lower values of F D . In the 
honeycomb pinning array, the one-dimensional flow is less 
stable due to the fact that the vortices must move over 
the much wider large interstitial site, giving the vortices 
more time to drift away from the pinning row. Since this 
means that a larger value of FD is required to stabilize 
the one-dimensional motion, it should be more difficult 
in general to observe the onset of one-dimensional soli­
tonlike motion or negative differential conductivity in the 
honeycomb arrays. 
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FIG. 5: The power spectra sty) of the x component of the 
velocity Vx(t) for the three phases in Fig. 4. (a) The SB phase 
at Fo = 0.25 shows a pronounced narrow band noise signa­
ture. (b) The R phase at Fo = 0.42 has a broad band noise 
signature. (c) In the ML phase at Fo = 0.65, a number of 
different frequencies are present due to the fact that different 
rows of the vortices move at different velocities. 

A. Fluctuations and Noise Characteristics 

In order to characterize the moving phases more quan­
titatively, in Fig. 4 we show time traces Vx(t) and Vy(t) of 
the vortex velocities at fixed FD for the different phases 
for the system in Fig. 2. In the symmetry broken SB 
phase at FD = 0.25, shown in Fig. 4(a), Vx is greater 
than IVy I by tan(300) or about 1.7. Here both compo­
nents of the velocity show a pronounced oscillation which 
arises when the interstitial vortices move in a coherent 
fashion over the periodic potential substrate created by 
the immobile vortices in the pinning sites. In Fig. 5(a), 
we show the corresponding power spectrum S(v) of Vx 
obtained from 

(4) 

There is a pronouced peak in S(v) at the frequency of the 
velocity oscillation in the SB phase, indicating that mode 
locking effects could appear at B / Bcf> = 2.0 when the 
symmetry breaking flow occurs. In square pinning arrays, 
experiments [17] and simulations [36] revealed Shapiro 
step-like mode locking of interstitial moving vortices at 

1:...-- - ---.L-----"-l----'OOO--"-- -L--'-------'" 
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B / B", ~ 2.0. In the honeycomb lattice, since there is 
also a strong oscillation in Vy in the SB phase, we expect 
that transverse mode locking could occur if an additional 
ac drive is applied in the y-direction. Such mode locking 
would appear as steps in both (Vx) and (Vy) versus FD in 
the SB phase. Transverse phase locking, which produces 
steps that are distinct from Shapiro steps, has been ob­
served for the motion of vortices in square arrays [37]. In 
general, if the vortices already have an intrinsic velocity 
oscillation in the transverse direction, then pronounced 
transverse phase locking is possible. 

In Fig. 4(b) we plot the time trace of Vx and Vy for 
the random phase R at FD = 0.42. In this case (Vy) = 
0, and although both Vx and Vy show fluctuations, no 
oscillations or washboard frequencies appear. In Fig. 5(b) 
we show the corresponding S(v) for \1.", where we find 
a broad band noise feature consistent with disordered 
plastic flow [3, 6, 11]. Since there are no coherent velocity 
oscillations, mode locking should be absent in the random 
phase R. 

In Fig. 4(c) we plot \1." and Vy in the ML phase at 
FD = 0.65, where Vx has been shifted down by a factor 
of 3 for clarity. There are no visible fluctuations in Vy due 
to the one-dimensional nature of the flow, but there are 
small periodic oscillations in Vx generated by the motion 
of the vortices over the periodic substrate. Due to the 
fact that different one-dimensional rows contain different 
numbers of vortices, producing dispersion in the vortex 
velocities, the oscillation in Vx is not as pronounced as 
in the SB phase. The corresponding power spectrum in 
Fig. 5(c) contains a rich variety of peaks due to the wide 
range of frequencies present in this phase. The main peak 
is smaller in magnitude than that found for the SB phase. 
As FD increases, the frequency at which the first peak 
occurs also increases. It should be possible to generate 
phase locking in the ML phase; however, it would likely 
not be as pronounced as in the SB phase. These results 
suggest that noise fluctuations can be a useful technique 
for exploring the presence of different dynamical phases 
in periodic pinning arrays. 

B. 	 Dynamical Symmetry Breaking in the Pinned 
Phase 

As previously noted, the ground state at B / B", = 2.0 
is three-fold degenerate. When the dimers are aligned at 
either +300 or -300 to the x-axis in the ground state, the 
subsequent SB flow is aligned in the same direction as the 
ground state. It is also possible for the dimers to align in 
the y-direction, as shown in Fig. 6(a) . At FD = 0.09, the 
dimers and the vortices in the pinning sites are shifted 
slightly to the right due to the applied drive. As FD is 
further increased, a symmetry breaking transition occurs 
within the pinned phase. For FD < 0.11 the dimers re­
main aligned the y-direction; however , at FD ~ 0.11 , the 
rotational instability illustrated in Fig. 6(b) occurs. Th.e 
dimers rotate in such a way that they end up aligned in 
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FIG. 6: Vortex positions (filled circles), pinning site locations 
(open circles) , and trajectories (black lines) for a system with 
B / B", = 2.0 and Fp = 0.85 which started in the y-aligned 
ground state. (a) The pinned phase a t FD = 0.09. Here the 
dimers and the vortices in the pinning sites have all shifted 
slightly to the right compared to the ground state due to the 
applied drive. (b) A rotational instability occurs at FD ~ 
0.11, when the vortices move in a manner that allows the 
dimers to align along -300 to the x-axis. There is also a 
small shift of the vortices in the pinning sites. (c) The pinned 
state at FD = 0.12 where the dimers are aligned in the new 
-300 direction. 
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FIG. 7: The velocity (Vx) (upper curve) and (Vy) (lower 
curve) vs FD for the system in Fig. 6. The rotational in­
stabi\,ity seen in Fig. 6(b) appears as a positive p eak in (Vx ) 

and a negative peak in (Vy ) just above FD = 0.11. The system 
remains pinned until around FD = 0.14. 

the -30 0 direction. The interstitial vortex at the bottom 
of the dimer moves in the +x direction and by a smaller 
amount in the +y direction, while the vortex at the top 
of the dimer moves in the -y direction and by a smaller 
amount in the -x direction. There is also a slight shift 
of the vortices in the pinning sites that are closest to the 
bottom of each dimer. In Fig. 6(c) the rotation process 
is completed and the dimers are aligned in a new direc­
tion, ~30°. The vortices remain pinned until FD = 0.14, 
at which point the system enters the SB phase. At finite 
temperatures, the dimer realignment occurs at even lower 
values of FD . The rearrangement can also be observed as 
a jump in (Vx) and (Vy) as shown in Fig. 7, where there 
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FIG. 8: Vortex positions (filled circles) and pinning site loca­
tions (open circles) for the system in Fig. 2 at (a) B / Bq, = 1.91 
and (b) B / B", = 2.08. At these fillings, the long range orien­
tational ordering of the dimer state is lost. 

is a positive spike in (Vx ) and a negative spike in (Vy) 
near FD = 0.11, in agreement with the motion shown in 
Fig. 6(b). We term this a dimer polarization effect since 
the driving force induces an alignment of the dimers. 

C, Dynamics for 1.5 ::; B / B", < 2.5 

We next consider the effect of changing the vortex den­
sity for fillings where interstitial dimers are present and 
the SB phase occurs. In Fig. 8(a) we illustrate the vortex 
positions for B j Bq, = l.91, where a mixture of monomers 
and dimers appear in the large interstitial sites. At this 
filling, the overall orientational ordering of the dimers is 
lost in the ground state, and the dimers are oriented only 
in local patches. For B j Bq, > 2.0, a mixture of interstitial 
dimers and trimers is present , as shown in Fig. 8(b) for 
B j Bq, = 2.08 , and the orienta tional ordering is again lost. 
In Ref. [58] it was shown that the SB state still occurs 
at incommensurate fields as long as some dimer states 
are present. If FD is suddenly increased from zero to a 
finite value at which only the interstitial vortices depin, 
the moving state for the incommensurate fields organizes 
into a dynamically symmetry broken state where all of 
the dimers flow along +30° or -30°. At the incommensu­
rate fields, only the dimers undergo dynamical symmetry 
breaking; the monomers and trimers continue to move in 
the direction of the drive, with some fluctuations in the 
transverse direction. 

In Fig. 9 we plot (Vy) for the system in Fig. 2 at 
BjBq, = l.89, l.94, and 2.5. In Figs. 9(a,b), the same 
four phases described above are labeled. The SB phase 
has opposite sign in Fig. 9(a) and Fig. 9(b); the dy­
namical symmetry breaking can occur in either direction 
since there is no symmetry breaking in the ground state. 
If slightly different initial conditions are used, such as by 
changing the initial annealing procedure, the dynamical 
symmetry breaking has equal probability to occur in the 
positive or negative direction, as shown previously [58]. 
In Figs. 9(a) and (b) the initial portion of the SB phase 

SB 

R ML 

ML 

SB 

FIG. 9: (Vy) versus Fo for (a) B/B", = 1.89, (b) B/B", = 
1.94, and (c) B / B ", = 2.5 for a system with the same param­
eters as in Fig. 2. P : pinned phase; SB: symmetry broken 
phase; R: random phase; ML: moving locked phase. 

has fluctuations in (Vy) due to the fact that we are in­
creasing FD at a finite rate and there is a transient time 
for the moving state to fully organize into the SB state, 
as studied previously [58] . The transient time increases 
as IB j B q, - 2.01 increases. If we decrease Cl.FD , the fluctu­
ations at depinning are reduced; however, the boundary 
between the phases does not shift . 

In Fig. 9(c) at BjBq, = 2.5, (Vy) = 0 since there are 
only trimer states present. The large oscillations in (Vy) 
occur when the system forms a completely ordered trimer 
ground state [50] and the vortex motion is highly coher­
ent , similar to the effect seen in Fig. 2. For the rate at 
which we sample and average (Vy) versus FD , the peri­
odic fluctuating vortex velocity is visible. For FD > 0.5 
the system enters a partially moving locked phase where 
a portion of the vortices move along the pinning rows. 
There are, however, too many vortices to form straight 
one-dimensional chains of the type shown in Fig. 3(e) for 
B j Bq, = 2.0. A buckling instability of the chains oc­
curs since the amount of anisotropy that would occur if 
one-dimensional chains formed is too large for the vor­
tex lattice to sustain. Instead, a partially moving locked 
(PML) phase forms with a disordered moving vortex lat­
tice. This result is interesting since it indicates that 
moving vortex phases do not always organize into or­
dered states. A time trace of a PML state at fixed FD 
shows much weaker velocity oscillations than thos shown 
in Fig. 4(c) for the ML state. This suggests that phase 
locking with PML states will be very weak or absent. In 
previous work on phase locking for square arrays, it was 
shown that the phase locking is most pronounced at com­
mensurate fields where the moving vortex structures are 
more ordered. [REFERENCE?] 
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FIG. 10: The dynamic phase diagram for FD vs BIB", high­
lighting the different dynamical phases. P: pinned, SB: sym­
metry broken, R: random, and ML: moving locked. Here Fp = 
0.85, Rp = 0.35A, and np;;;; 0.3125/A2. For BIB", > 2.125, at 
high FD the system forms a partially moving locked (PML) 
phase where not all of the vortices move along the pinning 
rows. 

By performing a series of simulations for varied BIB"" 
measuring the features in the velocity force curves and 
observing the vortex structures, we construct the dynam­
ical phase diagram of FD vs BIB", shown in Fig. 10. The 
depinning force marking the end of the pinned phase P 
show peaks at BIB", = 1'.5, 2.0', and 2.5, corresponding 
to the commensurate and ordered ground states reported 
previously [50]. The SB-R transition line is fairly flat 
as a function of BIB", with an enhancement to higher 
values of FD occuring near BIB", = 2.0, while at the 
incommensurate fields, monomers or trimers create fluc­
tuations that cause the vortices at the pinning sites to 
depin at slightly lower values of FD. For BIB", < 2.1, 
upon increasing FD the random state organizes into a 
ML state where all the vortices move along the pinning 
rows as shown in Fig. 3(e), while for BIB", ~ 2.1, the 
random state organizes into the PML state, The width 
of the random phase, as determined by the fluctuations 
in the velocity, increa..<les and persists to higher values of 
FD for increasing BIB", at BIB", ~ 2.1. For BIB", < 1.5 
and B", > 2.5, where dimers are no longer present, the 
SB phase is lost and a new set of dynamical phases arises 
which we discuss in more detail below. 

D, Effect of Changing the Pinning Strength 

We next consider the effect of changing the pinning 
strength when BIB", = 2.0. The four phases in Fig. 2 
occured in a sample with Fp = 0,85, As Fp is varied, we 
find several different kinds of ordering within the pinned 
phase that affect the dynamics which occur at finite FD . 
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FIG. 11: The critical depinning force Fe vs Fp for a system 
with BIB", = 2.0, Rp = 0.35A, and np = 0.3125/A2. For Fp < 
0.45 a partially pinned (PP) state forms which is illustrated 
in Fig. 12(a). For 0.45 S; Fp < 1.75 the system forms the 
pinned (P) orientationaly ordered dimer state such as that 
shown in Fig. l(c). For Fp ~ 1.75, the pinned herringbone 
(PHB) state seen in Fig. 12(b) forms. 

til,' ti) ®, ' €j e,' EJ El,'El 0, ® El 0 , 


E) .0' Ii) :0- ® :0, ® ,0 

.0 ' 

, 

.0 ' 
,ElEJ ' , ® El ' , "",ElEl 

0 - ® 0 - til 0 - ® 0 ­ ®,' ti) ®,'®e,'EJEl,' 

® '0, E) }:) - ® 0 - e '0 ,ElEJ ' , €®',® ', El® 
€l,'S e ,'@) €>,'@ @,'El El:0 - ® .0 ' p- .0 ­y ,El® ' ,®®',® ' , eEl® :0- el :0- ® :0' el .0 'Y 
®,'i9®,'® ® ,'®EJ,'el El ,0 ' 


I;) p - El .0' I;) .0 ' El ,0 

.0 ' El .0' .0 ' 

®',@) e ' ,@) 1;)',19 ® 
® , 'El®,"El ® ,'e El, 'El ,0- ® ,0' El 


e ,0- e ,0' , El .0 ' , e ,0 

.0 ' .0 ' 

, ® ®', e ' , ®', 

,0 - El p- El ,0 - El ,' 19 fl,'19 e ,'®.0 ' 
,fl 19',0 . , ® ®El .0' 


0 , El 0, ® p - El .0' 

@ .0' ® .0 ' ® .0 

e,'0 e, ' @) e,'@)e,' 

a x x 

FIG, 12: Vortex positions (filled circles) and pinning site loca­
tions (open circles) for the system in Fig. 11. (a) The partially 
pinned (PP) state at Fp = 0.25. The vortex lattice structure 
consists of a triangular lattice, and only half of tbe pinning 
sites are occupied. (b) The pinned herringbone (PHS) state 
at Fp = 2.0. Here the dimers do not all align in the same 
direction, but instead alternate in their alignment from row 
to row. 

In Fig. 11 we plot the threshold depinning force Fc as 
a function of Fp. For Fp < 0.35 the pinning is weak 
enough that the vortex-vortex interactions dominate over 
the pinning energy and a nearly triangular vortex lattice 
forms, as shown in Fig. 12(a). In this arrangement, half 
of the pinning sites are still occupied, so the vortex lattice 
is partially pinned (PP) and there is a finite depinning 
threshold. This type of partially pinned vortex lattice 
was observed in previous simulations on honeycomb pin­
ning lattices [50); and similar partially pinned vortex lat ­
tice states have been predicted for square pinning arrays 
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FIG. 13: Vortex positions (filled circles), pinning site loca­
tions (open circles), and vortex trajectories for the system in 
Fig. 11. (a) Moving crystal (MC) state for Fp = 0.25 and 
FD = 0.2. The partially pinned (PP) state from Fig. 12(a) 
depins elastically into a MC where half of the vortices move 
directly along the pinning rows and the other half of the vor­
tices move in winding paths between the pinning sites. (b) 
Moving interstitial (MI) state for Fp = 2.0 and FD = 0.225. 
The pinned herringbone (PHB) state depins into a MI state 
in which interstitial vortices move around the pinned vortices. 

[32] and observed for metallic particles on periodic struc­
tures [63]. The depinning transition from the PP state is 
elastic, and all the vortices depin simultaneously to form 
the moving triangular crystal (Me) shown in Fig. 13(a). 
In the Me, half of the vortices move in one-dimensional 
paths along the pinning rows while the remaining vor­
tices move through the interstitial regions with a small 
transverse oscillation. 

Figure 11 shows that the pinned ordered dimer state 
(P) forms for 0.45 S Fp < 1.75. Over the range 
0.45 S Fp < 0.55, the depinning from state P does not 
occur by the initial flow of the the interstitial vortices into 
the SB phase, unlike the case shown earlier for Fp = 0.85. 
Instead, for 0.45 S Fp < 0.55, both the interstitial vor­
tices and the vortices at the pinning sites depin simul­
taneously and rearrange into the moving crystal (Me) 
state shown in Fig. 13(a). We also find a peak in Fe at 
Fp = 0.5. This peak occurs due to both the change in 
the pinning configuration and a change in the depinning 
process. For Fp < 0.45, only half of the pinning sites 
are occupied and the vortex lattice depins elastically. At 
0.45 S Fp < 0.55, all of the pinning sites are now oc­
cupied in the P state, but the vortex lattice still depins 
elastically. The pinning energy that must be overcome to 
depin the lattice is increased compared to the PP state, 
leading to an increase in Fe. For 0.55 S Fp < 1.75, the 
depinning process is plastic and only the interstitial vor­
tices flow at depinning to form the SB state. Since the 
plastic depinning process does not require pinned vor­
tices to depin, the threshold force Fe drops, producing 
the peak in Fe at Fp = 0.5 . 

For Fp ~ 0.7 in Fig. 11, the depinning threshold Fe 
slowly increases with increasing Fp , and a transition in 
the pinned vortex structure occurs at Fp = 1.75. For 
Fp ~ 1.75, the dimers in the pinned state are no longer 

aligned but form a pinned herringbone (PHB) type struc­
ture such as that shown in Fig. 12(b), where the dimers 
are all tilted in the same direction in one row and tilted 
in the opposite direction in the adjacent rows. Herring­
bone ordering of dimers has previously been observed for 
colloidal dimers on triangular lattices [33] and for vor­
tices in kagome arrays at 5/3 filling [50]. At depinning, 
the PHB state does not form a SB phase but instead 
forms the winding interstitial phase shown in Fig. 13(b). 
The dimers break apart into two monomers, with one 
monomer passing around the pinned vortices in the pos­
itive y direction and the other monomer passing the 
pinned vortices in the negative y direction. We term 
this state the moving interstitial (MI) phase. 

In contrast to the herringbone state, the aligned dimer 
or ferromagnetic ordering of the P state occurs when the 
pinned vortices adjacent to the dimers are able to un­
dergo a periodic distortion within the pinning sites, re­
ducing the interaction energy between the pinned and 
interstitial dimer vortices and permitting the dimer align­
ment. If the dimers are aligned along +300 

, as in Fig. 5(a) 
of Ref. [50], the two pinned vortices closest to each inter­
stital vortex in the dimer both splay outwards away from 
the +300 direction. When Fp is increased, the pinned 
vortices are pulled toward the center of each pinning site 
and are no longer able to distort in order to accomodate 
the aligned dimer state, so the herringbone state forms 
instead . This result suggests that there may be other 
types of ground state ordering for vortices in honeycomb 
and kagome arrays in addition to those that have been 
reported previously. It may be possible to use the size 
and shape of the pinning sites as a means of controlling 
the type of crystalline structure that forms. 

In Fig. 14, we plot (Vx ) versus FD for Fp = 0.25,1.125, 
and 2.125. Figure 14(a) shows the elastic depinning pro­
cess for the PP state at Fp = 0.25, which moves directly 
into the Me phase after depinning. At Fp = 1.125 in 
Fig. 14(b), (Vx) increases linearly with FD through the 
SB phase. The slope of (Vx) increases in the R phase, 
and the velocity-force relationship becomes linear in the 
ML phase. For Fp = 2.125, Fig. 14(c) indica tes that 
the depinning occurs in two steps. The first depinning 
transition of the interstitial vortices only takes the system 
from the P phase into the moving interstitial (MI) phase, 
while at the second depinning transition, the pinned vor­
tices depin and the sample enters the ML phase. Unlike 
the behavior at Fp = 1.125 in Fig. 14(b) , at Fp = 2.125 
the intermediate random phase R is lost and is replaced 
by a sharp jump into the ML phase. 

By conducting a series of simulations we construct the 
dynamical phase diagram as a function of Fp and FD, as 
shown in Fig. 15. At high FD , the Me phase forms for 
Fp < 0.45, while for Fp ~ 0.45 the ML phase appears 
instead . The SB phase exists for 0.55 < Fp < 1.75, and 
the SB-R boundary shifts to higher FD with increasing 
Fp until it terminates at Fp = 1.75. For Fp ~ 1.75, the 
PHB state occurs at low drive, and the system depins 
into the MI phase. The MI phase also extends as far 
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FIG. 14: (Vx) vs FD for B / B", = 2.0, Rp = 0.35>', and 
np = 0.3125/>.2. (a) At Fp = 0.25, there is an elastic de­
pining transition between the partially pinned PP state and 
the moving crystal MC state. (b) At Fp = 1.125 the four dy­
namic phases are present. P: pinned; S8: symmetry broken; 
R: random; ML: moving locked . (c) At Fp = 2.125 the pinned 
herringbone PH8 state depins into the moving interstitial MI 
state illustrated in Fig. 13(b). The transition between the MI 
and the moving locked ML state is much shaper than the R 
to ML transition shown in (b). 

down as Fp = 1.5, where the system passes from the SB 
phase into a narrow window of the random flow phase R 
with increasing FD before the vortices organize into the 
MI phase. As FD continues to increase, the vortices at 
the pinning sites depin and the system passes through a 
second narrow window of the R phase until the vortices 
organize into the ML phase. At high Fp , the random R 
phase becomes vanishingly small and the system passes 
directly from the MI to the ML phase. The transition 
into the ML state increases linearly with increasing Fp, 
while the depinning force saturates with increasing Fp-

E. Changing Rp and B", 

We next examine the effects of changing the pinning 
radius in a system with fixed Fp = 0.85 and B / B¢ = 2.0. 
In Fig. 16 we show the dynamic phase diagram for FD 

1.5 

PHB 

0.5 

FIG. 15: The dynamic phase diagram of FD vs Fp for 
B / B", = 2.0, Rp = 0.35>., and np = 0.3125/>.2. The tbree 
pinned phases are: PP, the partially pinned phase shown in 
Fig. 12(a); P, the pinned ordered dimer phase in Fig. l(c)j 
and PH8, the pinned herringbone phase (PHB) illustrated 
in Fig. 12(b) . The dashed line separates the moving crystal 
phase (MC) shown in Fig. 13(a) from the moving locked (ML) 
phase of Fig. 3(e). The symmetry breaking (S8) phase iIIIus­
trated in Fig. 3(a) occurs at intermediate vales of Fp , while 
the moving interstitial (MI) phase shown in Fig. 13(b) forms 
at higher values of Fp. The random phase R is illustrated in 
Fig.3(c). 

versus Rp obtained from a series of simulations. For 
0.2>' < Rp ::; 0.55>', we find the same three moving 
phases, SB, R, and ML, as in Fig. 2. For Rp > 0.55>', the 
pins are large enough to permit double vortex occupancy 
at the individual pinning sites; in this case, a new set 
of phases appears which we do not consider in this work. 
For Rp > 0.2>., the R-ML transition decreases in FD with 
increasing Rp since the ~arger pinning sites make it eas­
ier for the vortices to localize along the pinning rows and 
flow in the one-dimensional motion of the ML phase. For 
Rp < 0.2>' at low FD , we find the partially pinned PP 
state illustrated in Fig. 12(a). The onset of the PP phase 
coincides with a drop in Fe at Rp ~ 0.2>'. Unlike the PP 
phase that occurs at low Fp in Fig. 15, which depins elas­
tically, the PP phase at small Rp depins into a moving 
interstitial phase that is distinct from the moving inter­
stitial phase shown in Fig. 13(b). In Fig. 17(a) we illus­
trate the vortex trajectories in the phase which we term 
the moving interstitial phase 2 (MI2). The vortices flow 
in winding interstitial channels; however, unlike the MI 
phase, in the MI2 phase only half of the pinning sites are 
occupied. In Fig. 17(b) we plot (Vx) vs FD for a system 
with Rp = 0.15>.. A clear two-step depinning transition 
occurs, with (Vx ) increasing linearly with increasing FD 
in the MI2 phase. At high FD and Rp < 0.2>', the pin­
ning sites are too small for the ML phase to occur, and 
instead the vortices flow in the Me phase illustrated in 



• • • • • • 

ML 

0.8 

0.4 

SB 
0.2 


••• •••...-f P
PP i 
0.2 0.4 

FIG. 16: The dynamic phase diagram of FD vs Rp for BI B</> = 
2.0 and Fp = 0.85. PP: partially pinned phase; P: pinned 
dimer phase; MI2: moving interstitial phase 2; SB: symmetry 
broken phase; R: random phase; MC: moving crystal phase; 
and ML: moving locked phase. For Rp > 0.2>' we observe 
the same phases illustrated in Fig. 15 at Fp = 0.85. The 
curves do not extend above Rp = 0.55>. since for Rp > 0.55>', 
multiple vortex pinning at individual pinning sites occurs. For 
Rp < 0.2>', a partially pinned phase appears and the initial 
depinning is into a new moving interstitial phase termed MI2, 
illustrated in Fig. 17(a) . The upper dashed line separates the 
MC phase from the ML phase. 
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FIG. 17: (a) Vortex positions (filled circles), pinning site lo­
cations (open circles) and vortex trajectories (black lines) for 
the system in Fig. 16 showing the moving interstitial 2 phase 
(MI2) at Rp = 0.15>. and Fp = 0.2. (b) (V.,,) VS FD for the 
same system. A sharp transition from the MI2 phase to the 
random R phase occurs. 

Fig. 13(a). 
We next consider samples with fixed B / B", = 2.0, 

Rp = 0.35"\, and Fp = 0.85, but vary the value of B", 
by changing the pinning density np. This alters the av­
erage spacing between neighboring vortices. Up to this 
point we have used np = 0.3125/,,\2. In Fig. 18 we illus­
trate the dynamic phase diagram for np versus FD. As 
np increases, Fe increases since the depinning of the in­
terstitial vortices is determined by the potential created 
by the vortices located the pinning sites, and as the vor­

'12 

1.5,------.---.------.-- -.---.----.-----,------', 

ML 
Q. 

C 

SB 

p 

0.6 0.8 

FIG. 18: The dynamic phase diagram FD versus pinning den­
sity nv , which determines B</>, at BIB</> = 2.0, Fp = 0.85, and 
Rp = 0.35>.. P: pinned dimer phase; MI: moving interstitial 
phase; SB: symmetry broken phase; R: random phase; ML: 
moving locked phase. The transition to the ML phase shifts 
to higher FD with decreasing np . The SB phase appears only 
for intermediate values of np. 

tex density increases, the depth of the interstitial pinning 
potential also increases. The R-ML transition shifts to 
higher FD with decreasing np . Since the distance be­
tween the pinning sites increases with decreasing n p , the 
moving vortices spend less time in the pinning sites. This 
destabilizes the ML phase and the vortices must move at 
higher velocities for the effective trough potential to be 
able to stabilize the ML phase. For np ~ 0.78/,,\2, the 
SB phase is lost, since at this pinning density the inter­
actions between the interstitial vortices and the pinned 
vortices become sufficiently strong that the depinning of 
the interstitial vortices also causes the pinned vortices 
to depin. As a result, the system passes directly from 
the P phase to the R phase. For np < 0.14/,,\2, the 
vortex-vortex interaction becomes weak enough that the 
system depins into the MI phase illustrated in Fig. 13(b). 
This also coincides with an increase in the value of FD 
at which the R phase appears, since the moving intersti ­
tial vortices in the MI phase do not approach the pinned 
vortices as closely as they do in the SB phase. 

F. Effect of Finite Temperature 

We next consider the effect of finite temperature on 
the system in Fig. 2 with B / B", = 2.0, Fp = 0.85, 
Rp = 0.35"\, and np = 0.3125/ ,,\2. In Ref. [50], we showed 
that a transition can occur at finite temperature in which 
the vortex n-mer states lose their orientational ordering 
and begin to rotate while remaining confined within the 
large interstitial sites. This state was termed a vortex 
plastic crystal. In Ref. [58] we demonstrated that the 
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FIG. 19: The dynamic phase diagram of FD vs thermal 
force FT for a system with B / B¢> = 2.0, Fp = 0.85, np = 

0.3125/>.2, and Rp = 0.35>.. P: pinned dimer phase; SB: 
symmetry broken phase; R: random phase; and ML: moving 
locked phase. Inset: (Vx ) vs FD at FT = 1.25 where a smooth 
depinning transition occurs. 
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FIG. 20: Vortex positions (filled circles), pinning site loca­
tions (open circles), and vortex trajectories (black lines) for 
the system in Fig. 19 at FT = 1.25. (a) At FD = 0.1 , there 
is appreciable creep of the interstitial vortices and the dimers 
have lost their orientational ordering and are rotating within 
the large interstitial sites. (b) At FD = 0.2 , the vortex flow 
is disordered and vortices are continually depinning and re­
pinning. (c) At FD = 1.0, all of the vortices are moving but 
there is still diffusion in the direction transverse to the drive. 
(c) At FD = 1.6 the vortices are about to enter the ML state 
where the motion is confined to one-dimensional channels. 
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FIG. 21: The velocity force curves (VII) vs FD for FD = FDY 
for the system in Fig. 2 with Fp = 0.85, Rp = 0.35>., 
and np = 0.3125/>.2. P: pinned dimer phase; R: random 
phase; 1DMI: one-dimensional moving interstitial phase, il­
lustrated in Fig. 22(a); ML: moving locked phase, illustrated 
in Fig. 22(b). (a) B/B¢> = 2.0. (b) B/B¢> = 2.15, where 
an additional random flow phase occurs at depining due to 
the presence of trimers. (c) B / B¢> = 2.32, where there is no 
longer a IDMI phase. 

SB phase disappears in the vortex plastic crystal state. 
In Fig. 19 we plot the dynamical phase diagram of PD 

vs pT for the same system in Fig. 2. In our units, the 
dimers melt a t pT = 1.0. Above the melting tempera­
ture, there is appreciable creep of the interstitial vortices 
as they hop from one large interstitial site to another, as 
illustrated in Fig. 20(a) for Po = 0.1 and pT = 1.25. 
As Po is further increased the system enters the random 
flow phase shown in Fig. 20(b) for Po = 0.25. At higher 
drives, the vortices begin to localize a[ong the pinning 
rows in one-dimensional cha nnels; however , there is still 
appreciable hopping from one row to another as shown 
in Fig. 20(c) for Po = 1.0. At even higher drives, the 
ML is recovered as illustrated in Fig. 20(d) for Po = 1.6. 
For pT > 1.35, the ML phase is lost and the high Po 
flow is in the random R phase shown in Fig. 20(c). In the 
inset to Fig. 20 we demonstrate that at pT = 1.25, the 
sharp fea tures in the velocity force curve seen a t pT = 0 
in Fig. 2 disappear. 
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FIG. 22: Vortex positions (filled circles), pinning site posi­
tions (open circles), and vortex trajectories (black lines) for 
the system in Fig. 21(a) at B/B", = 2.0. (a) One-dimensional 
moving interstitial (lDMI) phase at Fo = 0.2. (b) The mov­
ing locked (ML) phase for F 0 = Foy at Fo = 0.8. 

IV. DYNAMICS FOR DRIVING IN THE 

TRANSVERSE DIRECTION 


We now consider the case where Fo is applied along 
the y-direction, Fo = Foy, for the same system as 
in Fig. l(d) with Fp = 0.85, Rp = 0.35'\, and np = 
0.3125/ ,\2. A different set of dynamic phases appear 
that are distinct from those found for driving in the x­
direction. In particular, the SB phase is lost and the 
dimers align in the y-direction with the initial depinning 
occurring in one-dimensional interstitial flow paths. In 
Fig. 21 we plot the velocity forces curves for B / B", = 2.0, 
2.15, and 2.32. 

Figure 21(a) shows the three phases, pinned (P), 
one-dimensional moving interstitial (lDMI), and moving 
locked (ML) that occur at B / B", = 2.0. In the P phase, 
if the ground state contains dimers which are aligned 
at either +300 or -300 to the x-axis, a polarization ef­
fect is induced by the applied drive similar to the ef­
fect discussed earlier. In this case, however, the dimers 
shift such that they are aligned in the y-direction. The 
one-dimensional moving interstitial (lDMI)' state which 
appears above depinning is illustrated in Fig. 22(a) at 
Fo = 0.2, where the interstitial vortices move between 
the vortices in the pinning sites. Near Fo = 0.55 there 
is a sharp depinning transition for the vortices in the 
pinning sites. After this depinning transition occurs, 
the vortices very rapidly rearrange into a moving locked 
(ML) phase where the vortices move along the pinning 
sites, as shown in Fig. 22(b) for Fo = 0.8. In the 
ML phases for driving along the x and the y directions, 
the vortices travel in one-dimensional channels along a 
row or a column of pinning sites, respectively. The pin­
ning rows followed by the vortices for x-direction driv­
ing are evenly spaced in the y-direction, so the vortices 
flow through the centers of the pinning sites. In con­
trast, the pinning columns followed by the vortices for 
y-direction driving are unevenly spaced in the x direc­
tion due to the symmetry of the honeycomb lattice. As 
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FIG. 23: The dynamical phase diagram for Fo vs B/B", for 
F 0 = Foy in a sample with Fp = 0.85, 14 = 0.35)" and 
np = 0.3125/),2. P: pinned phase; 1DMI: one-dimensional 
moving interstitial phase; R: random phase; ML: moving 
locked phase. For B/B", > 2.3 the 1DMI flow is lost. 

a result, for the y-direction driving the vortices do not 
flow through the centers of the pinning sites, but are in­
stead shifted to the right and left of the pinning sites in 
alternate columns, as seen in Fig. 22(b). This produces 
a more even spacing between the columns of moving vor­
tices. Since different columns contain different numbers 
of vortices, the ML phase for y-direction driving also has 
smectic type characteristics. The velocity-force curves 
for 1.5 < B / B", < 2.0 have the same general form as the 
curve in Fig. 21(a) and show the same three phases. 

For B / B", > 2.0 the appearance of trimer states dis­
rupts the 1DMI flow since the trimers cannot align com­
pletely in the y-direction. This produces random (R) 
vortex flow at depinning, as shown in Fig. 21(b), with 
diffusive vortex motion occuring along the x-direction. 
There are more pronounced fluctuations in (Vy) in the 
R phase, and the velocity-force curve is nonlinear and 
lower than the extrapolated linear behavior in the 1DMI 
phase that begins near Fo = 0.23. The trimers can block 
the one-dimensional channels of flow shown in Fig. 22(a), 
lowering the number of mobile vortices. At higher drives, 
the trimers depin, straighten into a linear configuration, 
and flow in the 1DMI phase. At Fo :::::: 0.5, the vor­
tices in the pinning sites depin, resulting in a transition 
from the 1DMI phase to the R phase. For sufficiently 
high drives, the ML phase forms. For driving along the 
x-axis at B / B", > 2.0, we showed in Fig. 9( c) that the 
ML phase is lost due to a buckling transition of the one­
dimensional chains of vortex motions, and that a par­
tially moving locked (PML) phase forms instead when a 
portion of the vortices move through the interstitial re­
gions. For driving along the y-axis at B / B", > 2.0, the 
ML state remains stable for much higher values of B / B", 
than for the x-axis case. A comparison of Fig. 22(b) and 
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FIG, 24: (Vy) vs FD for FD = FDY for B/B</> = 2.0, . 
Rp = 0.35>', and n" = 0.3125/>.2 . (a) At F" = 0.35, there 
is a single step elastic depinning transition from the partiall 
pinned (PP) phase to the moving crystal (Me) phase. (b) At 
F" = 1.25 we find the pinned (P), one-dimensional moving 
interstitial (lDMI), and moving lattice (ML) phases. (c) At 
F" = 2.25, there are sharp transitions between the pinned her­
ringbone (PHB), one-dimensional moving interstitial (IDMI), 
and moving locked (ML) phases. 

Fig. 3(e) shows that the interstitial region crossed by the 
vortices in the moving channels is not as wide for y-axis 
driving as for the x-axis driving, resulting in more stable 
y-axis flow. As B / B", is further increased, the random 
regime grows until the IDMI phase is completely lost, 
as shown in Fig. 21!(c) for B/B", = 2.35. In Fig. 23 we 
plot the dynamical phase digram for FD versus B / B"" 
highlighting the onset of the different phases. The tran­
sition to the ML phase shifts to higher values of FD with 
increasing B / B", since the ML vortex channels become 
increasingly anisotropic as the number of vortices in the 
sample increases. 

A. Dynamics as a function of F" and Dimer 

Jamming 


We now consider the vortex dynamics in a system with 
fixed B / B", = 2.0, Rp = 0.35A, and np = 0.3125/A2 
for varying Fp with FD = FDY . As noted above, for 
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FIG. 25: The dynamic phase diagram FD vs F" for F D = FDY 
at B / B</> = 2.0, Rp = 0.35>., and n" = 0.3125/>.2

. PP: par­
tially pinned phase; P: pinned dimer phase; PHB: pinned her­
ringbone phase; IDMI: one-dimensional moving interstitial 
phase; Me: moving crystal phase; ML: moving locked phase. 
A peak in the .depinning threshold Fe occurs near F" = 0.5 at 
the PP-P transition. At the P-PHB transition, Fe increases 
by a factor of three. The dashed line separates the Me phase 
from the ML phase. 

Fp < 0.5 a partially pinned (PP) vortex lattice forms. In 
Fig. 24(a), the velocity-force curve for Fp = 0.35 shows 
that the depinning of the PP phase is elastic and oc­
curs in a single step transition to a moving crystal (MC) 
phase, as seen earlier in Fig. 14(a) for driving along the 
x-axis. In the MC phase, half of the vortices move along 
the pinning sites. For 0.5 < Fp < 1.75, at low drive 
the system is in the pinned (P) phase of orientationally 
ordered dimers, and as the drive increases, Fig. 24(b) 
shows that the same 10Ml and ML phases illustrated 
in Fig. 21(a) appear. The rapid rearrangement of the 
vortices from the IDMI phase to the ML phase results 
in a small jump near FD = 0.8 which marks the 10MI­
ML transition. For strong pinning Fp ~ 1.75, Fig. 24(c) 
shows that the ground state forms the pinned herring­
bone (PHB) phase illustrated in Fig. 12(b). The same 
pinned state appears for x-direction driving at strong pin­
ning, as shown in Fig. 14(c). In Fig. 24(c), the velocity­
force curve at Fp = 2.25 shows the abrupt nature of the 
depinning transition from the PHB phase to the 10MI 
phase, which differs from the smoother depinning transi­
tion that occurs from the P phase to the 10MI phase in 
Fig. 24(b). The depinning threshold increases markedly 
with increasing Fp once the system enters the PHB state. 
In Fig. 25 we plot the dynamic phase diagram for Fd ver­
sus Fl" Near the transition from the PP to the P phase, 
there is a peak in Fe similar to the peak observed at the 
PP-P transition for driving in the x-direction in Fig. 11. 
For Fp > 0.175 the strong enhancement of the depinning 
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FIG. 26: Vortex positions (filled circles) and pinning site loca­
tions (open circles) for the system in Fig . 24( c) at BIB</> = 2.0 
and FD = 0.56, just before depinning. Under the influence 
of the driving force which is applied in the y direction, the 
dimers align with the x direction and shift to the top of the 
large interstitial sites . Because the dimers are not aligned 
with the direction of the drive, a jamming phenomenon oc­
curs which is responsible for the large increase in Fc seen in 
Fig. 25 at Fp = 1.75. We call this the jammed state J . In (b) 
only the vortex positions are shown and it can more clearly 
be seen that the dimers are shifted in the positive y-direction . 
The vortex configuration in the jammed state is distinct from 
the pinned herringbone state. 

threshold in the PHB state can be seen clearly. 
In Fig. 26( a) we illustrate the vortex positions just be­

fore depinning for Fp = 2.25. Even though the drive is 
applied in the y-direction, the dimers have aligned with 
the x-direction. When the dimers are oriented along 
the x-axis, they cannot fit through the easy-flow one­
dimensional channel between the pinning sites, but in­
stead are essentially jammed by the two pinned vortices 
at the top edge of the large interstitial site. In the or­
dered dimer pinned phase (P), the dimers all reorient in 
the same direction under an applied drive. In contrast, in 
the pinned herringbone phase (PHB) the dimers rotate 
in opposite directions under an applied drive , so when 
the drive is applied along the y-direction the dimers end 
up aligning in the x-direction. In Fig. 26(b) only the 
vortex positions from Fig. 26(a) are shown to indicate 
more clearly the shift of the dimers in the positive y­
direction. This vortex configuration, which we term the 
jammed state J, has a structure that is distinct from that 
of the pinned herringbone phase shown in Fig. 12(b) . The 
jammed state configuration exists only in the presence of 
the applied drive. For Fd = 0 the dimers return to the 
herringbone state. In the jammed state, the critical cur­
rent is up to three times larger than in the state where 
the dimers are aligned in the y-direction. We also note 
that at incommensurate fields for Fp > 1.75, the net vor­
tex flow is reduced since some of the dimers align in the 
x-direction and effectively block the motion of other vor­
tices along the y-direction. 

In order to better characterize the enhancement of Fe 
in the jammed state, in Fig. 27 we plot the critical depin­
ning force in the y-direction, F/! , and in the x-direction, 
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FIG. 27: The critical depinning force in the x-direction, F:;' 
(open squares) , and in the y-direction, Fl (filled circles), vs Fp 
for BIB</> = 2.0, Rp = 0.35.x, and np = 0.3125/.x2

. PP: par­
tially pinned phase; P : pinned dimer phase; PRB: pinned her­
ringbone phase; J : jammed state. In the PP phase, F:;' = Fl , 
while in the P phase, F:;' > Fl. A large enhancement of Fl 
occurs in the PRB phase when dimer jamming occurs. Inset: 
the ratio Fl IF: vs Fp. The dashed line indicates Fl IF: = 1, 
where the depinning thresholds are equal. 

F:, versus Fp. In the inset of Fig. 27 we show the ratio 
F/! / F: versus Fp. In the partially pinned (PP) phase , 
F/! = F:, while in the pinned aligned dimer (P) phase, 
F: is slightly higher than F/! since the vortices can depin 
more readily into the 1DMI phase in the y-direction. In 
the jammed state that forms from the PHB phase, F/! is 
3.1 times higher than F: for the same value of Fp. 

B . Effects of Changing Rp and B</> 

In Fig. 28 we plot the dynamical phase diagram FD 
versus Rp for driving in the y-direction with B/ B", = 2.0, 

2Fp = 0.85, and np = 0.3125/ .x . For Rp ~ 0.2A, the sys­
tem depins into the 1DMI phase and makes a transition 
to the ML phase at higher drives. For Rp < 0.2A, the 
system forms the partially pinned PP phase where only 
half of the pinning sites are occupied. The PP phase de­
pins into a moving interstitial phase MI2Y that resembles 
the MI2 state observed for driving in the x-direction in 
Fig. 17(b), where half the vortices depin while the other 
half remain pinned. The MI2Y phase is oriented 900 from 
the MI2 phase. At FD = 0.4 for Rp < 0.2A, the vortices 
at the pinning sites begin to depin and repin, giving a 
regime of the random (R) phase until FD becomes large 
enough for all the vortices to depin into the ML phase. 
For 0.2A :::; Rp :::; 0.3A, the jammed state discussed in 
Fig. 26 occurs due to the formation of dimers aligned 
in the x-direction, which is associated with a marked in­
crease in Fe. As discussed earlier, the pinned herringbone 
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FIG. 28: The dynamic phase diagram for FD vs Rp with 
FD = FDY, B/B", = 2.0, Fp = 0.85, and np = 0.3125/>.2. 
PP: partially pinned phase; J : jammed state; P: pinned phase; 
MI2Y: y-direction moving interstitial phase 2; IDM]: one­
dimensional moving interstitial phase; R: random phase; ML: 
moving locked phase. For Rp < 0.2>' the system forms the PP 
phase. This depins into the MI2Y state for driving in the y­
direction, which is similar to the MI2 state shown in Fig. 17(a) 
for driving in the x-direction. For 0.2>' < Rp < 0.3>', the 
system forms the jammed J state shown in Fig. 26. 

(PHB) phase and jammed (J) state occur when Fp be­
comes high enough that the vortices in the pinning sites 
cannot shift to allow for dimer ordering to occur. Simi­
larly, as Rp is reduced, the vortices in the pinning sites 
have less room to adjust for dimer ordering, so the PHB 
state forms. The jamming also produces the counterin­
tuitive effect that as Rp increases above Rp = 0.35\ the 
depinning threshold decreases. 

In Fig. 29 we show the dynamical phase diagram for FD 

versus n p , which determines the value of B¢, for B / B¢ = 
2.0, Rp = 0.35A, and Fp = 0.85. As np increases, the 
critical depinning force into the 1DMI phase increases 
since the repulsion from the pinned vortices experienced 
by the interstitial vortices increases as the average vortex­
vortex spacing decreases. The transition from the 1DMI 
phase to the ML phase shifts to higher values of FD as 
np decreases since the distance between the pinning sites 
which stabilize the ML flow increases. 

v. DISCUSSION 

Our results are for honeycomb pinning arrays where 
it was shown in previous work that n-merzation of the 
interstitial vortices into vortex molecular crystal states 
occurs for B / B¢ > 1.5. Many of the dynamical effects 
presented in this work are due to the n-merization ef­
fect. In kagome pinning arrays, similar types of vortex 
molecular crystal states appear, so we expect that many 
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FIG. 29: The dynamical phase diagram for FD vs n p , which 
determines B"" for driving in the y-direction with B / B", = 
2.0, Rp = 0.85>', and Fp = 0.85. P: pinned ordered dimer 
phase; IDMI: one-dimensional moving interstitial phase; ML: 
moving locked phase. 

of the same types of dynamic phases described here will 
also occur for kagome pinning arrays, although we do ex­
pect that there will be certain differences as well. In 
the kagome pinning array, the vortex dimer state ap­
pears at B / B¢ = 1.5 and has a herringbone ordering 
even for large, weak pins. There are no easy flow chan­
nels along ±30.o to the x-axis, so the symmetry breaking 
flows should be absent. Additionally, since there is no 
easy flow channel in the y-direction, the anisotropic de­
pinning dynamics may be different as well. 

We have only considered B/B¢ < 2.5 in this work. 
At higher fields, a wide array of vortex molecular crystal 
states occur that should also have interesting dynamical 
phases. Since the low matching fields are more robust, 
observing the dynamics near these low fields experimen­
tally is more feasible. Although our results are specifi­
cally for pinning sites with single vortex occupation, sim­
ilar dynamics should occur if the first few matching fields 
have multiple vortices at the pinning sites. In this case, 
the effective dimerziation ofthe interstitial vortices would 
be shifted to higher magnetic fields. 

Although true phase transitions are associated only 
with equilibrium phenomena, the nonequilibrium phases 
considered here have many analogies to equillibrium 
phases. For example, several of the transitions between 
the nonequilibrium phases have a continuous type be­
havior, while in other cases the transitions are sharp, 
indicative of a first order nature. Future studies could 
explore the possible emergence of a growing correlation 
length near the transitions to see whether they exhibit 
the true power law behavior associated with continuous 
phase transitions or whether they show crossover behav­
ior. For transitions that exhibit first order characteris­
tics, it would be interesting to prepare a small patch of 
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pinning sites with different characteristics that could act 
as a nucleation site for one of the phases in order to un­
derstand whether there is a length scale analogous to a 
critical nucleus size. 

We also note that the dynamics we observe should 
be general to systems with similar geometries and re­
pulsively interacting particles. For example, in colloidal 
systems, square pinning arrays with flat regions between 
the pinning sites (muffin-tin potentials) have been fab­
ricated, and in these systems the interstitial colloids are 
much more mobile than in washboard-type pinning po­
tentials. Honeycomb pinning arrays could be created us­
ing similar techniques for this type of system. 

VI. SUMMARY 

We have shown that vortices in honeycomb pinning ar­
rays exhibit a rich variety of dynamical phases that are 
distinct from those found in triangular and square pin­
ning arrays. The honeycomb pinning arrays allow for the 
appearance of n-mer type states that have orientational 
degrees of freedom. We specifically focused on the case 
where dimer states appear. At B I B¢ = 2.0, the dimers 
can have a ferromagnetic type of ordering which is three­
fold degenerate. At depinning, the dimers can flow in 
the direction in which they are aligned . For the case 
of driving along the x-axis, the dimers flow at ±30° to 
the applied drive, giving a transverse velocity response. 
At incommensurate fields where dimers are present, even 
though the orientational is lost, the moving states can 
dynamically order into a broken symmetry state where 
the vortices flow with equal probability at either +300 

or -300 to the x-axis. As the driving in the x-direction 
increases, there is a depinning transition for the vortices 
in the pinning sites, and the transverse response is lost 
when the vortices either flow in a random phase or chan­
nel along the pinning sites. As a function of pinning 
force, we find other types of vortex lattice ordering at 
zero driving, including a partially pinned lattice and a 

herringbone ordering of the dimers. These other ordei'­
ings lead to new types of dynamical phases, including an 
elastic depinning for weak pinning where all the vortices 
depin simultaneously into a moving crystal phase, and 
an ordered interstitial flow in which the moving dimers 
break apart. The transitions between these flow phases 
appear as clear steps in the velocity force curves, and we 
have mapped the dynamical phase diagrams for various 
system parameters. We also showed that the different 
phases have distinct fluctuations and noise characteris­
tics. When the temperature is high enough, the dimer 
states lose their orientational ordering and begin to ro­
tate within the interstitial sites. This destroys the sym­
metry breaking flow; however, the moving locked phase 
can still occur at high drives. 

The transition in the vortex ground state ordering as 
a function of pinning force causes the critical depinning 
force for driving in the x and y-directions to differ. When 
driving along the y-direction, the initial depinning oc­
curs in the form of one-dimensional interstitial channels, 
and at high drives the vortices can form an anisotropic 
moving locked phase. We find a large enhancement of 
the depinning force in the y-direction associated with the 
pinned herringbone phase when the dimers align in the 
x-direction and creates a jamming effect. The jammed 
state can enhance the critical depinning force by a factor 
of three, and can also arise for decreasing pinning size. 
We expect that many of the general features we observe 
will carryover to the higher matching fields in the honey­
comb pinning arrays and in kagome arrays since ordered 
n-mers states occur in for the kagome lattice as well. 
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