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Non-cyclic geometric phase in stochastic processes: corrections to Michaelis-Menten 
kinetics and application to a cell growth model. 
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(Dated: today) 


We generalize the concept of the geometric phase in stochastic kinetics to a noncyclic evolution. 
Its application is demonstrated on kinetics of the Michaelis-Menten reaction. It is shown that 
the noncyclic geometric phase is responsible for the correction to the Michaelis-Menten law when 
parameters, such as a substrate concentration, are changing with time. VIe also discuss a model, 
where this correction qualitatively changes the outcome of reaction kinetics. 

1. INTRODUCTION 

After the Berry's discovery of geometric phases in periodically driven quantum mechanical systems l , a number of 
its generalizations were proposed e.g. to nonabelian and nonadiabatic regimes. Similar geometric phases were also 
found in other fields, for example, in dissipative dynamics2- 5 • 

aRecently, new geometric phases where found in the domain of purely classical stochastic kinetics6- . They were 
shown to be responsible for the stochastic pump and other ratchet-like effects, and thus they are of certain importance 
for the theory of molecular motors, operating in strongly stochastic environment9,1O. This finding raises the question 
of existence and meaning of possible generalizations of such a geometric phase. For example, recently its nonadiabatic 
counterpart was introduced in Ref. 11, and was shown to be responsible for a non-adiabatic current contribution, that 
has no analog under stationary conditions. 

In this Letter, another generalization of the geometric phase in stochastic kinetics, namely to a noncyclic evolution 
2oin the parameter space, is considered. Its quantum and optical versions were explored in a series of studiesl2- . 

However, the role of noncyclic geometric phase in quantum physics still remains mainly unclear, although identities 
have been found that relate it to a system susceptibility13. In this work, we show that the gauge invariant noncyclic 
geometric phase in stochastic kinetics can be unambiguously defined, and that it can be naturally interpreted as being 
responsible for the leading non adiabatic correction in the expression for stochastic fluxes, which can qualitatively 
change kinetics of a chemical reaction. 

II. GENERATING FUNCTION FOR THE MICHAELIS-MENTEN REACTION 

The Michaelis-Menten (MM) reaction21 is the most fundamental and simplest type of biochemical processes. It 
describes a conversion of one type of molecules, called the substrate, into another type, called the product, via 
an intermediate reaction with one more type of molecules called enzymes. Schematically the MM reaction can be 
represented as follows, 

S+E SE E+P, (1)
k_2Ttp 

where Sand P denote substrate and product respectively, and E represents enzyme molecules. Sand P interact via 
creating a complex SE which is unstable and dissociates either back into E and S or forward into E and P. Enzymes 
are not modified after this reaction. Their role is to speed up the substrate-product conversion. We assumed that the 
rates to create the SE-complex are proportional either to substrate or to product concentrations ns and np , while 
the complex dissociation rates are independent of those concentrations. 

Originally, Michaelis and Menten considered a strongly nonequilibrium situation when the process with the co­
efficient k-2 can be neglected due to smaliness of the number of product molecules. However, we will keep it for 
generality because all kinetic rates can be of the same order, at least near the thermodynamic equilibrium. If the 
number of S and P molecules is much larger than that of enzymes, the latter have to pass through many cycles of the 
reaction (1) in order to change Sand P concentrations noticeably. This fact was employed by Michaelis and Menten 
to simplifY the enzyme-mediated dynamics by assuming that enzymes quickly equilibrate at current substrate and 
product concentrations. 
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Stochastic kinetics of the conversion of S into P is suitably described by the moments generating function Z(x, t) 
(mg£) and the cumulants generating function S(x, t) defined as6,22,23 

(2) 

where Pn is the probability to find totally n product molecules generated during the observation time t. For a small 
number of enzymes, their reaction events can be considered statistically independent, so the cumulants generating 
function is simply their number times the generating function of molecules produced via a single enzyme. Thus we 
will restrict our study only to the case of a single enzyme in the system. It is convenient also to introduce generating 
functions U E L:::'=-oo PnEeinx and USE = L:::'=-oo PnsEeinx , where PnE is the probability that at a given time 
the number of generated product molecules is n and the enzyme is in the unbound state. Respectively, PnSE is the 
probability that enzyme is bound into the SE-complex while the number of product molecules generated is again 
equal to n. The master equation in such a case reads 

It PnE = -(klns + k-2np)PnE + k_1PnSE + k2P(n-l)SE, 
(3) 

MUltiplying (3) by e'xn and summing over n we find the equation for generating functions, 

d (UE) , (UE) (4)dt USE =-H(X,t) USE ' 

where 

(5) 

If we set n = 0 at initial moment t = 0, then the initial conditions for (4) are UE(t 0) = pdO), and UsE(t = 
0) = PSE(O), where PE{O) and PSE(O) are probabilities that the enzyme is respectively free or in the substrate-enzyme 
complex. Also, note that Z{X, t) = U E(X, t) + Usdx, t). The formal solution for the mgf (2) thus can be expressed 
as the following average of the evolution operator 

Z(x, t) = (liT (e- I~ H(x,t)dt) Ip(O)}, (6) 

where (11 = (I, 1), and IP(O» (PE{O),PSE(O» is the vector of initial probabilities of enzyme states, and T is the 
time-ordering operator. 

Before we proceed with the case where parameters are time dependent, it is instructive to look first at the stationary 
regime. To Simplify (6) one can find normalized left and right eigenvectors (Uo/II, IUo/I) and corresponding eigenvalues 
EO/l of the "Hamiltonian" H(X), where indeces 0 and 1 correspond to two eigenvalues with respectively lower and 
larger real parts. There is one left and one right eigenvectors for each eigenvalue. 

Every vector, such as Ip(O») can be expressed as a sum of eigenvectors of H(X), for example, 

(7) 

where we define (al,8) al,8! + a2,82 to be a standard scalar product of two vectors. Substituting (7) into (6), for 
the time-independent Hamiltonian we find the steady state mgf, 

At time scales t » 1/k_!, 1/k2 , 1/(k!n s), I/(k_znp), the second term in (8) is exponentially suppressed in comparison 
to the first exponent, because we assumed that Re(El) > Re(EO), and the expression for the mgf simplifies, 

(8) 

(9) 

The role of the term -Eo(X)t in (9) has been studied previously6,23. The second part is new. It does not grow with 
time. This is the boundary term, that depends on the initial conditions and the averaging over the final states of the 
enzyme. One can safely disregard it in comparison to the first contribution after a long measurement time, however, 
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we note that its relative effect decays as lit, Le. not exponentially. We will keep the boundary term in the following 
discussion because it will play an important role to restore the gauge invariance of the noncyclic geometric phase. At 
first look, it leads to a contradictory result after setting t ....... 0, i.e at the initial moment of the evolution. In this limit, 
the boundary term does not disappear, namely 

St:::1nd In «(lluo(O))(uo(O)lp(O))) f O. (10) 

One can expect st;;'~nd to be zero, because at the initial moment the number of new product molecules is zero, so 
the mgf should be identically equal to unity. The resolution of this problem can be found if we notice that (14) was 
derived after a coarse graining process, so it should be valid only at time scales much larger than the time-scale of 
a single elementary chemical reaction event. Hence the boundary term is responsible for the initial fast relaxation 
to the stationary regime. For more insight, one can calculate the contribution of the boundary term to the average 
number of product molecules. Using the normalization condition PSE(O) 1 - PE(O) one can find 

(k2 + L2n'P)(k2 + Ll - KpE(O))c5N; = -i (OS~:::1nd) (11)K2ox x=o 

where K = Ll + k2 + kIn. + L2n'P' If one assumes that the initial probability PE(O) for the enzyme to be free is at 
the equilibrium value, i.e. PE(O) = (k2 + L1)1K, then Eq. (11) returns c5N; 0, as expected. One can also derive 
(11) by a standard master equation approach. Calculating the average number of new product molecules c5N'P(t), one 
would find that after sufficiently long time 

N ( ) - c5Wb klk2ns - k-lk_2n'P
c5 'Pt-.'P+ K t (12) 

The second term in Eq. (12) is the average number of product molecules produced during time t at a steady state. 
It is the standard prediction of the MM-theory, and the first term is a correction, which is nonzero when the initial 
state of enzymes is not the same as in a steady state. 

III. NONCYCLIC GEOMETRIC PHASE IN STOCHASTIC KINETICS. 

Assume now that there are several slowly time-dependent parameters in the model. We will group them in a vector 
>.. In case of MM-reaction, one can consider that such time-dependent parameters are concentrations of substrate 
and product (>. = (ns , n'P))' However, the discussion in this section is completely general. 

Following Ref. 6 we split the time interval into pieces at which kinetic rates can be considered almost constant, and 
insert the resolution of the identity operator (1 = luo(t)) (Uo(t) I+ IUl(t))(UI(t)1) in (6) after every such an interval. 
One can find then that the boundary term becomes Sbound = In ((lluo(t))(uo(O)lp(O))). Importantly, it is no longer 
gauge invariant, i.e. it is sensitive to the redefinition of eigenstates of the Hamiltonian (5) such as Iuo) ....... e¢(),) luo) 
and (uol --t (uole-¢(),). Therefore alone it has no direct physical meaning. It will be convenient to rewrite it as a sum 
of a gauge invariant part and a term that is an integral from a pure derivative, i.e. 

Sbound = St:::1nd + 1P . d>', P = A>, In(l/uo), (13) 

where c is the contour in the variable parameter space. By analogy with Ref. 6, and including the boundary contri­
bution (13), the moments generating function in the adiabatic limit can be written as the exponent of the sum of two 
terms 

(14) 

where 

Sqst(X) -[ £o(X, t')dt' + Si;;'.?nd (15) 

is the quasistationary part of the generating function averaged over time. This is the part that transfers into the 
steady state result (9) for fixed values of all parameters. Another term in (14) is 

Sgeom l[p(>.) - A(>.)]· d>', A(>.) = (uolo),uo). (16) 
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It is the geometric phase contribution responsible for additional reaction events. It has no analog in a strict steady 
state regime. Here, unlike Ref. 6 we do not assume a cyclic evolution of parameters, and therefore the term in the 
integral of the Berry connection A over the path in the parameter space (- fe A (A)· dA) should not be gauge invariant. 
However, one can easily check that the non-gauge-invariant contribution due to the boundary term exactly cancels 
the non-gauge-invariant part of the contour integral from A. 

Here we would like to mention that the definition (16) is similar but differs from the most often encountered 
definitions of the non-cyclic geometric phase in quantum mechanics. For example, Pati et al. 12 ,13 suggested that the 

noncyclic geometric phase is given by Igp = felA(A) - peA)] . dA, where P = -~ ((t~i~W~~(i)U). In the present 

context the meaning of this definition is unclear, while the geometric phase defined in (16) is derived directly from 
the exact representation of the generating function. 

Since P is a pure gauge, it is important only when looking at an evolution along an open path in the parameter 
space. If the parameter vector A returns to its initial value at the end of the evolution, the expression (16) becomes 
equivalent to the cyclic geometric phase defined in Ref. 6. 

IV. CORRECTIONS TO MICHAELIS-MENTEN LAW 

Consider now the average current in the Michaelis-Menten system under the condition of slow parameter evolution. 
The average number of new product molecules is (bNp(t)) = -i (8Z(X, t)/8X)x=o' Like the cumulants generating 
function, the average rate of P-molecule production (Jp) d(bNp(t))/dt can be written as a sum of quasistationary 
Jqst and the geometric phase Jgeom contributions 

(J) - J J _:!: (8Sgeom ) (oco(x,t)) (17)p - geom + qst - dt '" + 8 . 
uX x=o X x=o 

The geoemtric phase is time-dependent only via the time-dependence of the parameter vector A. In the case of MM­
reaction with time-dependent concentrations ns and np , the time derivative of the first term in (17) can be expressed 
as d/dt -t (dns /dt)8/8n. + (dns /dt)8/onp. Substituting the eigenvectors and eigenvalues of H(X,A) into (17) we 
then find 

(18) 

(19) 

One can recognize Jqst as the average current that would be in the steady state of the system at fixed values of 
parameters. In fact, (18) is what is known as the Michaelis-Menten law. Our results, however, show that this law 
is not exact when concentrations of substrate and product have their own time-dependent evolution. The geometric 
contribution is the first correction to the Michaelis-Menten kinetics that becomes nonzero when substrate/product 
concentrations change with time. In the most frequently found case when np "'" 0, the average rate of the coarse 
grained MM-reaction per one enzyme becomes 

(20) 

i.e. even in this case, the time-dependence of the substrate concentration introduces corrections to the reaction rate. 
It is possible to understand the result (19) with a simpler approach, however, which is hard to generalize to describe 

higher current cumulants and demonstrate geometric nature of the effect. The probability Pe of the enzyme to be 
unbound evolves according to the master equation 

(21) 

with a solution 

(22) 
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The lower limit in this integral is not important because we work in the adiabatic approximation, which means that 
the information about the initial state is qUickly erased. Then the exponent of the integral over T in (22) can be 
approximated by 

e- J:,[k, n.(r)+k_2np(r)+k2+L1]dr ~ e -[k,n s(t)+k_2n p(t)+k2+L,](t-ttl (1 + k1 ns(t) +2k_2np(t) (t - td2) . (23) 

Performing the remaining integration we find the expression for the probability of the enzyme to be unbound. 

(24) 

From (24), one can calculate the average reaction rate and check that indeed, it is the sum of the quasi-stationary 
and geometric components determined in (18) and (19), 

(25) 

V. MODEL OF CELL GROWTH. 

Generally, the geometric correction (19) should be much smaller than the main contribution (18) when the enzyme 
concentration is much smaller than that of substrates and products. However, this correction has very different 
properties, and thus can change a system behavior under special conditions. Similar situations are common in the 
solid state physics, where the Berry phase was found to be responsible for a number of important phenomena such 
as anomalous and spin Hall effects24,25. Hall currents in these systems are weak, however, they originate from a 
geometric phase that creates the force that breaks symmetries respected by other current sources. So ignoring such 
geometric phases would miss a number of effects, that play quite an important role in the modern solid state physics 
despite their relative weakness. 

In biochemistry, the quasi-steady state contribution to the kinetic rate can also be vanishing due to a symmetry 
relation, such as the detailed balance condition, which guaranties that all chemical fluxes at the thermodynamic 
equilibrium state are zero on average. Thus, if a system is slowly driven externally so that it always remains close to 
the thermodynamic equilibrium, the quasi-steady state approximation does not predict appearance of extra product 
molecules on average. Contrary to this, the geometric contribution does not have to remain zero. The following model 
of a reaction induced by a cell growth is a biochemical example of such a situation. 

Consider the MM-reaction with concentrations of substrate and product ns and n p , that we will treat determinis­
tically. Lets initially the system is at an equilibrium, 

(26) 

Next we assume that due to a cell growth, concentrations decrease with time by the same factor u(O)/u(t), 

(27) 

where u(t) is the cell volume. Since the ratio ns(t)/np(t) is not affected by this time dependent dilution, the quasi­
steady state reaction rate remains zero. 

Due to the living cell growth and divisions, the volume increases from u(O) to the formally infinite value. If 
concentrations always satisfy the condition (26), then the average number of new product molecules, produced by a 
single enzyme is completely determined by a geometric part of the kinetic rate (19), 

oN = roo dv [-(k -+- k 
p Jv(o) 2.-1

)"",(k""2-t--,-=k-::.!2",n",,"'I!,-,(,,",O"-'-',,,,",-=~;;;.<,=¥'-"-'-.:..:.:.:="-'..:.:-"-'.::.t.=;;.J..L::L 

(28) 

On one hand, this effect is very small. The results of (28) is that the average number of new product molecules per one 
enzyme is a fraction of unity, while we considered that there is a large number of already existing substrate and product 
molecules. On another hand, for this model, the geometric contribution qualitatively changes the result, predicting 
on average nonzero amount of new product molecules, which is not expected from the standard Michaelis-Menten 
kinetics. 
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The result (28) would be valid only if we can treat concentrations as parameters, changing only due to the volume 
growth. In a closed system chemical fluxes eventually should be compensated by the reverse fluxes due to the violation 
of the steady state condition (26). Thus the geometric flux should be possible to detect by measuring the deviation 
of the ratio n./np from the one for a nongrowing volume. 

Considering intermediate stages of the cell expansion, the number of newly produced molecules depends only on 
the initial and final volumes, i.e. the average number of produced proteins depends on the stage of the evolution but 
not on its rate, which could be utilized by living organisms in order to control some processes depending on the stage 
of cell's life cycle. Unfortunately effect is very small to say that it can definitely be used by living cells. However, it 
should be interesting to explore its detectability in vivo and employ it in an artificial biochemical circuit design. 

VI. DISCUSSION. 

We generalized the notion of the geometric phase in evolution of the moments generating function to the non-cyclic 
processes. For this, the contour integral from the Berry connection should be supplemented by an extra term, which 
restores the gauge invariance of the geometric contribution to the cumulants generating function. This term originates 
from the boundary contribution responsible for proper description of the initial and final moments of the measurement. 

In a case of nonequilibrium initial conditions the boundary terms are responsible for the initial fast relaxation to 
the steady state, i.e. although our approach is adiabatic, it also rigorously captures initial fast relaxation effects. 
Our non-cyclic geometric phase is different from the ones often encountered in quantum mechanical applications. Its 
uniqueness follows from the existence of a special gauge that should be imposed in order to describe stochastic kinetics 
correctly. 

We showed that our phase is responsible for nonadiabatic corrections to the standard Michaelis-Menten approxima­
tion. Such corrections are usually small in comparison to the quasi-steady state prediction, however, they explicitly 
break time-reversal symmetries, and therefore can produce a qualitatively different result when a chemical system is 
driven closely to a thermodynamic equilibrium, as in the model of a cell growth that we studied in this work. 

It is by now unclear whether this effect can be utilized by living cells, considering its smallness. However, we note 
that we studied only the simplest its realization. The introduced noncyclic geometric phase is completely general and 
should appear practically in any interacting chemical system, driven by external fields. Other interesting realizations 
can follow, for example, from the theory of molecular motors, where geometric effects play an important role lO . 

It would also be very interesting to find out whether the noncyclic geometric phase is related to the existence of 
fluctuation theorems26 . Indeed, instead of chemical fluxes, it is possible to use the same formalism to count work 
or dissipated energy in a driven stochastic system. The absence of anholonomies, such as cyclic geometric phases 
may indicate the existence of fluctuation relations, because then the counting statistics depends only on initial and 
final values of external parameters, at least in the adiabatic limit. Generalizations of our approach to a nonadiabatic 
evolution should also be possible, since similar generalizations Simultaneously to a noncyclic and nonadiabatic evolution 
in quantum mechanics have been developed previously27. 
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