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ABSTRACT 
 

The binary, ternary and multicomponent intermetallic compounds of rare-earth metals 

(RE) with group 14 elements (Tt) at the RE5Tt4 stoichiometry have been known for over 30 

years, but only in the past decade have these materials become a gold mine for solid-state 

chemistry, materials science and condensed matter physics. It all started with the discovery 

of a giant magnetocaloric effect in Gd5Si2Ge2, along with other extraordinary magnetic 

properties, such as a colossal magnetostriction and giant magnetoresistance. The 

distinctiveness of this series is in the remarkable flexibility of the chemical bonding between 

well-defined, subnanometer-thick slabs and the resultant magnetic, transport, and 

thermodynamic properties of these materials. This can be controlled by varying either or both 

RE and Tt elements, including mixed rare-earth elements on the RE sites and different group 

14 (or T = group 13 or 15) elements occupying the Tt sites. In addition to chemical means, 

the interslab interactions are also tunable by temperature, pressure, and magnetic field. Thus, 

this system provides a splendid ''playground'' to investigate the interrelationships among 

composition, structure, physical properties, and chemical bonding. The work presented in 

this dissertation involving RE5T4 materials has resulted in the successful synthesis, 

characterization, property measurements, and theoretical analyses of various new 

intermetallic compounds. The results provide significant insight into the fundamental 

magnetic and structural behavior of these materials and help us better understand the 

complex link between a compound’s composition, its observed structure, and its properties.  
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Chapter 1 

 

Introduction and Motivation 
 

1.1. Introduction 
One of the primary objectives for solid state chemists is to understand the complex 

link between a compound’s composition, its observed structure and its properties. For such 

understanding, intermetallic compounds present a rich and diverse resource to study the 

relationships among chemical compositions, atomic structure, electronic structure, and 

physical properties. The complexity of this family of compounds is immense and is readily 

apparent from the Pearson’s Handbook of Intermetallic Phases. In general, these compounds 

consist of two or more metallic or metalloid elements and often (though not necessary) the 

corresponding crystal structures are distinct from those of the component elements. They 

typically have small heats of formation (ca. −50 to −10 kJ / mol) when compared to salts and 

polymeric compounds (ca. −500 to −1000 kJ / mol), but for a single phase they frequently 

show finite ranges in composition, called homogeneity widths.1 Regarding their structures, 

these compounds are formed as per the thermodynamic stability of certain types of crystal 

structures. The various metal constituents are usually ordered in different sublattices, each 

with its own distinct population of atoms. In this way, elements of differing sizes or 

electronegativities can combine to give new compounds. 

The study of rare-earth intermetallic compounds represents an important part of the 

more general problem of metallic phases. As is well known, the rare-earths, due to their 

particular electronic structure, show a regular change of their properties, especially of atomic 

dimensions and electronegativities. Moreover, some of them exhibit different valence states 

in compounds with metallic character, which gives rise to interesting structural, electronic 

and magnetic properties.  

 Thus, an ideal starting point for this dissertation would be the basic knowledge of the 

various room temperature crystal structures and the high-temperature phases that exist for 

pure rare-earth elements. 
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1.2. Rare-Earth Metals 
1.2.1. Crystal Structure, Lattice Constants, Atomic Volumes and Radii 

 The crystal structures, lattice parameters, atomic volumes, densities and metallic radii 

for pure rare-earth metals at room temperature (24°C) or below are presented in Table 1.1. 

 

Table 1.1. Crystal structures and related properties of rare-earth metals at 24°C or below.2

 

Lattice Constants (Å) Rare 
Earth 
Metal 

Crystal 
Structurea

a0 b0 c0

Atomic 
Volume  

(cm3 / mol)

Density  
(g / cm3) 

Metallic 
radius  

CN = 12 
(Å) 

        
αLa dhcp 3.7740 − 12.171 22.602 6.146 1.8791 
αCeb fcc 4.85c − − 28.5 8.16 1.71 
βCeb dhcp 3.6810 − 11.847 20.947 6.689 1.8321 
γCe fcc 5.1610 − − 20.696 6.770 1.8247 
αPr dhcp 3.6721 − 11.8326 20.803 6.773 1.8279 
αNd dhcp 3.6582 − 11.7966 20.583 7.008 1.8214 
αPm dhcp 3.65 − 11.65 20.24 7.264 1.811 
αSm rhombd 3.6290 − 26.207 20.000 7.520 1.8041 
Eu bcc 4.5827 − − 28.979 5.244 2.0418 
αGd hcp 3.6336 − 5.7810 19.903 7.901 1.8013 
α'Tbe ortho 3.605 6.244 5.706 19.34 8.219 1.784 
αTb hcp 3.6055 − 5.6966 19.310 8.230 1.7833 
α'Dyf ortho 3.595 6.184 5.678 19.00 8.551 1.775 
αDy hcp 3.5915 − 5.6501 19.004 8.551 1.7740 
Ho hcp 3.5778 − 5.6178 18.752 8.795 1.7661 
Er hcp 3.5592 − 5.5850 18.449 9.066 1.7566 
Tm hcp 3.5375 − 5.5540 18.124 9.321 1.7462 
αYbg hcp 3.8799 − 6.3859 25.067 6.903 1.9451 
βYb fcc 5.4848 − − 24.841 6.966 1.9392 
Lu hcp 3.5052 − 5.5494 17.779 9.841 1.7349 
αSc hcp 3.3088 − 5.2680 15.039 2.989 1.6406 
αY hcp 3.6482 − 5.7318 19.893 4.469 1.8012 

 

adhcp = double-c hexagonal close-packed; fcc = face-centered cubic; bcc = body-centered 

cubic; hcp = hexagonal close-packed. bAfter Koskenmaki and Gschneidner (1978). 
cAt 77 K (−196°C). dRhomobohedral is the primitive cell. Lattice parameters are for the 

nonprimitive hexagonal cell. eAt 220 K (−53°C), after Darnell (1963). 
fAt 86 K (−187°C), after Darnell and Moore (1963). gAt 23°C. 
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1.2.2. Phase Transition and Melting Temperatures 

Phase transformations and melting points for each rare-earth metals are presented in 

Table 1.2. All but five of the rare-earth elements exhibit one or more high temperature phase 

transitions.  

 

Table 1.2. Transition temperatures, phases and melting point of rare-earth metals.2

 

Transition I 
(α−β)a

Transition II 
(γ−δ)a

Rare 
Earth 
Metal T (°C) Phases T (K) Phases 

Melting Point  
(°C) 

      
Lab 310 dhcp → fcc 865 fcc  bcc ←

→ 918 

Cec 139 dhcp → fcc (β−γ) 726 fcc  bcc (γ−δ) ←
→ 798 

Pr 795 dhcp  bcc ←
→ − − 931 

Nd 863 dhcp  bcc ←
→ − − 1021 

Pm 890 dhcp  bcc ←
→ − − 1042 

Smd 734 rhomb → hcp 922 hcp  bcc ←
→ 1074 

Eu − − − − 822 
Gd 1235 hcp ←→  bcc − − 1313 

Tb 1289 hcp ←→  bcc − − 1356 

Dy 1381 hcp ←→  bcc − − 1412 
Ho − − − − 1474 
Er − − − − 1529 
Tm − − − − 1545 
Ybe 7 hcp ←→  fcc 795 fcc  bcc ←

→ 819 
Lu − − − − 1663 
Sc 1337 hcp ←→  bcc − − 1541 

Y 1478 hcp ←→  bcc − − 1522 
 

aFor all the transformations listed, unless otherwise noted. 
bOn cooling, fcc → dhcp (β → α), 260°C. 
cOn cooling, fcc → dhcp (γ → β), −16°C. 
dOn cooling, hcp → rhomb (β → α), 727°C.;  
eOn cooling, fcc → hcp (β → α), −13°C. 
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1.3. Intra Rare-Earth Phase Diagrams 
In this dissertation, we have focused some of our studies on mixed rare-earth systems. 

Thus, it is imperative to include as a part of this introduction, the phase diagrams for the intra 

rare-earth binary alloys involved in this thesis. Neighboring rare-earth elements are known to 

exhibit similar chemical and physical properties and this is due to the fact that as the nuclear 

charge increases with increasing atomic number, the electrons occupy the inner 4f levels. 

This fact has a pertinent effect on the intra rare-earth binary alloys, which means that, if 

neighboring or near neighboring elements are alloyed, then they behave as ideal alloys at 

high temperatures. Thus, there is no measurable difference in the liquidus and solidus 

temperature. Moreover, the liquidus-solidus line between the two end-members is a straight 

line connecting the respective melting points of the pure metals. This ideal liquid and solid 

solution behavior only holds if the two components are trivalent and have atomic numbers 

within ca. ±4 of each other. In contrast, if the atomic numbers of the two rare-earth metals 

differ by more than ±4 or for binary alloys involving Y or Sc, then a deviation from the 

above ideal behavior is expected. Some of the phase diagrams important for this study are: (i) 

La-Gd, (ii) Nd-Er, (iii) Gd-Lu, and, (iv) Gd-Y and hence are discussed below. 

 

1.3.1. Lanthanum-Gadolinium (La-Gd) 

 An intermediate phase which exists for this alloy system, adopts the same crystal 

structure as Sm metal. It is known as the ''δ phase'' and crystallizes as a primitive 

rhombohedral structure but is generally referred to in terms of its nonprimitive hexagonal 

axis. The c-axis for this nonprimitive hexagonal unit cell is 4.5 times that of the normal 

hexagonal structure. It exhibits a stacking sequence of ⋅⋅⋅ABABCBCAC⋅ABABCBCAC⋅⋅⋅, etc. 

In 1962, Spedding et al.3 discovered the existence of this Sm-type crystal structure and is 

typically observed for an alloy system containing a light lanthanide (La, Ce, Pr or Nd) and a 

heavy lanthanide (Gd-Tm, Lu) or Y. They first proposed a phase diagram for the La-Gd 

system which indicated that this ''δ phase'' is formed by a peritectoidal reaction between αLa 

and αGd. But later on, based on the work of Lundin4 and Koch,5 it was established (Figure 

1.1) that this ''δ phase'' forms congruently from αLa(dhcp)-αGd(hcp) solid solution. This 
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continuous change from dhcp to hcp can be accounted for through a stacking-fault 

mechanism.2

 

 
Figure 1.1. Phase Diagram of the lanthanum-gadolinium system.6  

 

1.3.2. Neodymium-Erbium (Nd-Er) 

 In 1972, Kobzenko et al. studied the phase relationships in the neodymium-erbium 

system using X-ray diffraction, thermal analysis, and metallographic observations.7 The 

phase diagram as shown in Figure 1.2 also reveals the existence of the Sm-type ''δ phase''. 

Kobzenko et al. also concluded that this structure was formed by a peritectoid reaction during 

the cooling of two phases based on the solid solutions of αNd (dhcp) and Er (hcp). But as 

was the case with La-Gd system, based on the work of Lundin,4 this phase (see Figure 1.2) is 

formed by a congruent transformation. 
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Figure 1.2. Phase Diagram of the neodymium-erbium system.6

 

1.3.3. Gadolinium-Lutetium (Gd-Lu) 

 In 1962, Smidt et al.8 studied the phase relationships in the gadolinium-lutetium 

system. His studies established the presence of a complete solid solubility for the hcp phases 

(αGd and Lu) for this system. Due to the absence of any high temperature bcc phase for Lu, 

the βGd phase was estimated to terminate at ca. 40 at% Lu.2 The phase diagram is shown in 

Figure 1.3. 

 

1.3.4. Gadolinium-Yttrium (Gd-Y) 

 In 1962, Spedding et al.3 examined the phase relationships in the gadolinium-yttrium 

system. The phase diagram for this system is shown in Figure 1.4 and reveals that there is 

complete solid solubility for both the room temperature (hcp) and high temperature (bcc) 

forms.  
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Figure 1.3. Phase Diagram of the gadolinium-lutetium system.6 

 

 
Figure 1.4. Phase Diagram of the gadolinium-yttrium system.6  
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1.4. Motivation to Study RE5T4 Materials 
Since the last quarter of the 20th century there has been a significant increase in 

optimism that environmentally friendly, solid-state magnetic refrigeration may be a viable 

option to replace today’s common gas compression/expansion technology. One of the 

momentous drawbacks for today’s technologies, which achieve cooling efficiencies 

approaching 40% of the Carnot limit,9 is its use of ozone depleting chemicals (ODCs) like 

hydrochlorofluorocarbons (HCFCs). Two of the most environmentally benign cooling 

techniques are thermoelectric and thermomagnetic cooling. The former technique utilizes the 

Peltier effect to create a heat difference through an applied potential across the ends of two 

dissimilar conductors. It finds its use in small volumes, as in integrated circuits. However, it 

achieves relatively low efficiency of 10% of the Carnot limit10 and does not seem well suited 

for large scale cooling/refrigeration. On the other hand, magnetic refrigeration, or 

thermomagnetic cooling, which utilizes the magnetocaloric effect, achieves efficiency of 

60% of the Carnot limit and is one of the most ecologically clean cooling techniques over a 

wide range of temperatures.11 It can generate much savings in energy consumption and costs 

as it has the potential to achieve higher efficiencies. One of the attractive classes of materials 

that exhibit extraordinary magnetic responses and have the potential for applications in 

magnetic refrigeration is the RE5T4 (RE = rare-earth element; T = Si, Ge, Ga, Sn or their 

various combinations) materials. 

 

1.4.1. Magnetocaloric Effect (MCE) 

 Magnetic refrigeration materials rely on the use of the magneto-thermodynamic 

phenomenon known as the MagnetoCaloric Effect (MCE), which is an intrinsic property of 

any magnetic material. This is characterized by a temperature change when a magnetic 

material is subjected to an adiabatic change of an external magnetic field on the material.12 

The effect was originally discovered by Warburg in iron in 1851.13 In the late 1920s Debye14 

and Giauque15 explained independently the origin of MCE. They also suggested the first 

practical use of the MCE: to reach lower temperatures than that of liquid helium by adiabatic 

demagnetization. 
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 The physical origin of the MCE is a consequence of the coupling of the magnetic 

sublattice of a material with the magnetic field, which changes the magnetic part of the 

entropy of a solid. The effect as illustrated in Figure 1.5 closely resembles processes that 

occur in a gas in response to changing pressure. The isothermal compression of a gas 

decreases the positional disorder and, therefore, reduces the corresponding value of the 

entropy. This is analogous to the isothermal magnetization of a paramagnet (near absolute 

zero) or a ferromagnet material (near TC) in which the magnetic part of the total entropy 

decrease as an external magnetic field is applied. In the reverse process, isothermal 

demagnetization restores the zero-field magnetic entropy of a system which is similar to 

isothermal expansion of a gas. The isothermal magnetic entropy change, ),( HTSm ∆=∆ , an 

extensive parameter representing the MCE, can quantify the above transformations in a solid. 

Now, when a gas undergoes adiabatic expansion (compression), its total entropy remains 

constant but the velocity of its constituent molecules decrease (increase) thereby decreasing 

(increasing) its temperature. In the same manner, adiabatically demagnetizing (magnetizing) 

a material decreases (increases) both its lattice vibrations and temperature. An intensive 

parameter, the adiabatic temperature change, ),( HSTad ∆=∆ , provides a measure of the 

above transformation and is also used to express the MCE. The above two parameters can be 

determined either directly by thermometry [measuring )( HTad ∆=∆ ] or indirectly by heat 

capacity measurements at different applied magnetic fields, or by different magnetization 

isotherms at different applied magnetic fields. 
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a. 

 

b. 

 
Figure 1.5. A schematic diagram showing two ways to characterize the magnetocaloric 

effect (MCE): (a) Isothermal entropy change, (b) Adiabatic temperature change. 

 

In 1997 a giant MCE in the ternary compound, Gd5Si2Ge2, was discovered by 

Pecharsky and Gschneidner showing Curie temperatures near room temperature.16 According 

to both adiabatic temperature changes and isothermal magnetic entropy changes, Gd5Si2Ge2 

shows extraordinary behavior compared to elemental Gd. This discovery in the 

Gd5(SixGe1−x)4 system triggered a strong interest in the rare earth-tetrelide systems at 5:4 

stoichiometry. From the perspective of a solid-state chemist the RE5T4 systems are a splendid 

"playground" to investigate structure-bonding-property relationships thereby providing 

significant insight into the fundamental magnetic and structural behavior of these systems 

which is important in understanding the higher values of MCE obtained in some of these 

systems. Since this discovery, the MCE has been studied for a number of different 

ferromagnetic phases showing Curie temperatures near room temperature.17-19 A list of 
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materials with important MCE characteristics has been tabulated in Table 1.3. In all cases 

some form of structural change occurs in addition to ferromagnetic-paramagnetic transition. 

 

Table 1.3. Summary of important MCE characteristics for several magnetic refrigeration 

materials with near room temperature TC.1

 

Compound TC (K) 
∆Tad (K); 

(∆H = 2T) 

−∆Sm (J / mol K); 

(∆H = 2T) 

Gd5Si2Ge2 276 7.2 15.8 

La(Fe0.89Si0.11)13H1.3 291 7.0 19.8 

Gd 294 5.8 0.8 

MnFeP0.45As0.55 302 3.0 2.5 

Fe0.49Rh0.51 316 8.4 1.8 

MnAs 318 4.9 4.2 

Ni54.8Mn20.2Ga25 351 1.0 0.9 

 

1.4.2. The Gd5(SixGe1−x)4 System 

 This series was first reported by Holtzberg and coworkers at IBM in the late 1960s.20 

This family of intermetallic compounds shows interesting variations in crystal lattices and 

magnetic properties with changes in composition. The crystal structures of Gd5(SixGe1−x)4 

and many other RE5T4  materials are built from slabs of two eclipsed 32434 nets of RE atoms. 

The arrangements of the atoms in the slabs and, in turn, the structural and magnetic 

properties depend on the presence and absence of interslab main group-main group chemical 

bonds. Three room temperature crystal structures exist for the Gd5(SixGe1−x)4 series. The Si-

rich compounds (x ≥ 0.56) adopt the orthorhombic, Gd5Si4-type [O(I)] crystal structure21 and 

features interslab Si(Ge)-Si(Ge) bonds (distances ca. 2.4-2.6 Å); the Ge-rich compounds (x ≤ 

0.3) adopt the orthorhombic, Sm5Ge4-type [O(II)]20 and is characterized by the absence of 

any interslab Si(Ge)-Si(Ge) bonds (distances exceeds 3.4 Å). The materials in the 

intermediate composition range (0.40 ≤ x ≤ 0.503) crystallize in the monoclinic Gd5Si2Ge2-
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type (M) crystal structure22 and has one pair of slabs connected by Si(Ge)–Si(Ge) bonds; 

however, the other pair do not show interslab Si(Ge) –Si(Ge) bonds. 

 Transformations between different crystal structures can be controlled by changing 

chemical composition, temperature, magnetic field, pressure and also by altering the valence 

electron concentration.23-25 In order to explore the dependence of crystal structures on the 

Si/Ge ratio and also to probe the effect of chemical substitution on the structure, bonding and 

properties of these materials along with other RE5T4 materials, we have focused on these 

following projects. A short synopsis of each is given below. 

 

1.5. Dissertation Organization 
 This dissertation has been organized in a format composed of original published 

papers or in a potentially publishable form. References cited within each chapter have been 

placed immediately after the chapter. 

 

Chapter 2 covers the general experimental techniques used in this dissertation. It contains 

relevant information regarding the various equipments used along with an overview of the 

different analytical procedures used for characterizing the structures and properties.  

 

Chapter 3 is an article titled ''Gd5−xYxTt4 (Tt = Si or Ge): Effect of Metal Substitution on 

Structure, Bonding and Magnetism'', published in the Journal of the American Chemical 

Society. It contains the results of X-ray diffraction, magnetic susceptibility and theoretical 

calculations on two new series of rare-earth tetrelides, Gd5−xYxTt4 (Tt = Si, Ge), which are 

related to magnetic refrigeration materials. 

 

Chapter 4 is an article titled ''On the Crystal Structure, Metal Atom Site Preferences and 

Magnetic Properties of Nd5−xErxTt4 (Tt = Si or Ge)'' and is submitted for review in Zeitschrift 

für Anorganische und Allegemeine Chemie. It contains a crystallographic study of the Nd/Er 

site preferences in the Nd5−xErxTt4 (Tt = Si, Ge) series. 
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Chapter 5 is a paper titled ''On the Distribution of Tetrelide Atoms (Si, Ge) in 

Gd5(SixGe1−x)4'', published in the Journal of Solid State Chemistry. It presents a 

crystallographic study of the Si/Ge site preferences in the Si-rich regime of Gd5(SixGe1−x)4 

and a crystal chemical analysis of these site preferences for the entire range. 

 

Chapter 6 is a manuscript titled ''Structural, Magnetic, and Thermal Characteristics of the 

Phase Transitions in Gd5GaxGe4−x Magnetocaloric Materials'', and is presented in a 

publishable format. It presents the temperature-dependent, single crystal and powder X-ray 

diffraction studies along with magnetization and heat capacity measurements on two phases 

of the Gd5GaxGe4−x system. 

 

Chapter 7 presents the conclusions that could be drawn from these studies and suggestions 

for future work. 
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Chapter 2 

 

Details of Synthesis, Characterization and  

Theoretical Calculations 
 

2.1. Synthesis 
2.1.1. Starting Materials 

All starting materials were obtained from commercial sources. Table 2.1 lists their 

sources and some physical properties. The elements were used as received.  

 

Table 2.1. Starting materials used in the syntheses.  

 

 

Element Purity (wt. %) Source Melting point (K) Boiling point (K)

Nd 99.9 MPC, Ames Lab 1294 3347 

Gd 99.9 MPC, Ames Lab 1586 3545 

Tb 99.9 MPC, Ames Lab 1629 3500 

Dy 99.9 MPC, Ames Lab 1685 2840 

Ho 99.9 MPC, Ames Lab 1747 2968 

Er 99.9 MPC, Ames Lab 1802 3140 

Yb 99.9 MPC, Ames Lab 1092 1469 

Zn 99.99 Fischer Scientific 692.73 1180 

Ga 99.99 Aldrich 302.92 2478 

Si 99.999 Alfa Aesar 2630 1683 

Ge 99.999 Alfa Aesar 1211.5 3107 

Sn 99.999 Aldrich 505.12 2876 

Sb 99.99 Meldform Metals 903.91 1860 
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2.1.2. Reaction Containers 

 The highly reactive nature of the studied materials with silica at high temperature 

required the use of tantalum as a container material for reactions and heat-treatment 

processes. Prior to use, ⅜" Ta tubing was cut to size, usually to 1½"-long pieces, and were 

cleaned with an acidic mixture containing 55% concentrated sulfuric, 25% concentrated 

nitric and 20% concentrated hydrofluoric acid by volume. After thorough rinsing with 

deionized water and drying in oven, each tube was crimped at one end and was sealed under 

an argon atmosphere in an arc welder.1 The reactants (or as-cast samples) were then loaded 

into the prepared tantalum tubes, either inside a dry-box or outside in air depending on the 

stability of the starting materials (or as-cast samples). The tubes were crimped shut and were 

sealed by arc welding as previously described, only if they were prepared inside the dry-box. 

The tubes were further sealed inside an evacuated silica jacket using a natural gas-oxygen 

mixture fueled torch. The silica jacket is used to protect the tantalum tubing from oxidation 

and breakdown at high temperatures. Before sealing, the silica jacket was heated with a 

natural gas torch to remove any moisture from the walls of the container.  

 Only reactions that were prepared using the induction furnace and as-cast materials 

that were heat-treated using a high-temperature furnace required the use of tantalum 

containers. 

 

2.1.3. Synthetic Equipment 

 Two types of synthetic equipment were used for chemical reaction of the starting 

materials: an arc-melter and an induction furnace. High-temperature furnaces were used for 

heat-treatment of the as-cast materials. 

 2.1.3.1. Arc-melter. A majority of the intermetallic materials investigated in this 

thesis were prepared in an arc-melter. A Miller Maxstar 91 arc-melter, connected to the 

glovebox through a port was used to melt stoichiometric mixtures of the high purity elements 

on a water-cooled copper hearth. The arc-melter was loaded with the copper hearth and then 

evacuated and re-filled with argon three times before use. Under a flowing argon atmosphere, 

a zirconium getter was first melted and then the sample materials were arc-melted using a 

tungsten electrode, for approximately 20-30 seconds at 35-40 A. The resulting sample button 
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was remelted six times and turned over after each melting to ensure homogeneity. After 

cooling, the reactions were then moved back to the dry box. 

 2.1.3.2. Induction Furnace. Reactions involving elements with high vapor pressure 

were carried out using a high frequency induction furnace under a dynamic vacuum in the 

temperature range 1000°-1800°C with a holding time of 10-30 minutes. Prior to induction 

melting, stoichiometric mixtures of pure components were loaded into tantalum tubes and 

then the tubes were sealed under argon pressure by arc welding. The tubes were then set 

upright into a tantalum crucible positioned at the center of the induction furnace. The furnace 

was then evacuated using a combination of Welch Duoseal vacuum pump and a diffusion 

pump. A thermocouple was set close to the sample tube to monitor the temperature. The 

above procedure was repeated one more time with the sample tube turned upside down to 

ensure homogeneity. 

 2.1.3.3. High-temperature Furnace. To improve the overall crystallinity of the 

samples and also to investigate order-disorder in certain structures, the samples prepared 

using the arc-melter and the induction furnace were heat-treated in typical high-temperature 

furnaces equipped with programmable temperature controllers. The isotherm temperature and 

the length of the reaction time varied depending on requirements for different samples. 

Existing phase diagrams were used as a guide in determining the heat-treatment conditions. 

  

2.2. Phase Analyses and Data Processing 
2.2.1. Powder X-ray Diffraction 

2.2.1.1. Room Temperature Powder X-ray Diffraction. Powder X-ray diffraction was 

employed as the first step to characterize the products. Powder patterns were obtained with 

an Enraf-Nonius Guinier camera using monochromatized Cu Kα radiation (λ = 1.54187 Å) at 

ambient (ca. 298 ± 1K) temperatures. The samples were ground in an agate mortar and 

pestle, and were then homogeneously dispersed over a Mylar film coated with a thin layer of 

petroleum jelly. All the diffractograms were recorded between 5° ≤ 2θ ≤ 100° with a step 

size set at 0.005° and the exposure time for the samples were in the range between 30-120 

minutes. The homogeneity and purity of all phases were identified by comparison of sample 
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powder patterns to those calculated from single-crystal data using the POWDER CELL 

software.2

2.2.1.2. Variable Temperature Powder X-ray Diffraction. Powder X-ray diffraction 

patterns in the temperature range 4-700 K were collected on a Rigaku TTRAX rotating anode 

diffractometer using monochromatized Mo Kα radiation (λ= 0.71075 Å) and equipped with 

either a sample heater in an evacuated chamber or a helium-flow cryostat. The scattered 

intensity was measured as a function of Bragg angle with a scintillation detector, in a step 

scan mode for 2θ ranging from 9° to 60° and a stepsize of 0.01° with the intensity measured 

for 2 second for each point. The sample temperature during low- and high-temperature 

diffraction experiments was stable within ±1K with respect to the value set for an 

experiment. All diffraction patterns collected at various temperatures were analyzed by a 

full-profile Rietveld refinement using LHPM RIETICA software.3   

The samples for low temperature powder diffraction studies were prepared in the 

following manner: a fine powder of the samples with particle size less than 25 µm were 

obtained by grinding the ingot with an agate mortar and pestle and passing through a 

stainless steel sieve. The grounded powder was then mounted on a copper sample holder, 

mixed with a diluted GE varnish, air dried, and baked at 120°C for 1 hour to solidify the 

specimen, after which a flat surface was created by using a 280-grit sandpaper, thus 

minimizing preferred orientation near the surface and reducing surface roughness. 

The samples for high temperature powder diffraction studies were prepared in a 

similar manner as above, without the use of GE varnish. The grounded powder was mounted 

on a copper sample holder and the sample was smoothed using a stainless steel razor blade. 

 

2.2.2. Single Crystal X-ray Diffraction 

Single crystal X-ray diffraction was used for the characterization of unknown 

structures and confirmation of structural aspects for known structures, aspects which include 

interatomic distances and atomic distributions.  

 2.2.2.1. Room-Temperature Single Crystal X-ray Diffraction Studies. Single crystals 

suitable for structure determination were selected from a crushed glittering product and were 

then mounted on the tips of glass fibers, which were then fixed onto 0.9 mm brass tubes 
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using wax. The diffraction intensities of crystals were collected on a Bruker Smart Apex 

CCD diffractometer with monochromatized Mo Kα radiation (λ = 0.71073 Å). Data were 

collected over a full sphere of reciprocal space by taking three sets of 606 frames with 0.3° 

scans in ω and an exposure time of 10 seconds per frame. The range of 2θ extended from 4° 

to 57°. The SMART4 software was used for data acquisition. Intensities were extracted and 

then corrected for Lorentz and polarization effects by the SAINT4 program. Empirical 

absorption corrections were accomplished with program SADABS,4 which is based on 

modeling a transmission surface by spherical harmonics employing equivalent reflections 

with I/σ > 3. Structure solutions and refinements by full-matrix least squares fits on F2 were 

performed with the SHELXTL4 package of crystallographic programs. The refinement was 

based on F0 using reflections with I > 2(I)σ. Program XPREP4 was used for unit cell 

reductions and determinations of possible space groups according to the systematic absences 

and the internal R-values of the data based on appropriate equivalent reflections. Initial 

structural models were derived from direct methods calculations using SHELXS4 or from the 

positional parameters of an isostructural compound. Full matrix least squares refinement of 

the crystal structures were employed using program SHELXL.4,5 Atomic distances, angles 

and structural figures were obtained by using DIAMOND6 and ATOMS7 software. 

 2.2.2.2. Variable Temperature Single Crystal X-ray Diffraction. Variable temperature 

X-ray diffraction data in the temperature range 80-700 K were collected on a Bruker Smart 

Apex CCD diffractometer equipped with either a Nonius crystal heater (argon was used as 

the flow gas) or with an Oxford Cryosystems cooler using liquid nitrogen. During the high- 

and low-temperature diffraction experiments, the temperature was stable within ±1K with 

respect to the value set for an experiment.  

For high-temperature data collection, a special crystal mounting procedure was used, 

which was developed in our research group, to prevent crystal decomposition at high 

temperature.8 Neither glue nor cement was used to mount the crystals. Instead, first a suitable 

single crystal, for which a prior room temperature data set was collected, is placed at the 

bottom of a 0.2 mm capillary and is then fixed in place by a 0.1 mm capillary (all capillaries 

had wall thicknesses of 0.01 mm, glass # 50, Hampton Research). Freshly prepared Gd 

filings, acting as a getter, were put on the top of the inner 0.1 mm capillary and fixed by 
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another 0.1 mm capillary (Figure 2.1). The whole arrangement was evacuated while it was 

taken inside a drybox, where it was sealed with Apiezon-N grease. Then it was taken out of 

the drybox and the outer 0.2 mm capillary was flame-sealed using a microtorch and then 

mounted in 0.9 mm brass tubes using temperature resistant cement. Prior to a high 

temperature data collection, the center section (position of Gd filings) was heated to ca. 

350°C for 3 seconds to absorb any remaining adventitious nitrogen and oxygen because 

crystal mounting was performed in air. 

 

Single crystal  

 Gd filings 
 

Figure 2.1. Mounting of a single crystal for high-temperature data collection 

 

For low-temperature data collections, no special crystal mounting procedure was 

used. They were mounted in the same manner as the crystals on which room-temperature 

data were collected. 

 

2.3. Physical Properties 
2.3.1. Magnetic Susceptibility 

Magnetic susceptibility measurements were carried out using a Superconducting 

QUantum Interference Device magnetometer MPMS-XL manufactured by Quantum Design, 

Inc. on single and polycrystalline samples. The magnetic susceptibility of zero-magnetic-

field cooled samples were measured as a function of temperature from 6 to 300 K and 

isothermal, field dependent magnetization data were collected in dc magnetic fields varying 

from 0 to 5 T. About 10-15 mg of the sample was used for each measurement. 

 The molar susceptibilities, molχ , of the samples were calculated as follows: 

mH
mM mol

mol ⋅
⋅

=χ cm3 mol-1

where:  M = magnetic moment [emu]  m = weight of the sample [g] 

 H = magnetic field [Oe]  mmol = Molar weight of the sample [g mol-1] 
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The molar susceptibility molχ  is fitted to a Curie-Weiss law which is given by: 

)( w
mol T

C
Θ−

=χ  

where: C = Curie constant   Θw = Curie-Weiss temperature 

 

The Curie constant can be written in terms of the effective magnetic moment, µeff, as: 

B

eff

k
N

C
3

2µ⋅
=  

where: N = no. of ions of magnetic elements  kB = Boltzman constant 

 

Generally, the susceptibility is the sum of different contributions: 
dia
mol

TIP
mol

para
molmol χχχχ ++=  

molχ  = molar susceptibility 

para
molχ  = T-dependent paramagnetic contribution 

TIP
molχ  = T-independent paramagnetic contribution (Pauli paramagnetism) 

dia
molχ  = T-dependent diamagnetic contribution 

 

Using the above relation, all data were corrected for T-independent paramagnetic and T-

dependent diamagnetic contributions. 

 

2.3.2. Heat Capacity 

Heat capacity measurements were carried out using a semiadiabatic heat-pulse 

calorimeter9 between ca. 5 and 350 K in dc magnetic fields ranging from 0 to 10 T. During a 

heat pulse experiment the exact thermodynamic definition of the heat capacity (CP), given by 

the following equation: 

P
P T

HC ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=  

is modified, in practice, to: 
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P
P T

QC ⎟
⎠
⎞

⎜
⎝
⎛
∆
∆

≅  

where H = enthalpy; T = absolute temperature; ∆Q = amount of heat introduced into the 

calorimeter during a heat pulse; ∆T = resulting temperature rise of the calorimeter, P = an 

index which indicates that the measurements were performed at a constant pressure. 

The sample ingot was cut in the form of a rectangular block using a wire-saw. It was 

then mounted on a clamp-like sample holder, in which the sample is held tightly by a copper 

screw. A measured amount of a 50:50 (by volume) mixture of Apiezon-N and fine silver 

powder is placed between the sample and the main holder plate to improve the thermal 

connection. The whole setup is evacuated by a high speed vacuum pumping system which 

attains a pressure of 10−7 Torr. Conditions very close to adiabatic are maintained inside the 

vacuum chamber using a set of three concentric copper shields. 

 

2.4. Electronic Structure Calculations 
2.4.1. Tight-Binding Linear Muffin-Tin-Orbital Calculations 

The electronic structures of many actual and hypothetical compounds were calculated 

self-consistently by using the tight-binding linear muffin-tin-orbital (TB-LMTO)10-13 method 

within the atomic sphere approximation (ASA) using the LMTO version 47 program.14 

Exchange and correlation were treated in a local spin density approximation (LSDA).15 All 

relativistic effects except spin-orbit coupling were taken into account using a scalar 

relativistic approximation.16

Within the ASA, space is filled with overlapping Wigner-Seitz (WS) atomic spheres. 

The radii of these WS spheres were obtained by requiring the overlapping potential to be the 

best possible approximation to the full potential according to an automatic procedure.17 The 

Löwdin downfolding technique10-13 allows the derivative of few-orbital effective 

Hamiltonians by keeping only the relevant degrees of freedom and integrating out the 

irrelevant ones. k-space integrations were carried out by the tetrahedron method18 to 

determine the self-consistent charge density, density of states (DOS) and crystal orbital 

Hamiltonian populations (COHP).19 The corresponding Fermi levels were chosen as an 

internal reference level in all cases. 
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Chapter 3 

 

Gd5-xYxTt4 (Tt = Si or Ge): Effect of Metal Substitution on 

Structure, Bonding and Magnetism 
 

A paper published in the Journal of the American Chemical Society 

 

J. Am. Chem. Soc. 2008, 130, 13900–13911. 

 

Sumohan Misra and Gordon J. Miller 

 

3.1. Abstract  
A crystallographic study and theoretical assessment of the Gd/Y site preferences in 

the Gd5−xYxTt4 (Tt = Si, Ge) series prepared by high-temperature methods is presented. All 

structures for the Gd5−xYxSi4 system belong to the orthorhombic, Gd5Si4-type (space group 

Pnma). For the Gd5−xYxGe4 system, phases with x < 3.6 and x ≥ 4.4 adopt the orthorhombic, 

Sm5Ge4-type structure. For the composition range of 3.6 ≤ x ≤ 4.2, a monoclinic, U2Mo3Si4-

type structure (space group P21/c) occurs as the majority phase. This structure type has not 

been previously observed in the RE5T4 (T = Si, Ge, Ga) system, and differs from the known 

monoclinic structure of Gd5Si2Ge2-type (space group P21/a) because all Ge⋅⋅⋅Ge contacts 

between slabs are equivalent. The structural relationships between the Sm5Ge4-type and the 

U2Mo3Si4-type structures are discussed. Single crystal refinements of the occupancies for the 

three sites for Gd/Y atoms in the asymmetric unit reveal a partially ordered arrangement of 

Gd and Y atoms. TB-LMTO-ASA calculations were performed to study these atomic 

distributions as well as to elucidate possible electronic forces that might drive the structural 

variation. These results illustrate the importance of one of the Gd/Y-sites in shaping the 

magnetic and structural features observed in Gd5−xYxTt4 system. The magnetic properties of 

some of the Gd5−xYxTt4 phases are also reported. Germanides with x ≤ 2 show a 

metamagnetic-type transition similar to Gd5Ge4 from 57-92(2) K. As the Y concentration 
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increases (3 ≤ x ≤ 4), these phases exhibit at least ferrimagnetic ordering with transition 

temperatures ranging from 15-31(2) K to the paramagnetic state. 

 

3.2. Introduction 

The RE5(SixGe1−x)4 (RE = rare-earth element) family of compounds is characterized 

by an intimate relationship between chemical composition, crystal structure and magnetism.1-

8 There is an intriguing interplay between several different, yet closely related crystal 

structures, all of which are based on characteristic slabs and the nature of their spontaneous 

magnetic ordering. During the past decade, the discovery of a giant magnetocaloric effect 

(MCE) in Gd5Si2Ge2, along with other extraordinary magnetic properties such as a colossal 

magnetostriction and giant magnetoresistance,9-16 has encouraged the rare-earth–tetrelide 

systems at the 5:4 stoichiometry to be subjects of broad interest, especially Gd5(SixGe1−x)4.  

Most of the research activity to date has emphasized the chemistry, physics and 

materials science of Gd5T4 systems where T = Si, Ge, Ga, Sn or their various combinations.17-

23 For Gd5(SixGe1−x)4, as the Si/Ge ratio varies, it shows two amazing changes for their room 

temperature structures (Figure 3.1). All structures involve stackings of [Gd5T4] slabs. At low 

Si concentrations (x ≤ 0.30), the orthorhombic Sm5Ge4-type structure exists, which is 

characterized by the absence of any interslab Si(Ge)–Si(Ge) bonds; at high Si concentrations 

(x ≥ 0.56), the orthorhombic Gd5Si4-type structure occurs and features the presence of 

interslab Si(Ge)–Si(Ge) covalent bonds. At intermediate Si compositions (0.40 ≤ x ≤ 0.503), 

the monoclinic Gd5Si2Ge2-type structure exists, which displays only one-half of the Si(Ge)–

Si(Ge) pairs, short enough for covalent bonding. The structural transition in this series is due 

to a correlation between the distribution of Si and Ge at the Tt-sites between the slabs (Si has 

a preference for the intraslab sites and Ge prefers the interslab positions) and the nature of the 

Tt···Tt interslab contacts.24 The dependence of the crystal structure on valence electron counts 

have also been investigated, as in the Gd5GaxGe4−x system,22 where a decrease in valence 

electron concentration through substitution of three-valent, size equivalent Ga for four-valent 

Ge results in lower population of antibonding T-T (interslab) states with subsequent 

shortening and formation of T-T interslab dimers, thereby leading to a structural transition.  
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ORTHORHOMBIC 

 
Sm5Ge4-type  Gd5Si4-type 

   

 

MONOCLINIC 

Gd5Si2Ge2-type  U2Mo3Si4-type 

Figure 3.1. Projections of four crystal structures observed for various RE5T4 (T = Si, Ge, Ga) 

systems. Blue atoms represent RE metal and red atoms represent T atoms. 

 

The physical and chemical properties of tetrelides for other rare-earth or mixtures of 

rare-earth elements at the 5:4 stoichiometry have been explored to a much lesser extent, 

especially when RE = Y, La or Lu.25, 26 We report here the results obtained for a systematic 

investigation of the effect of replacing Gd with Y on the structural features and magnetic 

properties in both pseudobinary Si and Ge systems. Not only is Y smaller than Gd,27 but Y 

has no f electrons, although both Gd and Y are isoelectronic in their valance shell 
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configurations. Hence, Y will dilute the magnetic moments associated with Gd and should 

affect magnetic ordering patterns as well as ordering temperatures. Such behavior also exists 

in the binary Gd-Y alloys.28 Gd and Y both adopt the hcp crystal structure type and form a 

continuous series of solid solutions.28 These alloys show ferromagnetic behavior for Gd 

content exceeding 60 atomic % but antiferromagnetic ordering below 60 atomic %; Y itself is 

Pauli paramagnetic. Furthermore, the Curie temperatures for the ferromagnetic phases 

increase from ca. 95(2) K to 281(1) K as Gd content increases above 60 atomic %.28 The 

Néel temperatures for alloys with Gd content less than 60 % were in the range of ca. 111(2) 

K-197(2) K.28 Therefore, dilution of Gd with Y changes the magnetic properties 

continuously, but then undergoes a significant change in long-range order at a specific 

composition. 

In the Gd-Y-Ge system, there are variations in the magnetic ordering as well as a 

transformation from the orthorhombic Sm5Ge4-type29 to a new monoclinic U2Mo3Si4-type30 

(Figure 3.1) structure for certain compositions. This structure is different from the known 

monoclinic structure of Gd5Si2Ge2-type, and has not been reported before in the RE5T4 

system. Thus, this structure becomes the eighth structure type established for the RE5T4 

system.4, 22  

 

3.3. Experimental Section 

3.3.1. Syntheses: Samples of Gd5-xYxSi4, where x = 0, 1, 2, 3 and 4, and Gd5−xYxGe4, where x 

= 0, 1, 2, 3, 3.2, 3.4, 3.6, 3.8, 4, 4.2, 4.4, 4.6, 4.8 and 5.0, were prepared by arc-melting its 

constituent elements in an argon atmosphere on a water-cooled copper hearth. The starting 

materials were pieces of Gadolinium (99.99 wt. %, Materials Preparation Center, Ames 

Laboratory), Yttrium (99.99 wt. %, Materials Preparation Center, Ames Laboratory), Silicon 

(99.9999 wt. %, Alfa Aesar) and Germanium (99.9999 wt. %, Alfa Aesar). Each ingot had a 

total weight of ca. 1g and was remelted six times to ensure homogeneity. Weight losses 

during melting were less than 0.1 wt. %. To check for possible phase transformation and the 

distribution of rare earth atoms among the metal sites upon annealing, the samples were 

heated in evacuated silica tubes, at a rate of 4°C/min to 800°C and were then annealed for 1 

week. In the end, the tubes were quenched in ice water.  
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3.3.2. Powder X-ray diffraction: The as-cast samples were examined by powder X-ray 

diffraction for identification and to assess phase purity. Powder patterns were obtained using 

an Enraf-Nonius Guinier camera using monochromatized Cu Kα radiation (λ = 1.54187 Å). 

To probe the purity and homogeneity of all phases, all diffraction patterns were analyzed by 

full-profile Rietveld refinement using LHPM RIETICA software.31 Only the scale factor and 

the lattice parameters of each phase were refined. The isotropic displacement parameters of 

all atoms in each phase were assumed to be the same. For Gd5−xYxSi4, the profile residuals, 

Rp, varied from ca. 1.89 to 4.24 and derived Bragg residuals, RB, varied from ca. 1.56 to 6.58. 

For Gd5−xYxGe4, the profile residuals, Rp, varied from ca. 2.33 to 4.73 (for pure phases) and 

from ca. 2.36 to 9.68 (for mixed phases). Their derived Bragg residuals, RB, varied from ca. 

2.29 to 5.15 (for pure phases) and from ca. 2.45 to 15.90 (for mixed phases). Figure 2 shows 

a schematic plot of the diffraction patterns for the four different phases existing in the RE5T4 

system, patterns which were used for phase identification. There is a significant difference 

among these plots in the 2θ range 22-32°, which, therefore, acts as a fingerprinting region to 

identify the different phases.  
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Figure 3.2. Schematic representation of powder X-ray diffraction patterns of four different 

types of structure types existing in the RE5T4 system. 
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3.3.3. Single-Crystal X-ray Crystallography: Several single crystals from the as-cast 

samples were mounted on the tips of glass fibers. Room temperature intensity data were 

collected on a Bruker Smart Apex CCD diffractometer with Mo Kα radiation (λ= 0.71073 Å) 

and a detector-to-crystal distance of 5.990 cm. Data were collected over a full sphere of 

reciprocal space by taking three sets of 606 frames with 0.3° scans in ω with an exposure 

time of 10 seconds per frame. The 2θ range extended from 4° to 57°. The SMART32 software 

was used for data acquisition.  Intensities were extracted and then corrected for Lorentz and 

polarization effects by the SAINT32 program.  Empirical absorption corrections were 

accomplished with SADABS,32 which is based on modeling a transmission surface by 

spherical harmonics employing equivalent reflections with I > 3σ(I). Structure solutions and 

refinements were performed with the SHELXTL32 package of crystallographic programs.  

 

3.3.4. Magnetic Property Measurements: Magnetic measurements were carried out using a 

Lake Shore ac / dc susceptometer-magnetometer, model 7225 on polycrystalline samples 

weighing ca. 0.25 g. These included dc magnetic susceptibility measurements between ca. 4 

and 300 K and isothermal magnetization measurements in dc magnetic fields varying from 0 

to 50 kOe. For the susceptibility measurements, the samples were first cooled under zero 

magnetic field (zfc) and then the measurements were carried out on heating under a 10 kOe 

magnetic field. The measurements were then repeated upon cooling with the magnetic field 

turned on (fc). All data were corrected for T-independent contributions.  

 

3.3.5. Electronic Structure Calculations: Tight-binding, linear muffin-tin orbital (TB-

LMTO) electronic band structure calculations with the atomic spheres approximation (ASA) 

were carried out using the Stuttgart program33 on various models of Gd5Ge4, Gd4YGe4 

GdY4Ge4 and Y5Ge4. Exchange and correlation were treated in a local spin density 

approximation. All relativistic effects except spin-orbit coupling were taken into account 

using a scalar relativistic approximation.  The radii of the Wigner-Seitz (WS) spheres were 

obtained by requiring the overlapping potential to be the best possible approximation to the 

full potential according to an automatic procedure – no empty spheres were necessary.34 The 

WS radii determined by this procedure are in the ranges 1.791-2.001 Å for Gd, 1.799-2.090 
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Å for Y, and 1.516-1.686 Å for Ge.  The basis set included Gd 6s, 6p and 5d orbitals, Y 5s, 

5p and 4d orbitals, and Ge 4s, 4p and 4d orbitals.  The Gd 4f orbitals were treated as core 

wavefunctions occupied by seven valence electrons.  Furthermore, the Ge 4d orbitals were 

treated by the Löwdin downfolding technique.33 The k-space integrations to determine total 

energies and densities of states were evaluated by the tetrahedron method using 75-136 k-

points (orthorhombic) and 170-512 k-points (monoclinic) in the irreducible wedges of the 

first Brillouin zones.  

 

3.4. Results and Discussion 

3.4.1. Structural Features. The powder X-ray diffraction patterns for all Gd5−xYxSi4 

samples (0.0 ≤ x ≤ 4.0) could be completely indexed by the orthorhombic (space group 

Pnma), Gd5Si4-type structure. The lattice parameters obtained from powder X-ray diffraction 

is presented in Table 3.1. The crystallographic data, atomic coordinates, site occupancies and 

isotropic displacement parameters obtained from single crystal X-ray diffraction are listed in 

the supporting information. Previously, Elbicki and co-workers25 had reported powder X-ray 

diffraction results on these phases for 0.0 ≤ x ≤ 2.0. In our investigation with both powder 

and single crystal X-ray diffraction for 0.0 ≤ x ≤ 4.0, we obtain similar results. Moreover, we 

also observe that Gd and Y are nonrandomly distributed over the three RE metal sites: there 

is preferential occupation of Y at the M3 site (center of the pseudo-cube); whereas Gd prefers 

the M1 sites. As expected, due to the smaller size of Y compared to Gd,27 the unit-cell 

volume gradually decreases with increasing concentration of Y.  

 

Table 3.1. Lattice parameters for Gd5−xYxSi4 as obtained by powder X-ray diffraction 

(Gd5Si4-type, space group Pnma (No. 62), Cu Kα radiation, 2θ range = 10-100°, T = 298(2) 

K, Z = 4). 
 

x a (Å) b (Å) c (Å) V′ (Å3)a 

0 7.4880(6) 14.750(1) 7.7476(6) 213.9(1) 

1 7.4634(4) 14.7123(9) 7.7421(4) 212.53(8) 
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Table 3.1. (continued) 

x a (Å) b (Å) c (Å) V′ (Å3)a 

2 7.4411(4) 14.6754(9) 7.7301(4) 211.03(8) 

3 7.4245(4) 14.6419(8) 7.7170(4) 209.73(8) 

4 7.4105(4) 14.6087(8) 7.7062(4) 208.56(8) 
a V′ = Unit cell volume per formula unit. 

 

For the Gd5−xYxGe4 system, three distinct composition ranges exist as identified by 

powder X-ray diffraction. For x < 3.6 and x ≥ 4.4, the orthorhombic, Sm5Ge4-type structure 

forms as the majority phase, and for the composition range of 3.6 ≤ x ≤ 4.2, the monoclinic 

U2Mo3Si4-type structure is observed as the majority phase. The lattice parameters obtained 

from Rietveld refinement of the powder data is presented in Table 3.2. The crystallographic 

data, atomic coordinates, site occupancies and isotropic displacement parameters from single 

crystal X-ray diffraction are shown in Tables 3.3-3.7. To check for possible phase 

transformation upon annealing, the sample with x = 4.0, having the monoclinic U2Mo3Si4-

type structure was annealed at 800°C for 1 week and then a powder diffraction pattern was 

measured. The diffraction pattern was similar to the pattern before annealing with no 

additional peaks. 

 

Table 3.2. Lattice parameters for Gd5−xYxGe4 as obtained by powder X-ray diffraction (space 

group for Sm5Ge4-type (Z = 4) and U2Mo3Si4-type (Z = 2) structures are Pnma (No. 62) and 

P21/c (No. 14) respectively, Cu Kα radiation, 2θ range = 10-100°, T = 298(2) K). 

 

x Structure Type(s) a (Å) b (Å) c (Å) β (°) V' (Å3)a 

0 Sm5Ge4 7.6984(4) 14.8372(8) 7.7872(4)  222.4(1) 

1 Sm5Ge4 7.6842(4) 14.8070(8) 7.7690(4)  221.0(1) 

2 Sm5Ge4 7.6675(4) 14.7795(8) 7.7504(4)  219.6(1) 

7.6559(9) 14.7553(18) 7.7346(10)  218.4(2) 
3 

Sm5Ge4*  +  

U2Mo3Si4  present in trace amounts 
7.6519(6) 14.7476(11) 7.7319(6)  218.1(1) 

3.2 
Sm5Ge4*  +  

U2Mo3Si4  present in trace amounts 
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Table 3.2. (continued) 

x Structure Type(s) a (Å) b (Å) c (Å) β (°) V' (Å3)a 

7.6441(3) 14.7354(6) 7.7210(3)  217.4(0) 
3.4 

Sm5Ge4*  +  

U2Mo3Si4  8.097(7) 7.723(6) 7.690(6) 113.32(5) 220.8(6) 

7.646(1) 14.738(2) 7.718(1)  217.4(2) 
3.6 

Sm5Ge4  +  

U2Mo3Si4*  8.0277(31) 7.7401(28) 7.6501(28) 113.08(3) 218.6(3) 

7.644(1) 14.738(2) 7.712(1)  217.2(2) 
3.8 

Sm5Ge4  +  

U2Mo3Si4*  7.9971(22) 7.7562(24) 7.6235(20) 113.09(2) 217.5(2) 

7.735(1) 14.759(1) 7.679(1)  219.15(3) 
4 

Sm5Ge4  +  

U2Mo3Si4*  8.0067(9) 7.7540(10) 7.6174(8) 113.04(1) 217.6(1) 

7.720(3) 14.717(5) 7.676(3)  218.0(6) 
4.2 

Sm5Ge4  +  

U2Mo3Si4*  8.0022(5) 7.7460(5) 7.6061(5) 113.00(1) 217.0(0) 

7.6389(8) 14.7196(15) 7.7103(9)  216.7(2) 
4.4 

Sm5Ge4*  +  

U2Mo3Si4  8.031(2) 7.730(3) 7.619(2) 113.14(2) 217.5(3) 

4.6 Sm5Ge4  7.6373(5) 14.7097(10) 7.7037(5)  216.4(1) 

4.8 Sm5Ge4 7.6335(5) 14.6985(9) 7.6982(5)  215.9(1) 

5 Sm5Ge4 7.6316(2) 14.6976(3) 7.6966(2)  215.8(0) 
a V′ = Unit cell volume per formula unit; * Majority phase as determined from Rietveld refinement.  

Lattice parameters for the minority phases are shown in italics. 

 

Table 3.3. Crystallographic data for Gd5−xYxGe4 (x = 0, 1, 2, 3, 3.2, and 3.4) as obtained by 

single crystal X-ray diffraction (space group Pnma (No. 62), Mo Kα radiation, 2θ range = 4-

57°, T = 298(2) K, Z = 4). 

x 0 1 2 3 3.2 3.4 

Loaded 
Composition Gd5Ge4 Gd4YGe4 Gd3Y2Ge4 Gd2Y3Ge4 Gd1.8Y3.2Ge4 Gd1.6Y3.4Ge4 

Refined 
Composition Gd5Ge4 Gd4.02(6)Y0.98Ge4 Gd2.96(5)Y2.04Ge4 Gd1.91(4)Y3.09Ge4 Gd1.74(5)Y3.26Ge4 Gd1.55(6)Y3.45Ge4 

Independent 
Reflections 1098 1081 1083 1068 1072 1061 

No. of 
Parameters 47 50 50 50 50 50 

Final R 
indices 

[I > 2σ(I)] 

R1 
=0.0385, 
wR2 = 
0.0831 

R1 = 0.0461, 
wR2 = 0.0864 

R1 = 0.0485, 
wR2 = 0.0881 

R1 = 0.0503, 
wR2 = 0.0799 

R1 = 0.0493, 
wR2 = 0.0895 

R1 = 0.0628, 
wR2 = 0.1179 
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Table 3.2. (continued) 

x 0 1 2 3 3.2 3.4 

Peak/hole, 
(e/Å3) 

3.085 / 
−1.817 2.570 / −2.138 2.332 / −2.332 2.183 / −2.326 2.743 / −2.284 3.593 / −2.331 

 

Table 3.4. Crystallographic data for Gd5−xYxGe4 (x = 3.6, 4.4, 4.6, 4.8 and 5.0) as obtained 

by single crystal X-ray diffraction (space group Pnma (No. 62), Mo Kα radiation, 2θ range = 

4-57°, T = 298(2) K, Z = 4). 

 

x 3.6 4.4 4.6 4.8 5.0 
Loaded 

Composition Gd1.4Y3.6Ge4 Gd0.6Y4.4Ge4 Gd0.4Y4.6Ge4 Gd0.2Y4.8Ge4 Y5Ge4 

Refined 
Composition Gd1.26(4)Y3.74Ge4 Gd0.61(5)Y4.39Ge4 Gd0.29(3)Y4.71Ge4 Gd0.17(3)Y4.83Ge4 Y5Ge4 

Independent 
Reflections 1076 1078 1091 1069 1070 

No. of 
Parameters 50 50 50 50 47 

Final R 
indices 

[I > 2σ(I)] 

R1 = 0.0524, 
wR2 = 0.0914 

R1 = 0.0611, 
wR2 = 0.1109 

R1 = 0.0437, wR2 
= 0.0758 

R1 = 0.0423, 
wR2 = 0.0838 

R1 = 0.0482, 
wR2 = 0.0798 

Peak/hole, 
(e/Å3) 2.225 / −1.902 3.442 / −2.025 1.841 / −1.626 3.196 / −1.489 1.730 / −1.642 

 

Table 3.5. Atomic coordinates, site occupancies and isotropic displacement parameters                        

for Gd5−xYxGe4 (x ≤ 3.6; x ≥ 4.4) as obtained by single crystal X-ray diffraction. Coordinates 

are represented in accordance with similar previously reported structure types. 

 

Atom  x  y  z  occupancya  Ueq, (Å2)b  

Gd5Ge4 

M1 8d 0.9758(1) 0.4000(1) 0.1782(1) 1 0.009(1 

M2 8d 0.6233(1) 0.3832(1) 0.8387(1) 1 0.008(1) 

M3 4c 0.2097(1) ¾ 0.4992(1) 1 0.008(1) 

Ge1 8d 0.7821(2) 0.4560(1) 0.5332(2) 1 0.009(1) 

Ge2 4c 0.0817(2) ¾ 0.1127(2) 1 0.010(1) 

Ge3 4c 0.3261(2) ¾ 0.8657(2) 1 0.009(1) 
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Table 3.5. (continued) 

Atom  x  y  z  occupancya  Ueq, (Å2)b  

Gd4.02(6)Y0.98Ge4 

M1 8d 0.9755(1) 0.4001(1) 0.1781(1) 0.88(1) 0.010(1) 

M2 8d 0.6235(1) 0.3831(1) 0.8387(1) 0.76(1) 0.009(1) 

M3 4c 0.2101(2) ¾ 0.4988(2) 0.72(1) 0.009(1) 

Ge1 8d 0.7822(2) 0.4562(1) 0.5336(2) 1 0.010(1) 

Ge2 4c 0.0819(3) ¾ 0.1135(3) 1 0.010(1) 

Ge3 4c 0.3273(3) ¾ 0.8653(3) 1 0.010(1) 

Gd2.96(5)Y2.04Ge4 

M1 8d 0.9749(1) 0.4002(1) 0.1779(1) 0.71(1) 0.010(1) 

M2 8d 0.6234(1) 0.3831(1) 0.8388(1) 0.53(1) 0.009(1) 

M3 4c 0.2105(2) ¾ 0.4990(2) 0.46(1) 0.009(1) 

Ge1 8d 0.7825(2) 0.4560(1) 0.5335(2) 1 0.010(1) 

Ge2 4c 0.0816(3) ¾ 0.1144(3) 1 0.010(1) 

Ge3 4c 0.3284(3) ¾ 0.8647(3) 1 0.010(1) 

Gd1.91(4)Y3.09Ge4 

M1 8d 0.9744(1) 0.4002(1) 0.1777(1) 0.56(1) 0.010(1) 

M2 8d 0.6233(1) 0.3829(1) 0.8391(1) 0.29(1) 0.008(1) 

M3 4c 0.2116(2) ¾ 0.4990(2) 0.20(1) 0.008(1) 

Ge1 8d 0.7823(2) 0.4559(1) 0.5331(2) 1 0.009(1) 

Ge2 4c 0.0811(2) ¾ 0.1155(2) 1 0.009(1) 

Ge3 4c 0.3299(2) ¾ 0.8639(2) 1 0.010(1) 

Gd1.74(5)Y3.26Ge4 

M1 8d 0.9737(1) 0.4001(1) 0.1772(1) 0.49(1) 0.011(1) 

M2 8d 0.6228(1) 0.3830(1) 0.8390(1) 0.27(1) 0.009(1) 

M3 4c 0.2118(2) ¾ 0.4992(2) 0.22(1) 0.009(1) 

Ge1 8d 0.7817(2) 0.4558(1) 0.5331(2) 1 0.010(1) 

Ge2 4c 0.0818(3) ¾ 0.1155(3) 1 0.009(1) 

Ge3 4c 0.3309(3) ¾ 0.8642(3) 1 0.010(1) 
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Table 3.5. (continued) 

Atom  x  y  z  occupancya  Ueq, (Å2)b  

Gd1.55(6)Y3.45Ge4 

M1 8d 0.9737(2) 0.4002(1) 0.1773(2) 0.47(1) 0.014(1) 

M2 8d 0.6229(2) 0.3830(1) 0.8391(2) 0.22(1) 0.011(1) 

M3 4c 0.2119(3) ¾ 0.4990(3) 0.15(1) 0.010(1) 

Ge1 8d 0.7815(3) 0.4559(1) 0.5333(3) 1 0.013(1) 

Ge2 4c 0.0814(3) ¾ 0.1159(3) 1 0.012(1) 

Ge3 4c 0.3306(3) ¾ 0.8637(3) 1 0.013(1) 

Gd1.26(4)Y3.74Ge4 

M1 8d 0.9730(1) 0.4001(1) 0.1772(1) 0.39(1) 0.011(1) 

M2 8d 0.6227(1) 0.3829(1) 0.8392(1) 0.18(1) 0.009(1) 

M3 4c 0.2122(2) ¾ 0.4992(2) 0.12(1) 0.008(1) 

Ge1 8d 0.7815(2) 0.4558(1) 0.5326(2) 1 0.010(1) 

Ge2 4c 0.0819(3) ¾ 0.1155(2) 1 0.010(1) 

Ge3 4c 0.3315(2) ¾ 0.8638(2) 1 0.011(1) 

Gd0.61(5)Y4.39Ge4 

M1 8d 0.9702(2) 0.3992(1) 0.1758(2) 0.15(1) 0.013(1) 

M2 8d 0.6205(2) 0.3835(1) 0.8389(2) 0.14(1) 0.011(1) 

M3 4c 0.2141(3) ¾ 0.4989(3) 0.03(1) 0.009(1) 

Ge1 8d 0.7801(2) 0.4555(1) 0.5304(2) 1 0.013(1) 

Ge2 4c 0.0840(3) ¾ 0.1168(3) 1 0.011(1) 

Ge3 4c 0.3338(3) ¾ 0.8642(3) 1 0.011(1) 

Gd0.29(3)Y4.71Ge4 

M1 8d 0.9700(1) 0.3995(1) 0.1760(1) 0.07(1) 0.010(1) 

M2 8d 0.6205(1) 0.3831(1) 0.8394(1) 0.07(1) 0.009(1) 

M3 4c 0.2143(2) ¾ 0.4989(2) 0.01(1) 0.008(1) 

Ge1 8d 0.7796(1) 0.4556(1) 0.5311(1) 1 0.010(1) 

Ge2 4c 0.0839(2) ¾ 0.1164(2) 1 0.010(1) 

Ge3 4c 0.3350(2) ¾ 0.8635(2) 1 0.010(1) 
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Table 3.5. (continued) 

Atom  x  y  z  occupancya  Ueq, (Å2)b  

Gd0.17(3)Y4.83Ge4 

M1 8d 0.9696(1) 0.3992(1) 0.1759(1) 0.04(1) 0.011(1) 

M2 8d 0.6205(1) 0.3832(1) 0.8392(1) 0.04(1) 0.009(1) 

M3 4c 0.2143(1) ¾ 0.4988(2) 0.01(1) 0.009(1) 

Ge1 8d 0.7798(1) 0.4556(1) 0.5310(1) 1 0.011(1) 

Ge2 4c 0.0840(2) ¾ 0.1167(2) 1 0.010(1) 

Ge3 4c 0.3352(2) ¾ 0.8633(2) 1 0.009(1) 

Y5Ge4 

M1 8d 0.9692(1) 0.3993(1) 0.1758(1) 1 0.010(1) 

M2 8d 0.6204(1) 0.3829(1) 0.8396(1) 1 0.008(1) 

M3 4c 0.2145(2) ¾ 0.4988(2) 1 0.008(1) 

Ge1 8d 0.7797(1) 0.4556(1) 0.5314(1) 1 0.009(1) 

Ge2 4c 0.0840(2) ¾ 0.1163(2) 1 0.009(1) 

Ge3 4c 0.3353(2) ¾ 0.8635(2) 1 0.009(1) 
 

a  All M1, M2 and M3 sites are fully occupied with a mixture of Gd and Y atoms. Only Gd 

occupations are listed. The only exception is Gd5Ge4 and Y5Ge4 where the M1, M2 and M3 

sites are fully occupied by Gd and Y atoms respectively.  
b  U(eq) is defined as one-third of  the trace of the orthogonalized Uij tensor. 

 

Table 3.6. Crystallographic data for Gd5−xYxGe4 (x = 3.8, 4.0 and 4.2) as obtained by single 

crystal X-ray diffraction (space group P21/c (No. 14), Mo Kα radiation, 2θ range = 4-57°, T = 

298(2) K, Z = 2). 

 

x 3.8 4.0 4.2 

Loaded Composition  Gd1.2Y3.8Ge4 GdY4Ge4 Gd0.8Y4.2Ge4 

Refined Composition Gd1.11(3)Y3.89Ge4 Gd1.00(3)Y4.00Ge4 Gd0.77(3)Y4.23Ge4 
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Table 3.6. (continued) 

x 3.8 4.0 4.2 

Independent Reflections 1014 1021 1010 

No. of Parameters 47 47 47 

Final R 
indices  

[I > 2σ(I)] 

R1 = 0.0434,  
wR2 = 0.0826 

R1 = 0.0426,  
wR2 = 0.0769 

R1 = 0.0332,  
wR2 = 0.0574 

Peak/hole, (e/Å3) 1.979 / −1.496 1.623 / −1.439 1.408 / −1.092 

 

Table 3.7. Atomic coordinates, site occupancies and isotropic displacement parameters for 

Gd5−xYxGe4 (x = 3.8, 4.0 and 4.2) as obtained by single crystal X-ray diffraction. Coordinates 

are represented in accordance with similar previously reported structure types. 

 

Atom  x y z occupancya Ueq, (Å2)b 

Gd1.11(3)Y3.89Ge4 

M1 4e 0.7006(1) 0.3217(1) 0.0574(1) 0.35(1) 0.010(1) 

M2 4e 0.2659(1) 0.3371(1) 0.2775(1) 0.15(1) 0.009(1) 

M3 2a 0 0 0 0.11(1) 0.009(1) 

Ge1 4e 0.4115(2) 0.0314(2) 0.1807(2) 1 0.010(1) 

Ge2 4e 0.0082(2) 0.6300(2) 0.1286(2) 1 0.010(1) 

Gd1.00(3)Y4.00Ge4 

M1 4e 0.7007(1) 0.3219(1) 0.0571(1) 0.32(1) 0.011(1) 

M2 4e 0.2658(1) 0.3373(1) 0.2776(1) 0.13(1) 0.009(1) 

M3 2a 0 0 0 0.09(1) 0.009(1) 

Ge1 4e 0.4112(2) 0.0312(1) 0.1807(2) 1 0.010(1) 

Ge2 4e 0.0083(2) 0.6300(1) 0.1286(2) 1 0.011(1) 

Gd0.77(3)Y4.23Ge4 

M1 4e 0.7008(1) 0.3219(1) 0.0569(1) 0.25(1) 0.010(1) 

M2 4e 0.2656(1) 0.3371(1) 0.2779(1) 0.10(1) 0.009(1) 
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Table 3.7. (continued) 

Atom  x y z occupancya Ueq, (Å2)b 

M3 2a 0 0 0 0.07(1) 0.008(1) 

Ge1 4e 0.4112(1) 0.0314(1) 0.1809(1) 1 0.010(1) 

Ge2 4e 0.0083(1) 0.6302(1) 0.1287(1) 1 0.010(1) 
 
a  All M1, M2 and M3 sites are fully occupied with a mixture of Gd and Y atoms. Only Gd 

occupations are listed.  
b  U(eq) is defined as one-third of  the trace of the orthogonalized Uij tensor. 
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Figure 3.3. Y occupation in each M site of Gd5−xYxGe4 as a function of Y concentration, x, 

as obtained from single crystal X-ray diffraction. The shaded regions delineate the two-phase 

regions as observed from powder X-ray diffraction. 

 

The orthorhombic crystal structure has six atoms in the asymmetric unit: three 

crystallographically independent sites for Gd or Y metal atoms, and three distinct sites for the 

tetrelide atoms. All three rare earth metal sites (in both structures) exhibit mixed site 

occupancies, with Gd (or the larger rare-earth atom) having a preference for the M1 site and 
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Y (or the smaller rare-earth atom) having a preference for the M3 site (see Figure 3.3) as 

observed in Gd-Y-Si, Gd-La-Ge,26 Gd-Lu-Ge26 and Gd-Sc-Ge35 systems. In comparison to 

the orthorhombic structure, the asymmetric unit of the monoclinic structure has five atoms: 

three distinct sites for Gd or Y metal atoms and just two distinct sites for the tetrelide atoms. 

This monoclinic structure has never been previously reported in RE5T4 systems. However, it 

has been observed in various ternary compounds with lanthanide and actinide elements, e.g., 

in RE2Mo3Si4 where RE = Dy, Er, Ho, Tb, Tm, Y36 and also in U2M3Tt4 where M = V, Mo, 

W and Tt = Si, Ge.37 Nevertheless, the monoclinic U2Mo3Si4 structure-type shows 

remarkable similarities with the Sm5Ge4-type structure. Both crystal structures are built from 

nearly identical 32434 nets of Gd/Y atoms. Two such nets are placed over one another to 

form two-dimensional slabs with additional Gd/Y atoms in pseudo-cubic coordination (M3 

site) and Ge2, Ge3 (in case of orthorhombic structure) and Ge2 atoms (in case of monoclinic 

structure) in trigonal prismatic voids. These crystal structures differ from one other in the 

manner in which these neighboring slabs stack with respect to each other. In the 

orthorhombic structure, each slab has reflection symmetry through the M3, T2 and T3 sites, 

and the first and the second slabs are shifted but related by inversion symmetry. This results 

in the slabs being arranged in a way that the interslab Ge1···Ge1 contacts form a herring-bone 

pattern along the b-direction. In the monoclinic U2Mo3Si4-type structure, each slab has 

inversion symmetry at the M3 sites, and adjacent layers are related by translational symmetry 

resulting in a stacking pattern which creates inversion symmetry between slabs along the 

stacking direction. Due to these different symmetry characteristics the arrangements of the 

M1 and M2 metal positions are different in the two structures, although every cube 

surrounding the M3 positions contains 4 M1 and 4 M2 sites. In the orthorhombic structure, 

the two faces of the cube perpendicular to the c-direction are either all M1 or all M2. On the 

other hand, for the monoclinic structure, the two faces of the cube perpendicular to the b-

direction are 50 % M1 and 50 % M2 in an alternating pattern, which preserves the inversion 

center at the M3 site.  

The other monoclinic structure observed in the RE5T4 system, the Gd5Si2Ge2-type, 

adopts the space group P21/a, which is a proper subgroup of Pnma, and contains nine atoms 

in the asymmetric unit with the M1 and M2 sites each splitting into two pairs (M1a, M1b and 
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M2a, M2b) and the T1 site also splitting into a pair of distinct sites (T1a, T1b). Hence, when 

compared with the monoclinic U2Mo3Si4-type structure, the Gd5Si2Ge2-type forms two sets 

of inequivalent interslab (T1-T1) contacts, resulting in one-half of these pairs short enough 

for covalent bonding. The stacking pattern of the slabs remains similar to the Sm5Ge4-type 

structure. 

Variations of selected interatomic distances across the Gd5−xYxGe4 series (3.0 ≤ x ≤ 

5.0) near the crystal structure changes are illustrated in Figure 3.4. The structural figures 

display the various contacts, matching the color code of the plots. The vertical dotted lines 

delineate the region where the monoclinic phase is observed. For all plots there are distinct 

deviations when x = 3.8-4.2, marking the region for the structural transition. The largest 

variations occur for certain intraslab M···M and M···Ge distances, and arise because the 

change in symmetry (orthorhombic to monoclinic) creates equidistant bond lengths. These 

are marked as black open triangles and inverted triangles in the plots and as dashed bonds in 

the figures.  The graphs, moreover, identify certain pervasive features of the entire series: (a) 

Ge-Ge contacts between adjacent slabs are nonbonding, or, at most, weakly bonding; (b) M1-

Ge and M2-Ge contacts between adjacent slabs are more significant (solid orange bonds in 

Figure 4b) for holding the slabs together than the Ge-Ge contacts; (c) there is a single M-M 

(M1-M2) interaction between slabs (solid blue bonds in Figure 4a) that occurs at each M1 or 

M2 site and exhibits a very short distance (ca. 3.50 Å); and (d) the most significant M-M 

interactions within each slab involve the M3 sites. We will discuss some of the impacts of 

these geometrical features in more detail in the subsequent section on electronic structure. 
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Figure 3.4a. Interatomic distance variations in Gd5−xYxGe4 as a function of Y concentration, 

x.  These graphs illustrate trends in Ge-Ge and M-M distances.  The distance scales on all M-

M graphs are identical to illustrate the relative magnitudes. The structural figure shows the 

various interatomic distances presented by the graphs in their respective colors. Blue spheres 

are metal (Gd/Y), and red spheres are Ge sites. 
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Figure 3.4b. Interatomic distance variations in Gd5−xYxGe4 as a function of Y concentration, 

x.  These graphs illustrate trends in M-Ge distances. The distance scales on all graphs are 

identical to illustrate the relative magnitudes. The structural figure shows the various 

interatomic distances presented by the graphs in their respective colors. Blue spheres are 

metal (Gd/Y), and red spheres are Ge sites. 
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Figure 3.5. Magnetic susceptibility plots for Gd5−xYxGe4 series. Red triangles are data for the 

heating cycles (zfc) and blue circles are data for the cooling cycles (fc) with H = 10 kOe. 

  

3.4.2. Magnetism 

Figure 3.5 illustrates the magnetic susceptibility measurements in a 10 kOe field for 

the Gd5−xYxGe4 series. The Gd-rich phases (x = 1 and 2) show a metamagnetic-type transition 

at 92 K and 57 K respectively, similar to Gd5Ge4, which shows this transition at 128 K (TN). 

The reduction in transition temperature can be explained by dilution of the magnetic Gd sites 
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by Y in this system.28 The curves also show a Curie-Weiss behavior above these transitions. 

The Y-rich phases (x = 3-4), in contrast, undergo ferrimagnetic-type ordering showing Curie-

Weiss behavior at high temperatures. The M(H) plots for the above phases are available in 

the supporting information, which also reiterates the presence of metamagnetic and 

ferrimagnetic-type behavior as none of the phases show saturation in fields upto 50 kOe. The 

paramagnetic Curie temperatures, θp, decrease with increasing Y concentration, but increases 

for x = 4. The Curie temperatures, TC, were estimated for the ferrimagnetic phases (x = 3.0, 

3.4, 3.6 and 4.0) from dM/dT vs. T plots to be 31(2), 24(2), 20(2) and 15(2) K, respectively. 

The effective magnetic moments for the series were determined to be 7.89(1)-7.47(1) µB/Gd 

ion (theoretical value for Gd3+ = 7.94 µB) based on numerical fits for the data between 150 

and 270 K. The effective magnetic moments for the two Y-rich phases are lower than the 

expected value and the reason is not well understood. But since the results were reproducible, 

it could probably be attributed due to the presence of some unidentified non-crystalline 

minority phases. 

 Magnetic susceptibility measurements for the Gd5−xYxSi4 series were also carried out 

between 6 and 300 K. All phases undergo ferromagnetic ordering showing Curie-Weiss 

behavior at high temperatures.  This transition for Gd4YSi4 exceeds 300 K, but for Gd3Y2Si4 

(TC = 203(2) K), Gd2Y3Si4 (TC = 133(2) K), and GdY4Si4 (TC = 50(2) K), the Curie 

temperatures decrease almost linearly with increasing Y concentration.  These susceptibility 

plots are included in the Supporting Information. 

 

3.4.3. Theoretical Electronic Structure 

Substitution at the RE metal sites raises a number of questions. In this paper, we 

specifically focus on the problems for the Ge-system. For this, electronic structure 

calculations were carried out on two, near-end members of the Gd5−xYxGe4 series, Gd4YGe4 

and GdY4Ge4, to gain an understanding as to how electronic forces affect the following three 

issues: (1) the distribution of Gd and Y among the three metal sites, which is known as the 

coloring problem;38 (2) the structural transformation from orthorhombic to monoclinic crystal 

class; and (3) the magnetic ordering behavior. 
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Model 1: Y in M1 site Model 2: Y in M2 site Model 3: Y in M3 site 

Figure 3.6. Three model structures of Gd4YGe4 studied by TB-LMTO-ASA and LSDA 

calculations. Blue spheres are Gd, orange spheres are Y, and smaller red spheres are Ge. 

 

 
Model 4: Gd in M1 site Model 5: Gd in M2 site Model 6: Gd in M3 site 

Figure 3.7. Three model structures of GdY4Ge4 studied by TB-LMTO-ASA and LSDA 

calculations. Blue spheres are Gd, orange spheres are Y, and smaller red spheres are Ge. 

 

3.4.3.1. Coloring Problem. For all Gd5−xYxTt4 systems where Tt = Si, Ge, the M sites are all 

fractionally occupied by Gd and Y atoms: the M3 sites are Y-rich, the M1 sites are Gd-rich. 

To probe the distribution of Gd and Y atoms among the M sites, we examined three model 

structures based on the experimentally determined orthorhombic Gd4YGe4 and monoclinic 

GdY4Ge4: Model 1 (4) contains Y (Gd) in 50% of M1 sites and Gd (Y) in M2 and M3 sites; 

Model 2 (5) contains Y (Gd) in 50% of M2 sites and Gd (Y) in M1 and M3 sites; Model 3 (6) 

contains Y (Gd) in M3 site and Gd (Y) in M1 and M2 sites. These model structures are 
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illustrated in Figures 3.6 and 3.7; the coloring schemes of Gd and Y atoms were selected to 

maintain either the mirror plane or inversion center, respectively, within the slabs building up 

Gd4YGe4 and GdY4Ge4. According to the total energies per formula unit, which are listed in 

Table 3.8, Models 3 and 4, respectively, are the preferred arrangements of Gd and Y atoms 

for Gd4YGe4 and GdY4Ge4.  Both energetic conclusions indicate that it is most favorable for 

the Y atoms to occupy the M3 sites and Gd atoms to occupy the M1 sites. This fact is 

consistent with the refined site occupancies obtained from single crystal diffraction results 

(see Figure 3.4), as well as from size arguments as based upon the local coordination 

environments for the different M sites.  The M3 site shows the shortest M-M contacts and 

has the smallest volume of the different M sites in these structures.  Nevertheless, the 

calculated total energies also suggest an influence from the local electronic structure towards 

influencing the observed coloring. 

 

Table 3.8. Summary of relative total energies and magnetic moments per Gd atom calculated 

for the models of Gd4YGe4 and GdY4Ge4 by TB-LMTO-ASA and LSDA. 

 

Model Minority 
Atom Site LDA (meV) LSDA (meV) Moment/ Gd 

(BM) 
Gd4YGe4 

1 M1 +268 +267 7.27 

2 M2 +281 +275 7.29 

3 M3 0 0 7.27 

GdY4Ge4 

4 M1 0 0 7.38 

5 M2 +127 +138 7.29 

6 M3 +355 +355 7.52 

 

An alternative way to study the coloring problem in this series by electronic structure 

calculations is to compare the valence electron numbers assigned to each M site for the 

binary examples, Gd5Ge4 and Y5Ge4, both of which crystallize in the orthorhombic structure 

at room temperature.  For semi-empirical methods, valence electron numbers correspond to 
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Mulliken populations, for example; in TB-LMTO-ASA, we can approximate these numbers 

for each atomic site by the sum of integrated electron densities within each WS sphere for the 

atoms, which are called QVAL values.  An alternative approach is to integrate the occupied 

density of states for each site, which we call IDOS. As a qualitative interpretation, QVAL 

values are determined from real-space electron densities; IDOS values from reciprocal-space 

electron densities. The sum of either QVAL or IDOS values will equal the total number of 

valence electrons in the chemical formula.  The TB-LMTO-ASA results for Gd5Ge4 and 

Y5Ge4 are listed in Table 3.9.  In both cases, the greatest build up of valence electrons at the 

M sites, as indicated by the highest QVAL value, occurs at the M3 site (center) and the 

fewest at the M1 and M2 sites (edges). From the diffraction and coloring problem results, Y 

prefers to occupy the M3 sites and Gd prefers to occupy the M1 sites.  According to this 

alternative perspective for ternary Gd5−xYxGe4 phases, Y also prefers the site which has a 

highest density of valence electrons, whereas Gd prefers the site(s) which has a lower density 

of valence electrons. 

 

Table 3.9. QVAL and IDOS values evaluated for each site in the asymmetric units for 

Gd5Ge4 and Y5Ge4.  The location of the sites is indicated in parentheses: edge = edge of 

slabs; center = center of slabs; BeS = between slabs; WiS = within slabs. V' = volume per 

formula unit. 

 

 Gd5Ge4 [V' = 222.4 Å3]  Y5Ge4 [V' = 215.8 Å3] 

 QVAL IDOS  QVAL IDOS 

M1 (edge) 2.916 2.899  2.844 2.843 

M2 (edge) 2.916 2.899  2.844 2.843 

M3 (center) 3.355 3.322  3.333 3.334 

Ge1 (BeS) 4.167 4.157  4.283 4.280 

Ge2 (WiS) 3.824 3.816  3.863 3.861 

Ge3 (WiS) 3.824 3.815  3.863 3.861 
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 These results corroborate well with the trends in the sequence of ionization energies 

to form M3+ ions from the gaseous atoms.  The first three ionization energies for Gd are, 

respectively, 595, 1172, and 1999 kJ/mol, whereas those for Y are 616, 1181 and 1980 

kJ/mol.39 In chemically reduced environments for Gd and Y when both elements occur 

simultaneously, as observed for Gd5−xYxGe4, Gd atoms will tend to lose valence electrons 

more readily than Y atoms.  Thus, in such structures, Gd atoms will occupy sites with lower 

valence electron concentrations than Y atoms.  However, the results listed in Table 3.9 for 

Gd5Ge4 and Y5Ge4 cannot be directly compared as the QVAL or IDOS values were 

calculated for different unit cell volumes, atomic positions, and basis functions for the atomic 

orbitals. 

An additional observation from Table 3.9 is that the Ge sites separate clearly into two 

chemically distinct environments, which is in accord with earlier electronic structure 

calculations.21 The Ge1 sites attract greater electron density than the Ge2 and Ge3 sites 

within the slabs.  The long Ge1-Ge1 distance between slabs but the shorter Ge2-Ge3 contact 

within slabs have rationalized the Zintl-type formalism (Gd3+)5(Ge2)6−(Ge4−)2: in Table 3.9, 

the Ge1 sites correspond to the more reduced Ge sites (Ge4−) and the Ge2, Ge3 sites are less 

reduced and share a valence electron pair.(Ge2
6−). 

 

3.4.3.2. Structural Transformation Problem. To elucidate possible electronic factors that 

might influence the structural variation in the Gd5−xYxGe4 series, idealized model structures 

of monoclinic GdY4Ge4 and orthorhombic Gd4YGe4 were constructed from topologically 

identical slabs.  An idealized, isolated slab would have tetragonal symmetry with the fourfold 

rotation axes intersecting the M3 sites at the centers of every cube of M sites.  However, this 

rotational symmetry is destroyed when the slabs form the various structures in Gd5−xYxGe4. 
In the monoclinic GdY4Ge4 structure, space group P21/c, there is one slab per unit cell with 

the M3 site coincident with an inversion center; in the orthorhombic Gd4YGe4 structure, 

space group Pnma, there are two slabs per unit cell and each slab contains a mirror plane 

through the middle of each slab intersecting the M3, Ge2, and Ge3 sites. Therefore, to take 

into account these features as well as the results of the coloring problem for Gd and Y atom, 

our models have the following common features: (i) the two lattice constants identifying the 
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periodicity within each slab are set equal, i.e., bM = cM in the monoclinic case with β = 

113.042° and aO = cO in the orthorhombic case;40 (ii) the lattice metrics and site positions are 

selected to mimic as closely as possible the nearest neighbor distances in the observed 

structures; (iii) the 32434 nets formed by the M1 and M2 sites in each slab are strictly planar; 

and (iv) the distribution of Gd and Y atoms are in accord with the results of the coloring 

problem.  For these calculations the WS radii for each atomic site in the asymmetric units 

were kept the same in the different models, which encompassed both monoclinic and 

orthorhombic crystal classes for the two compositions.  

 

3.4.3.2.1. GdY4Ge4. Figure 3.8 illustrates the four structural models studied. The lattice 

parameters for the different crystal classes were also restricted as follows: aO = cO = bM = cM 

and aO⋅bO⋅cO = 2(aM⋅sin β)⋅bM⋅cM, where aO, bO, cO are the lattice parameters for a 

hypothetical orthorhombic structure; aM, bM, cM, β are the lattice parameters for the 

monoclinic structure of GdY4Ge4 obtained from PXRD.  As evident from Figure 3.8, to 

obtain the formula GdY4Ge4, each 32434 metal layer contains 25% Gd atoms.  Furthermore, 

the Gd distribution in Models Ia and IV locate inversion centers at the M3 sites (this 

inversion center in IV is strictly lost in the complete 3D structure); 41 for Models II and III, 

each slab shows local mirror symmetry containing the M3 sites (again, this mirror plane in II 

is lost in the complete 3D structure).  The total energies listed in Table 3.10 show that Model 

Ia, which has a monoclinic structure with its inversion center intact, is the most favorable 

configuration, which matches our experimental results very well; in fact, the two monoclinic 

models give the lowest energies.   
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         Model Ia        Model II 

  
         Model III           Model IV 

Figure 3.8. Structural models of GdY4Ge4. Blue spheres are Gd, orange spheres are Y and 

red spheres are Ge sites. 
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Table 3.10. Relative total energies, average QVAL and IDOS values for each of the metal 

and Ge-sites in the model structures for GdY4Ge4. The location of the sites is indicated in 

parentheses: edge = edge of slabs; center = center of slabs; BeS = between slabs; WiS = 

within slabs. (f.u. = formula unit). 

 

 Monoclinic (Model Ia)  Monoclinic (Model II) 

E / f.u. (meV) 0  +133.33 

 QVAL IDOS  QVAL IDOS 

M1 (edge) 3.278 3.263  3.277 3.262 

M2 (edge) 2.599 2.585  2.606 2.592 

M3 (center) 3.750 3.730  3.749 3.730 

Ge1 (BeS) 3.975 3.968  3.973 3.966 

Ge2 (WiS) 3.772 3.765  3.770 3.763 

      

 Orthorhombic (Model III)  Orthorhombic (Model IV) 

E / f.u. (meV) +160.82  +361.58 

 QVAL IDOS  QVAL IDOS 

M1 (edge) 3.312 3.300  3.311 3.295 

M2 (edge) 2.576 2.567  2.583 2.570 

M3 (center) 3.747 3.733  3.749 3.727 

Ge1 (BeS) 3.967 3.963  3.962 3.956 

Ge2 / Ge3 (WiS) 3.772 3.766  3.769 3.761 

 

3.4.3.2.2. Gd4YGe4. Following to the results of the coloring problem, Y was placed at the 

M3 site, which is the center of the pseudo-cubes of Gd atoms.  The orthorhombic model (V) 

is Model 3, as shown in Figure 3.6; the monoclinic model (VI) is Model 6 (see Figure 3.7) 

but with orange spheres representing Gd and blue spheres representing Y.  The lattice 

parameters for the two structures also followed the restrictions: aO = cO = bM = cM and 

(aM⋅sin β)⋅bM⋅cM = ½ aO⋅bO⋅cO, where aM, bM, cM, β are the lattice parameters for the 

hypothetical monoclinic structure; aO, bO, cO are the lattice parameters for the orthorhombic 
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structure of Gd4YGe4 obtained from PXRD. The total energies listed in Table 3.11 show that 

Model V is energetically more favorable, which also matches well with our experimental 

results.  

 

Table 3.11. Relative total energies, average QVAL and IDOS values for each of the metal 

and Ge-sites in the model structures for Gd4YGe4. The location of the sites is indicated in 

parentheses: edge = edge of slabs; center = center of slabs; BeS = between slabs; WiS = 

within slabs. (f.u. = formula unit). 

 

 Orthorhombic (Model V)  Monoclinic (Model VI) 

E / f.u. (meV) 0  +331.72 

 QVAL IDOS  QVAL IDOS 

M1 (edge) 2.910 2.898  2.878 2.871 

M2 (edge) 2.910 2.897  2.983 2.976 

M3 (center) 3.364 3.341  3.360 3.349 

Ge1 (BeS) 4.172 4.163  4.140 4.135 

Ge2 / Ge3 (WiS) 3.826 3.819  3.818 3.815 

 

These preliminary theoretical results suggest the interplay among the site preferences 

for Gd and Y, the local symmetry features of an individual slab, and the local electronic 

structures of Gd and Y atoms.  In GdY4Ge4, the minority Gd atoms seek the M1 or M2 sites.  

These sites accumulate the lowest electron density, so we infer that electrostatic factors 

maximize the separation between adjacent Gd atoms, and this creates the inversion center for 

an isolated slab.  The valence electron numbers (QVAL values) listed in Table 3.10 confirms 

this charge distribution: Y sites are electron rich whereas Gd sites are electron poor.  The 

stacking mode thus follows monoclinic symmetry.  For Gd4YGe4, the majority Gd atoms also 

seek the M1 and M2 sites; Y prefers the M3 sites at the interior of the slabs.  Again, the Gd 

sites are electron poor; the Y sites are electron rich.  In this structural configuration, each slab 

has both mirror and inversion symmetry.  In this case, the mirror plane is retained while the 
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inversion center is lost for the orthorhombic stacking pattern (V).  In this situation, further 

theoretical assessment is required.    

 The DOS plots for two models each of GdY4Ge4 and Gd4YGe4 are shown, 

respectively, in Figures 3.9 and 3.10.  Common features to all four curves include (i) three 

peaks between −9.0 and −7.0 eV, with the two end peaks representing the bonding σs and 

antibonding σs
* states of the short Ge2 dimers and the middle peak being the nonbonding state 

of the interslab Ge monomers, all with contributions from Gd and Y orbitals; (ii) states 

between −4.5 eV to just below the Fermi level, involving significant combinations of Ge 4p, 

Y 5s and 4d, and Gd 6s and 5d orbitals; and (iii) states just above the Fermi level, which are 

largely Y 5s and 4d and Gd 6s and 5d orbitals. Also, all of them show two pseudogaps in the 

region between −4.5 eV to just below the Fermi level: these states are derived from the 4p 

bonding states and 4p lone pairs of Ge2 dimers that interact in a bonding manner with the 

metal s and d orbitals, which are also involved in M−M bonding. From integration of the 

DOS curves, the electron count at the lower energy pseudogap is ca. 12 electrons per formula 

unit for both GdY4Ge4 and Gd4YGe4; the pseudogap closer to the Fermi level ranges from ca. 

29-30 valence electrons per formula unit.  Since the interslab Ge-Ge contacts exceed ca. 3.6 

Å, we can treat each Ge atom as isoelectronic with noble gas atoms and would, therefore, 

carry a formal charge of −4.  The intraslab Ge2 dimers can be treated to be isoelectronic with 

halogen dimers and hence would carry a formal charge of −6. Hence we can write the 

chemical formula of (Gd/Y)5Ge4 as (Gd3+/Y3+)5(Ge2
6-)(Ge4-)2(1e−). This formalism accounts 

for 30 valence electrons per formula unit needed to occupy states up to the second 

pseudogap, just below the Fermi level.  Now, as (Gd/Y)5Ge4 has 31 valence electrons per 

formula unit, the additional electron will occupy the narrow band just above this second 

pseudogap. 

 The insets in all the DOS plots show the contributions of the M1 and M2 sites to the 

total DOS with respect to that from the M3 sites, i.e., (M1+M2)/M3.  Now, since the ratio of 

the number of metal sites at the edges (M1/M2) to the number of metal sites at the center 

(M3) in both orthorhombic and monoclinic structures is 4:1, these curves have a baseline at y 

= 4, which is indicated by the dashed horizontal line. The interesting feature that stands out 

from these plots is that the contribution to the DOS from the M3 sites near the Fermi level is 
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about twice that from (M1+M2) sites, in spite of the 4:1 ratio.  Moreover, LSDA+U 

calculations26, 42 show that the magnetic moment for the M3 site is greater than that for either 

the M1 or M2 site.  Hence, we can conclude that the M3 site acts decisively in shaping the 

magnetic and structural features observed in these RE5T4 systems. 
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Figure 3.9. DOS plots for GdY4Ge4. Total DOS (white region), Y PDOS (orange region) Gd 

PDOS (blue region). The insets show the variation of (M1+M2)/M3-DOS with energy. 
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Figure 3.10. DOS plots for Gd4YGe4. Total DOS (white region), Gd PDOS (blue region), Y 

PDOS (orange region). The insets show the variation of (M1+M2)/M3-DOS with energy. 

 

3.4.3.3. Magnetic Ordering Problem. The results of LSDA calculations for the lowest 

energy models of GdY4Ge4 (Model Ia) and Gd4YGe4 (Model V) are presented in Table 3.12.  

In both cases, magnetically ordered patterns achieve lower total energies self-consistently 

than the corresponding nonmagnetic cases.  This approach successfully agrees with our 
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experimental results: GdY4Ge4 prefers ferromagnetic ordering; Gd4YGe4 prefers 

antiferromagnetic ordering.  The lowest energy magnetic ordering patterns show completely 

ferromagnetic coupling within the structural slabs that serve as the building blocks for the 

entire Gd5−xYxGe4 series.  Orthorhombic Gd4YGe4, therefore, exhibits antiferromagnetic 

coupling between adjacent slabs; ferromagnetic coupling within slabs for a net zero 

magnetization.  

 Table 3.12 also summarizes the local magnetic moments obtained by each 

calculation.  Local moments at the Ge sites are negligibly small and there is a slight 

polarization occurring at the Y sites.  For all models, Y atoms at the M3 sites (center of the 

pseudocubes within each slab) show the greater local moments than for Y atoms located at 

the M1 or M2 sites.  Since the DOS curves in Figures 3.9 and 3.10 emphasize the 

significance of valence s and d orbitals of the M3 sites at the Fermi levels in this series, their 

magnetic behavior is strongly influenced by exchange coupling between the M3 sites and the 

M1 or M2 sites of the slabs.  With just a single effective conduction electron in Gd5−xYxGe4, 

ferromagnetic coupling within the slab is anticipated by this low band filling.43 Further 

calculations, however, are required to elucidate the factors contributing to the magnetic 

exchange between slabs.  Nevertheless, other substitution patterns in various Gd5−xRExGe4 

examples (RE = La, Lu, Sc)26, 35 also show interesting variations in magnetic behavior. 

 

Table 3.12. Summary of relative total energies and local magnetic moments calculated for 

two different models of GdY4Ge4 and Gd4YGe4 by TB-LMTO-ASA.    
 GdY4Ge4  Gd4YGe4 

 Monoclinic (Model Ia): ENM = 8690 meV  Orthorhombic (Model V): ENM = 34760 meV 

 Ferromagnetic Antiferromagnetic  Ferromagnetic Antiferromagnetic 

E (meV) 0.000 7.68  11.98 0 

µ (M1) Gd: 7.243 Gd: ±7.242  Gd: 7.228 Gd: ±7.245 

µ (M2) Y: 0.009 Y: ±0.002  Gd: 7.228 Gd: ±7.244 

µ (M3) Y: 0.043 Y: ±0.043  Y: 0.133 Y: ±0.146 

µ (Ge1) −0.003 m 0.002  −0.028 m 0.019 

µ (Ge2) −0.003 m 0.003  −0.029 m 0.028 

µ (Ge3) --- ---  −0.029 m 0.028 
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3.5. Conclusions 
 A crystal chemical analysis of the distribution of Gd and Y atoms over the various 

metal sites in the Gd5−xYxTt4 (Tt = Si, Ge) series has been presented.  All silicides adopt the 

orthorhombic Gd5Si4-type structure with short Si-Si contacts between the slabs, which form 

the primary structural building blocks for these structures.  All germanides exhibit long Ge-

Ge contacts between these slabs at room temperature, but do show a change in stacking 

pattern near GdY4Ge4 to a monoclinic, U2Mo3Si4-type structure.  Single crystal diffraction 

results reveal a preference of the smaller Y atoms to occupy the M3 sites (centers of slabs) 

whereas the larger Gd atoms prefer to occupy the M1 sites (edges of slabs). Furthermore, the 

calculated electronic structures for Gd5−xYxGe4 show that this preference can also be 

attributed to the density of valence electrons at the various M-sites: Y prefers the site with the 

highest density of valence electrons (M3), whereas Gd prefers the site(s) with a lower density 

of valence electrons (M1/M2). It is this interaction among the site preferences and electronic 

factors that drives the structural transformation from orthorhombic, Sm5Ge4-type to a 

previously unreported monoclinic, U2Mo3Si4-type structure in the Gd5−xYxGe4 series. The 

calculation results also illustrate the central importance of the M3 site in molding the 

magnetic properties and the structural features observed for these RE5T4 systems. It is, 

therefore, further emphasized and confirmed that these nanometer-sized slabs, centered by 

the M3 site, can truly be regarded as the fundamental building blocks for many of the 

structures observed within these systems. 

 The differences, however, between Gd5−xYxGe4 and Gd5−xYxSi4 remain to be 

understood, as the silicides phases retain the robust O(I) structure for compositions with x < 5 

(Y5Si4 adopts the monoclinic Gd5Si2Ge2 structure44) whereas the germanides phases exhibit 

the monoclinic U2Mo3Si4-type structure for values of x close to 4.0.  Although one can 

speculate about chemical pressure imposed by replacing Ge atoms with the smaller Si atoms, 

changes in specific RE-RE, RE-Tt, and Tt-Tt interactions have not been evaluated.  

Investigations of mixed metal and mixed tetrelide systems, i.e., Gd5−xYx(Si,Ge)4, as well as 

additional theoretical study of the site preferences and electronic structures of Gd5−xYxSi4 are 

underway. 
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3.8. Supporting Information 
 

Table 3.S1. Crystallographic data for Gd5−xYxSi4 (x = 0-4) as obtained by single crystal X-

ray diffraction (space group Pnma (No. 62), Mo Kα radiation, 2θ range = 4-57°, T = 298(2) 

K, Z = 4). 

 

x 0 1 2 3 4 

Loaded Composition Gd5Si4 Gd4YSi4 Gd3Y2Si4 Gd2Y3Si4 GdY4Si4 

Refined Composition Gd5Si4 Gd3.92(9)Y1.08Si4 Gd2.9(1)Y2.1Si4 Gd1.97(6)Y3.03Si4 Gd0.98(4)Y4.02Si4 

a, Å 7.482(2) 7.464(2) 7.435(2) 7.429(5) 7.415(4) 

b, Å 14.738(4) 14.708(5) 14.690(4) 14.696(9) 14.607(7) 

c, Å 7.746(2) 7.742(2) 7.739(2) 7.738 (5) 7.713(4) 

V, Å3 854.2(4) 849.9(5) 845.3(4) 844.8(9) 835.4(7) 

Independent 
Reflections 1067 1063 1036 1044 1032 

No. of Parameters 47 50 50 50 50 

Final R indices 
[I>2sigma(I)] 

R1 = 0.0326, 
wR2 = 0.0591 

R1 = 0.0356, 
wR2 = 0.0702 

R1 = 0.0484, 
wR2 = 0.0912 

R1 = 0.0351, 
wR2 = 0.0655 

R1 = 0.0350, 
wR2 = 0.0610 

Peak/hole, e/Å3 2.061 / −1.898 2.700 / −1.802 2.323 / −1.764 1.650 / −1.338 1.516 / −1.162 
 

Table 3.S2. Atomic coordinates, site occupancies and isotropic displacement parameters                        

for Gd5−xYxSi4 (x = 0-4) as obtained by single crystal X-ray diffraction. Coordinates are 

represented in accordance with similar previously reported structure types. 

 

Atom  x y z occupancya Ueq, (Å2)b 

Gd5Si4 

M1 8d 0.0289(1) 0.4028(1) 0.1827(1) 1 0.009(1) 

M2 8d 0.6837(1) 0.3777(1) 0.8204(1) 1 0.008(1) 

M3 4c 0.1442(1) ¾ 0.5112(1) 1 0.007(1) 

Si1 8d 0.8562(4) 0.4602(2) 0.5281(4) 1 0.010(1) 

Si2 4c 0.0210(5) ¾ 0.0998(5) 1 0.009(1) 

Si3 4c 0.2589(6) ¾ 0.8748(6) 1 0.010(1) 
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Table 3.S2. (continued) 

Atom  x y z occupancya Ueq, (Å2)b 

Gd3.92(9)Y1.08Si4 

M1 8d 0.0276(1) 0.4030(1) 0.1820(1) 0.87(2) 0.010(1) 

M2 8d 0.6833(1) 0.3776(1) 0.8203(1) 0.74(2) 0.008(1) 

M3 4c 0.1462(1) ¾ 0.5124(1) 0.69(2) 0.008(1) 

Si1 8d 0.8553(4) 0.4606(2) 0.5283(4) 1 0.010(1) 

Si2 4c 0.0214(6) ¾ 0.1017(6) 1 0.011(1) 

Si3 4c 0.2620(6) ¾ 0.8755(6) 1 0.011(1) 

Gd2.9(1)Y2.1Si4 

M1 8d 0.0265(1) 0.4033(1) 0.1816(1) 0.71(2) 0.010(1) 

M2 8d 0.6826(1) 0.3775(1) 0.8205(1) 0.50(2) 0.009(1) 

M3 4c 0.1474(1) ¾ 0.5131(2) 0.45(2) 0.009(1) 

Si1 8d 0.8540(5) 0.4605(3) 0.5284(4) 1 0.012(1) 

Si2 4c 0.0226(7) ¾ 0.1029(6) 1 0.012(1) 

Si3 4c 0.2645(7) ¾ 0.8736(7) 1 0.011(1) 

Gd1.97(6)Y3.03Si4 

M1 8d 0.0252(1) 0.4033(1) 0.1812(1) 0.54(1) 0.010(1) 

M2 8d 0.6820(1) 0.3775(1) 0.8207(1) 0.32(1) 0.008(1) 

M3 4c 0.1488(1) ¾ 0.5132(1) 0.26(1) 0.009(1) 

Si1 8d 0.8529(3) 0.4604(2) 0.5287(3) 1 0.011(1) 

Si2 4c 0.0215(4) ¾ 0.1041(4) 1 0.009(1) 

Si3 4c 0.2658(4) ¾ 0.8736(4) 1 0.011(1) 

Gd0.98(4)Y4.02Si4 

M1 8d 0.0244(1) 0.4034(1) 0.1809(1) 0.31(1) 0.010(1) 

M2 8d 0.6814(1) 0.3774(1) 0.8208(1) 0.13(1) 0.008(1) 

M3 4c 0.1498(1) ¾ 0.5131(1) 0.09(1) 0.008(1) 

Si1 8d 0.8516(3) 0.4604(1) 0.5289(2) 1 0.010(1) 

Si2 4c 0.0225(4) ¾ 0.1040(4) 1 0.010(1) 

Si3 4c 0.2675(4) ¾ 0.8725(4) 1 0.009(1) 
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a All M1, M2 and M3 sites are fully occupied with a mixture of Gd and Y atoms. Only Gd 

occupations are listed. The only exception is Gd5Si4 where the M1, M2 and M3 sites are fully 

occupied by Gd 
b U(eq) is defined as one-third of  the trace of the orthogonalized Uij tensor. 
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Figure 3.S1. Magnetic susceptibility plots for Gd5−xYxSi4 series. The measurements were 

carried out under a magnetic filed, H = 10 kOe. 
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Table 3.S3. Crystallographic data for Gd5−xYxGe4 (x = 0, 1, 2, 3, 3.2, & 3.4) as obtained by 

single crystal X-ray diffraction (space group Pnma (No. 62), Mo Kα radiation, 2θ range = 4-

57°, T = 298(2) K, Z = 4). 

 
x 0 1 2 3 3.2 3.4 

Loaded 

Composition Gd5Ge4 Gd4YGe4 Gd3Y2Ge4 Gd2Y3Ge4 Gd1.8Y3.2Ge4 Gd1.6Y3.4Ge4 

Refined 
Composition Gd5Ge4 Gd4.02(6)Y0.98Ge4 Gd2.96(5)Y2.04Ge4 Gd1.91(4)Y3.09Ge4 Gd1.74(5)Y3.26Ge4 Gd1.55(6)Y3.45Ge4 

a (Å) 7.691(2) 7.676(2) 7.663(3) 7.653(4) 7.647(1) 7.645(2) 

b (Å) 14.820(3) 14.787(4) 14.772(6) 14.758(8) 14.741(2) 14.720(4) 

c (Å) 7.780(2) 7.763(2) 7.748(3) 7.741(4) 7.726(1) 7.720(2) 

V (Å3) 886.8(3) 881.1(4) 877.1(6) 874.3(9) 870.8(2) 868.7(4) 

 

 

 

 

Table 3.S4. Crystallographic data for Gd5−xYxGe4 (x = 3.6, 4.4, 4.6, 4.8 & 5.0) as obtained by 

single crystal X-ray diffraction (space group Pnma (No. 62), Mo Kα radiation, 2θ range = 4-

57°, T = 298(2) K, Z = 4). 

 
x 3.6 4.4 4.6 4.8 5.0 

Loaded 

Composition Gd1.4Y3.6Ge4 Gd0.6Y4.4Ge4 Gd0.4Y4.6Ge4 Gd0.2Y4.8Ge4 Y5Ge4 

Refined 
Composition Gd1.26(4)Y3.74Ge4 Gd0.61(5)Y4.39Ge4 Gd0.29(3)Y4.71Ge4 Gd0.17(3)Y4.83Ge4 Y5Ge4 

a (Å) 7.638(2) 7.645(3) 7.636(1) 7.636(1) 7.637(2) 

b (Å) 14.723(4) 14.728(6) 14.713(3) 14.713(2) 14.695(4) 

c (Å) 7.714(2) 7.711(3) 7.705(1) 7.708(1) 7.711(2) 

V (Å3) 867.4(4) 868.2(6) 865.7(3) 866.0(2) 865.3(4) 
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Table 3.S5. Crystallographic data for Gd5−xYxGe4 (x = 3.8, 4.0 & 4.2) as obtained by single 

crystal X-ray diffraction (space group P21/c (No. 14), Mo Kα radiation, 2θ range = 4-57°, T = 

298(2) K, Z = 2). 

x 3.8 4.0 4.2 

Loaded Composition  Gd1.2Y3.8Ge4 GdY4Ge4 Gd0.8Y4.2Ge4 

Refined Composition Gd1.11(3)Y3.89Ge4 Gd1.00(3)Y4.00Ge4 Gd0.77(3)Y4.23Ge4 

a (Å) 7.996(2) 8.001(3) 7.998(1) 

b (Å) 7.757(2) 7.754(3) 7.751(1) 

c (Å) 7.602(2) 7.601(3) 7.600(1) 

β (°) 112.879(5) 112.945(6) 112.952(2) 

V (Å3) 434.5(2) 434.2(3) 433.8(1) 
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Figure 3.S2. Variation of the unit cell volume per formula unit, V′, for Gd5−xYxGe4 phases as 

a function of Y amount as obtained from powder X-ray diffraction. The shaded regions 

delineate the two-phase region.  
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Figure 3.S3. The magnetization isotherms measured for H = 0-50 kOe at T = 5 K. Squares 

represent data for increasing magnetic field and diamonds are data for decreasing magnetic 

field. 
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Table 3.S6. Coordinates for the monoclinic structural models, Model Ia, Model Ib, Model II 

and Model VI. (Lattice parameters for Model Ia, Ib and II: aM = 8.0067 Å; bM = cM = 

7.685396515* Å; β = 113.042°; space group = P21/c)  

 

Atom  x y z 

M1 − 0.283162  0.317000  0.183 − 0.25 tan (β−90°)

M2   0.283162  0.317000  0.183 + 0.25 tan (β−90°)

M3   0  0  0 

Ge1   0.412363  0  0.412363 tan (β−90°) 

Ge2   0  0.615700  0.115700 

 
* To ensure the errors of the calculations due to the accuracy of the input lattice constants are 

kept to a minimum, a greater number of significant digits were used.      

 

Table 3.S7. Total energy, average QVAL and IDOS values for each of the metal and Ge-

sites in the model structure for GdY4Ge4 (BeS = between slabs; WiS = within slabs). 

 

 Monoclinic (Model Ib) 

E / f.u. (meV) + 0.87 

 QVAL IDOS 

M1 (edge) 3.278 3.263 

M2 (edge) 2.599 2.585 

M3 (center) 3.750 3.730 

Ge1 (BeS) 3.974 3.968 

Ge2 (WiS) 3.772 3.765 
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       Model Ib 

 
Figure 3.S4. Structural model of GdY4Ge4. Blue spheres are Gd, orange spheres are Y and 

red spheres are Ge sites. 

 

 

 

Table 3.S8. Coordinates for the orthorhombic structural models, Model III, Model IV and 

Model V. (Lattice parameters for Model V: aO = cO = 7.726483663* Å; bO = 14.8070 Å; 

space group = Pnma)  

 

Atom  x y  z 

M1 − 0.06700  0.39158  0.18300 

M2  0.56700  0.39158 − 0.18300 

M3  ¼  ¼  0 

Ge1  ¼  0.45618  0 

Ge2  0.86570  ¼ − 0.11570 

Ge3 − 0.36570  ¼  0.11570 

 
* To ensure the errors of the calculations due to the accuracy of the input lattice constants are 

kept to a minimum, a greater number of significant digits were used.      
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Chapter 4 

 

On the Crystal Structure, Metal Atom Site Preferences and 

Magnetic Properties of Nd5−xErxTt4 (Tt = Si or Ge) 
 

An article submitted in Zeitschrift für Anorganische und Allegemeine Chemie 

 

Sumohan Misra, Eric T. Poweleit, Gordon J. Miller 

 

4.1. Abstract  
A crystallographic study of the Nd/Er site preferences in the Nd5−xErxTt4 (Tt = Si, Ge) 

series prepared by high-temperature methods is presented. For Nd5−xErxSi4, phases with x ≤ 

1.0 adopt the tetragonal Zr5Si4-type structure. On the other hand, phases in the composition 

range of 2.0 ≤ x ≤ 5.0 exhibits the Gd5Si4-type structure.  For all silicides, all Si atoms belong 

to Si-Si dimers.  In the Nd5−xErxGe4 system, phases with x < 3.2 and x = 4.0 adopt the 

orthorhombic Sm5Ge4-type structure. For the composition range of 3.2 ≤ x ≤ 4.0, a 

monoclinic U2Mo3Si4-type structure (space group P21/c) occurs as the majority phase. This 

monoclinic structure, until recently, was not reported for similar RE5T4 systems, and differs 

from the known monoclinic Gd5Si2Ge2-type (space group P21/a) because all Ge⋅⋅⋅Ge contacts 

between slabs are equivalent. The structural relationships between the Zr5Si4-type, Gd5Si4-

type, Sm5Ge4-type, and U2Mo3Si4-type structures are discussed.  Single crystal refinements 

of the metal atom occupancies for the three different metal sites in the asymmetric unit of all 

structure types reveal a partially ordered nonstatistical arrangement of Nd and Er atoms.  The 

magnetic properties of some Nd5−xErxGe4 phases are also reported.  Nd4ErGe4 shows an 

antiferromagnetic-type transition similar to Gd5Ge4. As the Er concentration increases (2 ≤ x 

≤ 4), these phases exhibit, at least, ferrimagnetic-type ordering. 
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4.2. Introduction 
The last quarter of the 20th century has seen a growing interest in environmentally 

friendly, alternative technologies for refrigeration from ambient temperature to the 

temperatures of helium and hydrogen liquefaction (ca. 4.2-20 K). These new technologies 

should potentially help to replace today’s common gas compression/expansion technology, 

which achieves cooling efficiencies approaching 40% of the Carnot limit1 and uses ozone 

depleting chemicals (ODCs) like hydrochlorofluorocarbons (HCFCs). One such 

environmentally benign cooling technique is magnetic refrigeration or thermomagnetic 

cooling, which utilizes the magnetocaloric effect (MCE) and can achieve an efficiency of ca. 

60% of the Carnot limit and is one of the most ecologically clean cooling techniques over a 

wide range of temperatures.2 One of the attractive classes of materials that exhibit 

extraordinary magnetic responses and have the potential for applications in magnetic 

refrigeration is the rare-earth tetrelides, RE5Tt4 (RE = rare-earth element; ''Tt'' or ''tetrelide'' 

corresponds to Group 14/IVB element viz. Si and Ge).1, 3-4 

This series was first reported by Holtzberg and coworkers in the late 1960s.5 These 

intermetallic compounds are characterized by an intimate relationship between crystal 

chemistry and physical properties, e.g., magnetism. Recent studies reveal that the rich 

chemistry and physics associated with these compounds are closely related to their two-

dimensional structural building blocks and strong magnetoelastic coupling present in these 

materials.6 Features that have captured the attention of solid-state chemists include 

microscopic twinning,7 dependence of crystal structures on the Si/Ge ratio,8 valence electron 

count,9-10 and their ability to break and re-form covalent bonds existing between pairs of Tt 

atoms on heating and cooling near the corresponding magnetic transition temperatures. Such 

structural behavior has been termed ''nanoscale zippers''.11 The crystal structures of 

Gd5(SixGe1−x)4 and many other RE5T4 (RE = rare earth; T = Si, Ge, Ga, Sn or their various 

combinations) materials are built from slabs of two eclipsed 32434 nets of RE atoms. The 

arrangements of the atoms in the slabs and, in turn, the structural and magnetic properties 

depend on the presence or absence of interslab main group-main group chemical bonds. 

Theoretical and experimental investigations indicate that the giant MCE found in these 

materials is due to a first-order phase transformation, e.g., as observed in Gd5Si2Ge2 at ca. 
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277 K at which a transition between ferromagnetic and paramagnetic behavior is coupled 

with, respectively, an orthorhombic Gd5Si4-type and monoclinic Gd5Si2Ge2-type 

crystallographic transition.6, 11 

The majority of research activity, however, has emphasized the chemistry, physics 

and materials science of Gd5T4 or Gd5−xRExT4 systems.1-4, 6-14 The physical and chemical 

properties of tetrelides for other rare-earth or mixtures of rare-earth elements at the 5:4 

stoichiometry have been explored to a much lesser extent.15-17 For mixed rare-earth systems 

in particular, e.g., as in Gd5−xYxTt4, the different crystallographic sites for the metal atoms 

show distinct site preferences that significantly influence structural and magnetic 

characteristics.15 We report herein the results obtained for a systematic investigation of a 

mixed rare-earth system comprised of a lighter and larger rare-earth, Nd, and a heavier and 

smaller rare-earth, Er, on the structural features and magnetic properties in both pseudobinary 

Si and Ge systems.  

In the Nd-Er-Si system we observe a structural transition from the tetragonal Zr5Si4-

type18 crystal structure (which is a typical structure type for the silicon-rich, lighter rare-earth 

cases) to the orthorhombic Gd5Si4-type19 structure (which is a typical structure type for the 

silicon-rich, heavier rare-earth cases). For the Nd-Er-Ge system, together with variations in 

magnetic ordering, we also observe a structural transformation from the orthorhombic 

Sm5Ge4-type20 to a new monoclinic U2Mo3Si4-type21 structure for certain compositions. This 

structure is different from the known monoclinic structure of Gd5Si2Ge2-type6 and, until 

recently, was not reported for other RE5T4 systems.15 

 

4.3. Experimental Section 
4.3.1. Syntheses: Samples of Nd5−xErxSi4 where x = 1, 2, 3, and 4 and Nd5−xErxGe4 where x 

= 1, 2, 3, 3.2, 3.6, and 4 were prepared by arc-melting its constituent elements in an argon 

atmosphere on a water-cooled copper hearth. The starting materials were pieces of 

neodymium (99.99 wt. %, Materials Preparation Center, Ames Laboratory), erbium (99.99 

wt. %, Materials Preparation Center, Ames Laboratory), silicon (99.9999 wt. %, Alfa Aesar) 

and germanium (99.9999 wt. %, Alfa Aesar). Each ingot had a total weight of ca. 1.5 g and 

was remelted six times with the button being turned over after each melting to ensure 
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homogeneity. Weight losses during melting were less than 0.1 wt. percent. At room 

temperature the as-cast samples were stable to decomposition on exposure to air and 

moisture. A powder X-ray diffraction pattern for an exposed sample did not reveal any 

additional peaks compared to one for an unexposed sample.  

 

4.3.2. Powder X-ray Diffraction: The as-cast samples were examined by powder X-ray 

diffraction for identification and to assess phase purity. Powder patterns were obtained using 

an Enraf-Nonius Guinier camera with monochromatized Cu Kα radiation (λ = 1.54187 Å). To 

probe the purity and homogeneity of all phases, all diffraction patterns were analyzed by full-

profile Rietveld refinement using LHPM RIETICA software.22 Only the scale factor and the 

lattice parameters of each phase were refined. The isotropic displacement parameters of all 

atoms in each phase were assumed to be the same. For Nd5−xErxSi4, the profile residuals, Rp, 

varied from ca. 2.01 to 3.53 and derived Bragg residuals, RB, varied from ca. 2.51 to 4.06. 

For Nd5−xErxGe4, the profile residuals, Rp, varied from ca. 2.03 to 3.32 and their derived 

Bragg residuals, RB, varied from ca. 3.90 to 6.52. 

 

4.3.3. Single-Crystal X-ray Crystallography: Several single crystals from the as-cast 

samples were mounted on the tip of a glass fiber. Room temperature intensity data were 

collected on a Bruker Smart Apex CCD diffractometer with Mo Kα radiation (λ = 0.71073 Å) 

and a detector-to-crystal distance of 5.990 cm. Data were collected over a full sphere of 

reciprocal space by taking three sets of 606 frames with 0.3° scans in ω with an exposure 

time of 10 seconds per frame. The 2θ range extended from 4° to 57°. The SMART23 software 

was used for data acquisition.  Intensities were extracted and then corrected for Lorentz and 

polarization effects by the SAINT23 program.  Empirical absorption corrections were 

accomplished with the program SADABS,23 which is based on modeling a transmission 

surface by spherical harmonics employing equivalent reflections with I > 3σ(I). Structure 

solutions and refinements were performed with the SHELXTL23 package of crystallographic 

programs.   
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4.3.4. Magnetic Property Measurements: Magnetic measurements were carried out using 

a Lake Shore ac / dc susceptometer-magnetometer, model 7225 on polycrystalline samples. 

These included dc magnetic susceptibility measurements between ca. 4 and 300 K and 

isothermal magnetization measurements in dc magnetic fields varying from 0 to 50 kOe. For 

the susceptibility measurements, the samples were first cooled under zero magnetic field 

(zfc) and then the measurements were carried out on heating under a 10 kOe magnetic field. 

The measurements were then repeated upon cooling with the magnetic field turned on (fc). 

All data were corrected for T-independent contributions. 

 

4.4. Results and Discussion 
4.4.1. Structural Features of Nd5−xErxSi4. Powder X-ray diffraction investigation of 

Nd5−xErxSi4 samples reveals that two distinct phases exist in this system. For x ≤ 1.0, the 

tetragonal Zr5Si4-type structure forms as the majority phase; and for x ≥ 2.0, the 

orthorhombic Gd5Si4-type structure is observed as the majority phase.  The lattice parameters 

obtained from Rietveld refinement of the powder data are presented in Table 4.1. Selected 

crystallographic data, atomic coordinates, site occupancies and isotropic displacement 

parameters from single crystal X-ray diffraction experiments are presented in Tables 4.2 and 

4.3. The distances of the nearest atom from the highest residual peak for each structural 

solution are listed in parentheses (Table 4.2). As expected, due to the smaller size of Er 

compared to Nd,24 the unit cell volume gradually decreases with increasing Er content.  

The tetragonal, Zr5Si4-type crystal structure has five atoms in the asymmetric unit: 

three crystallographically independent sites for Nd or Er metal atoms and only two distinct 

sites for the tetrelide atoms and is typically found for the lighter rare-earth, silicon-rich 5:4 

cases.1 The projection of the crystal structure along the a-axis is shown in Figure 4.1. The 

tetrelide atoms (Si1 and Si2) are surrounded by tricapped trigonal prisms; each prism is 

formed by six RE (M1 and M2) atoms while the capping atoms are two RE (M3) atoms and 

one Si atom.  Therefore, two of these Si-centered prisms share a common rectangular face, 

which creates rhombic prisms.  Furthermore, the Si atoms are slightly displaced from the 

center of the prisms toward each other, which may be formulated as Si2
6− dimers.  The 

structure may be considered as a complex, three-dimensional packing of these rhombic 
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prisms. The local coordination environment at each RE site, in terms of end-on/side-on 

coordination to Si–Si dimers, reveals a separate picture for the two 8b (M1 and M2) and one 

4a (M3) sites. Due to the nature of the rhombic prisms, the Si–Si dimers are coordinated both 

end-on and side-on by four 8b (2 M1 and 2M2) sites, respectively. The 4a (M3) sites, in 

comparison, coordinate the Si–Si dimers only in an end-on fashion.  

 

Table 4.1. Lattice parameters for Nd5−xErxSi4 as obtained by powder X-ray diffraction (space 

group for Zr5Si4-type (Z = 4) and Gd5Si4-type (Z = 4) structures are respectively P41212 (No. 

92) and Pnma (No. 62), Cu Kα radiation, 2θ range = 10–100°, T = 298(2) K). 

 

x Structure Type(s) a (Å) b (Å) c (Å) V' (Å3)a 

0b Zr5Si4 7.8694(0) 7.8694(0) 14.8077(1) 229.25(1) 

1 Zr5Si4 7.8255(5) 7.8255(5) 14.551(1) 222.8(1) 

7.7153(8) 7.7153(8) 14.275 (8) 212.4(6) 
2 

Zr5Si4  + 

Gd5Si4* 7.4723(8) 14.753(2) 7.7894(9) 214.7(2) 

7.830(3) 7.830(3) 13.48(1) 206.5(7) 
3 

Zr5Si4  + 

Gd5Si4* 7.4042(3) 14.6164(7) 7.7237(3) 209.0(1) 

4 Gd5Si4 7.3473(4) 14.4859(9) 7.6570(5) 203.7(1) 

5c Gd5Si4 7.2940(6) 14.374(1) 7.5973(5) 199.1(1) 
 

aV′ = Unit cell volume per formula unit; bReference (25); cReference (28); *Majority phase as 

determined from Rietveld refinement. Lattice parameters for the minority phases are shown 

in italics. 
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Table 4.2. Crystallographic data for Nd5−xErxSi4 (x = 1–4) as obtained by single crystal X-ray 

diffraction (space group for Zr5Si4-type (Z = 4) and Sm5Ge4-type (Z = 4) structures are 

respectively P41212 (No. 92) and Pnma (No. 62), Mo Kα radiation, 2θ range = 4–57°, T = 

298(2) K).∗ 

 

 

x 1 2 3 4 

Loaded Composition  Nd4ErSi4 Nd3Er2Si4      Nd2Er3Si4 NdEr4Si4 

Refined Composition Nd3.92Er1.08(5)Si4 Nd2.94Er2.06(7)Si4 Nd2.01Er2.99(33)Si4 Nd0.96Er4.04(36)Si4 

Structure Type Zr5Si4 Gd5Si4 Gd5Si4 Gd5Si4 

No. of Independent 
Reflections 1080 1069 1035 1018 

No. of Parameters 45 49 50 50 

Final R indices  
[I > 2sigma(I)] 

R1 = 0.0303, 
wR2 = 0.0532 

R1 = 0.0358, 
wR2 = 0.0661 

R1 = 0.0372, 
wR2 = 0.0801 

R1 = 0.0346, 
wR2 = 0.0636 

Peak/hole, e/Å3 1.765 / −1.362 
[1.19 Å from Si2] 

3.028 / −1.863 
[0.92 Å from M3] 

2.070 / −1.964 
[0.76 Å from Si2] 

2.430 / −2.666 
[1.37 Å from Si2] 

Table 4.3. Atomic coordinates, site occupancies and isotropic displacement parameters                        

for Nd5-xErxSi4 (x = 1–4) as obtained by single crystal X-ray diffraction. Coordinates are 

represented in accordance with similar previously reported structure types.24, 25 

 

Atom  x  y  z  Occupancya  Ueq, (Å2)b 

Nd3.92Er1.08(5)Si4 

Nd1 8b 0.0101(1) 0.3651(1) 0.0438(1) 1 0.009(1) 

M2 8b 0.0125(1) 0.8659(1) 0.1255(1) 0.32(2) 0.008(1) 

M3 4a 0.6857(1) 0.6857(1) 0 0.44(2) 0.009(1) 

Si1 8b 0.1590(4) 0.2022(4) 0.8078(2) 1 0.013(1) 

Si2 8b 0.0683(4) 0.7089(4) 0.9400(2) 1 0.009(1) 

       

                                                 
∗ Further details of the crystal structure investigations are available from the 
Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany), on quoting the 
depository number CSD 380261, 380262, 380263, 380264, the name of the author(s), and citation of 
the paper. 
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Table 4.3. (continued) 

Atom  x  y  z  Occupancya  Ueq, (Å2)b 

Nd2.94Er2.06(7)Si4 

Nd1 8d 0.0221(1) 0.4028(1) 0.1798(1) 1 0.009(1) 

M2 8d 0.6807(1) 0.3771(1) 0.8216(1) 0.65(2) 0.008(1) 

M3 4c 0.1518(1) ¾ 0.5123(1) 0.76(3) 0.008(1) 

Si1 8d 0.8532(4) 0.4609(2) 0.5312(4) 1 0.010(1) 

Si2 4c 0.0239(6) ¾ 0.1086(6) 1 0.011(1) 

Si3 4c 0.2700(6) ¾ 0.8752(6) 1 0.011(1) 

Nd2.01Er2.99(33)Si4 

M1 8d 0.0201(1) 0.4033(1) 0.1787(1) 0.17(6) 0.009(1) 

M2 8d 0.6790(1) 0.3769(1) 0.8219(1) 0.87(7) 0.008(1) 

M3 4c 0.1538(1) ¾ 0.5118(1) 0.90(7) 0.008(1) 

Si1 8d 0.8506(4) 0.4609(2) 0.5308(4) 1 0.010(1) 

Si2 4c 0.0253(6) ¾ 0.1103(6) 1 0.009(1) 

Si3 4c 0.2726(6) ¾ 0.8746(6) 1 0.011(1) 

Nd0.96Er4.04(36)Si4 

M1 8d 0.0199(1) 0.4034(1) 0.1794(1) 0.56(6) 0.008(1) 

M2 8d 0.6779(1) 0.3769(1) 0.8217(1) 0.98(6) 0.007(1) 

M3 4c 0.1549(1) ¾ 0.5116(1) 0.97(6) 0.007(1) 

Si1 8d 0.8483(4) 0.4612(2) 0.5311(4) 1 0.009(1) 

Si2 4c 0.0265(6) ¾ 0.1088(5) 1 0.009(1) 

Si3 4c 0.2740(6) ¾ 0.8726(6) 1 0.009(1) 
 

aAll M1, M2 and M3 sites are fully occupied with a mixture of Nd and Er atoms. Only Er 

occupations are listed.  
bU(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

 

In contrast, the orthorhombic Gd5Si4-type crystal structure has six atoms in the 

asymmetric unit: three crystallographically independent sites for Nd or Er metal atoms, and 

three distinct sites for the tetrelide atoms and is typically found for the silicon-rich heavier 
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rare-earth systems.1 A detailed description of the Gd5Si4-type structure can be found 

elsewhere.5 In both of these structures all Si atoms belong to Si–Si dimers, in spite of the fact 

that the former forms a three-dimensional network structure while the latter has a layered 

morphology (NOTE: although the orthorhombic structure can be described as ''layered'', with 

the interslab Si-Si bonds, it is really a 3D network, too).   

 

  
Tetragonal, Zr5Si4-type (P41212) Orthorhombic, Gd5Si4-type (Pnma) 

Figure 4.1.  Projections of the two crystal structures observed for Nd5−xErxSi4 systems. Blue 

atoms represent RE metals and red atoms represent Si atoms. 

 

One of the common structural units present in both structures is the M3-centered cube 

of rare-earth atoms (made of M1 and M2 sites) that is capped on all faces with Si atoms, i.e., 

M(M8)(Si6) units. Alternatively, this unit can be viewed as an octahedral coordination 

polyhedron of six Si atoms about the M3 site with M1 and M2 atoms capping the eight 

triangular faces. In both cases, these units are condensed according to the formulation, 

M(M8/2)[(Si)2(Si)4/2].  The different structures are formed by fusing four edges of each cube 

with adjacent units in two different ways, as shown in Figure 4.2.  In the tetragonal Zr5Si4-

type structure, the fused edges occur on two opposite faces and are oriented perpendicular to 

one another, which creates a three-dimensional network involving 41 screw axes. On the 
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other hand, in the orthorhombic Gd5Si4-type structure, the four fused edges are parallel with 

one another, which forms layers of these units condensed within the ac-planes. 

 

Tetragonal, Zr5Si4-type (P41212) Orthorhombic, Gd5Si4-type (Pnma) 

Figure 4.2. The two different ways the edges of the cube are fused with adjacent units to 

form the tetragonal and orthorhombic structure. Blue atoms represent RE metals and red 

atoms represent Si atoms. 

 

All three rare-earth metal sites for 3 ≤ x ≤ 4 exhibit mixed site occupancies, with Nd 

(or the larger rare-earth atom) having a preference for the M1 site and Er (or the smaller rare-

earth atom) having a preference for the M3 site, as also observed for Gd-Y-Tt (Tt = Si, Ge),15 

Gd-La-Ge,16 Gd-Lu-Ge16 and Gd-Sc-Ge17 systems. For 1 ≤ x ≤ 2, the M1 site is exclusively 

occupied by the larger Nd atom. The other two rare-earth metal sites (M2 and M3) display 

mixed site occupancies with the smaller Er atom showing a distinct preference for the M3 

site.  

  Figure 4.3 includes the variations of Si1–Si1 (orthorhombic interslab contacts) and 

Si2–Si3 (orthorhombic intraslab contacts) as the Er content changes. A distinct deviation in 

the monotonic trends in these distances occurs for x = 1.0, which marks the region for 

structural transition between the tetragonal and orthorhombic structures. 
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Figure 4.3. Interatomic distance variations in Nd5−xErxTt4 as a function of Er content, x. 

Circles represent data for Nd5−xErxSi4 and squares represent data for Nd5−xErxGe4. The dotted 

lines delineate the region where the crystal structure changes. 

 

4.4.2. Structural Features of Nd5−xErxGe4.  Two distinct phases exist in this system as 

identified by powder X-ray diffraction. For x < 3.2, the orthorhombic Sm5Ge4-type structure 

forms as the majority phase, and for the composition range 3.2 ≤ x ≤ 4.0, the monoclinic 

U2Mo3Si4-type structure is observed as the majority phase. The lattice parameters obtained 

from Rietveld refinement of the powder data are listed in Table 4. Selected crystallographic 

data, atomic coordinates, site occupancies, and isotropic displacement parameters from single 

crystal X-ray diffraction are presented in Tables 4.5–4.8. The distances of the nearest atom 

from the highest residual peak for each structural solution are listed in parentheses (Table 4.5 

and 4.7). 
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Table 4.4. Lattice parameters for Nd5−xErxGe4 as obtained by powder X-ray diffraction 

(space group for Sm5Ge4-type (Z = 4) and U2Mo3Si4-type (Z = 2) structures are respectively 

Pnma (No. 62) and P21/c (No. 14), Cu Kα radiation, 2θ range = 10–100°, T = 298(2) K). 

 

x Structure Type(s) a (Å) b (Å) c (Å) β (°) V' (Å3)a 

0b Sm5Ge4 7.8631(1) 15.1163(3) 7.9559(1)  236.41(2)

1 Sm5Ge4 7.7904(5) 15.0062(10) 7.8983(5)  230.8(1) 

2 Sm5Ge4 7.6893(7) 14.8517(13) 7.8192(3)  223.2(1) 

7.6101(7) 14.7284(15) 7.7595(7)  217.4(1) 
3 

Sm5Ge4* + 

U2Mo3Si4 7.898(1) 7.792(1) 7.599(1) 111.09(1) 218.2(1) 

3.2 U2Mo3Si4 7.8880(7) 7.7695(6) 7.5733(6) 111.344(4) 216.1(1) 

3.6 U2Mo3Si4 7.8850(4) 7.7549(3) 7.5582(3) 111.553(2) 214.92(3)

4 U2Mo3Si4 7.8842(4) 7.7261(4) 7.5388(3) 111.886(2) 213.06(4)

5c Sm5Ge4 7.5448(3) 14.515(1) 7.6081(3)  208.3(1) 

 
aV′ = Unit cell volume per formula unit; bReference (27); cReference (28); * Majority phase 

as determined from Rietveld refinement. Lattice parameters for the minority phases are 

shown in italics. 
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Table 4.5. Crystallographic data for Nd5−xErxGe4 (x = 1–3) as obtained by single crystal X-

ray diffraction (Sm5Ge4-type, space group Pnma (No. 62), Mo Kα radiation, 2θ range = 4–

57°, T = 298(2) K, Z = 4).∗ 

 

x 1 2 3 

Loaded Composition  Nd4ErGe4 Nd3Er2Ge4      Nd2Er3Ge4 

Refined Composition Nd4.09Er0.91(10)Ge4 Nd3.06Er1.94(9)Ge4 Nd1.94Er3.06(13)Ge4 
No. of Independent 

Reflections 1164 1111 1092 

No. of Parameters 49 49 50 

Final R indices  
[I > 2sigma(I)] 

R1 = 0.0495,  
wR2 = 0.0944 

R1 = 0.0445,  
wR2 = 0.0823 

R1 = 0.0337,  
wR2 = 0.0609 

Peak/hole, e/Å3 3.329 / −3.447 
[0.96 Å from M3] 

2.989 / −2.423 
[1.00 Å from Ge3] 

2.680 / −2.250 
[1.24 Å from M3] 

Table 4.6. Atomic coordinates, site occupancies and isotropic displacement parameters                        

for Nd5−xErxGe4 (x = 1–3) as obtained by single crystal X-ray diffraction. Coordinates are 

represented in accordance with similar previously reported structure types.15 

 

Atom  x  y  z  occupancya  Ueq, (Å2)b  

Nd4.09Er0.91(10)Ge4 

Nd1 8d 0.9814(1) 0.4005(1) 0.1803(1) 1 0.010(1) 

M2 8d 0.6280(1) 0.3831(1) 0.8392(1) 0.23(3) 0.009(1) 

M3 4c 0.2069(2) ¾ 0.4982(1) 0.45(4) 0.009(1) 

Ge1 8d 0.7863(2) 0.4554(1) 0.5355(2) 1 0.011(1) 

Ge2 4c 0.0774(3) ¾ 0.1131(3) 1 0.011(1) 

Ge3 4c 0.3197(3) ¾ 0.8665(3) 1 0.010(1) 

Nd3.06Er1.94(9)Ge4 

Nd1 8d 0.9875(1) 0.4021(1) 0.1802(1) 1 0.010(1) 

M2 8d 0.6377(1) 0.3811(1) 0.8376(1) 0.58(3) 0.009(1) 

                                                 
∗ Further details of the crystal structure investigations are available from the 
Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany), on quoting the 
depository number CSD 380265, 380266, 380267, the name of the author(s), and citation of the 
paper. 



 82

Table 4.6. (continued) 

Atom  x  y  z  occupancya  Ueq, (Å2)b  

M3 4c 0.1990(1) ¾ 0.4992(1) 0.77(3) 0.009(1) 

Ge1 8d 0.7963(2) 0.4565(1) 0.5385(2) 1 0.012(1) 

Ge2 4c 0.0667(3) ¾ 0.1179(3) 1 0.011(1) 

Ge3 4c 0.3164(3) ¾ 0.8657(3) 1 0.010(1) 

Nd1.94Er3.06(13)Ge4 

M1 8d 0.9876(1) 0.4022(1) 0.1794(1) 0.16(2) 0.011(1) 

M2 8d 0.6384(1) 0.3804(1) 0.8372(1) 0.90(3) 0.011(1) 

M3 4c 0.1983(1) ¾ 0.4997(1) 0.94(3) 0.011(1) 

Ge1 8d 0.7976(2) 0.4568(1) 0.5387(2) 1 0.013(1) 

Ge2 4c 0.0648(2) ¾ 0.1200(2) 1 0.012(1) 

Ge3 4c 0.3170(2) ¾ 0.8650(2) 1 0.011(1) 
 

aAll M1, M2 and M3 sites are fully occupied with a mixture of Nd and Er atoms. Only Er 

occupations are listed.  
bU(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

 

Table 4.7. Crystallographic data for Nd5−xErxGe4 (x = 3.2, 3.6, and 4.0) as obtained by single 

crystal X-ray diffraction (U2Mo3Si4-type, space group P21/c (No. 14), Mo Kα radiation, 2θ 

range = 4–57°, T = 298(2) K, Z = 2).∗ 

 

x 3.2 3.6 4.0 

Loaded 
Composition Nd1.8Er3.2Ge4 Nd1.4Er3.6Ge4 NdEr4Ge4 

Refined 
Composition Nd1.86Er3.14(18)Ge4 Nd1.19Er3.81(15)Ge4 Nd1.00Er4.00(13)Ge4 

    

                                                 
∗ Further details of the crystal structure investigations are available from the 
Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany), on quoting the 
depository number CSD 380268, 380269, 380270, the name of the author(s), and citation of the 
paper. 
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Table 4.7. (continued) 

x 3.2 3.6 4.0 

No. of Independent 
Reflections 1019 997 995 

No. of Parameters 47 47 47 

Final R 
indices  

[I > 2σ(I)] 

R1 = 0.0393,  
wR2 = 0.0707 

R1 = 0.0364,  
wR2 = 0.0702 

R1 = 0.0294,  
wR2 = 0.0593 

Peak/hole, (e/Å3) 
2.100 / −2.288 

[0.82 Å from Ge1] 
2.638 / −3.520 

[0.91 Å from M1] 
2.238 / −1.899 

[0.96 Å from M2] 
 

Table 4.8. Atomic coordinates, site occupancies and isotropic displacement parameters                        

for Nd5−xErxGe4 (x = 3.2, 3.6, and 4.0) as obtained by single crystal X-ray diffraction. 

Coordinates are represented in accordance with similar previously reported structure types 

[15, 21]. 

 

Atom  x  y  z  occupancya  Ueq, (Å2)b  

Nd1.86Er3.14(18)Ge4 

M1 4e 0.6953(1) 0.3198(1) 0.0630(1) 0.25(3) 0.010(1) 

M2 4e 0.2602(1) 0.3356(1) 0.2672(1) 0.89(4) 0.009(1) 

M3 2a 0 0 0 0.87(4) 0.009(1) 

Ge1 4e 0.4138(2) 0.0383(2) 0.1686(2) 1 0.012(1) 

Ge2 4e 0.0078(2) 0.6306(2) 0.1301(2) 1 0.011(1) 

Nd1.19Er3.81(15)Ge4 

M1 4e 0.6959(1) 0.3201(1) 0.0619(1) 0.43(3) 0.011(1) 

M2 4e 0.2608(1) 0.3362(1) 0.2688(1) 0.99(3) 0.010(1) 

M3 2a 0 0 0 0.98(3) 0.010(1) 

Ge1 4e 0.4131(2) 0.0368(2) 0.1707(2) 1 0.012(1) 

Ge2 4e 0.0080(2) 0.6309(2) 0.1301(2) 1 0.011(1) 

Nd1.00Er4.00(13)Ge4 

M1 4e 0.6967(1) 0.3203(1) 0.0606(1) 0.54(2) 0.010(1) 
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M2 4e 0.2616(1) 0.3363(1) 0.2708(1) 0.98(3) 0.009(1) 

M3 2a 0 0 0 0.96(3) 0.009(1) 

Ge1 4e 0.4132(2) 0.0361(1) 0.1736(2) 1 0.011(1) 

Ge2 4e 0.0086(2) 0.6313(1) 0.1303(2) 1 0.010(1) 
 
aAll M1, M2 and M3 sites are fully occupied with a mixture of Nd and Er atoms. Only Er 

occupations are listed.  
bU(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

 

The orthorhombic Sm5Ge4-type crystal structure has six atoms in the asymmetric 

unit: three crystallographically independent sites for Nd or Er metal atoms, and three distinct 

sites for the tetrelide atoms. In comparison to the orthorhombic structure, the asymmetric unit 

of the monoclinic U2Mo3Si4-type structure has five atoms: three distinct sites for Nd or Er 

metal atoms and just two distinct sites for the tetrelide atoms. This monoclinic structure, until 

recently, was not reported for the RE5T4 systems. However, our recent work has shown the 

existence of this structure in the Gd5−xYxGe4 system for Y-rich phases.15 The projections of 

these two crystal structures are shown in Figure 4.4. 

 

  
Orthorhombic, Sm5Ge4-type (Pnma) Monoclinic, U2Mo3Si4-type (P21/c) 

Figure 4.4. Projections of the two crystal structures observed for Nd5−xErxGe4 systems. Blue 

atoms represent RE metal and red atoms represent Si atoms. 
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All three rare-earth metal sites (in both structures) for x ≥ 3 exhibit mixed site 

occupancies, with Nd (or the larger rare-earth atom) having a preference for the M1 site and 

Er (or the smaller rare-earth atom) having a preference for the M3 site (see Figure 4.4) as 

observed in Nd-Er-Si and the other systems mentioned above. For 1 ≤ x ≤ 2, as was the case 

with Nd-Er-Si, the M1 site is exclusively occupied by the larger Nd atom while the other two 

rare-earth metal sites (M2 and M3) displays mixed site occupancies with the smaller Er atom 

showing a preference for the M3 site.  
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Figure 4.5. Er occupation in each M site of Nd5−xErxGe4 as a function of Er concentration, x, 

as obtained from single crystal X-ray diffraction. The vertical dotted lines delineate the 

region where the monoclinic phase is observed. 

 

The monoclinic U2Mo3Si4-type structure shows striking similarities to the Sm5Ge4-

type structure. Both crystal structures are built from nearly identical 32434 nets of Nd/Er 

atoms. Two such nets are placed over one another to form two-dimensional slabs with 

additional Nd/Er atoms in pseudo-cubic coordination (the M3 site) and Ge2, Ge3 (in the 

orthorhombic structure) and Ge2 atoms (in the monoclinic structure) in trigonal prismatic 

voids. These crystal structures differ from one other in the manner in which these 
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neighboring slabs stack with respect to each other.  In the orthorhombic structure, space 

group Pnma, there are two slabs per unit cell and each slab has reflection symmetry through 

the plane formed by M3, Ge2, and Ge3 sites. The two slabs are structurally related to each 

other by inversion symmetry. This stacking arrangement creates a herringbone pattern along 

the b-direction for the interslab Ge1···Ge1 contacts.  On the other hand, in the monoclinic 

structure, space group P21/c, there is one slab per unit cell with the M3 site coincident with 

an inversion center. The adjacent layers are related by translational symmetry resulting in a 

stacking pattern which creates inversion symmetry between slabs as well.  Due to these 

different symmetry characteristics, the arrangements of the M1 and M2 metal positions are 

different in the two structures, although every cube surrounding the M3 positions contains 4 

M1 and 4 M2 sites. In the orthorhombic structure, the two faces of the cube perpendicular to 

the c-direction are either all M1 or all M2. On the other hand, for the monoclinic structure, 

the two faces of the cube perpendicular to the b-direction are 50% M1 and 50% M2 in an 

alternating pattern, which preserves the inversion center at the M3 site.  

The variations in Ge1–Ge1 (interslab) and Ge2–Ge3 (intraslab) as the Er content 

changes are also presented in Figure 3. As seen in the silicides, there are distinct deviations in 

the distance trends at the region when the structure type changes, i.e., between x = 3 and 4.  

 

4.4.3. Magnetism.  Figure 4.6 illustrates the magnetic susceptibility measurements in a 10 

kOe field for some members of the Nd5−xErxGe4 series. The Nd-rich phase, Nd4ErGe4, shows 

an antiferromagnetic type (AFM) transition at 23(2) K similar to Gd5Ge4, which shows this 

transition at 128 K (TN).  The remaining phases (x = 2–4) undergo a ferrimagnetic type 

ordering showing Curie-Weiss behavior at high temperatures. The Curie temperatures, TC, 

were estimated for the ferrimagnetic phases (x = 2–4) from dM/dT vs. T plots to be 6(2), 

12(2) and 11(2) K, respectively. The effective magnetic moments, µeff, for the series were 

determined based on the numerical fits for the data between 150 and 270 K and are listed 

within the plots. The expected µeff for a mixture of noninteracting trivalent ions comprised of: 

0.8Nd+0.2Er is 5.37 µB/RE3+, 0.6Nd+0.4Er is 6.68 µB/RE3+, 0.4Nd+0.6Er is 7.76 µB/RE3+ and 

0.2Nd+0.8Er is 8.72 µB/RE3+ (RE = rare-earth). As evident, the measured µeff values matches 

quite well with these theoretical values. 
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Figure 4.6. Magnetic susceptibility plots for Nd5−xErxGe4 series. The measurements were 

carried out under a magnetic field, H = 10 kOe. 

 

4.5. Conclusions 
 The crystal structures and the corresponding distributions of Nd and Er atoms over 

the various metal sites in the Nd5−xErxTt4 (Tt = Si, Ge) series have been presented.  All 

silicides adopt either the tetragonal Zr5Si4-type three-dimensional network structure or the 

orthorhombic Gd5Si4-type structure, both of which contain short Si-Si contacts. All 

germanides exhibit a mixture of short and long Ge-Ge contacts, and adopt either the 

orthorhombic Sm5Ge4-type or monoclinic U2Mo3Si4-type structure.  The different stacking 

patterns occur for Er contents between 3.2 and 4.  Single crystal diffraction results reveal a 

preference of the smaller Er atoms to occupy the M3 sites (centers of slabs) whereas the 

larger Nd atoms prefer to occupy the M1 sites (edges of slabs). These results match well with 

our recent investigations in the Gd5−xRExTt4 (RE = Sc, Y, La, Lu; Tt = Si, Ge). 
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4.8. Supporting Information 
 

Table 4.S1. Crystallographic data for Nd5−xErxSi4 (x = 1–4) as obtained by single crystal X-

ray diffraction (Gd5Si4-type, space group Pnma (No. 62), Mo Kα radiation, 2θ range = 4–57°, 

T = 298(2) K, Z = 4) 

 

x 1 2 3 4 

Loaded Composition  Nd4ErSi4 Nd3Er2Si4      Nd2Er3Si4 NdEr4Si4 

Refined Composition Nd3.92Er1.08(5)Si4 Nd2.94Er2.06(7)Si4 Nd2.01Er2.99(33)Si4 Nd0.96Er4.04(36)Si4 

a, Å 7.818(1) 7.457(1) 7.394(1) 7.346(1) 

b, Å 7.818(1) 14.735(3) 14.612(3) 14.488(3) 

c, Å 14.550(4) 7.778(1) 7.718(1) 7.661(1) 

V, Å3 889.3(3) 854.6(3) 833.9(3) 815.4(3) 

 

 

 

 

Table 4.S2. Crystallographic data for Nd5−xErxGe4 (x = 1–3) as obtained by single crystal X-

ray diffraction (Sm5Ge4-type, space group Pnma (No. 62), Mo Kα radiation, 2θ range = 4–

57°, T = 298(2) K, Z = 4) 

 

x 1 2 3 

Loaded Composition Nd4ErGe4 Nd3Er2Ge4 Nd2Er3Ge4 

Refined Composition Nd4.09Er0.91(10)Ge4 Nd3.06Er1.94(9)Ge4 Nd1.94Er3.06(13)Ge4 

a, Å 7.780(1) 7.652(2) 7.624(2) 

b, Å 14.986(2) 14.807(4) 14.710(3) 

c, Å 7.885(1) 7.800(2) 7.760(2) 

V, Å3 919.3(2) 883.7(4) 870.3(3) 
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Table 4.S3. Crystallographic data for Nd5−xErxGe4 (x = 3.2, 3.6, and 4.0) as obtained by 

single crystal X-ray diffraction (U2Mo3Si4-type, space group P21/c (No. 14), Mo Kα 

radiation, 2θ range = 4–57°, T = 298(2) K, Z = 2). 

 

x 3.2 3.6 4.0 

Loaded 
Composition Nd1.8Er3.2Ge4 Nd1.4Er3.6Ge4 NdEr4Ge4 

Refined 
Composition Nd1.86Er3.14(18)Ge4 Nd1.19Er3.81(15)Ge4 Nd1.00Er4.00(13)Ge4 

a (Å) 7.892(5) 7.898(1) 7.878(2) 

b (Å) 7.767(5) 7.749(1) 7.715(2) 

c (Å) 7.562(5) 7.561(1) 7.531(2) 

β (°) 111.490(9) 111.749(3) 112.014(4) 

V (Å3) 431.3(5) 429.8(1) 424.4(2) 
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Chapter 5  

 

On the Distribution of Tetrelide Atoms (Si, Ge) in Gd5(SixGe1−x)4 
 

A paper published in the Journal of Solid State Chemistry 

 

J. Solid State Chem. 2006, 179, 2290–2297. 

 

Sumohan Misra and Gordon J. Miller 

 

5.1. Abstract 
A crystallographic study of the Si/Ge site preferences in the Si-rich regime of 

Gd5(SixGe1−x)4 and a crystal chemical analysis of these site preferences for the entire range is 

presented.  The room temperature crystal structure of Gd5Si4 as well as four pseudobinary 

phases, Gd5(SixGe1−x)4 for x ≥ 0.6, is reported.  All structures are orthorhombic (space group 

Pnma), Gd5Si4-type and show decreasing volume as the Si concentration increases.  

Refinements of the site occupancies for the three crystallographic sites for Si/Ge atoms in the 

asymmetric unit reveal a nonrandom, but still incompletely ordered arrangement of Si and Ge 

atoms.  The distribution of Si and Ge atoms at each site impacts the fractions of possible 

homonuclear and heteronuclear Si-Si, Si-Ge and Ge-Ge dimers in the various structures.  

This distribution correlates with the observed room temperature crystal structures for the 

entire series of Gd5(SixGe1−x)4. 

 

5.2. Introduction 

 There has been a renaissance in the RE5(SixGe1−x)4 systems during the past decade 

due to discovery of a giant magnetocaloric effect (MCE) in Gd5Si2Ge2
1-7 and extraordinary 

magnetic responses exhibited by many examples.8-15 Most of the effort has emphasized the 

Gd5(SixGe1−x)4 system because not only was this the first system to show extraordinary 

behavior, but the orbitally nondegenerate ground state of the Gd atom eliminates orbital 
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contributions to the local magnetic moment.  Numerous experimental and theoretical 

investigations indicate that the giant MCE is associated with a first-order magnetic 

transition,16-17 which typically means a structural transition accompanying the change in 

magnetic order, although the two transitions need not be intrinsically coupled, as seen, e.g., 

in Er5Si4.18 It is often observed that changes in magnetic structure also show 

magnetostriction, but the structural transitions in Gd5(SixGe1−x)4 involve changes in crystal 

symmetry by making or breaking main group-main group chemical bonds. 

 

   
O(II) 

(Sm5Ge4-Type) 

M 

(Gd5Si2Ge2-Type) 

O(I) 

(Gd5Si4-Type) 

Figure 5.1. Projections of the three crystal structures observed for the Gd5(SixGe1−x)4 series, 

which emphasizes the slabs and their interconnections.  Shaded circles are Si or Ge sites; 

larger open circles are Gd3 sites; smaller open circles are Gd1 and Gd2 sites at vertices of the 

polyhedral frameworks.  Lines are drawn to highlight the [Gd5(SixGe1−x)4] slabs as well to 

emphasize Tt-Tt and Gd3-Tt bonds. 

 

Gd5(SixGe1−x)4 shows two remarkable changes for their room-temperature structures 

as the Si content varies, shown in Figure 5.1.  At low Si concentrations (x ≤ 0.30; Ge-rich 
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phases), the orthorhombic Sm5Ge4-structure type (O(II)-type) exists;19 at high Si 

concentrations (x ≥ 0.56; Si-rich phases), the orthorhombic Gd5Si4-structure type (O(I)-type) 

occurs.20 At intermediate Si compositions, 0.40 ≤ x ≤ 0.503, the monoclinic Gd5Si2Ge2-

structure (M) type,21 which is a distorted version of either orthorhombic end phase, is found, 

but appears to be metastable.  Heat treatment of samples for x = 0.50 at temperatures below 

1000 K showed transformation to the O(I)-type structure and partial eutectoidal 

decomposition into Gd5(SixGe1−x)3 and Gd(SixGe1−x).22 Nevertheless, this decomposition 

occurs slowly and once cooled below ca. 570 K, the monoclinic phase remains.  Furthermore, 

there are two regions, 0.30 < x < 0.40 and 0.503 < x < 0.56, where two respective boundary 

phases are observed.22 All three structure types are constructed from topologically identical 

layers that can be stitched together by main group-main group Tt-Tt bonds (Tt = tetrelide 

element; Si or Ge).  In the Sm5Ge4-type, these bonds are not really bonds at all: the Ge-Ge 

separations exceed 3.5 Å; in the Gd5Si4-type, the distances fall well within Si-Si single-

bonded distances of 2.6 Å.  The monoclinic Gd5Si2Ge2 shows both types of interactions.  

These different structures can occur for a given composition by changing temperature or 

magnetic field, and are at the heart of the giant MCE in Gd5Si2Ge2: the monoclinic structure 

transforms into the O(I)-type at the Curie temperature of 276 K.22  

Previous single crystal X-ray diffraction studies23 for the Ge-rich phases in the 

Gd5(SixGe1−x)4 system showed that the Si and Ge distributions were not completely random 

nor completely ordered among the crystallographic sites occupied by these main group 

elements.  This phenomenon could be explained by a competition between enthalpic and 

entropic factors: enthalpy favors segregation of Si and Ge into the different sites whereas 

entropy favors mixing, especially with increasing temperature. To obtain a complete 

characterization of this series and to attempt an understanding of the structural changes, the 

phase behavior and the physical properties in this system, we have continued these single 

crystal investigations into the Si-rich region and report these results and conclusions in this 

paper. 
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5.3. Experimental Section 
5.3.1. Syntheses: The Gd5(SixGe1−x)4 samples, where x = 0.6, 0.7, 0.8, 0.9 and 1.0, were 

prepared by arc-melting its constituent elements in an argon atmosphere on a water-cooled 

copper hearth. The starting materials were pieces of Gadolinium (99.99 wt. %, Materials 

Preparation Center, Ames Laboratory), Silicon (99.9999 wt. %, Alfa Aesar) and Germanium 

(99.9999 wt. %, Alfa Aesar). Each ingot had a total weight of ca. 1.9 g and was remelted 

several times to ensure homogeneity. Weight losses during melting were less than 0.1 weight 

percent. 

 

5.3.2. X-ray powder diffraction: The as-cast samples were examined by X-ray powder 

diffraction for identification and to assess phase purity.  Powder patterns were obtained using 

an Enraf-Nonius Guinier camera using monochromatized Cu Kα radiation. The purity and 

homogeneity of all phases was confirmed by comparison of X-ray powder diffraction 

patterns to those calculated from single-crystal data using the PowderCell software.24 The X-

ray powder diffraction patterns for all samples could be completely indexed by orthorhombic 

Gd5Si4-type structures and the refined lattice parameters are listed in Table 5.1.  

 

Table 5.1. Lattice parameters for Gd5(SixGe1−x)4 (x ≥ 0.6) as obtained by X-ray powder 

diffraction (space group Pnma (No. 62), Cu Kα radiation, 2θ range = 4-100°, T = 273(2) K, Z 

= 4).  The refined compositions arise from refinements from single crystal X-ray diffraction. 

 

x 0.6 0.7 0.8 0.9 1.0 

Loaded 
Composition 
(Gd : Si : Ge) 

5 : 2.4 : 1.6 5 : 2.8 : 1.2 5 : 3.2 : 0.8 5 : 3.6 : 0.4 5 : 4 : 0 

Refined 
Composition Gd5Si2.40Ge1.60(4) Gd5Si2.79Ge1.21(4) Gd5Si3.16Ge0.84(4) Gd5Si3.59Ge0.41(5) Gd5Si4 

a (Å) 7.514(2) 7.508(2) 7.503(2) 7.500(2) 7.500(3) 

b (Å) 14.775(5) 14.777(4) 14.775(4) 14.770(5) 14.756(6) 

c (Å) 7.797(2) 7.779(2) 7.767(2) 7.765(3) 7.735(3) 

V (Å3) 865.6(5) 863.0(4) 861.0(4) 860.2(5) 856.0(6) 
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5.3.3. Single-crystal X-ray crystallography: Multiple single crystals from the as-cast 

samples (without annealing) were mounted on the tip of a glass fiber. To check for possible 

effects of annealing on the distribution of Si and Ge atoms, the sample with x = 0.6 was 

annealed at 800°C for 1 week and then room temperature intensity data were collected on a 

single crystal. The refined composition was Gd5Si2.39Ge1.61(3), which is in agreement with the 

refined composition without annealing (See Table 5.2). The refined occupancy for the T1 site 

is 0.456(7), for the T2 site is 0.323(10), and for the T3 site is 0.369(10). Room temperature 

intensity data were collected on a Bruker Smart Apex CCD diffractometer with Mo Kα 

radiation (λ= 0.71073 Å) and a detector-to-crystal distance of 5.990 cm.  Data were collected 

over full spheres of reciprocal space by taking three sets of 606 frames with 0.3° scans in ω 

with an exposure time of 10 seconds per frame.  The ranges of 2θ extended from 4° to 57°.  

The SMART25 software was used for data acquisition.  Intensities were extracted and then 

corrected for Lorentz and polarization effects through the SAINT25 program.  Empirical 

absorption corrections were accomplished with SADABS,25 which is based on modeling a 

transmission surface by spherical harmonics employing equivalent reflections with I/σ > 3. 

Crystallographic data, fractional atomic coordinates and isotropic displacement parameters 

for all crystals are presented in Tables 5.2 and 5.3. 
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Table 5.2. Crystallographic data for Gd5(SixGe1−x)4 (x ≥ 0.6) as obtained by single crystal X-

ray diffraction (space group Pnma (No. 62), Mo Kα radiation, 2θ range = 4-57°, T = 273(2) 

K, Z = 4). 

 

x 0.6 0.7 0.8 0.9 1.0 

Refined 
Composition Gd5Si2.40Ge1.60(4) Gd5Si2.79Ge1.21(4) Gd5Si3.16Ge0.84(4) Gd5Si3.59Ge0.41(5) Gd5Si4 

a (Å) 7.507(2) 7.506(2) 7.498(3) 7.494(2) 7.482(2) 

b (Å) 14.767(5) 14.789(4) 14.751(5) 14.774(5) 14.738(4) 

c (Å) 7.786(3) 7.790(2) 7.784(3) 7.756(2) 7.746(2) 

V (Å3) 863.2(5) 864.7(4) 861.0(5) 858.8(4) 854.2(4) 

Independent 
Reflections 1064 1071 1069 1074 1067 

No. of 
Parameters 50 50 50 50 47 

Final R 
indices  

[I > 2σ(I)] 

R1 = 0.0372, 
wR2 = 0.0686 

R1 = 0.0432, 
wR2 = 0.0847 

R1 = 0.0341, 
wR2 = 0.0655 

R1 = 0.0452, 
wR2 = 0.0842 

R1 = 0.0326, 
wR2 = 0.0591 

Peak/hole, 
(e/Å3) 2.305 / −2.272 2.884 / −2.849 2.101 / −2.597 2.468 / −2.462 2.061 / 

−1.898 

 

*Further details of the crystal structure investigation(s) can be obtained from the 

Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany, (fax: (49) 

7247-808-666; e-mail: crysdata@fiz.karlsruhe.de) on quoting the depository number CSD 

416225, 416226, 416227, 416228 and 416229. 
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Table 5.3. Atomic coordinates, site occupancies and isotropic displacement parameters                        

for Gd5(SixGe1−x)4 (x ≥ 0.6) as obtained by single crystal X-ray diffraction. 

 

Atom  x  y  z  occupancya  Ueq, (Å2)b  

Gd5Si2.40Ge1.60(4) 

Gd1 8d 0.0237(1) 0.4031(1) 0.1820(1) 1 0.010(1) 

Gd2 8d 0.6800(1) 0.3775(1) 0.8218(1) 1 0.009(1) 

Gd3 4c 0.1498(1) 3/4 0.5112(1) 1 0.009(1) 

T1 8d 0.8469(3) 0.4602(1) 0.5297(2) 0.467(9) 0.012(1) 

T2 4c 0.0228(4) 3/4 0.1036(4) 0.312(13) 0.010(1) 

T3 4c 0.2683(4) 3/4 0.8709(4) 0.349(13) 0.008(1) 

Gd5Si2.79Ge1.21(4) 

Gd1 8d 0.0249(1) 0.4031(1) 0.1823(1) 1 0.011(1) 

Gd2 8d 0.6810(1) 0.3774(1) 0.8215(1) 1 0.009(1) 

Gd3 4c 0.1484(1) 3/4 0.5112(1) 1 0.009(1) 

T1 8d 0.8489(3) 0.4604(2) 0.5291(3) 0.366(9) 0.013(1) 

T2 4c 0.0222(5) 3/4 0.1028(4) 0.223(12) 0.010(1) 

T3 4c 0.2666(4) 3/4 0.8724(4) 0.252(12) 0.009(1) 

Gd5Si3.16Ge0.84(4) 

Gd1 8d 0.0261(1) 0.4030(1) 0.1825(1) 1 0.010(1) 

Gd2 8d 0.6820(1) 0.3775(1) 0.8211(1) 1 0.008(1) 

Gd3 4c 0.1470(1) 3/4 0.5113(1) 1 0.008(1) 

T1 8d 0.8512(3) 0.4603(2) 0.5288(3) 0.247(8) 0.012(1) 

T2 4c 0.0219(4) 3/4 0.1017(4) 0.165(11) 0.010(1) 

T3 4c 0.2637(4) 3/4 0.8727(4) 0.177(11) 0.009(1) 

Gd5Si3.59Ge0.41(5) 

Gd1 8d 0.0279(1) 0.4029(1) 0.1827(1) 1 0.010(1) 

Gd2 8d 0.6828(1) 0.3776(1) 0.8207(1) 1 0.009(1) 

Gd3 4c 0.1456(1) 3/4 0.5115(1) 1 0.008(1) 

T1 8d 0.8538(5) 0.4604(2) 0.5280(5) 0.118(11) 0.010(1) 

T2 4c 0.0221(7) 3/4 0.1011(7) 0.087(15) 0.011(2) 

T3 4c 0.2623(7) 3/4 0.8749(7) 0.090(15) 0.011(2) 
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Table 5.3. (continued) 

Atom  x  y  z  occupancya  Ueq, (Å2)b  

Gd5Si4 

Gd1 8d 0.0289(1) 0.4028(1) 0.1827(1) 1 0.009(1) 

Gd2 8d 0.6837(1) 0.3777(1) 0.8204(1) 1 0.008(1) 

Gd3 4c 0.1442(1) 3/4 0.5112(1) 1 0.007(1) 

T1 8d 0.8562(4) 0.4602(2) 0.5281(4) 0 0.010(1) 

T2 4c 0.0210(5) 3/4 0.0998(5) 0 0.009(1) 

T3 4c 0.2589(6) 3/4 0.8748(6) 0 0.010(1) 
 

a  All T1, T2 and T3 sites are fully occupied with a mixture of Ge and Si atoms. Only Ge 

occupations are listed. The only exception is Gd5Si4 where the T1, T2 and T3 sites are fully 

occupied by Si atoms.  
b U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

 

5.3.4. Electronic Structure Calculations: Tight-binding, linear muffin-tin orbital (TB-

LMTO) electronic band structure calculations in the atomic sphere approximation (ASA) 

were carried out using the LMTO47 program.26 Exchange and correlation were treated in a 

local density approximation. All relativistic effects except spin-orbit coupling were taken into 

account using a scalar relativistic approximation.  The radii of the Wigner-Seitz (WS) 

spheres were obtained by requiring the overlapping potential to be the best possible 

approximation to the full potential according to an automatic procedure – no empty spheres 

were necessary.27 The WS radii determined by this procedure for the atoms in Gd5(SixGe1−x)4 

are in the ranges 1.886-2.120 Å for Gd, 1.430-1.442 Å for Si, and 1.440-1.451 Å for Ge.  The 

basis set included Gd 6s, 6p and 5d orbitals, Si 3s, 3p and 3d orbitals, and Ge 4s, 4p and 4d 

orbitals.  The Gd 4f orbitals were treated as core wavefunctions occupied by seven valence 

electrons.  Furthermore, the Si 3d and Ge 4p orbitals were treated by the Löwdin 

downfolding technique.26 The k-space integrations to determine total energies and densities 

of states were evaluated by the tetrahedron method using 78 k-points in the irreducible 

wedges of the first Brillouin zones. 
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5.4. Results and Discussion 

 The Si-rich region of the Gd5(SixGe1−x)4 phase diagram shows a single, orthorhombic 

Gd5Si4-structure type at all temperatures.  These phases give a continuous paramagnetic-

ferromagnetic transition without change in crystal structure21 The surprising issue is that their 

Curie temperatures exceed that of elemental Gd,19 and increase essentially linearly with 

increasing Si concentration.  This phenomenon is unusual because the Gd atoms are “diluted” 

by nonmagnetic main group elements and still cannot be explained by appropriate theory.  

The orthorhombic crystal structure has six atoms in the asymmetric unit: three distinct sites 

for Gd atoms; and three distinct sites for Si or Ge atoms.  Our single crystal diffraction 

experiments elucidated the distribution of Si and Ge atoms among the three crystallographic 

sites for these elements.  We label these sites as T1 for between slabs and T2, T3 for within 

slabs.  In accord with earlier work on the Ge-rich examples,23 the distributions of Si and Ge 

atoms are not completely random, nor are they completed ordered.  Nevertheless, there is a 

clear preference for Ge atoms in the T1 sites and for Si atoms in the T2 and T3 sites.  

Naturally, as the Si concentration increases, all sites become rich in Si atoms. 

 Now, the diffraction experiment provides a coarse-grained average of atomic 

distributions over several thousand unit cells and the occupations of various crystallographic 

sites are based upon independent probability distributions and not conditional probability 

distributions.  Therefore, we can calculate the fractions of allowed homonuclear Si-Si and 

Ge-Ge and heteronuclear Si-Ge dimers present in these structures for the various 

compositions by using a binomial distribution, which assumes that no short range order exists 

throughout the sample.  For example, if the site occupancy factor for Ge at site T1 is u, then 

the corresponding factor for Si at site T1 is v = 1−u, and we can work out the distribution of 

Ge-Ge, Ge-Si and Si-Si dimers by (u + v)2 = u2 + 2uv + v2.  In this expression, u2 = fraction 

of Ge-Ge dimers; 2uv = fraction of Si-Ge dimers; and v2 = fraction of Si-Si dimers found at 

T1-T1 sites throughout the crystal.  The Ge site occupancy factors for the T1, T2 and T3 sites 

as a function of x in Gd5(SixGe1−x)4 are plotted in Figure 5.2.  A completely random 

distribution of Si and Ge atoms among the sites would produce 3 coincident, linear plots.  

The graph also indicates the boundaries between the various structural regions.   

 



   101

Ge Site Occupation Factors

x

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

G
e 

C
on

te
nt

0.0

0.2

0.4

0.6

0.8

1.0

O(II) O(I)M

f(Ge2) < 0.33

f(Ge2) > 0.50

T1 Sites

T2 and T3 Sites

 
Fraction of Dimers in T1-T1 Site

x
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

f (
D

im
er

s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ge-Ge

Si-Si

Si-Ge

O(II) O(I)M

 
Figure 5.2. (Top) Ge occupation in each T site in Gd5(SixGe1−x)4 as a function of Si 

concentration, x.  The dark symbols are from this work; the open symbols come from 

reference 23.  The three different structure regimes at room temperature are noted by vertical 

dotted lines.  See text for explanation of the horizontal dashed lines.  (Bottom) Fraction of 

Ge-Ge (solid), Si-Ge (dashed) and Si-Si (solid) dimers at the T1-T1 sites as a function of Si 

concentration, x. 
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Note that the Gd5Si4-type structure with short T1-T1 contacts occurs as long as the fraction 

of Ge-Ge dimers in these sites is below 33%, which means that the fraction of Ge in the T1 

site, u <  57.7%.  When the fraction of Ge-Ge dimers exceeds 50%, i.e., u > 71.4%, then 

these T1-T1 bonds are completely severed in the room temperature structures.  For 

intermediate concentrations, 57.7% < u < 71.4%, the monoclinic structure is observed in 

which one-half of the T1-T1 contacts are short and one-half of them are long. 

 From a different perspective, we plot the fractions of Ge-Ge, Si-Ge, and Si-Si dimers 

that occur at the T1-T1 sites as a function of x.  Since there is a preference for Ge atoms in 

the T1 sites, these graphs are skewed away from the midpoint, x = ½. According to the graph, 

in the range 0 ≤ x ≤ 0.4, Ge-Ge dimers are most abundant; from 0.4 ≤ x ≤ 0.7, Si-Ge dimers 

dominate; and then for 0.7 ≤ x ≤ 1.0, Si-Si dimers are most abundant.  Furthermore, the 

fraction of Si-Si dimers exceeds that of Ge-Ge dimers for x ≥ 0.56.  We, therefore, see a 

correlation between the observed room-temperature structure in the Gd5(SixGe1−x)4 series and 

the distribution of Si and Ge atoms at the T1 positions.  The O(II) structure, with no T1-T1 

bonds, exists when the concentration of Ge-Ge dimers is highest; the O(I) structure, with all 

T1-T1 bonds, occurs when the concentration of Si-Si dimers exceeds that of the Ge-Ge 

dimers.  The monoclinic M structure exists for intermediate values. In our opinion, size 

arguments cannot provide the entire rationale for the distinctive changes in interatomic T1-

T1 distances with composition. Nevertheless, the effects of size are clearly seen in trends in 

unit cell volumes with x. Using volume increments for zero valent Si and Ge from Biltz’s 

compendium (19.98 Å3/atom for Si; 22.43 Å3/atom for Ge),28 one obtains a consistent range 

of volume increments for Gd (26.5-26.8 Å3/atom) from the observed volumes for 

Gd5(SixGe1−x)4. Furthermore, the trends in T1-T1 and T2-T3 distances that are shown in 

Figure 5.3, show the size effect, but point out the distinct difference in chemical bonding that 

occurs in these two sets of dimers.  
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Figure 5.3a. Interatomic distance variations in Gd5(SixGe1−x)4 as a function of Si 

concentration, x.  These graphs illustrate trends in Tt-Tt and Gd-Gd distances.  The distance 

scale on all Gd-Gd graphs are identical to illustrate the relative magnitudes. 
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Figure 5.3b. Interatomic distance variations in Gd5(SixGe1−x)4 as a function of Si 

concentration, x.  These graphs illustrate trends in Tt-Gd distances.  The distance scale on all 

Tt-Gd graphs are identical to illustrate the relative magnitudes. 

 

In an earlier paper, we showed that the site preferences for Si and Ge atoms could be 

explained by a site energy and bond energy argument.23 The site energy argument concludes 

that the T1 sites are attractive for the more electronegative element (Ge).  The bond energy 

argument shows that the site symmetry of the T1-T1 contacts allows mixing between σp* and 

π molecular orbitals of the T1-T1 dimer.  Thus, the weaker Ge-Ge bond pair loses less 

energy by occupying the T1-T1 site than the Si-Si bond pair does.  Therefore, these two 

distinct arguments give consistent predictions, but there are other significant changes in Gd-

(Si,Ge) and Gd-Gd interactions as the structure type varies along the Gd5(SixGe1−x)4 series.  
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Trends for the various interatomic distances across the entire Gd5(SixGe1−x)4 series are 

illustrated in Figure 5.3 (data for Ge-rich samples are taken from reference 23; data for Si-

rich samples come from this work).  Although the most notable change occurs for the T1-T1 

distance along the series O(II)-M-O(I) as x increases, there are also significant distance 

variations associated with the Gd1 sites.  The graphs of distances show clear trends, with 

some irregularities among the monoclinic structures, which can be attributed to the 

occurrence of merohedral twins in all cases and the inherent difficulties to obtain well 

resolved parameters for such samples.16 Nevertheless, as the T1-T1 distance decreases 

sharply from the O(II) to the O(I) structure, there is a distinct switch in length between two 

T1-Gd1 contacts.  Figure 5.4 illustrates the coordination environments for the T1 sites in both 

the O(I) and O(II) structures to highlight these changes.  In both cases the T1 atom is 

surrounded by a tricapped trigonal prism: the prism is formed by six Gd atoms while the 

capping atoms are another T1 site, one Gd3 site, and another Gd1 site.  In the O(I) structure, 

with the short T1-T1 contact (ca. 2.49 Å), the T1-Gd1 contact capping the trigonal prism is 

long (ca. 3.73 Å).  In the O(II) structure, the corresponding T1-Gd1 contact has decreased to 

3.13 Å while the T1-T1 distance is now ca. 3.63 Å.  Note in the figure that one of the T1-Gd1 

distances within the trigonal prism also increases from ca. 3.14 to 3.62 Å as the structure 

switches from O(I)-type to O(II)-type. 

The other significant change arises for Gd-Gd interslab distances: in the O(II) 

structure, there is a short Gd1-Gd1 contact (ca. 3.53 Å) that expands to ca. 3.76 Å in the O(I) 

structure type (Figure 5.5).  Thus, we can simply state that Tt-Tt bonds in the O(I) structure 

are exchanged for Tt-Gd and Gd-Gd bonds in the O(II) structure.  In Gd5Ge4, these short Gd-

Gd bonds were used to explain the observed metal-semiconductor transition at 110 K,29 and 

they can also help explain the antiferromagnetic ordering observed for the low-temperature 

O(II) phases in the Ge-rich Gd5(SixGe1−x)4.  In general, however, the shortest Gd-Gd 

distances in these structures are found between Gd3 and Gd1/Gd2 atoms (the pseudo-cubic 

coordination sphere) – see Figure 5.3. 
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Figure 5.4. Coordination environments surrounding the T1 sites in the orthorhombic O(II) 

and O(I) structures.  Interatomic distances showing significant differences between the 

structures are included. 

 

  
O(II)-Type O(I)-Type 

3.76 Å 3.53 Å 

Figure 5.5. Interslab contacts for the O(II) and O(I) structure types 

 

As a final comment about the variations in interatomic distances shown in Figure 5.3, 

many experimental and theoretical discussions concerning this Gd5(SixGe1−x)4 series rely on 

the slabs remaining intact.  This distance analysis essentially confirms this picture, although 

there are some subtle distance rearrangements across the series.  Nevertheless, changes in 

these interatomic contacts are not as noticeable as those changes occurring between slabs.   
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Completing this structural analysis and distribution of Si and Ge atoms in the 

Gd5(SixGe1−x)4 series of structures sheds further light on the importance of chemical bonding 

factors influencing their structures and physical properties.  The changes in crystal structure, 

which can be driven by temperature, magnetic field and temperature, as well as by chemical 

substitutions, occur due to the subtle differences in chemical bonding strengths.  Electronic 

structure calculations using the TB-LMTO-ASA approach on different arrangements of Si 

and Ge atoms distributed among the T1, T2 and T3 sites consistently give lower energies to 

those arrangements where Ge occupies the T1 sites.23 As part of this study, we explored the 

total electronic energy differences for Gd5Si2Ge2 in the three different structure types: O(I), 

M and O(II) and for two distinct arrangements of Si and Ge atoms: (i) Ge in T1, Si in T2 and 

T3; or (ii) Si in T1, Ge in T2 and T3.   These results are summarized in Table 5.4.  In all 

cases, Ge atoms prefer the T1 sites, but the energy differences increase from O(I)-type to M-

type to O(II)-type: ca. 0.02 eV/formula unit for O(I); ca. 0.11 eV/formula unit for M; and ca. 

0.17 eV/formula unit for O(II).  Thus, there is a greater tendency for Si and Ge mixing for the 

O(I)-type structures with short T1-T1 contacts.  We also examined the relative total energies 

for Gd5Si4, Gd5Si2Ge2 and Gd5Ge4 in the three structure types.  For these calculations, 

hypothetical structures were necessary in which the unit cell volumes were held constant for 

a given composition while the structural parameters were scaled isotropically to maintain 

constant relative distances and angles.  As Table 5.4 indicates, for the entire series, the 

calculated ground state structure of Gd5(SixGe1−x)4 is the orthorhombic O(I)-type, which 

agrees with earlier calculations.30 The orthorhombic O(II)-type is more competitive with Ge-

rich examples, as is observed experimentally, and its calculated total electronic energy 

increases relative to the O(I)-type with increasing Si concentration.  The monoclinic phase 

lies intermediate in energy between the O(I) and O(II)-type structures – note that earlier 

calculations30 found the monoclinic phase to be lower in energy than the O(I)-type but for a 

smaller monoclinic angle than the experimentally determined one (ca. 91.7° vs. 93.2°).  

Nevertheless, the computational results allow us to conclude that there is a strong correlation 

between the occupation of the T1 sites and the observed structures or possible phase behavior 

of Gd5(SixGe1−x)4.  Further efforts to clarify these models for other rare-earth systems are 

underway. 
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Table 5.4. Summary of relative total energies calculated for various models of Gd5Ge4, 

Gd5Si2Ge2 and Gd5Si4 by TB-LMTO-ASA.  All energies are given in units of eV/formula 

unit, and are expressed relative to the lowest energy arrangement for each composition. 

 

Model Gd5Ge4 Gd5Si2Ge2 Gd5Si4 

O(I):  Ge in T1 0.000 0.000 --- 

O(I):  Si in T1 --- 0.027 0.000 

M: Ge in T1 0.043 0.097 --- 

M:  Si in T1 --- 0.205 0.242 

O(II):  Ge in T1 0.177 0.250 --- 

O(II): Si in T1 --- 0.420 0.437 

 

5.5. Summary 

 The distribution of Si and Ge atoms among the various Tt sites in the Gd5(SixGe1−x)4 

series has been completed by single crystal X-ray diffraction experiments.  With the results 

from reference 23, we see a clear correlation between the distribution of Si and Ge atoms at 

the T1 sites between the slabs and the nature of the T1-T1 contacts at room temperature.  A 

thorough analysis of the interatomic distances for the series indicated significant changes in 

some T1-Gd and Gd-Gd interactions between slabs as the structure varies, and these 

variations can have significant effects on their physical properties.  Electronic structure 

calculations provide a rationale for these observations, but still do not give a clear 

understanding of the complex phase behavior in these compounds.   
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6.1. Abstract 
Temperature-dependent, single crystal and powder X-ray diffraction studies as well 

as magnetization and heat capacity measurements were carried out on two phases of the 

Gd5GaxGe4−x system: for x = 0.7 and 1.0. Gd5Ga0.7Ge3.3, shows three structure types as a 

function of temperature: (i) from 165 K to room temperature, the orthorhombic Sm5Ge4-type 

crystal structure exists; (ii) below 150 K, it transforms to a orthorhombic Gd5Si4-type 

structure; and (iii) a monoclinic Gd5Si2Ge2-type component is observed at the intermediate 

temperature range of 150 K ≤ T ≤ 165 K. This is the first time that all these three structure 

types have been observed for the same composition. For Gd5Ga1.0Ge3.0, the room temperature 

phase belongs to orthorhombic Pu5Rh4-type structure with interslab contacts between main 

group atoms of 2.837(4) Å. Upon heating above T > 523 K, it transforms to a Gd5Si4-type 

structure with this distance decreasing to 2.521(7) Å before decomposing at T > 573 K.   

 

6.2. Introduction 
Since the discovery of a giant magnetocaloric effect in the pseudobinary 

Gd5(SixGe1−x)4 system,1-8 many intriguing magnetic, crystallographic and electronic 

responses have been observed in this family of metal-rich compounds.9-16 Recent studies 

reveal that the rich chemistry and physics associated with these compounds are closely 

related to their two-dimensional structural building blocks and strong magnetoelastic 



 112

coupling present in these materials.17 The features that have captured the attention of solid-

state chemists are microscopic twinning,18 dependence of crystal structures on the Si/Ge 

ratio19,20 and valence electron count, 21,22 and their ability to break and re-form covalent 

bonds existing between pairs of Si/Ge atoms on heating and cooling near the corresponding 

transition temperatures. Such structural behavior has been termed ''nanoscale zippers''.23 The 

crystal structures of Gd5(SixGe1−x)4 and many other RE5Tt4 (RE = rare earth; Tt = Si and/or 

Ge) materials are built from slabs of two eclipsed 32434 nets of RE atoms separated by ca. 

0.7 nm. The arrangements of the atoms in the slabs and, in turn, the structural and magnetic 

properties depend on the presence or absence of interslab main group-main group chemical 

bonds. Three room temperature crystal structures exist for the Gd5(SixGe1−x)4 series. The Si-

rich compounds (x ≥ 0.56) adopt the orthorhombic, Gd5Si4-type crystal structure24 and 

features interslab Si(Ge)-Si(Ge) bonds (distances ca. 2.4-2.6 Å); the Ge-rich compounds (x ≤ 

0.3) adopt the orthorhombic, Sm5Ge4-type crystal structure25 and is characterized by the 

absence of any interslab Si(Ge)-Si(Ge) bonds (distances exceeds 3.4 Å). The materials in the 

intermediate composition range (0.40 ≤ x ≤ 0.503) crystallize in the monoclinic Gd5Si2Ge2-

type crystal structure26 and has one pair of slabs connected by Si(Ge)–Si(Ge) bonds; 

however, the other pair do not show interslab Si(Ge)–Si(Ge) bonds. Transformations 

between different crystal structures can be controlled by changing chemical composition, 

temperature, magnetic field and pressure17,10 and very recently, our research group 

demonstrated the same control by altering the valence electron concentration.21  

Electronic structure calculations have suggested the close connection between the 

structure and magnetic behavior of Gd5(SixGe1−x)4 with the number of valence electrons 

available for metallic bonding.17,27 Recently, this idea was tested on Gd5GaxGe4−x.21 It was 

found that a decrease in valence electron concentration through substitution of three-valent, 

size-equivalent gallium for four-valent germanium results in reduced population of T1-T1 

(Ge-Ge) antibonding states and this leads to steady formation of T1-T1 interslab dimers.* 

This resulted in a structural transformation from the Sm5Ge4-type (0 ≤ x ≤ 0.9) to an 

intermediate, previously unreported, Pu5Rh4-type28 (0.7 ≤ x ≤ 1.0), and then finally to the 

                                                 
* T1-T1 are main group-main group dimers between ∞2[Gd5T4] slabs. The various structure types observed for 

the Gd5GaxGe4−x system can be differentiated by the length of these T1-T1 dimer distances.  
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Gd5Si4-type (1.2 ≤ x ≤ 2.2), which is indicated by a plot of the lattice constant ratio c/a vs. Ga 

content x, shown in Figure 6.1. Now, to investigate a possible effect of temperature on the 

Gd5GaxGe4−x system, we focused on two compositions, Gd5Ga0.7Ge3.3 and Gd5Ga1.0Ge3.0, 

which lie, respectively, at the bottom and top ends of the discontinuous part of the c/a vs. x 

plot (the plotted lattice parameters for Gd5Ga0.7Ge3.3 from powder data belong to Pu5Rh4-type 

and from single crystal data belong to Sm5Ge4-type structures. For details see reference 21). 
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Figure 6.1. Variation of c/a with the amount (x) of Ga in Gd5GaxGe4−x. Also shown are the 

two compositions of interest, Gd5Ga0.7Ge3.3 and Gd5Ga1.0Ge3.0, for the present study. (Plot 

modified from reference 21)  

 

In situ single crystal X-ray diffraction experiments show that Gd5Ga0.7Ge3.3 

transforms to a Gd5Si4-type structure for temperatures below 150 K. Between 150 K and 165 

K the monoclinic Gd5Si2Ge2-type is also observed. On the other hand, in situ powder and 

single crystal X-ray diffraction experiments show that Gd5Ga1.0Ge3.0 adopts a Pu5Rh4-type 

structure at room temperature and transforms to a Gd5Si4-type structure above ca. 523 K. In 

addition to structural details, we also report results of magnetization and heat capacity 

measurements for these two compositions.   
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6.3. Experimental Section 
6.3.1. Syntheses: All weighings were done in air and were then taken inside a glove-box 

(conc. of H2O = 60-80 ppm) equipped with an arc-melter. All samples studied here were not 

subjected to any heat treatments. 

6.3.1.1. Gd5Ga0.7Ge3.3: Samples were prepared by arc-melting stoichiometric 

mixtures of high purity constituent elements on a water-cooled copper hearth in an argon 

atmosphere. The starting materials, pieces of Gadolinium (99.99 wt. %, Materials Preparation 

Center, Ames Laboratory), Gallium (99.99 wt. %, Aldrich), and Germanium (99.9999 wt. %, 

Alfa Aesar), were used as obtained. The buttons were then re-melted six times to ensure 

compositional homogeneity throughout the ingot and the alloy drop cast into a copper chill 

cast mold.  Then the as-cast ingot with a total weight of 74g was electron beam welded in a 

tungsten Bridgman style crucible for crystal growth.  The ingot was heated in a tungsten 

mesh resistance furnace under a pressure of 8.8×10−5 Pa up to 1700°C and held at this 

temperature for 30 minutes to degas the crucible and charge.  The chamber was then 

backfilled to a pressure of 3.4×104 Pa with high purity argon. The ingot was then heated to 

1900°C followed by withdrawal from the heat zone at a rate of 8 mm/hr.  The loaded 

composition for the samples grown by Bridgman method was Gd5Ga1.0Ge3.0 but due to 

elemental separation of Ga and Ge during Bridgman growth, the top part of the ingot was 

Ga-rich and the bottom part of the ingot was Ge-rich (discussed in detail in later sections). 

Gd5Ga0.7Ge3.3 single crystals were extracted from both the as-cast ingot as well as the bottom 

part of the as-solidified ingot grown by the Bridgman method. 

6.3.1.2. Gd5Ga1.0Ge3.0: Samples were prepared by arc-melting stoichiometric 

mixtures of high purity constituent elements on a water-cooled copper hearth in an argon 

atmosphere. The purity of the starting materials was the same as mentioned above. Each 

ingot had a total weight between 1-3g and was remelted six times to ensure homogeneity. 

Weight losses during melting were less than 0.1 wt. %. Gd5Ga1.0Ge3.0 single crystals were 

extracted only from the as-cast samples.   

 

6.3.2. Powder X-ray Diffraction: The as-cast samples were examined by powder X-ray 

diffraction for identification and to assess phase purity. These initial powder patterns were 
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obtained using an Enraf-Nonius Guinier camera using monochromatized Cu Kα radiation (λ = 

1.54187 Å) at 298 K. The purity and homogeneity of all phases were confirmed by 

comparison of powder X-ray diffraction patterns to those calculated from single-crystal data 

using the POWDER CELL software.29 Powder patterns at high temperature were collected on 

a Rigaku TTRAX rotating anode diffractometer using Mo Kα radiation (λ = 0.71075 Å) and  

equipped with a sample heater in an evacuated chamber. Fine Gd5Ga1.0Ge3.0 powder with 

particle size less than 38 µm was obtained by grinding the ingot in an Agate mortar and 

pestle and then passed through a stainless steel sieve. The grounded powder was mounted on 

a copper sample holder and the sample was smoothed using a stainless steel razor blade. The 

scattered intensity was measured as a function of Bragg angle with a scintillation detector, in 

a step scan mode for 2θ ranging from 9.00° to 42.00° and a stepsize of 0.01° with the 

intensity measured for 2 sec. for each point. The sample temperature remained stable within 

± 1K with respect to the value set for an experiment. All diffraction patterns collected at 

various temperatures were analyzed by a full-profile Rietveld refinement using LHPM 

RIETICA software.30 The scale factor and the lattice parameters of each phase were refined. 

The coordinates of individual atoms were refined if the amount of the corresponding phase 

was at least 20 mole percent. The isotropic displacement parameters of all atoms in each 

phase were assumed to be the same. The profile residuals, Rp were from 10.74 to 12.72, and 

the derived Bragg residuals, RB were from 6.29 to 7.43. 

 

6.3.3. Single-Crystal X-ray Crystallography: Variable-temperature diffraction 

experiments were performed on Gd5Ga0.7Ge3.3 and Gd5Ga1.0Ge3.0. Several single crystals 

were extracted from Gd5Ga0.7Ge3.3 (samples grown by Bridgman method and as-cast 

samples) and Gd5Ga1.0Ge3.0 (as-cast samples) products. To prevent contamination of the 

crystals at high temperatures, neither glue nor cement was used to mount the crystals; 

instead, a special procedure was used (Figure 6.2), the details of which have been described 

elsewhere.31 Room- and high-temperature X-ray diffraction data were collected on a Bruker 

Smart Apex CCD diffractometer with Mo Kα radiation (λ = 0.71075 Å) and a detector-to-

crystal distance of 5.990 cm equipped with a Nonius crystal heater. Low-temperature data 

were collected on a similar instrument equipped with an Oxford Cryosystems cooler. During 
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the high- and low- temperature diffraction experiments, the temperature remained stable 

within ±1K with respect to the value set for an experiment. Single crystal diffraction data at 

143, 293, 298 and 533 K were collected for a maximum 2θ value of 57° either over a full 

sphere or a hemisphere of reciprocal space, with 0.3° scans in ω and an exposure time of 10 

seconds per frame. Also collected were three sets of 30 frames with similar specifications to 

obtain the corresponding lattice parameters for high temperature and low temperature 

diffraction experiments on Gd5Ga0.7Ge3.3 and Gd5Ga1.0Ge3.0 respectively (see Supporting 

Information). The SMART32 software was used for data acquisition.  Intensities were 

extracted and then corrected for Lorentz and polarization effects by the SAINT32 program.  

Empirical absorption corrections were accomplished with SADABS,32 which is based on 

modeling a transmission surface by spherical harmonics employing equivalent reflections 

with I > 3σ(I). Structure solutions and refinements were performed with the SHELXTL32 

package of crystallographic programs. Because Ga and Ge atoms could not be unequivocally 

distinguished by X-ray diffraction techniques in these systems due to the one-electron 

difference in their electron densities, statistical mixtures of Ga and Ge atoms consistent with 

sample stoichiometry were assumed on all main group sites during the refinement 

procedures. 

 

 
Figure 6.2. A picture of a single crystal of Gd5Ga1.0Ge3.0 prepared for high temperature X-

ray diffraction experiments. 

 

6.3.4. Magnetic Property Measurements: Magnetic measurements were carried out using 

a Superconducting QUantum Interference Device (SQUID) magnetometer MPMS-XL 
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manufactured by Quantum Design, Inc. on single and polycrystalline samples. The 

measurements included dc magnetic susceptibility measurements between ca. 4 and 300 K 

and isothermal magnetization measurements in dc magnetic fields varying from 0 to 50 kOe. 

For the susceptibility measurements, the samples were first cooled under zero magnetic field 

(zfc) and then the measurements were carried out on heating under a 10 kOe magnetic field. 

The measurements were then repeated upon cooling with the magnetic field turned on (fc). 

All data were corrected for temperature-independent contributions. 

 

6.3.5. Heat Capacity Measurements:  The heat capacities for both Gd5Ga0.7Ge3.3 and 

Gd5Ga1.0Ge3.0 were measured using a semi-adiabatic heat-pulse calorimeter33 between ca. 5 

and 400 K in dc magnetic fields ranging from 0 to 10 T. Rectangular blocks weighing 0.3833 

g and 1.2615 g, respectively, for Gd5Ga0.7Ge3.3 and Gd5Ga1.0Ge3.0 were used for the above 

measurements. For Gd5Ga0.7Ge3.3, oriented single crystals along its [001], [010] and [100] 

axes were used, whereas for Gd5Ga1.0Ge3.0, as-cast polycrystalline samples were used. 

 

6.4. Results and Discussion 
6.4.1. Phase Transformation in Gd5Ga0.7Ge3.3: Detailed descriptions of the orthorhombic 

Sm5Ge4-type (O(II)), monoclinic Gd5Si2Ge2-type (M), and orthorhombic Gd5Si4-type (O(I)) 

structures can be found elsewhere.21,23,25,26,28 Lattice parameters and atomic coordinates for 

Gd5Ga0.7Ge3.3 at 293 and 143 K, are listed in Tables 6.1 and 6.2. The room temperature 

crystal structure of Gd5Ga0.7Ge3.3 belongs to the Sm5Ge4-type with a T1-T1 distance of 

3.405(2) Å and c/a = 1.02252(9) (see Table 6.1), which places it near the bottom of the 

discontinuous part of the c/a vs. x plot (see Figure 6.1) for Gd5GaxGe4−x.   

Further exchange of Ga for Ge lowers the valence electron count, which removes 

electrons from T1-T1 antibonding states, thus decreasing the T1-T1 dimer distance, resulting 

in the intermediate Pu5Rh4-type structure and eventually, at x = 1.2, changes to the Gd5Si4-

type crystal structure.21 Now, without changing the composition of Gd5Ga0.7Ge3.3, a similar 

effect was observed by lowering the temperature. The result, as shown in Figure 6.3, is a 

transformation, first to the monoclinic Gd5Si2Ge2-type structure for the temperature range 

165 K ≥ T ≥ 150 K, and then to the orthorhombic Gd5Si4-type structure for temperatures 
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below 150 K, where we have short T1-T1 dimers, e.g. a distance of 2.687(8) Å measured at 

143 K.  

 

Table 6.1. Crystallographic data for Gd5Ga0.7Ge3.3 as obtained by single crystal X-ray 

diffraction (space group Pnma (No. 62), Mo Kα radiation, 2θ range = 4-57°, Z = 4) 

 

Temperature (K) 293 143 
Structure Type Sm5Ge4 Gd5Si4

a (Å) 7.6359(5) 7.525(2) 
b (Å) 14.855(1) 14.829(4) 
c (Å) 7.8079(5) 7.840(2) 

V (Å3) 885.7(1) 874.8(4) 
No. of Independent 

Reflections 1117 798 

No. of Parameters 46 46 
Final R indices 

[I>2σ(I)] 
R1 = 0.0247, 
wR2 = 0.0557 

R1 = 0.0684, 
wR2 = 0.1413 

Peak/hole (e/Å3) 1.714 / −1.695 3.812 / −5.926 
b/a 1.94542(9) 1.9706(4) 

c/a 1.02252(9) 1.0419(4) 

T1-T1 (Å) 3.405(2) 2.687(8) 
 

Table 6.2. Atomic coordinates and isotropic displacement parameters for Gd5Ga0.7Ge3.3 as 

obtained by single crystal X-ray diffraction at 293 K and 143 K. 

 

Atom  x y z Ueq, (Å2)a

293 K 

Gd1 8d 0.0106(1) 0.5976(1) 0.1804(1) 0.013(1) 

Gd2 8d 0.3619(1) 0.1188(1) 0.1642(1) 0.013(1) 

Gd3 4c 0.1962(1) ¼ 0.5023(1) 0.012(1) 

T1 8d 0.2038(1) 0.0426(1) 0.4642(1) 0.016(1) 

T2 4c 0.0668(2) ¼ 0.1111(2) 0.014(1) 

T3 4c 0.3119(2) ¼ 0.8662(2) 0.013(1) 
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Table 6.2. (continued) 

Atom  x y z Ueq, (Å2)a

143 K 

Gd1 8d 0.0194(3) 0.5954(1) 0.1819(2) 0.004(1) 

Gd2 8d 0.3228(3) 0.1226(1) 0.1753(2) 0.003(1) 

Gd3 4c 0.1530(4) ¼ 0.5106(2) 0.003(1) 

T1 8d 0.1568(6) 0.0403(2) 0.4697(3) 0.003(1) 

T2 4c 0.0249(7) ¼ 0.1041(5) 0.003(1) 

T3 4c 0.2735(8) ¼ 0.8690(5) 0.003(1) 
 

a  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

 

 

Figure 6.3. Phase transformation in Gd5Ga0.7Ge3.3 as the sample is cooled. The Gd1 and Gd2 

network in each slab is shown as the blue “lattice”.  

 

There are, seven crystal structures in total, that are reported for RE5T4 (RE = rare-

earth; T = Ga, Si, Ge, Sn, Sb,) materials for various temperatures. They are (i) orthorhombic 

Sm5Ge4-type, (ii) monoclinic Gd5Si2Ge2-type, (iii) orthorhombic Gd5Si4-type, (iv) tetragonal 

Zr5Si4-type, (v) hexagonal Ti5Ga4-type (vi) orthorhombic Eu5As4-type and (vii) orthorhombic 

Pu5Rh4-type.4,21 An eighth crystal structure, adopting the monoclinic U2Mo3Si4-type,34 also 
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exists for mixtures of rare-earth elements.35 The materials undergo transitions between 

different crystal structures with changing chemical composition, temperature, magnetic field, 

pressure, and valence electron concentration. But, as yet we have only seen a maximum of 

two crystal structure types being stabilized for a particular chemical composition, when the 

other parameters are varying. To our knowledge, Gd5Ga0.7Ge3.3 is the first example that 

exhibits the existence of three structures: the orthorhombic Sm5Ge4-type, monoclinic 

Gd5Si2Ge2-type, and orthorhombic Gd5Si4-type for the same composition. This exemplifies 

the degree of flexibility that Gd5GaxGe4−x system possesses and the ability of this system to 

stabilize various types of crystal structures.  

In the 150-165 K range, we always observe the presence of two phases. Near 165 K 

the monoclinic Gd5Si2Ge2-type phase coexists with the Sm5Ge4-type structure, while near 

150 K, coexists with the Gd5Si4-type structure. Additionally, as we have observed before, the 

orthorhombic and monoclinic phases can coexist as separate crystalline domains within a 

''single crystal''.23 Hence, due to the presence of these three components: two twinned 

monoclinic components17 and one orthorhombic component; we were unable to refine the 

monoclinic structure thoroughly. 

Figure 6.4 illustrates the coordination environments surrounding the T1 sites above 

and below the phase transition. These are similar to what we observe when the phase changes 

from Sm5Ge4-type to Gd5Si4-type for Gd5(SixGe1−x)4 materials.20 In both structures the T1 

site is surrounded by a tricapped trigonal prism of eight Gd atoms and one T1 atom. In the 

Sm5Ge4-type structure, with long T1-T1 contacts (ca. 3.405(2) Å), the T1-Gd1 contact 

capping the trigonal prism is short (ca. 3.220(1) Å). In the Gd5Si4-type structure, the 

corresponding T1-Gd1 contact increases to 3.593(1) Å while the T1-T1 distance decreases to 

2.687(8) Å. The figure also highlights one of the T1-Gd1 distances within the trigonal prism 

which decreases from ca. 3.453(1) to 3.194(3) Å. Also, as we have seen with Gd5(SixGe1−x)4 

materials,20 the low-temperature structure has a higher symmetry (Pnma) than the high-

temperature structure (P1121/a). This is in violation of the Gibbs free energy / entropy 

relationship, which would imply a reverse structural sequence,35 and it may be due to large 

magnetic exchange energy and subsequent magnetic ordering for the orthorhombic phase, 

which overcomes the unfavorable entropy contribution.17, 27  
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Figure 6.4. Coordination environments surrounding the T1 sites for Gd5Ga0.7Ge3.3 as it 

changes with temperature. Interatomic distances showing significant differences between the 

structures are included.  

 

Magnetic measurements were carried out on single crystalline samples extracted from 

the bottom part of an ingot grown by the Bridgman method. Figure 6.5 shows the 

temperature dependency of the dc magnetization measured in a magnetic field of 20 kOe in 

the temperature range of ca. 5-320 K. The plot portrays two interesting features: (1) a dip in 

magnetization (shown by the arrow) at ca. 160 K probably corresponds to the structural 

phase transition from Gd5Si4-type → Gd5Si2Ge2-type → Sm5Ge4-type; and (2) a change in 

slope (shown by the arrow) at ca 195 K corresponds to the phase transition between 

paramagnetic and ferromagnetic states. 

Figure 6.6 show the temperature variation of the MCE, calculated in terms of the 

isothermal magnetic entropy change for various field changes (∆H). The magnetic entropy 

change was calculated from the M(H) data collected at various temperatures and employing 

Maxwell’s relation as described in reference 37. Gd5Ga0.7Ge3.3 shows a maximum peak at ca. 
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170 K with a peak value of 14 J/kg K. In comparison, −∆SM for Gd5Si2Ge2 shows a peak 

value of 20 J/kg K for ∆H = 0-5 T at 277 K.7  
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Figure 6.5. The magnetization of zero-magnetic-field cooled samples of Gd5Ga0.7Ge3.3 

measured as a function of temperature in a stable dc magnetic field of 20 kOe. 
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Figure 6.6. The magnetic entropy change (−∆SM) of single crystalline Gd5Ga0.7Ge3.3 as a 

function of temperature calculated from magnetic measurements for 1, 2, 3, 4, and 5 T 

magnetic field changes. 
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 In order to further understand the magnetic properties of this compound, we also 

measured the temperature variation of the heat capacity (Cp), shown in Figure 6.7. The Cp(T) 

data show a non λ-type anomaly peaking at ca. 200 K. The peak width is ca. 50 K and reveals 

that the phase transitions (both structural and magnetic) are occurring over a wide range of 

temperature. Both the behavior and location of this anomaly are commensurate with the 

magnetic measurements shown above. 
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Figure 6.7. The heat capacity of a single crystalline sample of Gd5Ga0.7Ge3.3 oriented along 

its (001) axis as a function of temperature in 0, 2, 5, 7, and 10 T magnetic fields. 

 

 One of the problems that we have encountered during the preparation of this material 

is its purity. Since it lies near the boundary of a two-phase region (Figure 6.1), preparation of 

this material typically produces a second Pu5Rh4-type phase. The concentration of this 

second phase is much smaller in samples prepared by the Bridgman method compared to the 

as-cast samples. This is probably due to elemental separation of Ga and Ge during Bridgman 

growth, in which the top part of the ingot becomes Ga-rich and the bottom part becomes Ge-

rich. We speculate that this phenomenon inhibits the growth of the second Pu5Rh4-type phase 
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in the bottom part of the ingot from which the sample was extracted for the present study, as 

this second phase only shows up when the Ga content is between 0.7 and 1 for Gd5GaxGe4−x. 

The crystallographic results are similar for both as-cast and samples grown by Bridgman 

method but the magnetic properties, especially −∆SM(T), depreciate significantly for the as-

cast samples. Hence, only the results for samples grown by the Bridgman method are 

presented here. 

 To check any possible structural implications of high temperature, we also performed 

single crystal X-ray diffraction on Gd5Ga0.7Ge3.3 (see Supporting Information) from 298-533 

K. These experiments do not reveal any structural transition upto 523 K; and, then, the 

crystal decomposes at 533 K. 

 

6.4.2. Phase Transformation in Gd5Ga1.0Ge3.0: Lattice parameters and atomic coordinates 

for Gd5Ga1.0Ge3.0 at 298 and 533 K from single crystal X-ray diffraction experiments are 

given in Tables 6.3 and 6.4. Figure 6.8 shows the lattice parameters plot for Gd5Ga1.0Ge3.0 

obtained from both powder X-ray diffraction in the temperature range 298-623 K. The room-

temperature crystal structure of Gd5Ga1.0Ge3.0 belongs to the Pu5Rh4-type, which is made up 

of ∞2[Gd5T4] (T = Ge and/or Ga) slabs, similar to those found in any of the established crystal 

structures found for Gd5(SixGe1−x)4 series of materials. The interslab dimer distances for the 

Pu5Rh4-type structure lie between the O(I)- and O(II)-type structures. From previous 

investigations,21 we have observed that this particular phase is placed at the top end of the 

discontinuity of the c/a vs. x plot (Figure 6.1). Combined with this, the results of low-

temperature X-ray diffraction of Gd5Ga0.7Ge3.3 directed us to expect that upon heating 

Gd5Ga1.0Ge3.0, the interslab T1-T1 bond distances would increase and possibly cleave, 

leading to a O(II)-type structure.  
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Table 6.3. Crystallographic data for Gd5Ga1.0Ge3.0 as obtained by single crystal X-ray 

diffraction (space group Pnma (No. 62), Mo Kα radiation, 2θ range = 4-57°, Z = 4). 

 

Temperature (K) 298 533 
Structure Type Pu5Rh4 Gd5Si4

a (Å) 7.562(4) 7.672(2) 

b (Å) 14.929(7) 15.210(5) 

c (Å) 7.904(4) 7.834(2) 

V (Å3) 892.3(7) 914.2(5) 

No. of Independent 
Reflections 1095 1142 

No. of Parameters 47 47 

Final R indices  
[I > 2σ(I)] 

R1 = 0.0527, 
wR2 = 0.0990 

R1 = 0.0711, 
wR2 = 0.1169 

Peak/hole (e/Å3) 2.896 / −2.859 4.011 / −2.795 

b/a 1.9742(7) 1.9825(4) 

c/a 1.0452(7) 1.0211(4) 

T1-T1 (Å)  2.837(4) 2.521(7) 
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Table 6.4. Atomic coordinates and isotropic displacement parameters for Gd5Ga1.0Ge3.0 as 

obtained by single crystal X-ray diffraction at 298 and 533 K. 

 

Atom  x  y  z  Ueq, (Å2)a  

298 K 

Gd1 8d 0.0136(1) 0.5954(1) 0.1819(1) 0.013(1) 

Gd2 8d 0.3285(1) 0.1219(1) 0.1730(1) 0.013(1) 

Gd3 4c 0.1633(2) ¼ 0.5109(2) 0.014(1) 

T1 8d 0.1664(3) 0.4597(1) 0.4672(2) 0.016(1) 

T2 4c 0.0324(4) ¼ 0.1086(3) 0.015(1) 

T3 4c 0.2819(4) ¼ 0.8686(3) 0.013(1) 

533 K 

Gd1 8d 0.0294(2) 0.5904(1) 0.1649(2) 0.021(1) 

Gd2 8d 0.3066(2) 0.1167(1) 0.1833(2) 0.018(1) 

Gd3 4c 0.1343(3) ¼ 0.5155(3) 0.018(1) 

T1 8d 0.1350(4) 0.4532(2) 0.4878(4) 0.022(1) 

T2 4c 0.0078(6) ¼ 0.1082(6) 0.021(1) 

T3 4c 0.2529(7) ¼ 0.8784(6) 0.025(1) 
 

a U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 
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Figure 6.8. Lattice Parameters of Gd5Ga1.0Ge3.0 as a function of temperature as obtained 

from powder X-ray diffraction.  

 

In fact, a first look at the variations of b/a, c/a, and V (Figure 6.8) with temperature 

based on high-temperature powder X-ray diffraction experiments indicates a similar sort of 

phase transformation as the lattice parameter ratios decrease and the unit cell volume 
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increases abruptly for T > 523 K. This could be attributed to an increase in the a lattice 

parameter and, hence, an increase in the T1-T1 dimer distance. A closer look at the processed 

data from both powder and single crystal X-ray diffraction shows that an increase in the a 

parameter is accompanied, as expected, by an increase in the b parameter, but, unlike what 

have been observed in other RE5Tt4 materials,19 the c parameter decreases. Between 523-593 

K, the powder X-ray data shows that there is 0.21% and 0.15% increase in the a and b 

lengths respectively. On the other hand, for the same temperature range, there is 0.09% 

decrease in the c-axis. Combining these three trends produces a 0.29% increase in the unit 

cell volume. This change can be visualized as applying a pressure to an oriented metal block 

along the c-direction with no restrictions along the a- and b-direction. This forces the slabs to 

slide closer to each other along the c-direction. The result is a decrease in the T1-T1 interslab 

distance, which lies perpendicular to the c-direction, from 2.837(4) Å to 2.521(7) Å (Table 

6.3). On closer look, apart from this severe change in interslab dimer distance, there are some 

subtle structural changes which helps us better understand this phase transition from the 

Pu5Rh4-type to Gd5Si4-type structure.   

First, consider the fragment, shown in Figure 6.9a and based on single crystal X-ray 

diffraction at 298 and 533 K. The T1-Gd3-T1 bond angle increases by 4.6(1)°. As evident 

from the figure, the fragment T1-Gd3-T1 from slab-I is oriented in a 'V' form whereas the 

fragment T1-Gd3-T1 from slab-II is oriented in an 'inverted V' form and then these two 

fragments are linked by T1-T1 bonds. As temperature rises, the T1-Gd3-T1 bond angle 

moves closer to linearity as the c-parameter decreases, both of which bring these two linker 

T1 atoms of the two fragments closer to each other (Figure 6.9b). Also affected are the 

interslab Gd-Gd contacts as shown in Figure 6.10: at 298 K the longer (4.025 Å) Gd1-Gd2 

distances shrinks to 3.802 Å at 533 K. This feature is in stark contrast to what we observe for 

the Gd5(SixGe1−x)4 series of materials, when O(II)-type (short Gd1-Gd1 interslab distance) 

transforms to O(I)-type structure (long Gd1-Gd1 interslab distance). This probably is due to 

the fact that in the present scenario the a- and c-parameter change in the opposite direction, 

which is not the case for the Gd5(SixGe1−x)4 series of materials. 
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a 

 
  

 
 

b 

Figure 6.9. a) Change in T1-Gd3-T1 bond angle for Gd5Ga1.0Ge3.0 as the temperature varies 

from 298 K to 533 K and b) Schematic diagram in two different orientations depicting how 

the change in bond angle decreases the T1-T1 distance. 
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At 298 K At 533 K 

4.025 Å 3.802 Å 

Figure 6.10. Variation of interslab contacts with temperature for Gd5Ga1.0Ge3.0. 

 

The other significant change arises in the coordination environments surrounding the 

T1 sites as shown in Figure 6.11. On heating, the T1-T1 distance decreases for reasons 

mentioned above, and this promotes the increase of three interslab T1-Gd distances. The T1-

Gd1 contact capping the trigonal prism increases from 3.519 Å to 3.865 Å. The other two, 

T1-Gd1 and T1-Gd2 contacts, within the trigonal prism also increase to 3.378(4) Å and 

2.954(4) Å, respectively. Thus, we observe that Gd-T bonds in the Pu5Rh4-type structure are 

exchanged for T-T and Gd-Gd bonds in the Gd5Si4-type structure. Figure 6.12 illustrates the 

trends for some interatomic distances as the material is heated from 298 to 623 K. Related 

plots for other interatomic distances as the temperature increases are compiled in Supporting 

Information. For all plots the distances change abruptly above 523 K, which is the 

temperature at which the phase transition begins. Although the most notable changes occur 

for T1-T1 and T2-T3 distances, there are significant changes associated with Gd-T contacts, 

especially the Gd3-T contacts.  
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At 298 K At 533 K 
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Figure 6.11. Coordination environments surrounding the T1 sites for Gd5Ga1.0Ge3.0 as it 

changes with temperature. Interatomic distances showing significant differences between the 

structures are included. 
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Figure 6.12. T-T contact distance variations with temperature in Gd5Ga1.0Ge3.0 as obtained 

from powder X-ray diffraction experiment. 
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The difference between the Pu5Rh4- and Gd5Si4-type structures is rather small, as they 

both adopt the same space group as well as similar lattice constants and atomic arrangements. 

Nonetheless we do observe subtle changes in the atomic coordinates (mostly along a; Figure 

6.13).  
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Figure 6.13. Atomic shifts along a-, b-, c-axes in the crystal structure of Gd5Ga1.0Ge3.0 at 533 

K relative to the initial positions in the room temperature (298 K) structure. 

 

To check the possible implications of low temperatures, we also performed single 

crystal X-ray diffraction on Gd5Ga1.0Ge3.0 (see Supporting Information) from 298-120 K. 

These experiments do not show any structural transitions down to 120 K. 
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The temperature dependence of the inverse magnetic susceptibility corrected for the 

diamagnetic and temperature independent paramagnetic susceptibility contribution is shown 

in Figure 6.14a. The paramagnetic Curie temperature, θp = 206.8(2) K, was calculated from 

the Curie-Weiss behavior of 1/χ(T) dependency observed between ca. 250-300 K, above the 

magnetic ordering temperature. Figure 6.14b shows the isothermal magnetization plot at a 

temperature of 5.5 K for varying dc magnetic fields in the range 0-50 kOe.  
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Figure 6.14. a) Dc inverse magnetic susceptibility vs. temperature plot and b) isothermal 

magnetization plot with varying dc magnetic fields measured on a polycrystalline sample of 

Gd5Ga1.0Ge3.0. 
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Figure 6.15. The heat capacity of a polycrystalline sample of Gd5Ga1.0Ge3.0 measured in 0, 1, 

2, 3, and 5 T magnetic fields after zero-field cooling the sample to ca. 5 K 

 

 The temperature variation of the heat capacity (Cp) of a polycrystalline sample of 

Gd5Ga1.0Ge3.0 is shown in Figure 6.15. The Cp(T) data also show a non λ-type anomaly 

peaking at ca. 190 K similar to Gd5Ga0.7Ge3.3. The peak signifies a phase transition between 

the paramagnetic and ferromagnetic states. Its broad feature may be due to the 

inhomogeneity of as-cast samples which were used for these measurements. 

  

6.5. Conclusions 
 In situ low-temperature diffraction experiments on Gd5Ga0.7Ge3.3 show a structural 

phase transition from Sm5Ge4-type to Gd5Si2Ge2-type and then to Gd5Si4-type as temperature 

decreases. On the other hand, in situ high-temperature diffraction experiments on 

Gd5Ga1.0Ge3.0 show a structural phase transition from Pu5Rh4-type to Gd5Si4-type as 

temperature rises. These temperature-induced structural transformations in the Gd5GaxGe4−x 

system reveal the immense flexibility of this system. These results also present, for the first 

time, the existence of orthorhombic Sm5Ge4-, monoclinic Gd5Si2Ge2- and Gd5Si4-type, for 

the same composition. 
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6.8. Supporting Information 
 

Table 6.S1. Lattice parameters for Gd5Ga0.7Ge3.3 as obtained by single crystal X-ray 

diffraction. The data are from the matrix composed of 3 runs of 30 frames each.  

 

Temperature 

(K) 
a, Å b, Å c, Å V, Å3 b/a c/a 

298 7.647(1) 14.862(5) 7.822(2) 889.0(5) 1.9435(4) 1.0229(3) 

373 7.651(2) 14.882(5) 7.833(3) 891.9(6) 1.9451(4) 1.0238(5) 

473 7.650(2) 14.897(8) 7.845(3) 894.0(7) 1.9473(6) 1.0255(5) 

523 7.643(9) 14.91(4) 7.87(2) 897(7) 1.951(3) 1.030(3) 

533 Crystal Decomposed 
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Figure 6.S1. The heat capacity of a single crystalline sample of Gd5Ga0.7Ge3.3 oriented along 

its (010) axis as a function of temperature in 0, 2, 5, 7, and 10 T magnetic fields. 
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Figure 6.S2. The heat capacity of a single crystalline sample of Gd5Ga0.7Ge3.3 oriented along 

its (100) axis as a function of temperature in 0, 2, 5, 7, and 10 T magnetic fields. 
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Table 6.S2. Lattice parameters for Gd5Ga1.0Ge3.0 as obtained by powder X-ray diffraction 

(space group Pnma (No. 62), Mo Kα radiation, 2θ range = 9-42°, Z = 4) and from single 

crystal X-ray diffraction. 

 
Temperature 

(K) 
Sample a, Å b, Å c, Å V, Å3 b/a c/a 

298 powder 7.563(2) 14.944(5) 7.908(2) 893.8(5) 1.9759(4) 1.0456(4) 

 crystal* 7.548(3) 14.916(4) 7.894(2) 888.8(6) 1.9761(5) 1.0458(5) 

323 powder 7.564(2) 14.949(5) 7.910(2) 894.3(5) 1.9763(4) 1.0457(4) 

373 powder 7.567(2) 14.961(4) 7.912(2) 895.6(4) 1.9771(4) 1.0456(4) 

 crystal* 7.554(2) 14.930(4) 7.898(2) 890.8(5) 1.9764(4) 1.0455(4) 

423 powder 7.571(2) 14.980(4) 7.915(2) 897.7(4) 1.9786(4) 1.0454(4) 

473 powder 7.573(2) 14.989(5) 7.915(2) 898.5(4) 1.9793(4) 1.0452(4) 

 crystal* 7.565(2) 14.952(4) 7.908(2) 894.5(5) 1.9765(4) 1.0453(4) 

523 powder 7.575(2) 14.993(5) 7.916(2) 899.0(5) 1.9793(4) 1.0450(4) 

 crystal* 7.576(3) 14.963(5) 7.904(2) 896.0(6) 1.9750(5) 1.0433(5) 

533 powder 7.580(2) 15.001(5) 7.917(2) 900.2(5) 1.9790(4) 1.0445(4) 

 crystal* 7.623(7) 15.04(2) 7.895(6) 905.0(2) 1.9729(16) 1.0357(12) 

543 powder 7.582(2) 15.007(5) 7.915(2) 900.6(4) 1.9793(4) 1.0439(4) 

553 powder 7.587(2) 15.012(5) 7.913(2) 901.3(5) 1.9786(4) 1.0430(4) 

563 powder 7.588(2) 15.011(5) 7.911(2) 901.1(5) 1.9782(4) 1.0426(4) 

573 powder 7.590(2) 15.012(5) 7.912(2) 901.4(5) 1.9779(4) 1.0424(4) 

583 powder 7.589(2) 15.015(5) 7.909(2) 901.1(5) 1.9785((4) 1.0422(4) 

593 powder 7.591(2) 15.016(5) 7.909(2) 901.6(5) 1.9781(4) 1.0419(4) 

623 powder 7.587(2) 15.000(4) 7.907(2) 899.9(4) 1.9771(4) 1.0422(4) 

 

* The lattice parameters are from the matrix composed of 3 runs of 30 frames each. 
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Table 6.S3. Lattice parameters for Gd5Ga1.0Ge3.0 as obtained by single crystal X-ray 

diffraction. The parameters are from the matrix composed of 3 runs of 30 frames each. 

 

Temperature 

(K) 
a, Å b, Å c, Å V, Å3 b/a c/a 

298 7.547(2) 14.924(4) 7.892(3) 888.9(5) 1.9775(4) 1.0457(5) 

250 7.541(2) 14.912(3) 7.891(3) 887.4(5) 1.9775(3) 1.0464(5) 

200 7.535(1) 14.895(3) 7.884(2) 884.8(4) 1.9768(2) 1.0463(3) 

165 7.532(1) 14.889(3) 7.877(3) 888.3(4) 1.9768(2) 1.0458(4) 

155 7.533(1) 14.890(3) 7.875(2) 883.3(4) 1.9766(2) 1.0454(3) 

150 7.532(1) 14.887(3) 7.875(2) 883.0(4) 1.9765(2) 1.0455(3) 

143 7.532(1) 14.885(3) 7.872(2) 882.5(4) 1.9762(2) 1.0451(3) 

120 7.531(1) 14.880(3) 7.871(2) 882.1(4) 1.9758(2) 1.0451(3) 
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Figure 6.S3. Interatomic distance variations with temperature in Gd5Ga1.0Ge3.0 as obtained 

from powder X-ray diffraction experiment. 
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Chapter 7 

 

Conclusions 
 

The work presented in this dissertation involving RE5T4 materials has resulted in the 

successful synthesis, characterization, property measurements and theoretical analyses of 

various new intermetallic compounds. The results provide significant insight into the 

fundamental magnetic and structural behavior of these materials and help us better 

understand the complex link between a compound’s composition, its observed structure and 

its properties. Our work specifically presents the following results: 

 

(1) Substitution of Gd with Y in Gd5−xYxTt4 (Tt = Si, Ge): A detailed structural and 

theoretical investigation provided the understanding that the interplay among the site 

preferences for Gd and Y, the local symmetry features of an individual slab that make 

up these structures, and the local electronic structures of Gd and Y atoms drives the 

structural transition from a well-known orthorhombic, Sm5Ge4-type to an 

unprecedented monoclinic, U2Mo3Si4-type crystal structure. The magnetic properties 

of some of the Gd5−xYxTt4 phases were also measured. Germanides with x ≤ 2 show a 

metamagnetic-type transition similar to Gd5Ge4. On the other hand, as the Y 

concentration increases (3 ≤ x ≤ 4), these phases exhibit ferromagnetic ordering 

showing a Curie-Weiss behavior at high temperatures. 

 

(2) Synthesis of a mixed rare-earth system, Nd5−xErxTt4 (Tt = Si, Ge): A systematic 

investigation of a mixed rare-earth system comprised of a lighter and larger rare-

earth, Nd; and a heavier and smaller rare-earth, Er, reveal a partially ordered 

arrangement of Nd and Er atoms in case of all the structures existing for both tetrelide 

systems. In the Si-system, there is a structural variation from the tetragonal, Zr5Si4-

type to the orthorhombic Gd5Si4-type. On the other hand, for the Ge-system, a 

transition from orthorhombic, Sm5Ge4-type to monoclinic, U2Mo3Si4-type is revealed, 

much like in the case of Gd5−xYxGe4. The magnetic properties of some of the 
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Nd5−xErxTt4 phases were also measured. Nd4ErGe4 shows an AFM-type transition 

similar to Gd5Ge4 but as the Er concentration increases (2 ≤ x ≤ 4), these phases 

exhibit ferromagnetic-type ordering showing a Curie-Weiss behavior at high 

temperatures.  

 

(3) Distribution of Si-Ge in Gd5(SixGe1−x)4 materials: The structural transition in this 

series was due to a correlation between the nature of the Tt···Tt interslab contacts and 

the distribution of Si and Ge at the Tt-sites between the slabs: Si has a preference for 

the intraslab sites and Ge prefers the interslab positions. The distribution of the 

tetrelide (Si and Ge) atoms at each site impacts the fractions of possible homonuclear 

and heteronuclear Si-Si, Si-Ge and Ge-Ge dimers in the various structures and this 

correlates well with observed room temperature crystal structures for the entire series 

of Gd5(SixGe1−x)4.  

 

(4) Phase Transformations in Gd5GaxGe4−x materials: The role of temperature in the 

phase transformations for two compositions: Gd5Ga0.7Ge3.3 and Gd5Ga1.0Ge3.0 were 

investigated by in situ single crystal and powder X-ray diffraction. The former shows 

a transformation from Sm5Ge4-type → Gd5Si2Ge2-type → Gd5Si4-type as the 

temperature decreases, whereas the latter shows a variation from the Pu5Rh4-type to 

Gd5Si4-type as the temperature rises.  

 

All these results go to show the immense flexibility that these RE5T4 materials 

possess and reveal the uniqueness of these systems, as it stabilizes a variety of structure 

types.  

For future work, it would be interesting to experimentally study the energetics and 

thermodynamic stability of some of the structure types observed for RE5T4 materials. This 

essentially will allow us to target new rare-earth based materials, probably with promising 

properties.  
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Appendix A 

 

Controlling Magnetism of a Complex Metallic System via 

Predicted Atomic Replacements† 
 

An article to be submitted in Advanced Materials 

 

Yaroslav Mudryk, Durga Paudyal, Vitalij K. Pecharsky, Karl A. Gschneidner, Jr.,  

Sumohan Misra,‡ Gordon J. Miller 

 

A.1. Introduction 
The effect of chemical substitution of Gd by nonmagnetic La, Lu, and Y in Gd5Ge4 

were studied. Each system had small quantities (ca. 5%) of nonmagnetic rare-earths as 

substituent: (Gd0.95La0.05)5Ge4, (Gd0.95Lu0.05)5Ge4, (Gd0.95Y0.05)5Ge4. The samples studied 

were both as-cast and heat treated (at 1000°C for two days). Studies included single crystal 

X-ray diffraction at room-temperature, low-temperature powder X-ray diffraction under 

applied magnetic fields and using the SQUID magnetometer to determine the magnetic 

properties on bulk polycrystalline samples. 

 

A.2. Discussion 
 Details of the single crystal data collection parameters and crystallographic 

refinement results for both as-cast and heat treated samples of (Gd0.95La0.05)5Ge4, 

(Gd0.95Lu0.05)5Ge4, and (Gd0.95Y0.05)5Ge4 are included in Tables A.1, A.3, and A.5. The 

resulting atomic coordinates, site occupancies and isotropic displacement parameters are 

listed in Tables A.2, A.4, and A.6. The structures were refined using the SHELXTL1 package 

of crystallographic programs. 

 
                                                 
† Only single crystal X-ray refinement data are included here as the manuscript is still under preparation. 
‡ My contribution to this work involved room-temperature single crystal X-ray diffraction experiments on 
samples of (Gd0.95La0.05)5Ge4, (Gd0.95Lu0.05)5Ge4, and (Gd0.95Y0.05)5Ge4. 
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Table A.1. Crystallographic data for Gd4.75La0.25Ge4 as obtained by single crystal X-ray 

diffraction (space group Pnma (No. 62), Mo Kα radiation, 2θ range = 4-57°, Z = 4) 

 

Sample As-cast Heat treated 

Refined Composition Gd4.75(8)La0.25Ge4 Gd4.83(6)La0.17Ge4 

a (Å) 7.706(3) 7.696(3) 

b (Å) 14.824(6) 14.829(5) 

c (Å) 7.828(3) 7.787(2) 

V (Å3) 894.2(6) 888.8(5) 

No. of Independent Reflections 1105 1106 

No. of Parameters 49 48 

Final R indices 

[I>2sigma(I)] 

R1 = 0.0282, 

wR2 = 0.0560 

R1 = 0.0433, 

wR2 = 0.0814 

Peak/hole (e/Å3) 2.412 / -1.676 3.251 / -2.374 

b/a 1.9237(11) 1.9268(10) 

c/a 1.0158(10) 1.0118(5) 

T1-T1 (Å)  3.605(2) 3.599(3) 
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Table A.2. Atomic coordinates and isotropic displacement parameters for Gd4.75La0.25Ge4 as 

obtained by single crystal X-ray diffraction. 
 

Atom  x  y  z  occupancya  Ueq, (Å2)b  

As-cast- Gd4.75(8)La0.25Ge4 

M1 8d 0.9784(1) 0.4003(1) 0.1786(1) 0.883(19) 0.010(1) 

M2 8d 0.6258(1) 0.3829(1) 0.8385(1) 0.99(2) 0.008(1) 

Gd3 4c 0.2079(1) ¾ 0.4993(1) 1 0.009(1) 

Ge1 8d 0.7847(1) 0.4562(1) 0.5346(1) 1 0.010(1) 

Ge2 4c 0.0796(2) ¾ 0.1136(2) 1 0.009(1) 

Ge3 4c 0.3234(2) ¾ 0.8662(2) 1 0.010(1) 

Heat Treated- Gd4.83(6)La0.17Ge4 

M1 8d 0.9786(1) 0.4004(1) 0.1788(1) 0.92(3) 0.010(1) 

Gd2 8d 0.6260(1) 0.3828(1) 0.8384(1) 1 0.009(1) 

Gd3 4c 0.2075(1) ¾ 0.4994(1) 1 0.009(1) 

Ge1 8d 0.7848(2) 0.4563(1) 0.5350(2) 1 0.010(1) 

Ge2 4c 0.0792(3) ¾ 0.1133(3) 1 0.010(1) 

Ge3 4c 0.3234(3) ¾ 0.8662(3) 1 0.010(1) 
 
aAll M1 and M2 sites are fully occupied with a mixture of Gd and La atoms. Only Gd 

occupations are listed. 
bU(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 
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Table A.3. Crystallographic data for Gd4.75Lu0.25Ge4 as obtained by single crystal X-ray 

diffraction (space group Pnma (No. 62), Mo Kα radiation, 2θ range = 4-57°, Z = 4) 

 

Sample As-cast Heat treated 

Refined Composition Gd4.75Lu0.25(6)Ge4 Gd4.77Lu0.23(7)Ge4 

a (Å) 7.675(1) 7.677(3) 

b (Å) 14.797(3) 14.799(6) 

c (Å) 7.769(2) 7.763(3) 

V (Å3) 882.4(3) 881.9(6) 

No. of Independent Reflections 1107 1085 

No. of Parameters 49 49 

Final R indices 

[I>2sigma(I)] 

R1 = 0.0325, 

wR2 = 0.0701 

R1 = 0.0327, 

wR2 = 0.0695 

Peak/hole (e/Å3) 2.576 / -2.345 2.838 / -2.073 

b/a 1.9279(5) 1.9277(11) 

c/a 1.0122(5) 1.0112(5) 

T1-T1 (Å)  3.611(2) 3.611(2) 
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Table A.4. Atomic coordinates and isotropic displacement parameters for Gd4.75Lu0.25Ge4 as 

obtained by single crystal X-ray diffraction. 
 

Atom  x  y  z  occupancya  Ueq, (Å2)b  

As-cast- Gd4.75Lu0.25(6)Ge4 

Gd1 8d 0.9769(1) 0.4002(1) 0.1783(1) 1 0.010(1) 

M2 8d 0.6246(1) 0.3829(1) 0.8387(1) 0.051(18) 0.008(1) 

M3 4c 0.2089(1) ¾ 0.4990(1) 0.15(2) 0.009(1) 

Ge1 8d 0.7833(1) 0.4559(1) 0.5335(1) 1 0.009(1) 

Ge2 4c 0.0805(2) ¾ 0.1133(2) 1 0.010(1) 

Ge3 4c 0.3256(2) ¾ 0.8651(2) 1 0.009(1) 

Heat Treated- Gd4.77Lu0.23(7)Ge4 

Gd1 8d 0.9767(1) 0.4002(1) 0.1783(1) 1 0.009(1) 

M2 8d 0.6244(1) 0.3829(1) 0.8387(1) 0.05(2) 0.008(1) 

M3 4c 0.2092(1) ¾ 0.4991(1) 0.13(3) 0.008(1) 

Ge1 8d 0.7832(2) 0.4560(1) 0.5335(2) 1 0.009(1) 

Ge2 4c 0.0805(2) ¾ 0.1131(2) 1 0.009(1) 

Ge3 4c 0.3259(2) ¾ 0.8648(2) 1 0.009(1) 
 
aAll M2 and M3 sites are fully occupied with a mixture of Gd and Lu atoms. Only Lu 

occupations are listed. 
bU(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 
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Table A.5. Crystallographic data for Gd4.75Y0.25Ge4 as obtained by single crystal X-ray 

diffraction (space group Pnma (No. 62), Mo Kα radiation, 2θ range = 4-57°, Z = 4) 

 

Sample As-cast Heat treated 

Refined Composition Gd4.81(4)Y0.19Ge4 Gd4.87(2)Y0.13Ge4 

a (Å) 7.702(2) 7.705(2) 

b (Å) 14.837(3) 14.859(4) 

c (Å) 7.788(2) 7.792(2) 

V (Å3) 890.0(3) 892.0(6) 

No. of Independent Reflections 1099 1119 

No. of Parameters 50 49 

Final R indices 

[I>2sigma(I)] 

R1 = 0.0335, 

wR2 = 0.0594 

R1 = 0.0332, 

wR2 = 0.0624 

Peak/hole (e/Å3) 2.789 / -2.271 2.0938 / -1.691 

b/a  1.9264(6)  1.9285(7) 

c/a  1.0112(4)  1.0113(4) 

T1-T1 (Å)  3.632(2) 3.637(2) 
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Table A.6. Atomic coordinates and isotropic displacement parameters for Gd4.75Y0.25Ge4 as 

obtained by single crystal X-ray diffraction. 
 

Atom  x  y  z  occupancya  Ueq, (Å2)b  

As-cast- Gd4.81(4)Y0.19Ge4 

M1 8d 0.9760(1) 0.3999(1) 0.1779(1) 0.988(8) 0.011(1) 

M2 8d 0.6235(1) 0.3832(1) 0.8386(1) 0.961(8) 0.010(1) 

M3 4c 0.2095(1) ¾ 0.4993(1) 0.917(8) 0.010(1) 

Ge1 8d 0.7825(1) 0.4560(1) 0.5330(1) 1 0.011(1) 

Ge2 4c 0.0822(2) ¾ 0.1130(2) 1 0.011(1) 

Ge3 4c 0.3259(2) ¾ 0.8652(2) 1 0.010(1) 

Heat Treated- Gd4.87(2)Y0.13Ge4 

Gd1 8d 0.9757(1) 0.3999(1) 0.1779(1) 1 0.012(1) 

M2 8d 0.6233(1) 0.3832(1) 0.8386(1) 0.967(6) 0.010(1) 

M3 4c 0.2096(1) ¾ 0.4991(1) 0.934(7) 0.010(1) 

Ge1 8d 0.7823(2) 0.4560(1) 0.5331(1) 1 0.011(1) 

Ge2 4c 0.0820(2) ¾ 0.1127(2) 1 0.010(1) 

Ge3 4c 0.3263(2) ¾ 0.8653(2) 1 0.011(1) 
 
a All M1, M2 and M3 sites are fully occupied with a mixture of Gd and Y atoms. Only Gd 

occupations are listed. 
b  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

 
A.3. References 
(1) XRD Single Crystal Software; Bruker Analytical X-ray Systems: Madison, USA, 2002. 
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Appendix B 

 

Crystal Structure of Gd2Sc3Ge4 
 

A report to be submitted in Acta Crystallographica Section E: Structure Reports Online 

 

Sumohan Misra, Gordon J. Miller 

 

B.1. Introduction 
Continuing on our efforts to study the mixed rare-earth system bearing the formula 

RE5T4, we studied the effect of chemical substitution of Gd by nonmagnetic Sc. Studies 

included single crystal X-ray diffraction at room-temperature and refinements of the 

occupancies for two particular sites for Gd/Sc reveal a partially ordered arrangement of Gd 

and Sc atoms. 

 

B.2. Discussion 
 Gd2Sc3Ge4 crystallizes in the Pu5Rh4-type structure (see Figure B.1). This structure is 

characterized by the presence of T1-T1 bond distances of ca. 2.891(1) Å, which are 

intermediate between the Gd5Si4-type and Sm5Ge4-type structures. The details of the single 

crystal data collection parameters and crystallographic refinement results for Gd2Sc3Ge4 are 

presented in Table B.1. The resulting atomic coordinates, site occupancies and isotropic 

displacement parameters are listed in Table B.2. The structure was refined using the 

SHELXTL1 package of crystallographic programs. 
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Figure B.1. Projection of the crystal structure of Gd2Sc3Ge4 along (001) direction. Blue 

spheres are Gd, orange spheres are Sc and smaller red spheres are Ge. 
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Table B.1. Crystallographic data for Gd2Sc3Ge4 as obtained by single crystal X-ray 

diffraction (Mo Kα radiation, 2θ range = 4-57°, T = 298(2) K, Z = 4). 

 

Refined Composition Gd2.00(1)Sc3.00Ge4 

Structure-type Pu5Rh4 

Crystal system orthorhombic 

Space group Pnma 

a (Å) 7.2445(13) 

b (Å) 14.101(3) 

c (Å) 7.4930(14) 

V (Å3) 765.4(2) 

Absorption coefficient 34.909 mm−1 

F(000) 1276 

Crystal size 0.09 ×  0.06 ×  0.005 mm3 

Index ranges −9 ≤ h ≤ 9, −17 ≤ k ≤ 18, −9 ≤ l ≤ 9 

Reflections collected 6182 

Independent Reflections 958 [R(int) = 0.0701] 

Completeness to theta = 25.00° 100.0 % 

Refinement method Full-matrix least-squares on F2 

Data / parameters 958 / 49 

Goodness-of-fit on F2 1.048 

Final R indices [I>2sigma(I)] R1 = 0.0313, wR2 = 0.0618 

R indices (all data) R1 = 0.0410, wR2 = 0.0656 

Peak/hole (e/Å3) 2.204 / −1.442 

b/a 1.9464(5) 

c/a 1.0343(3) 

T1-T1 (Å) 2.891(1) 
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Table B.2. Atomic coordinates and isotropic displacement parameters for Gd2Sc3Ge4 as 

obtained by single crystal X-ray diffraction. 

 

Atom  x y z occupancya Ueq, (Å2)b 

M1 8d 0.9979(1) 0.4040(1) 0.1764(1) 0.967(4) 0.007(1) 

M2 8d 0.6602(2) 0.3759(1) 0.8323(2) 0.031(3) 0.008(1) 

Sc3 4c 0.1761(3) ¾ 0.5005(3) 1 0.007(1) 

Ge1 8d 0.8222(1) 0.4589(1) 0.5407(1) 1 0.009(1) 

Ge2 4c 0.0400(2) ¾ 0.1256(2) 1 0.008(1) 

Ge3 4c 0.3068(2) ¾ 0.8632(2) 1 0.008(1) 

 
aAll M1 and M2 sites are fully occupied with a mixture of Gd and La atoms. Only Gd 

occupations are listed. 
bU(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

 

B.3. References 
(1) XRD Single Crystal Software; Bruker Analytical X-ray Systems: Madison, USA, 2002. 
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Appendix C 

 

Ferromagnetism in the Mott Insulator Ba2NaOsO6 
 

A paper published in the Physical Review Letters 

 

Phys. Rev. Lett. 2007, 99, 016404. 

 

A. S. Erickson, S. Misra,† G. J. Miller, R. R. Gupta, Z. Schlesinger, W. A. Harrison,  

J. M. Kim, and I. R. Fisher 

 

C.1. Abstract 
Results are presented of single crystal structural, thermodynamic, and reflectivity 

measurements of the double-perovskite Ba2NaOsO6. These characterize the material as a 5d1 

ferromagnetic Mott insulator with an ordered moment of ~ 0.2 µB per formula unit and TC = 

6.8(3) K. The magnetic entropy associated with this phase transition is close to R ln2, 

indicating that the quartet ground state anticipated from consideration of the crystal structure 

is split, consistent with a scenario in which the ferromagnetism is associated with orbital 

ordering. 

 

C.2. Introduction 
The interplay between spin, orbital, and charge degrees of freedom in 3d transition 

metal oxides has proven to be a rich area of research in recent years. Despite the wide array 

of interesting physics found in these materials, much less is known about whether similar 

behavior can be found in related 4d and 5d systems, for which both the extent of the d 

orbitals and larger spin-orbit coupling cause a different balance between the relevant energy 

scales. In this respect, oxides of osmium are of particular interest because the element can 

                                                 
† My contribution to this paper involved variable temperature powder and single crystal X-ray diffraction 
experiments on samples of Ba2NaOsO6. 
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take formal valences from 4+ to 7+, corresponding to electron configurations 5d4 to 5d1. In 

this instance, we examine the simplest case of a 5d1 osmate for which the magnetic properties 

indicate that orbital ordering may indeed play a significant role.  

Simple oxides of osmium are typically Pauli paramagnets due to the large extent of 

the 5d orbitals. Examples include the binary oxide OsO2
1,2 and the simple perovskites AOsO3 

(A = Sr, Ba).3 However, more complex oxides, including the double and triple perovskites 

La2NaOsO6,4 Ba2AOsO6 (A = Li, Na),5,6 and Ba3AOs2O9 (A = Li, Na),7 appear to exhibit local 

moment behavior. Presumably the large separation of Os ions in these more complex 

structures leads to a Mott insulating state, and indeed these and related materials are most 

often found to be antiferromagnetic. Of the above materials and their near relations 

containing no other magnetic ions, Ba2NaOsO6 distinguishes itself as the only osmate with a 

substantial ferromagnetic moment (~ 0.2 µB) in the ordered state.5  

Weak ferromagnetism has been previously observed in other 5d transition metal 

oxides containing iridium. BaIrO3 exhibits a saturated moment of 0.03 µB, which has been 

attributed to small exchange splitting associated with charge density wave formation.8 

Sr2IrO4 and Sr3Ir2O7 exhibit similarly small saturated moments, attributed variously to either 

spin canting in an antiferromagnets due to the low crystal symmetry9 or to a borderline 

metallic Stoner scenario.10,11 The ferromagnetic moment in Ba2NaOsO6 is substantially larger 

than in these materials. Furthermore, at room temperature the material has an undistorted 

double-perovskite structure, space group mFm3 (inset to Figure C.1),5 in which OsO6 

octahedra are neither distorted nor rotated with respect to each other or the underlying 

lattice.12 Such a high crystal symmetry, if preserved to low temperatures, precludes the more 

usual mechanisms for obtaining a small ferromagnetic moment in an insulating 

antiferromagnet,13 suggesting that a different mechanism is causing the ferromagnetism. 
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Figure C.1. Observed (dots) and calculated (line) X-ray powder diffraction patterns of 

Ba2NaOsO6 collected at 273, 12, and 5 K. Vertical bars under the observed and calculated 

diffraction patterns indicate calculated positions of Bragg peaks. The inset depicts the refined 

crystal structure, showing OsO6 octahedra, Ba (light gray), and Na (dark gray) atoms. 

 

C.3. Results and Discussion 
Black, shiny, single crystals of Ba2NaOsO6 up to 2 mm in diameter and with a 

truncated octahedral morphology were grown from a molten hydroxide flux following a 

method similar to that presented in Ref. 5. Single crystal X-ray diffraction data were 

collected at room temperature using both a STOE Image Plate Diffractometer (IPDS II) and a 

Bruker Smart Apex CCD diffractometer. Data were taken for a crystal with dimensions 0.23 

× 0.18 × 0.01 mm3, and for a smaller piece broken from this larger crystal with dimensions 

0.058 × 0.039 × 0.022 mm3, more closely approximating a sphere. In each case, a large 

number of reflections were collected (3074 and 2166, respectively), and the structure was 

refined using the SHELXTL package of crystallographic programs.14 Refinement to the 

published fully occupied, stoichiometric mFm3 structure5 consistently gave the lowest R 
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values (0.0147) against a number of variable parameters, including partial occupancy, mixed 

site occupancy, and lower space group symmetry. These measurements were repeated at 

temperatures of 243, 223, 198, and 183 K, with no difference in the refined structures. 

Additional powder diffraction measurements were taken at temperatures of 273, 30, 12, and 5 

K (Figure C.1), using a Rigaku TTRAX powder diffractometer, equipped with a helium-flow 

cryostat. The structure obtained by Rietveld refinement using the Rietica LHPM software15 

agreed with the single crystal structural refinement at all temperatures. Goodness of fit 

parameters were constant through the magnetic transition, indicating no discernable change 

in the crystal structure.  

With one electron per osmium site, one might naively expect that Ba2NaOsO6 would 

be a metal. DC resistivity measurements consistently showed insulating behavior, but 

concern over the quality of the electrical contact to the samples led us to verify this 

observation by infrared reflectivity. Measurements were carried out using a scanning Fourier 

transform interferometer with a bolometer detector at 4.2 K, for arbitrary crystal orientations 

with the sample held at room temperature (Figure C.2). An evaporated Ag film, adjacent to 

and coplanar with the sample, provided a reference used to obtain absolute reflectivity versus 

frequency. The data show low overall reflectivity, with no indication of a metallic plasma 

edge down to the lowest measured frequency of 400 cm−1. The strong variations in the 

reflectivity between 400 and 1000 cm−1 are a signature of unscreened optical phonons. These 

data suggest that Ba2NaOsO6 is a Mott insulator, which is supported by the following tight-

binding analysis.  
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Figure C.2. IR reflectivity data as a function of wave number for Ba2NaOsO6. The inset 

shows coupling between two adjacent OsO6 orbitals of dxy symmetry for k = 0. 

 

The crystal structure of Ba2NaOsO6 can be pictured as an fcc lattice of isolated OsO6 

octahedra separated by Ba and Na ions (inset to Figure C.1). The s orbitals of Ba and Na are 

so high in energy that they can be neglected, and the electronic structure is primarily 

determined by the OsO6 octahedra, which form the usual set of molecular orbitals. The 

bonding and nonbonding states are filled, leaving one electron in the triply degenerate t2g 

antibonding orbitals. Using the known energies for the Os and O orbitals we find that this 

molecular orbital is at −13.43 eV,16 relative to Ep (O) = −16.77 eV for oxygen 2p states and 

Ed (Os) = −16.32 eV.17 Since the Os d and O p orbitals are close in energy, these molecular 

orbitals have almost equal 5d and 2p character.  

Adjacent OsO6 octahedra in Ba2NaOsO6 are coupled by the matrix elements 

)(
2
1

πσ pppp VV +− (inset to Figure C.2). Using values obtained for similar cluster separations in 

other materials,16 modified appropriately for this particular lattice, and neglecting spin-orbit 
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coupling, we obtain ~)(
2
1

4
1

πσ pppp VVt +−×= 0.05 eV for the hopping matrix elements 

coupling adjacent octahedra. In contrast, the Coulomb energy associated with moving one 

electron from an OsO6 octahedron to its neighbor is found to be U ~ 3.3 eV.18 More detailed 

treatments could presumably refine these values, but since we find U >> t it is clear that the 

material is a Mott insulator and that a local moment description of the magnetism is 

appropriate.  

Magnetization measurements as a function of applied field at 1.8 K (Figure C.3) show 

ferromagnetic behavior, as previously reported for polycrystalline samples.5 These data were 

obtained for applied fields oriented along high-symmetry directions using a Quantum Design 

Superconducting Quantum Interference Device magnetometer for single crystals weighing 

between 2 and 7 mg. The magnetization rises rapidly in low fields and levels off for fields 

above 1 T, beyond which there is no discernable hysterisis. However, the absolute value of 

the magnetization at this field is relatively small (approximately 0.2 µB) and does not appear 

to saturate in fields of up to 5 T. Extrapolating a linear fit to the magnetization between 3 and 

5 T, we obtain a zero-field magnetization of 0.175(2), 0.191(1), and 0.223(1) µB for fields 

oriented along [100], [111], and [110], respectively. This anisotropy is confirmed by angle-

dependent measurements at a constant field using a rotating sample holder and rotating in the 

)101( plane, which contains all three high-symmetry directions (inset to Figure C.3).  
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Figure C.3. Magnetization of Ba2NaOsO6 along high-symmetry directions as a function of 

applied field at 1.8 k for a full hysterisis loop. “f.u.” refers to one formula unit. The inset 

shows magnetization as a function of angle in the )100( plane at a temperature of 1.8 K and a 

field of 2 T. A line is drawn between data to guide the eye. 

 

Temperature-dependent magnetization measurements in fields above 1 T, for which 

there is no hysterisis, show an upturn below approximately 8 K (Figure C.4.), consistent with 

ferromagnetic behavior. The inverse susceptibility at high temperature shows a moderate 

amount of curvature [panel (a) of the inset to Figure C.4]. Data between 75 and 200 K can 

nevertheless be fit by a Curie-Weiss law if a constant offset, nominally attributed to Van 

Vleck paramagnetism, is included: 0)(
χ

θ
χ +

−
=

T
C [panel (b) of the inset to Figure C.4]. This 

fit results in relatively small effective moments µeff of 0.602(4), 0.596(1), and 0.647(3) µB for 

fields oriented in the [100], [111], and [110] directions, respectively, indicative of substantial 

spin-orbit coupling, and Weiss temperatures of −10(2), −10(1), and −13(1) K. Values 
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of 0χ are found to be 3(1) × 10−5, 1.7(1) × 10−4, and 1.76(9) × 10−4 emu / mol Oe for fields 

oriented in these same directions.  

 

 
Figure C.4. Low temperature magnetization of Ba2NaOsO6 as a function of temperature in a 

field of 2 T. Insets show (a) inverse susceptibility and (b) the inverse susceptibility with a 

constant offset ,0χ subtracted. Lines show fits to Curie-Weiss behavior. f.u. refers to one 

formula unit. 

 

The magnetic phase transition is most clearly seen in the heat capacity (Figure C.5). 

Data were taken using the relaxation method for 3-4 single crystals weighing a total of 2-3 

mg, oriented at arbitrary angles to each other, for temperatures from 0.3 to 300 K. A sharp 

anomaly is seen with a peak at 6.8(3) K, which defines the critical temperature TC. The 

magnetic contribution to the heat capacity was estimated by subtracting a polynomial 

extrapolation of the higher temperature phonon heat capacity, fit between 14.5 and 18 K [Cph 

= 0.065(7)T + 0.00262(6)T3 − 2.6(1) × 10−6T5, shown in Figure C.5]. Since the magnetic 

contribution is significantly larger close to TC, this crude subtraction results in only small 
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systematic errors. The total magnetic contribution to the entropy Smag through the transition is 

found to be 4.6 J / mol K (right axis, Figure C.5), falling slightly short (80%) of R ln2 = 5.76 

J / mol K. No additional anomalies are observed up to 300 K (inset to Figure C.5). 

 

 
Figure C.5. Heat capacity (left axis) and magnetic contribution to the integrated entropy 

(right axis) for the magnetic transition in Ba2NaOsO6. The dashed line (left axis) shows an 

extrapolation of a fit to the phonon background, the solid horizontal line (right axis) indicates 

the theoretical entropy of R ln2 for a doublet ground state. The inset shows the heat capacity 

to 300 K. The upper axis shows the Dulong-Petite value of 249 J / mol K. 

 

The triply degenerate t2g orbitals of OsO6 octahedra in the undistorted Ba2NaOsO6 

crystal structure constitute an effective unquenched angular momentum L = 1. The matrix 

elements of the orbital angular momentum operator L within the t2g manifold are the same as 

those of −L within states of P symmetry.19 Application of spin-orbit coupling therefore 

results in a quartet ground state
2
3

=J and a doublet excited state
2
1

=J .19-21 Since the 
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integrated entropy through the magnetic phase transition is ~ R ln2, we can surmise that the 

quartet must be split into two Kramers doublets at a temperature Tt > TC.  

Xiang and Whangbo have recently suggested that both the insulating behavior and the 

ferromagnetism in Ba2NaOsO6 can be attributed to the combined effect of electron 

correlation and spin-orbit coupling.22 However, the authors were unable to account for the 

magnitude of the saturated moment, the observed anisotropy, or the negative Weiss 

temperature. Furthermore, their assumption that the exchange energy is substantially larger 

than the spin-orbit coupling is not justified in light of the small value of TC. These factors all 

indicate that a different mechanism is responsible for the ferromagnetism in this material. 

The quartet ground state in Ba2NaOsO6 anticipated from consideration of the spin-

orbit coupling is unstable to a Jahn-Teller distortion. Our observation of a doublet ground 

state certainly indicates that the anticipated degeneracy has been lifted, while the absence of 

any additional features in the heat capacity implies that Tt > 300 K. That this does not reveal 

itself in x-ray diffraction presumably reflects both the extremely subtle nature of the 

associated distortions (since the t2g orbitals are not elongated along the bond directions they 

couple more weakly to the oxygen ligands than do eg orbitals) and also the weak scattering 

power of the coordinating oxygen ions. The relative orientation of Os orbitals on adjacent 

sites will have a profound effect on the magnetically ordered state, via both the magnetic 

anisotropy and the superexchange,23 which was not considered in the previous calculations. 

The small negative Weiss temperature deduced from susceptibility measurements clearly 

indicates that Ba2NaOsO6 is not a simple ferromagnet but rather has a nontrivial magnetic 

structure, which can then be understood in terms of an orbitally ordered state with a nonzero 

ordering wave vector. 

If a scenario in which orbital order drives the ferromagnetism in Ba2NaOsO6 is 

indeed appropriate, then the fact that the isostructural, isoelectronic analog Ba2LiOsO6 is 

found to be antiferromagnetic5 indicates that the factors determining the orbital order in these 

two compounds are remarkably finely balanced. It is intriguing to think that a similarly 

complex interplay between spin and orbital degrees of freedom might be present in these 5d1 

Mott insulators as in their better-studied 3d analogs, for which spin-orbit coupling has a 
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much weaker effect. Resonant x-ray scattering experiments are in progress to directly address 

this possibility. 
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Table C.1. Reaction composition and product identification. 

 

Sample Code Reaction Stoichiometry Heating Methods Reaction Products Analysis 

SM111 Gd5InGe3 Sm5Ge4-type 

SM112 

 

 

Gd5In2Ge2 Sm5Ge4-type 
SXRD 

SM113 Gd5In3Ge 
Arc melting Tetragonal cell:  

a = 11.7406 c = 15.3533;  

Incomplete structure solution 

SM321 Gd5AlGe3

SM322 

 

   

Gd5Al2Ge2

SM323 Gd5Al3Ge 

Arc melting 
The reaction failed as everything did 

not melt properly 

SM741 Gd5SbGe3 Sm5Ge4-type PXRD

SM742 

 

 

Gd5Sb2Ge2 Mn5Si3-type 

SM743 Gd5Sb2.05Ge2

Arc melting 
Gd2Ge3-type 

SXRD 

SM951 Gd5InSi3

SM952 

 

 

Gd5In2Si2

SM953 Gd5In3Si 
 Arc melting 

Could not find good quality single 

crystals 

SM1161 Gd5AlSi3

SM1162 

 

   

Gd5Al2Si3

SM1163 Gd5Al3Si 

Arc melting 
The reaction failed as everything did 

not melt properly 

SM1371 Gd5Si2.4Ge1.6 Arc melting Gd5Si4-type PXRD, SXRD

R
eaction C

om
position and Product Identification 

A
ppendix D
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Table C.1. (continued) 

Sample Code Reaction Stoichiometry Heating Methods Reaction Products Analysis 

SM1372 Gd5Si2.8Ge1.2

SM1373 

 

  

 

Gd5Si3.2Ge0.8

SM1374 Gd5Si3.6Ge0.8

Arc melting Gd5Si4-type PXRD, SXRD

SM1581 Gd4YSi4

SM1582 

 

 

 

  

 

Gd3Y2Si4

SM1583 Gd2Y3Si4

SM1584 GdY4Si4

SM1585 Gd2Y3Si4

Arc melting Gd5Si4-type PXRD, SXRD

SM1791 Gd4YGe4 Sm5Ge4-type 

SM1792 

 

 

 

 

 

 

 

   

Gd3Y2Ge4 Sm5Ge4-type 

SM1793 Gd2Y3Ge4 Sm5Ge4-type 

SM1794 GdY4Ge4 U2Mo3Si4-type, Sm5Ge4-type 

SM1795 GdY4Ge4 U2Mo3Si4-type, Sm5Ge4-type 

SM19101 Gd1.2Y3.8Ge4 U2Mo3Si4-type, Sm5Ge4-type 

SM19102 Gd1.4Y3.6Ge4 U2Mo3Si4-type, Sm5Ge4-type 

SM19103 Gd1.6Y3.4Ge4 Sm5Ge4-type, U2Mo3Si4-type 

SM19104 Gd1.8Y3.2Ge4

Arc melting 

Sm5Ge4-type, U2Mo3Si4-type 

PXRD, SXRD,  

SEM-EDS 

SM21111 Y5Ge4 Arc melting Sm5Ge4-type PXRD, SXRD
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Table C.1. (continued) 

Sample Code Reaction Stoichiometry Heating Methods Reaction Products Analysis 

SM21112   Y5Si4 Arc melting Sm5Ge4-type PXRD, SXRD

SM23121 Gd4ZrSi4

SM23122 

 

 

  

 

Gd3Zr2Si4

SM23123 Gd2Zr3Si4

SM23124 GdZr4Si4

Arc melting Gd5Si4-type PXRD

SM25131 Gd4ZrGe4

SM25132 

 

 

  

 

Gd3Zr2Ge4

SM25133 Gd2Zr3Ge4

SM25134 GdZr4Ge4

Arc melting Sm5Ge4-type PXRD

SM27141 Gd0.8Y4.2Ge4 U2Mo3Si4-type, Sm5Ge4-type 

SM27142 

 

 

 

Gd0.6Y4.4Ge4 Sm5Ge4-type, U2Mo3Si4-type 

SM27143 Gd0.4Y4.6Ge4 Sm5Ge4-type 

SM27144 Gd0.2Y4.8Ge4

Arc melting 

Sm5Ge4-type 

PXRD, SXRD,  

SEM-EDS 

SM29151 Nd4ErSi4 Zr5Si4-type 

SM29152 

 

 

 

Nd3Er2Si4 Gd5Si4-type, Zr5Si4-type 

SM29153 Nd2Er3Si4 Gd5Si4-type, Zr5Si4-type 

SM29154 NdEr4Si4

Arc melting 

Gd5Si4-type 

PXRD, SXRD 

SM31161 Nd4ErGe4 Sm5Ge4-type 

SM31162 Nd3Er2Ge4
Arc melting 

Sm5Ge4-type 
PXRD, SXRD 
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Table C.1. (continued) 

Sample Code Reaction Stoichiometry Heating Methods Reaction Products Analysis 

SM31163 Nd2Er3Ge4 Sm5Ge4-type, U2Mo3Si4-type 

SM31164 

   

   

   

   

   

 

NdEr4Ge4
Arc melting 

U2Mo3Si4-type 
PXRD, SXRD 

SM33171 Nd1.2Er3.8Ge4 Sm5Ge4-type, U2Mo3Si4-type PXRD

SM33172 Nd1.4Er3.6Ge4 U2Mo3Si4-type PXRD, SXRD

SM33173 Nd1.6Er3.4Ge4 U2Mo3Si4-type PXRD

SM33174 Nd1.8Er3.2Ge4 U2Mo3Si4-type PXRD, SXRD

SM33175 Nd1.2Er3.8Ge4

Arc melting 

Sm5Ge4-type, U2Mo3Si4-type PXRD

SM35181 Nd4HoGe4

SM35182 

 

 

  

 

Nd3Ho2Ge4

SM35183 Nd2Ho3Ge4

SM35184 NdHo4Ge4

Arc melting Sm5Ge4-type PXRD

SM37191 Gd4YbSiGe3

SM37192 

 

 

 

   

   

Gd3Yb2SiGe3

SM37193 Gd2Yb3SiGe3

SM37194 GdYb4SiGe3

SM37195 Yb5SiGe3

Tube furnace fitted 

with a flow tube 

under argon 

Reaction failed as the Ta-tubes were oxidized 

SM37196 Gd3Yb2SiGe3 Induction Furnace Gd5Si4-type SXRD

SM39201 Gd5GaSn3 Mn5Si3-type PXRD

SM39202 Gd5Ga2Sn2
Arc melting 

Could not find good quality single crystals 
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Table C.1. (continued) 

Sample Code Reaction Stoichiometry Heating Methods Reaction Products Analysis 

SM39203 Gd5Ga3Sn Arc melting Could not find good quality single crystals 

SM41211 Gd5GeSn3

SM41212 

 

  

 

Gd5Ge2Sn2

SM41213 Gd5Ge3Sn 

Arc melting Sm5Ge4-type PXRD, SXRD

SM43221 Gd5GaSb3 Could not find good quality single crystals 

SM43222 

 

 

Gd5Ga2Sb2 P4Th3-type 

SM43223 Gd5Ga3Sb 

Arc melting 

P4Th3-type 
SXRD 

SM45231 Gd5GaGe3 Pu5Rh4-type 

SM45232 

 

 

 

   

Gd5Ga0.5Ge3.5 Sm5Ge4-type 

SM45233 Gd5GaGe3 Pu5Rh4-type 

SM45234 Gd5Ga2Ge2 Gd5Si4-type 

SM45235 Gd5GaGe3

Arc melting 

Pu5Rh4-type 

HT & LT-PXRD, 

HT&LT-SXRD 

SM47241 Gd5Si4 Arc melting Gd5Si4-type SXRD

SM49251 Tb5Ge4 Sm5Ge4-type 

SM49252 

 

 

 

 

Tb5Si0.44Ge3.56 Sm5Ge4-type 

SM49253 Tb5Si1.84Ge2.16 Gd5Si2Ge2-type 

SM49254 Tb5Si2.40Ge1.60 Gd5Si2Ge2-type 

SM49255 Tb5Si3.20Ge0.80 Gd5Si4-type 

SM49256 Tb5Si4

Arc melting 

Gd5Si4-type 

SXRD 
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Table C.1. (continued) 

Sample Code Reaction Stoichiometry Heating Methods Reaction Products Analysis 

SM51261 Dy5Ge4 Sm5Ge4-type 

SM51262 

 

 

 

 

 

Dy5Si0.44Ge3.56 Sm5Ge4-type 

SM51263 Dy5Si1.84Ge2.16 Sm5Ge4-type 

SM51264 Dy5Si2.40Ge1.60 Sm5Ge4-type 

SM51265 Dy5Si3.20Ge0.80 Gd5Si2Ge2-type 

SM51266 Dy5Si4

Arc melting 

Gd5Si4-type 

SXRD 

SM53271 Gd5Ga0.5Ge3.5 Sm5Ge4-type 

SM53272 

 

   

Gd5GaGe3 Pu5Rh4-type 

SM53273 Gd5Ga0.5Ge3.5

Arc melting 

Sm5Ge4-type 

HT & LT-PXRD, 

HT&LT-SXRD 

SM55281 Gd5Zn0.5Ge3.5 Induction Furnace Mn5Si3-type PXRD, SXRD

SM55282   

 

   

 

 

Gd5ZnGe3 Induction Furnace Mn5Si3-type SXRD

SM55283 Gd5Zn2Ge2 Induction Furnace 

SM55284 Gd5Zn3Ge Induction Furnace

SM55285 Gd5Zn3.5Ge0.5 Induction Furnace 

Could not find good quality single crystals 

SM57291 Tb5Ga0.5Ge3.5 Sm5Ge4-type 

SM57292 

 

 

 

Tb5GaGe3 Sm5Ge4-type 

SM57293 Tb5Ga2Ge2 Gd5Si4-type 

SXRD 

SM57294 Tb5Ga3Ge 

SM57295 Tb5Ga3.5Ge0.5

Arc melting 

Not analyzed 
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Table C.1. (continued) 

Sample Code Reaction Stoichiometry Heating Methods Reaction Products Analysis 

SM59301 NdEr4SiGe3 Sm5Ge4-type 

SM59302 

 

 

 

 

 

 

   

NdEr4Si2Ge2 Sm5Ge4-type 

SM59303 Nd2Er3SiGe3 Sm5Ge4-type 

SM59304 Nd2Er3Si2Ge2 Gd5Si2Ge2-type 

SM59305 Nd3Er2SiGe3 Gd5Si2Ge2-type 

SM59306 Nd3Er2Si2Ge2 Gd5Si2Ge2-type 

SM59307 Nd4ErSiGe3 Gd5Si2Ge2-type 

SM59308 Nd4ErSi2Ge2

Arc melting 

Gd5Si4-type 

PXRD, SXRD 

SM61311 Gd5Si3Ge Arc melting Gd5Si4-type SXRD

SM63321 NdEr4Si3Ge 

SM63322 

 

 

  

   

Nd2Er3Si3Ge 

SM63323 Nd3Er2Si3Ge 

SM63324 Nd4ErSi3Ge 

Arc melting Gd5Si4-type SXRD

SM71363 Y5Ge4 Arc melting Sm5Ge4-type PXRD, SXRD

SM75381 Gd2.5Sc2.5Ge4 Not analyzed 

SM75382   

 

Gd2Sc3Ge4 Pu5Rh4-type PXRD, SXRD

SM75383 Gd1.5Sc3.5Ge4

Arc melting 

Not analyzed 
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