Development of high performance scientific components for interoperability of

computing packages
by
Teena Pratap Gulabani

A thesis submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Masha Sosonkina, Co-Major Professor
Les Miller, Co-Major Professor
Theresa L Windus
Simanta Mitra

lowa State University
Ames, Iowa

2008



ii

DEDICATION

With gratitude for their unconditional love and support, I dedicate this thesis to my

loving parents Neelam and Pratap Gulabani and my dear sister, Daya Gulabani.



iii

TABLE OF CONTENTS

DEDICATION

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

ABSTRACT

CHAPTER 1. INTRODUCTION

CHAPTER 2. BACKGROUND
2.1 Overview of Computational Packages
2.1.1 NWChem
2.1.2MPQC
2.1.3 GAMESS
2.2 Quantum Mechanics and Molecular Mechanics
2.3 Common Component Architecture
2.4 Literature Review
CHAPTER 3. COMPONENTIZING NWCHEM
3.1 QM/MM comporent design
3.1.1 Information flow in the legacy QM/MM code
3.1.2 Defining generic interfaces
3.1.3 Implementation of interfaces
3.1.4 Implementation of Driver and provision/usage of ports
3.2 Reusability and Interoperability
3.2.1 Reusability
3.2.2 Interoperability
CHAPTER 4. PERFORMANCE MEASUREMENT AND ANALYSIS

CHAPTER 5. SUMMARY AND DISCUSSION
5.1 Lessons learned
5.2 Potential reusable results
3.3 Open issues
5.4 Future work

APPENDIX A. Incorporating CCA in NWChem
APPENDIX B. QM/MM INTERFACES

ii

it

vi

vii

o

— D00 00 -] I

Pt



iv

APPENDIX C. PROTIEN DATA BANK (PDB) FILE FORMAT
BIBLIOGRAPHY
ACKNOWLEDGEMENTS

66
68

73



LIST OF FIGURES

Figure 1. US Department of Energy’s three computational quantum packages..................... 3
Figure 2. Five-tiered NWChem ATCRIECIUIE .....vvv...oo oo 5
Figure 3. Regions involved in QM/MM calculation of tripeptide alanine-serine-alanine........ 9
Figure 4. Ccaffeine framework and the wrappers of the underlying computational packages23

Figure 5. Mapping from legacy QM/MM code to underlying wrappers...........c.coovoroen. . 25
Figure 6. Quantum Chemistry component model........oooemveeeoov 28
Figure 7. QM/MM COMPONENt MOMEL....ccvrrrrervvrrrrreeemrroe oo 29
Figure 8. UML sequence diagram for QM/MM calculation depicting the interactions between

different COMPONENts OVEr tME. ......ccoorvverrssvermrroromeoeoeeeeeoosoeseooo 30

Figure 9. Usage of QM/MM component model by three different packages. The first is all
with NWChem, the second uses NWChem for the MM and QM/MM Factories and
GAMESS for the QM Factory and the third uses NWChem for the MM and QM/MM

Factories and MPQC for the QM FaCLOTY ..oooeoee oo 37
Figure 10. TAU QM/MM COMPONETIL ...ttt e ettt 38
Figure 11. Performance overhead of QM/MM component model ..., 40
Figure 12. Packages/tools involved in componentization a chemistry package..................... 48
Figure 13. GNU BUIld SYSOM vo....orcecerecerenees e oo 55

Figure 14. Sample PDB file for tripeptide alanine-serine-alanine........................______ 67



vi

LIST OF TABLES

Table 1. CCA compliant components involved in QM/MM calculation and the corresponding
ports they provide and/or use. 32
Table 2. Execution time for calculating QM/MM energy using QM/MM component model 39



:S—T?4‘{5

vii

ABSTRACT

Three major high performance quantum chemistry computational packages,
NWChem, GAMESS and MPQC have been developed by different research efforts
following different design patterns. The goal is to achieve interoperability among these
packages by overcoming the challenges caused by the different communication patterns and
software design of each of these packages. A chemistry algorithm is hard to develop as well
as being a time consuming process; integration of large quantum chemistry packages will
allow resource sharing and thus avoid reinvention of the wheel. Creating connections
between these incompatible packages is the major motivation of the proposed work. This
interoperability is achieved by bringing the benefits of Component Based Software
Engineering through a plug-and-play component framework called Common Component
Architecture (CCA). In this thesis, I present a strategy and process used for interfacing two
widely used and important computational chemistry methodologies: Quantum Mechanics and
Molecular Mechanics. To show the feasibility of the proposed approach the Tuning and
Analysis Utility (TAU) has been coupled with NWChem code and its CCA components
Results show that the overhead is negligible when compared to the ease and potential of

organizing and coping with large-scale software applications.



CHAPTER 1. INTRODUCTION

Software reuse is the process of building systems using existing software rather than
building the systems from scratch. Quantum Chemistry packages like NWChem [1,2],
GAMESS [3] and MPQC [4] are developed to perform high-performance scientific
simulations. These packages are developed and maintained by different research scientists. It
is difficult for a single research group to effectively develop solutions for all of the methods
one would desire. Also, since each research group needs some similar capability, it leads to
duplication of efforts. When a new capability is to be added to a package, it is nice to have a
gateway via which packages can reuse existing tested capabilities. Additionally, research
groups often optimize their software for a particular hardware. Thus, the different algorithms
for the same functionality may run better on different platforms. Being able to use the best
algorithm for a particular platform increases the overall throughput of the science.

This leads to the potential usage of component software engineering. Commercial component
based software engineering practices such as COM [5], EJB [6] and CORBA [7] exists in the
market, which present an approach for managing the increasing complexity of business
packages. In this research work, I use a similar framework known as the Common
Component Architecture (CCA) [8], which is targeted at high-performance scientific
development. CCA allows research scientists to create components, which can be used by
different research groups through well-defined interfaces. As a result of this synergy, rapid

development is possible while avoiding redundant efforts.



The remainder of this thesis is structured as follows: chapter 2 discusses the three
computational packages, NWChem, GAMESS and MPQC. Also included in chapter 2 is a
brief introduction of Quantum Mechanics and Molecular Mechanics (QM/MM) and CCA —
one of the pillars of this research work. Chapter 3 describes the design and implementation
details of the QM/MM component model. Also the potential use of interoperability and
reusability are discussed in this chapter. Chapter 4 gives a review of performance analysis of
the QM/MM component model using TAU [9]. Finally, chapter 5 states a summary of the

proposed work and current research issues.



CHAPTER 2. BACKGROUND

In this chapter, a broad overview of the quantum computational packages involved in
this project is provided. Then I will briefly describe the important concepts required for

understanding the work done as part of this research.

2.1 Overview of Computational Packages

Three of the world’s most significant and widely used computational chemistry
software codes developed under the US Department of Energy are: NWChem, MPQC and
GAMESS. To provide interoperability between these three packages is the ultimate research
computer science goal. The focus is to collaborate with another package to provide needed
functionality instead of creating it “in-house”. The collaboration among these packages is
possible by bringing the best practices of Software Engineering into the field of quantum

chemistry.

T ARl s S I

Figure 1. US Department of Energy’s three computational quantum packages



As part of my thesis work, I will majorly focus on using the NWChem scientific
package to create the underlying components for a very important functionality called
combined Quantum Mechanics and Molecular Mechanics (QM/MM). It is important to study
the overall architecture of NWChem before actual creation of components. It is equally
important to know about the communication mechanics used in other packages involved in

the collaboration since the goal is to provide interoperability between all three packages.

2.1.1 NWChem

NWChem (NorthWest Chemistry) developed and supported by the Pacific
Northwest Naticnal Laboratory (PNNL) is designed to run on high-performance parallel
supercomputers as well as standard HPC clusters. The application is built on object-oriented
principles and implemented using Fortran, C and Python. The code is used to compute the
properties of molecular and periodic systems using standard quantum mechanical
descriptions. The code also allows molecular dynamics and free energy simulations,
Gaussian Density Functional Theory (DFT), planewave based DFT and many body
perturbation theory. Classical and quantum approaches are used together to perform hybrid
quantum mechanics and molecular mechanics simulations.

NWChem is Non-Uniform Memory Access (NUMA) aware in order to scale to
massively parallel computer architectures in all dimensions including CPU, memory and
disk. Memory access is possible by using the message-passing capability provided by the
portable Aggregate Remote Memory Copy Interface (ARMCI) [10]. ARMCI is a standalone

system that is used to support user-level libraries and applications in a message-passing



model. NWChem has a five-tiered modular architecture as shown in Figure 2. The five tiers

are as follows:
1. Generic task interface:
This is an interface between the user and the chemistry modules where NWChem
processes the input, sets up the parallel environment and performs initializations
needed for the desired calculations. This interface also determines the task to be

accomplished and transfers control to the different modules in the second tier.

Generic Task
tnterface

Molecular Calculation
Modules

Molecular Modeling

i Software Development
Toolkit

Utility Layer

Figure 2. Five-tiered NWChem Architecture



2. Molecular calculation modules:
These high-level programming modules accomplish computational tasks based on the
input theories specified by the user and uses toolkits and routines that reside in the
lower levels of the architecture and are theory specific. Various modules at this level
communicate with each other via an information repository called the run time
database or through well-defined disk files.
3. Molecular modeling toolkit:
This tier contains tools that provide basic chemical functionality such as symmetry,
basis sets, grids, gcometry and integrals that are used by many of the molecular
calculation modules.
4. Software development toolkit:
This level forms the foundation of the architecture and allows development of object-
oriented code mainly in Fortran 77. This ticr consists of five tools and each of these
tools provides an interface between the chemistry specific part of the program and the
hardware.
* Run Time DataBase (RTDB) .
The RTDB is an information repository, which is used by various modules to
share data,
*  Memory Allocator (MA):
The MA tool allows the programmer to allocate memory that is local to the

calling process - data not being shared with other processes. MA provides



both heap as well as stack memory management disciplines. Since Fortran 77
doesn’t support dynamic memory allocation, MA plays an important role in
the NWChem code.

*  Global Arrays (GA) :
GA [11, 12, 13] toolkit provides an efficient and portable “shared memory”
programming interface for distributed memory computers. Using this toolkit,
a programmer can take advantages of both shared memory and message
passing paradigms in the same program.

* ChemlO
ChemlO is a high performance paraliel /O API and is used to create files that
are either local to the process, distributed among the file systems or on shared
disk spaces. This allows the developer to perform parallel /O in the most
efficient way for a particular algorithm or for a particular hardware.

5. Utility routines:
This tier provides various functionalities such as input processing, output processing,

timing and printing that most of the higher tiers require.

2.1.2 MPQC

MPQC (Massively parallel Quantum Chemistry) developed and maintained at
Sandia National Laboratory uses an object oriented design paradigm and is implemented
using C++ (with a few C functions). The MPQC package provides parallel implementation of

Hartree-Fock, Density Functional, second order many body perturbation theory, MP2 and



optimization methods. MPQC uses MPI as the message-passing layer to support parallel
execution and is able to run on a wide range of architectures such as individual workstations,

symmetric multiprocessors and massively parallel computers.

2.1.3 GAMESS

GAMESS (General Atomic and Molecular Electronic Structure System)
developed and maintained at Jowa State University, is mainly implemented using Fortran 77.
It performs various calculations including Hartree-Fock, Density Functional Theory, many
body perturbation theory (MP2 and different coupled cluster methods), Generalized Valence
Bond, and Muiti-configurational self-consistent field. GAMESS uses the Data Distributed
Interface (DDI) to obtain high paralle efficiency, which relies either on TCP/IP sockets or
MPL

All these packages have their strengths and weaknesses. The goal of this research is
to provide an easy way to utilize the best of all the packages without imposing significant

performance penalty

2.2 Quantum Mechanics and Molecular Mechanics

The rapid increase in computer speed and hardware technology advancement has
made quantum chemistry a practical tool for chemists in different branches of chemistry,
such as organic, inorganic, analytical, and physical. However, while Quantum Mechanical

(QM) methods can treat chemical reactions accurately since they treat the atoms and the



electrons using ab initio electronic structure, they are quite expensive for very large
molecules. On the other hand, Molecular Mechanics (MM) methods can treat very large
molecules since they are based on ignoring electrons and treating the atoms classically but
are not well suited for chemical reactions. To deal with the chemical reactions in very large
systems, a combined QM/MM method is used where a quantum mechanics calculation is
embedded in a molecular mechanics model. In this, quantur mechanics can be used to treat
the part of the system affected by the reaction, and molecular mechanics to treat the rest of
the chemical environment [14]. For example, for a reaction in solution, one treats the reacting
solute molecules and the first solvent shell using QM and the surrounding solvent molecules

using MM.

QM Region

Figure 3. Regions involved in QM/MM calculation of tripeptide alanine-serine-alanine

The challenge is to find an appropriate boundary region between the QM and MM
regions and to accurately describe the physics of the boundary region. This is critical because
a selection of an inappropriate boundary will produce poor end results. There are many

choices for the physics of the boundary conditions. This work will focus on two models.
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The first is a model where molecules are weakly interacting with one another (i.e. not bonded
to one another) and only the charges or electrostatics of the MM region need to be taken into
account in the QM calculation. In the second model, the border contains atoms that are
bonded to one another. Figure 3 shows both QM and MM regions of the tripeptide alanine-
serine-alanine. In this model, the quantum region will need to substitute the rest of the MM
region by hydrogen or fluorine like caps as well as the electrostatic charges. In both models,
the electrostatic interactions are included in the QM computation so that the QM wave
function feels the effects of the environment of the MM atoms allowing the reaction to be
modified based on the environment. Overall, the QM/MM approach combines the strength of

both QM (accuracy) and MM (speed) packages.

2.3 Common Component Architecture

The Common Component Architecture specification helps in managing software
complexity by bringing the benefits of a lightweight component system to high performance
science. CCA is built on object-oriented principles such as encapsulation, abstraction, data
hiding, interfaces and modularization and adds the flexibility of building applications in a
plug-and-play fashion.

CCA enables communication between software packages that are written in different
languages by using a tool called BABEL [15]. In order to support this multi-language
interoperability, BABEL relies on the specifications of interfaces in Scientific Interface
Definition Language (SIDL). A CCA component is a SIDL class that implements the

gov.cca.Component interface and other user-defined interfaces. CCA employs the notions of
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ports that define the interaction between different components. CCA. supports two types of
ports: provide and use, to specify functionality provided by a component and to access
functionality of other components (that provide the matching port type). Additionally,
Parameter Ports are designed as provides ports for components that need run time settings
for their computations.

A CCA framework is responsible for component management including dynamic
loading, component instantiation, connection and disconnection of the matching ports. A
range of CCA. frameworks are available such as XCAT-C++ [16], XCAT-Java [17], DCA
[18], DECAFE [19], CCAIN [20], Ccafffiene {21]. In the proposed work, I have used the
Ccaffeine framework [13] that supports both Single Program Multiple Data (SPMD) and
Multiple Program Multiple Data (MPMD) parallel models. It is possible to use components
that rely on different communication systems under the same framework. This is a very
useful feature that will be harnessed to provide interoperability between three quantum
chemistry packages of this work: NWChem, MPQC and GAMESS.

In chapter 3, an overall description of how the CCA framework is used to create
components from a legacy package i_s given. Also, I will focus on the crux of

componentization approach i.e. providing interoperability between incompatible packages.

2.4 Literature Review

CBSE emerged from the failure of object-oriented development to support reuse. In

object-oriented development, reuse is supported in the form of inheritance. Inheritance is a



12

poor form of reuse because it requires familiarity with the internal details of the base class
implementation. Component-based development allows reuse of existing components
without knowing its internal details as long as the component complies with the set of
interfaces [22]. To support CBSE, various component architectures such as COM, CORBA,
and EJB came into existence and employed by millions of users. Unfortunately, these
technologies focus exclusively on local and distributed computing and do not support the
concept of parallelism. These technologies are often platform or language-specific. These
issues have limited adoption in the HPC community and this led to the formation of the CCA
forum in 1998. Collaboration among chemists and computational scientists to solve
computational chemistry problems became possible using CCA. CCA project encouraged
collaboration among three major research groups, NWChem, GAMESS and MPQC under
USDOE.

In 2004, components were developed for MPQC and NWChem to perform geometry
optimizations by integrating Toolkit for Advanced Optimization (TAO) [23]. TAQ provides
optimization software for the solution of scientific applications on high performance
architectures. Efficient backtracking line search algorithm was implemented in TAO and was
made available to quantum packages through the adoption of the CCA. This laid the
groundwork for further integration between multiple codes. This optimization work
encouraged GAMESS to have the same high level interfaces.

In 2005, for the very first time CCA along with GA tool were deployed to exploit

variable concurrency in the field of computational chemistry in the form of multi-level
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parallelism on a high performance computer [24]. This was found to give substantial
improvements in parallel scalability. Results showed that the numerical hessian calculation
using three levels of parallelism outperformed the original NWChem code based on single
level parallelism by a factor of 90% on 256 processors.

In 2006, low-level components were developed that enable the one and two electron
integrals computed by MPQC package to be used by another package. MPQC implements
the two-electron integrals needed for explicitly correlated methods which NWChem and
GAMESS lack [25].

Both GAMESS and NWChem parallelize the integral computations instead of
parallelizing the integral computation itself. In 2007, GAMESS components were developed
with load balancing mechanism that allows the integrals to be distributed among processes
evenly [26, 27].

These packages usually provide more than one method for a computation to be used
under different circumstances. For Computational Quality of Service (CQoS), a performance
database is created which stores the computational time, cache utilization, communication
latency, etc. Chemists can use this data to select the component that meets his/her
performance needs [28].

A remarkable new development is that these projects are transitioning to employ
BOCCA [29], a comprehensive suite of CCA tools that provide project management and an

environment for creating and managing applications made of CCA components.
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CHAPTER 3. COMPONENTIZING NWCHEM

In this chapter, I will describe the overall process of componentizing a legacy
package starting with designing interfaces for developing components to form a complete
interoperable application. At the end of this chapter, I will discuss reusability and

interoperability of these components in detail.

3.1 QM/MM component design

In this section, I will describe the process of wrapping legacy NWChem code as CCA
© components, i.e. componentizing NWChem. The focus will be on componentizing the
QM/MM code without modifying the legacy code, but the general technique can be applied
to produce components for other legacy codes. Componentizing QM/MM (or for that matter
any other component model) is an iterative and over-lapping four-step process:
1. Deciding the flow and the information passed between different pieces of the
QM/MM code.
2. Designing generic interfaces using SIDL specifications.
3. Implementing interfaces in the form of classes or components and writing wrappers to
the native library functions.
4. Writing a driver component that uses all of the other components and classes in the
repository to accomplish the calculation of interest, providing and using ports inside

the components so as to enable the communication between components.
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These steps will be discussed in further details in the following sections.

3.1.1 Information flow in the legacy QM/MM code

The QM/MM code in NWChem is written using a combination of Fortran and C
languages. In this section, the details of the communication between different modules and
control of the QM/MM execution are laid out. The flow of control proceeds in the following
steps (with more details for each step provided below):

1. Initialize the parallel environment

2. Open the input NWChem file and scan it for memory directives

3. Complete the parallel and memory initialization process.

4, Process start-up directives

5. Summarize start-up directives and write to an output file

6. Open the runtime database with the appropriate mode.

7. Set the quantum related information such as basis set and theory type in the rtdb.

8. Process and execute the prepare block. This step basically reads a PDB [30] file and
generates topology and reset files specifying the quantum piece, if any, in the
topology file.

9. Process and execute the MD block, which mainly sets up molecular mechanics
parameters and calculates classical energy.

10. Process and execute QM/MM block, which is mainly responsible for defining the
interface parameters between the QM and MM regions and for calculation of

QM/MM energy of a system.
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11. Finally closing the database, cleaning up GA and killing the parallel processes

terminate the execution process.

In the first step, the parallel environment is set up by calling the ARMCI wrapper
routine pbeginf(). This creates the parallel processes and provides basic message passing
capabilities. In the second step, the input file is opened by process 0 to obtain user specified
memory parameters, which are passed on to all other nodes. In the third step, the GA library
and local memory allocator are initialized. At the end of this step, the parallel environment is
fully initialized.

In the fourth step, the startup directories given in the input file are scanned and
processed. In the fifth step, this information is summarized to an output file. In the sixth step,
process 0 opens the runtime database with the appropriate mode (empty for startup, old for
restart or continue). At the end of this step, all the startup directives have been processed.

After this, each input line is processed, and data is inserted into the rtdb for later
usage. Only process zero is involved in the input module: reading input or putting data into
the rtdb. For this purpose, the database is switched into sequential mode at the beginning of
the input module, and back to parallel at the end.

Once a task directive is processed and entered into the rtdb, control is returned to the
main program so that the task can be carried out. The main program initiates the execution of
the task by calling the routine task(). On successful completion of the task, the main program

invokes the input module once again.
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Parameters defined for the QM region in the input file such as basis and theory, which
are input into the database in the seventh step and used further in the QM/MM calculation,
In a QM/MM calculation, mainly three blocks (and corresponding three task
directives) are encountered in the input file, which are covered in the steps 8-10. The prepare
module, step 8 specifies the location of the input Protein Data Bank (PDB) file (described in
detail in Appendix C), the force field to be used (AMBER95 or CHARMM?22}) and the
location of the force field database files. The quantum region in the QM/MM calculation is
specified by the ‘modify atom’ directive in the prepare block. Prepare is mainly responsible
for generation of three files:
* Sequence (.seq)
This file is generated afier analyzing the supplied coordinates from a PDB-
formatted file. It contains the description of the system in terms of basic
building blocks found as fragment (.frg) or segment (.sgm) in the database
directories for the force field used. A fragment contains the list of atoms with
their force field dependent atom types, partial atomic charges calculated from
a Hartree Fock calculation for the fragment, followed by a restrained
electrostatic potential fit, and a connectivity list. Based on the information in
this fragment file, the lists of all bonded interactions are generated, and the

complete lists are written to a segment file.

* Topology (.top)
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Based on the generated sequence file and the force field specific segment
database files, the compiled lists of atoms, bonded interactions, excluded
pairs, and substituted force field parameters are stored in the topology file.
The quantum region information in the QM/MM calculation as specified by
the ‘modify atom’ directive is also stored in the topology file.

* Restart (.rst)
Based on the coordinates specified in the PDB file and the topology file for
the chemical system, a restart file is generated for the system with coordinates,
velocities and other dyramic information. It may also include solvation of the
chemical system and periodic boundary conditions. The restart and topology
files contain information about the classical force field as well as the
coordinates of the QM and MM regions. This information is used in 2 MM
simulation as well as in a QM/MM simulation.

In the ninth step, the MD block is executed. The molecular mechanics parameters are
specified in the MD input block, which is required for the QM/MM simulations. It specifies
the restart and topology file (points to the restart and topology files created in the prepare
step) that will be used in the calculation. It also contains information relevant to the
calculation of the classical region (e.g. cutoff distances, constraints, optimization and
dynamics parameters) in the system. It is possible to set fixed atom constraints on both

classical and quantum atoms inside this MD block.
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In the tenth step, the interaction parameters between the QM and MM regions are
specified inside the QM/MM block. The following are a few directives that can be specified
in the QM/MM block:

* eatoms: This specifies the zero of energy for the QM module in QM/MM
calculation. This is necessary because quantum calculations include atomic
energies that are not included in force fields. The zero of energy for the MM
system is the separated atom energy. The zero of energy for QM systems is
the vacuum. This imbalance can be rectified by well-defined eatoms value.

* cutoff : This directive defines the radius of the zone around the quantum
region where classical atoms will be allowed to interact with the quantum
region.

* mm_charges: This directive controls the treatment of classical point (MM)
charges (Bq charges) that are interacting with QM region.

Thus the overall QM/MM calculation can be divided into three major parts

¢ specification of the molecular mechanics parameters for the classical region

* specification of the quantum mechanical method for the quantum region

* specification of the interaction between quantum and classical methods

The third specification is the most critical part in the QM/MM calculation. Interfaces

and flow of data should be well defined so as to allow interaction between the QM and MM

regions.
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In the final step, step 11, the execution is terminated by closing the database, cleaning

GA and gracefully killing parallel processes.

3.1.2 Defining generic interfaces

The second step in componentizing is writing interfaces in accordance with the flow
and pieces involved in a QM/MM calculation. The interface definitions are written in the
cca-chem-generic package. Defining interfaces in this package will allow each chemistry
package (e.g. NWChem, MPQC and GAMESS) to implement the interfaces and create
chemistry components and classes. Interfaces will be implemented either by a class or
component. The agreed upon standard in writing interfaces for the chemistry community is
that factories will be used to provide a general component capability. Thus the naming
convention is that the interface for a component ends with ‘FactoryInterface’ whereas for a
class, it ends with ‘Interface’, both having a common prefix in their names. The key
distinction between a class and a component is that a class cannot provide or use ports
whereas a component can. So keeping in mind which functionalities are to be exposed to
components and which functionalities are needed only inside components, the following
interfaces have been written: |

1. Chemistry.Moleculelnterface and Chemistry.MoleculeFactoryInterface

The Chemistry.MoleculeInterface declares a variety of functions related to a molecule

in the chemical system, such as setting/getting Cartesian coordinates, atoms and units.

As discussed earlier, the QM molecule now needs to know about the external charges

from the MM region and so functions are declared for setting/getting the point charge
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values and coordinates. The Chemistry.MoleculeFactoryInterface declares functions
to instantiate and get a copy of a Molecule class.

. Chemistry.Modellnterface

Chemistry.ModelInterface is the basic interface that can be extended by quantum,
classical as well as combined QM/MM Modellnterfaces. It provides functionalities
such as calculation of molecular energy, gradient and Hessian.

. Chemistry.QC.Modellnterface and Chemistry.QC.ModelFactorylnterface
These interfaces are meant for pure quantum calculation as well for quantum zone
calculations in QM/MM simulation. Chemistry.QC.ModelInterface extends the
Chemistry.ModelInterface and provides additional functionalities related to setting up
of a model along with evaluation of quantum energy, gradient and Hessian of a
molecule. The Chemistry.QC.ModelFactoryInterface is used to instantiate and geta
copy of a QC Model class. It is also used for setting up the quantum information such
as theory and basis type.

. Chemistry. MM.Modellnterface and Chemistry.MM.ModelFactorylnterface
These interfaces are meant for pure molecular mechanics simulation as well as for
MM zone calculations in combined QM/MM calculation. The
Chemistry.MM.ModelInterface extends the Chemistry.ModelInterface and provides
additional functionalities for setting up of the MM zone including creation of restart
and topology files and defining the QM zone in QM/MM calculations, along with

evaluation of molecular mechanics energy, gradient and hessian of a molecule. The



22

Chemistry. MM.ModelFactorylInterface is used to instantiate and get a copy of a MM
Model class.

. Chemistry.QMMM.Modellnterface and
Chemistry.QMMM.ModelFactoryInterface

These interfaces are used to provide communication between the QM and MM
regions in combined QM/MM calculations. Chemistry. QMMM .ModelInterface
extends the Chemistry.ModelInterface and provides additional functionalities for
setting up the interaction between quantum and classical regions in QM/MM
calculations along with evaluation of QM/MM energy, gradient and Hessian of a
system. The Chemistry. QMMM.ModelFactorylInterface is used to instantiate and get
a copy of a QMMM Model class. It also sets up references of QM and MM model
instances inside a QMMM model.

. Database.Modellnterface and Database.ModelFactorylnterface

Database interfaces are used to provide a storage place for quantum zone information
during QM and MM zone interactions. It also stores the QM and the MM energies.
Database.Modellnterface defines functionalities related to database like connecting
and disconnecting a database, opening and closing a database, insertion and retrieval
of quantum coordinates, point charges, etc of a molecule. The
Database.ModelFactory declares functions to instantiate and get a copy of Database

Model class.
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The first two steps are critical in the design phase. Writing interfaces
involves a lot of assessment since the goal is to make them as generic as possible so
that all packages are able to implement the same set of interfaces irrespective of their
unique implementation details. This entails not only deciding on the important
components, but it also means determining the important data (and the data layout)
that must be available to the different components. Information is passed between
different components and classes to achieve the correct flow for the chemistry
calculations, For example, the molecule should be set before its energy is calculated,
which means the molecule object must be passed to the energy calculation model.
This is also the point where classes and components are defined. The key
distinguishing feature between class and component is that a class cannot provide or
use ports whereas a component can. So the developer needs to decide which
functionalities are to be exposed to components and which functionalities are needed

only inside components. In this work, I have designed components that interact with

T

Interface

Figure 4. Ccaffeine framework and the wrappers of the underlying computational
packages



classes and other components (sometimes with wrappers functions) whereas classes interact

only with wrapper functions (Figure 4).

3.1.3 Implementation of interfaces

In this step, wrapper functions for the components/classes are developed. In the
NWChem-CCA project, a wrapper function acts a bridge between the CCA components and
the underlying computational package. This is not a strict requirement if the components are
written in the native language but they are necessary if the components are written in
different language or if a more generic interface to the package is required for non-CCA
purposes. In this case, wrappers act as a middle layer for the function calls in the component
language and native NWChem language. Wrappers are useful in making the CCA. interfaces
simple and in writing high-level routines in the native code that can be used for other
purposes. For QM/MM calculations, wrapper functions are written in accordance with the
flow described in the “Information flow in QM/MM?” section. In accordance with the flow
discussed in section 3.1.1, I wrote the corresponding wrappers and the one-to-one mapping
for the same is shown in Figure 5. Wrapper functions provides the following advantages:

* Itis possible to write a stub that can call wrapper functions to test the implementation
without involving CCA components.
* When functionalities are added/edited in the native code, we can update the wrappers

accordingly without modifying the CCA components.
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¢ Code looks cieaner and follows the modularity principle. Code becomes easier to
manage with the introduction of a wrapper layer because we don’t embed significant

amounts of NWChem code in the CCA implementation files.
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Figure 5. Mapping from legacy QM/MM code to underlying wrappers

Once the interfaces and wrapper functions are written, the next step is to generate the
glue code through Babel in the form of implementation files. The following are the

classes/components involved in QM/MM calculation:
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1. Chemistry.Molecule and Chemistry.MoleculeFactory
Chemistry Molecule is a class that implements the Chemistry.MoleculeInterface and
Chemistry MoleculeFactory is a component that implements the
Chemistry.MoleculeFactoryInterface and is able to return an instance of 2 Molecule
class. Both are implemented in the cca-chem-generic package.

2. NWChem.QM.Model and NWChem.QM.ModelFactory
NWChem.QM.Model is a class that implements the Chemistry.QC.Modellnterface
and NWChem.QM. ModelFactory is a component that implements the
Chemistry. QC.ModelFactoryInterface and is able to return an instance of
NWChem.QM.Model class. NWChem.QM.Model class interacts with the wrapper
functions to set up the theory and basis set, and calculates quantum energy, gradient,
hessian of a molecule.

3. NWChem.MM.Model and NWChem.MM.ModelFactory
NWChem.MM.Model is a class that implements Chemistry. MM.ModelInterface and
NWChem.MM.ModelFactory is a component that implements the
Chemistry. MM.ModelFactoryInterface and is able to return an instance of the
NWChem.MM.Model class. NWChem.MM.Model class interacts with the wrapper
functions to set up the molecular mechanics parameters and generate topology and
restart files, extract quantum information and store it in a database component
(described later) if it is a QM/MM calculation, and finally calculate classical energy,

gradient, Hessian of a molecule.
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4. NWChem.QMMIVI.ModeI and NWChem.QMMM.MaodelFactory
NWChem.QMMM.Model is a class that implements the
Chemistry.QMMM.Modellnterface and NWChem.QMMM.ModelFactory is a
component that implements the Chemistry QMMM.ModelFactoryInterface and is
able to return an instance of the NWChem. QMMM . Model class.
NWChem.QMMM.Model class interacts with the wrapper functions to set up the
interaction parameters between quantum and classical zones in a QM/MM calculation

and calculate the combined QM/MM energy of a system.

5. NWChem.Database.Model and NWChem.Database.ModelFactory
NWChem.Database.Model is a class that implements the Database.ModelInterface
and Database. ModelFactory is a component that implements the
NWChem.Database. ModelFactorylnterface and is able to return an instance of
Database.Model class. Database.Model class is used to set up a database and allows
retrieval and storage of quantum information passed between the QM and MM

regions.

Note that a component is also a class that must implement the

gov.cca.Component interface and also gov.cca.Port interface. In addition, if
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components wish to take inputs from the user via parameter ports then it should

additionally implement the gov.cca.ports.BasicParameterPort interface.

Component i Component Provides Port

Class 4  Component Uses Port

Figure 6. Quantum Chemistry component model
For the QM/MM model, we initially need a QM model, which should be able to

calculate a molecular energy based on the molecule definition, theory level, and basis set
provided by the user. The design of the QM model has been discussed in [10] and is shown
in Figure 6. This was implemented using the same process as discussed above. However, the
need to calculate the point charges from the environment was something that the original
design did not take into account. Therefore, this has been added to the previous
implementation. The interfaces are designed in such a way that this model can be used
independently to calculate a purely quantum energy as well as in combination with MM to
calculate the energy of the quantum region. A generic interface is the key to reusability.

The next step is to have a MM component model, which will calculate the MM
energy based on the inputs given by the user such as the force field, cut-off distances and
other constraints, related to the classical region. The input for the molecule is read in through

a PDB file in this implementation, the MM input also identifies the MM and QM molecular
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zones. This is quite common in QM/MM implementations since the MM region is usually
quite large compared to the QM region. To enable the interaction between the MM and QM
regions, I introduce another component called the Database to store and retrieve the
intermediate quantum zone information and energies. We also introduce a QM/MM Model
and Model Factory to handle the flow and interaction between the QM and MM regions. The
QM component gets the quantum information from the database component inserted

previously by the MM component (after identifying the quantum zone in QM/MM).

Component Provides Port

#4—— Component Uses Port

Figure 7. QM/MM component model

I have meticulously developed a thin interface, which is required between the QM and
MM regions in such a way that the moment the relevant information about the quantum zone
is set by the MM component, the QM component uses the information to contribute its part

towards the QM/MM energy. Defining the thin interface was a challenging task because final
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energy calculations are mostly dependent on the interface between QM and MM regions. The

design layout is shown in Figure 7.

3.1.4 Implementation of Driver and provision/usage of ports

Driver component is different from other components as it provides a starting point in
the entire application run (similar to main() in C programming) by means of a GoPort. The
driver component binds the other components in the framework and drives the entire
calculation. The driver component also implements gov.cca.Component and

gov.cca.ports.GoPort interfaces.

Figure 8. UML sequence diagram for QM/MM calculation depicting the interactions
between different components over time.
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A QMMMDriver component is written that orchestrates the different components
defined previously to perform combined QM/MM calculation. It gets the reference of the
QMMM Model class (through QMMM ModelFactory) and then it uses this reference to
calculate the QMMM energy.

The sequencing diagram in Figure 8 depicts the sequence of data flow between
different components and the following connections can be observed:

1. The Driver component communicates with the QM/MM component, i.e. driver uses
functionalities of QM/MM Model and ModelFactory.

2. The QM/MM component communicates with the Molecule, QM, MM and Database
components i.e. i.e. driver uses functionalities of Molecule (to set the molecule
information such as coordinates and point charges), QM (to get the quantum energy),
MM (to get the classical energy and obtain quantum information), and Database (for
retrieval of intermediate quantum information) Models and ModelFactories.

3. The MM component communicates with the database component to store

intermediate quantum information extracted from the topology file.

At this point, I know which components interact with each other. Accordingly, I made
connections between them via CCA ports as shown in Table 1. As is true for much of
software development, it is often true that the design needs to be revisited as the

implementation is taking place since complicating factors often only surface during the



implementation. So the design and the implementation often evolve together, as was the case
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for the QM/MM design.
Component uses port provides port

Driver QMMMFactorylnterface Go

Molecule - MoleculeFactoryInterface

oM - QMFactoryInterface

MM DatabaseFactorylnterface MMFactoryInterface
MoleculeFactoryInterface,
QMFactoryInterface,

QMMM QMMMFactoryInterface
MMFactorylnterface,
DatabaseFactoryInterface,

Database - DatabaseFactoryInterface

Table 1. CCA compliant components involved in QM/MM calculation
and the corresponding ports they provide and/or use.

3.2 Reusability and interoperability

Interoperability and reusability call for high-quality interfaces and components,

classifications and retrieval mechanisms, sufficient and proper documentation of

components, a flexible means of combining components and a means of adapting

components to specific needs. In this section, I will formaliy about how the components
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developed are reusable and then I will show how NWChem components are able to

interoperate with other quantum packages.

3.2.1 Reusability

Software design is a challenging task due to the numerous complexities involved in
the process. These days, this complexity is increasing to levels in which reuse of previous
software designs are needed to reduce the development time and efforts. Reusability is the
process of adapting a generalized component to various contexts of use. The main intention
of this research is to encourage reusability and I have focused on three flavors of reusability
in this work [31]:

1. Black-Box Reuse:
Using a component as a black box means using it without seeing, knowing or
modifying any of its internals, In this type of reuse, one can see the SIDL interfaces
and not the implementation of the component. The interface contains the function
definitions and documentation explaining the requirements and restrictions of the
interface. The previous implementation of the interface can be changed without any
effects on new implementations. In the proposed QM/MM component Model, the

‘Chemistry.QC.Modellnterface’ is implemented by all three quantum computational

packages, NWChem, GAMESS and MPQC without seeing each other’s

implementations.
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2. Glass-Box Reuse: -
Using a component as a glass box is similar to that of a black box with the addition
that the internals can be seen from the outside. This type of reuse gives information
about the working of a component but it doesn’t provide ability to change the
internals of the component. In QM/MM component model, I have used the previously
implemented quantum components and developed few more components to provide
the complete QM/MM CCA application. Also, the new components developed in the
process can be reused or plug and played by MPQC and GAMESS (discussed in
detail in the next section).

3. White-Box Reuse:
Using a component as a white box means it is possible to see and change the inside of
the box (component) as well as the interface. The new component can choose to
retain or change its previous functionality. During the process of creation of QM/MM
component model, I reused the existing component ‘Chemistry. MoleculeFactory’ and
added the functionality of creation of molecules via user specified input parameters in
the interface and implemented the functionality in the component (missing in the

previous implementations).

The proposed componentization approach is flexible enough to support all the above

types of reusability.
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3.2.2 Interoperability

The term component interoperability can be defined as the ability of components to
provide services and to accept services from other components and to use the services
exchanged to enable an effective operation together. The ultimate goal of this research is to
provide interoperability between components written in different languages to be connected
together.

Section 3.1 described the components developed for the NWChem Package. The
design was then tested using the QM and MM component models developed within the
underlying NWChem package. It should be ideally possible for other packages having
quantum chemistry components to use the NWChem-based molecular mechanics and
combined QMMM components for calculation of QM/MM energies. The next obvious test
was to check if it is possible to use QM/MM component model with other quantum packages
like MPQC. Theoretically speaking, end users shouldn’t need to understand the underlying
design and communication patterns. This is a challenging task if the components are
developed from a legacy code. The proposed model achieves this interoperability by means
of well-defined generic interfaces and high-quality component implementations. As shown in
Figure 9, we need to load the QM components of the respective packages and other
component in the QM/MM model of the NWChem package in the Ccaffeine framework.
Proposed model flawlessly calculates the QM/MM energy by hiding the internal details from
the end users and overcoming language barriers, input formats and underlying message-

passing libraries used by each package.
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Following are the steps to show interoperability between MPQC and NW Chem
Components in the Ccaffeine framework:

1> Instantiate all the components: NWChem.QMMMDriver and
NWChem.QMMM.ModelFactory, NWChem.MM.ModelFactory,
NWChem.DatabaseFactory and Chemistry. MoleculeFactory
MPQC.QM.ModelFactory in the framework.

2> QMMM.ModelFactory asks for an instance of NWChem.MM.Model class through
NWChem. MM .ModelFactory.

3> NWChem.MM.ModeiFactory reads the PDB file and molecular mechanics input
parameters, initializes NWChem, generates topology and restart files, gets an instance
of the NWChem.DatabaseModel and store quantum information in the database.

4> NWChem.QMMM .ModelFactory then retrieves the quantum zone information from
NWChem.Database Model class and sets up a molecule via
Chemistry. MoleculeFactory and gets an instance of the MPQC.Model class via
MPQC.McodelFactory.

5> MPQC.ModelFactory reads the quantum input parameters and associates
Chemistry. Molecule class instance with MPQC.Model class instance.

6> NWChem.QMMM.ModelFactory then reads the QM/MM interface parameters and
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Figure 9. Usage of QM/MM component model by three different packages. The first is
all with NWChem, the second uses NWChem for the MM and QM/MM Factories and
GAMESS for the QM Factory and the third uses NWChem for the MM and QM/MM

Factories and MPQC for the QM Factory

asks for quantum and classical energies using MPQC.Model class instance and
NWChem.MM.Model class instance respectively.
7> NWChem.QMMM.ModelFactory then computes the QM/MM energy

8> Last step is to destroy all class instances and components.

Using the NWChem-based QM/MM CCA component model, MPQC (and GAMESS)
need not write its own piece of computational code for Molecular Mechanics and the
combined Quantum Mechanics and Molecular Mechanics calculations which otherwise
would have called for large development efforts by various scientists. In addition, theories
that are unique to MPQC or GAMESS can be used to model the reactive part of the chemical

system,
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CHAPTER 4. PERFORMANCE MEASUREMENT AND ANALYSIS

In this chapter, I will discuss the overhead of using componentizing approach for a
QM/MM calculation. Also comparison is done between the execution time needed to
calculate QM/MM energy in a legacy code and time needed by using CCA components. To
evaluate the execution time of the functions called in a legacy code as well as in CCA
components, TAU is used. TAU allows capturing of information at the node/context/thread
levels. Using TAU, I perform source level code instrumentation by using interface calls at
function entry and exit points. I have integrated the CCA components with TAU
Performance component (Figure 10). Performance component provides MeasurementPort
interface via which we are able to use the measurement capabilities provided by TAU in
Ccaffeine framework. Both serial and parallel executions are possible using Ccaffeine

framework.

r— Component Uses Port

Figure 10. TAU QM/MM component



39

I have specifically used the timer capability provided by the MeasurementPort to
calculate the execution time of a function. For testing, I chose two molecules: the tripeptide
alanine-serine-alanine and ethane. Table 2 shows the execution time for calculation of the

QM/MM energy using plain NWChem program.

Molecule | Basisset | No of basis | NWChem | NWChem CCA
Sfunction (seconds) Components
(seconds)

tripeptide sto-3g 14 0.93 1.085
alanine-
serine-
alanine

tripeptide aug-cc- 210 325 374
alanine- pVTZ
serine-
alanine
ethane sto-3g 16 1.36 1.571
ethane aug-cc- 260 1015 1122

pVTZ
Table 2. Execution time for calculating QM/MM energy using QM/MM component
model

Also, it shows the execution time taken by the component model of QM/MM for the
same molecules and basis sets. These tests were performed on a SMP cluster of 4 nodes.
Each node has a dual core Xeon 2 GHz CPU with 8GB of RAM with Red Hat Linux as the
operating system.

ParaProf [32], a tool for analyzing the profiles generated by TAU is used to observe the

profiling output. Thus, by using profiling, the best-known method for observing the
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performance of software, it can be seen that the overhead of componentization decreases as
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Figure 11. Performance overhead of QM/MM component model

larger molecules are simulated. For sto-3g basis set, overhead is 16% and for aug-cc-pVTZ,
it is 11%. Thus, it can be observed from Figure 11 that the overhead reduces as the number of

basis functions increases.
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CHAPTER 5. SUMMARY AND DISCUSSION

In this thesis, I outlined the process of creation of scientific components from legacy
software using CCA specifications and discussed how to make these components truly
interoperable with other components. I also discussed about the overhead of
componentization and concluded that the overhead is negligible when compared to the
overall calculation time. The main motive of this research work is to minimize the
programming efforts of the scientists and at the same time not to impose a significant
overhead as a result of componentization. The success of the proposed QM/MM component
model will encourage further research and implementation of component engineering

methods.

5.1 Lessons learned

Component development should not be monolithic thus allowing different component
developers to incrementally develop the application. This allows development using different
previously built and tested components without implementing the entire model at once. In
this work, I have used the components previously developed for quantum calculations and
modified them as per the requirements (while maintaining their original intent of usage) for
combined quantum mechanics and molecular mechanics calculations.

Throughout the development process, object oriented principles should be wisely
used so program development will not lead to creation of monolithic applications. I have

used object-oriented principles such as writing generic interfaces and implementation of
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interfaces by classes thus avoiding the unpleasant effects of multiple inheritance. Data and
methods are tied together in the form of a class and message passing is possible via objects in
the CCA-compliant application, thus utilizing the advantages of encapsulation and data
hiding.

A variety of tools, libraries, compilers and frameworks are involved in component
development; it is worthwhile checking with different versions if errors pop up in the
development process. It might be the case that a bug in a tool or compiler for instance
traverses down to your application. This can be a very time consuming process, but is
necessary part of debugging the component applications,

Application development-should be split into different parts, which can be modified
independently, and unit tested from the rest of the application.

Design is the most important part of the componentization approach. Team discussion
is very necessary to discuss and resolve design issues and come up with generic flexible
interfaces.

Componentizing a legacy code so that components are interoperable with different
packages is critical since we do not want to revamp the original legacy code. Special care
should be taken while writing wrappers so that when components are loaded and
interoperated in different environments and frameworks, they still perform their intended

task.
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Portability is a major issue in application development; the developer should not
assume that an application would always run on the same operating system and use the same
compiler (versions).

An application can always be optimized. Ideally, optimization should be done at the
end of the development stage and the components should be developed in a way that

optimized pieces of it are easily glued with the rest of the application.

J 5.2 Potential reusable results

Given the broad scope of the componentizing approach discussed in this thesis, it is
worthwhile mentioning the results of this research that can be applied to other projects:
Throughout the different stages of the component life cycle starting with requirements
gathering, design, and development to testing, the main focus was on building
components that can be used in a plug and play manner with other packages. This avoids
functionality to be reimplemented by other packages. The issues faced throughout the
process can be taken as a guiding tool by different application developers interested in
componentizing their packages. In this thesis, I also discussed the overall process of
enabling componentization in a legacy code. Different application scientists/ developers
can use these guidelines to use the CCA tool with their legacy codes.

In specific, the Model and Model Factories generated and discussed for QM/MM are

generic enough to be used in a “plug and play fashion” by different chemistry packages.
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Performance is always an issue in software world. In this research, I have used
lightweight tools to bring componentization into a legacy code and the results show that
there is not a significant overhead. Significant efforts are needed during the
componentization process; but in the end the result is worthwhile as there is a significant
saving of programming effort and time by not reinventing the “same software” by

different application scientists.

5.3 Open issues

Componentizing a large-scale high performance legacy package is a challenging task.
A variety of tools are used in combination such as CCA, BABEL, Ccaffeine framework,
TAU, CCA-Chem Generic, MPICH, C++ and Fortran compilers that are often being updated.
To provide consistency, it is required to recompile the packages and test them to ensure
stability. The rebuilding process is time consuming and if errors or bug pops up, it is very
difficult to locate the source of the error because of the various packages involved and to
conclude which particular combination of packages may conflict.

Application decomposition into components is equally critical. There are no hard-
coded rules for decomposing a legacy code in components and for determining their level of
granularity. It can be said that the smaller the granularity of the components, the more the
application is flexible since selective components can be replaced. At the same time, the
larger the number of components, the more invariants each component has to respect. In
addition, the overall overhead will increase for applications. So taking into consideration the

pros and cons, one should wisely develop scientific components,
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Performance of the interoperable components will vary with different packages
because of the underlying message passing libraries, memory access and coding schemes the
different packages use. For example, MPQC uses MPI as the message-passing layer whereas

NWChem uses ARMCI and GAMESS uses DDI or MPI.

5.4 Future work

Some directions for future work in this area would be to explore a few more
important calculations of various packages and extend this work to develop high performance
interoperable components for these important computations. Following are the potential
* possibilities for future work:
1> Develop components for Dynamical Nucleation Theory —Monte Carlo Method.
2> Develop one-body operator implementations, for example, potential, kinetic, overlap,

and density.
3> Construction of a multi-level parallel component model on different processors.
4> Incremental progress in the design and implementation of CQoS, increasing the level

of automation and making it more generally applicable to component applications.

This research is certainly very exciting as after the object oriented paradigm,
component based software development in a high performance computational environment is

the next big thing due to the numerous potentialities of component based applications. High
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performance component based development can skyrocket by demonstrating the benefits of

component-based development to real life projects of significant size.
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APPENDIX A. INCORPORATING CCA IN NWCHEM

A variety of packages and tools are involved to bring componentization in a legacy

package. For the NWChem computational code following are the prerequisites:

Install C/C++ and Fortran compilers and MPICH library then configure your login
environment to use them.

Download and install CCA tools (Cccafiene and BABEL) and configure your login
environment to use them.

Download and install CCA-Chem-generic2.

Dovwmload a copy of the NWChem Package.

Download and install TAU for performance.

Figure 12 shows a variety of tools/packages involved in a component based chemistry

project. GNU build system (autoconf and libtool} is used to incorporate CCA inside

NWChem. It allows us to write cross-platform software for Unix-like systems. Since

autoconf and libtool are important in the building and maintenance of the CCA components,

desriptions of these tools and how they are used in NWChem are given next.

autoconf is a gnu tool used for producing shell scripts that automatically configure

source code packages to many kinds of UNIX-like systems. A shell script wrapper around a

macro language, m4, forms the basis of autoconf. m4 is a preprocessor which besides just

macro expansion has built-in functions for:

file inclusion



48

Figure 12, Packages/tools involved in componentization a chemistry package

* string manipulation
* conditional evaluation
* performing arithmetic expressions and recursion
¢ running shell commands
In the NWChem-CCA base directory, there is a file called ‘aclocal.m4’ which is a
series of m4 commands. It is used to set up configuration variables and relies on some
predefined variables. There is a function called ‘AC_CHECK CCA’ which detects the CCA
tools environment (checks for BABEL libtool, BABEL C/C++/Fortran compilers, mpi
configuration, python configuration, cca-specs).
Another important file is ‘configure.in’ which is basically a series of m4 commands.

Here are some useful macros that autoconf uses in the ‘configure.in’ file:
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AC_INIT (package, version, [bug-report], [tarname])

Processes any command-line arguments and some initialization.

Sets the name of the package and version.

AC_OUPTUT

Generates and runs config.status, which creates the makefiles and other files
with the suffix .in in the directory structure.

Called once at the end of the configure.in and is basically a list of all of the
files that need to be generated by configure.

AC ARG_WITH (package, help-string, [action-if-given], [action-if-not-
given])

This is how you pick up the variables defined in the configure with
--with-package or --without-package. The variable withval holds the value
given on the right side of the = when the package is configured.
AC_ARG_ENABLE(feature, help-strong,[action-if-given], [action-if-not-
given])

This is how you "turn on" optional features using the --enable-feature option
in configure. For example, you can pick to compile the F90 components
instead of just the C-++ components. The idea here is that you should not use
this feature to swap features, but to add them. The variable enableval holds the
value given on the right side of the = when the package is configured. Ifno

option is given on the --enable-feature line, then enableval is yes.
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5. AC_SUBST(variable,[value])
These are variables that will be substituted in the ".in" files when configure is
Tun.
6. AC_DEFUN(macro-name, macro-body)
Allow the developers to define their own macros. The NWChem aclocal.m4
has quite a few of these.
7. AC_PROG_INSTALL
Finds the location of the install-sh script. In my case it is in the
SNWCHEM _TOP/src/cca directory.
Next, a configure file is generated from the configure.in and aclocal.m4 files through
the autoconf tool with no arguments. autoconf processes ‘configure.in’ to produce a
configure shell script. 'configure’ is a portable shell script which examines the build
environment to determine which libraries are available, which features the platform has,
where libraries and headers are located, and so on. Based on this information, it modifies
compiler flags, generates makefiles, and/or outputs the file ‘config.h’ with appropriate
preprocessor symbols defined.
Typing ‘configure’ configures the package to adapt to different systems. The
following are a few options that can be used with configure:

* --prefix=PREFIX install architecture-independent files in PREFIX [/ust/local]
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* --disable-FEATURE  do not include FEATURE (same as --enable-
FEATURE=no)

* --cnable-FEATURE[=ARG] include FEATURE [ARG=yes]

¢ —with-PACKAGE[=ARG] use PACKAGE [ARG=yes]

* --without-PACKAGE  do not use PACKAGE (same as --with-PACKAGE=no)

For example, to configure CCA within NWChem, use:

configure --prefix=3HOME/NWChem/src/cca/obj --enable-f90 --with-nwchem-
dir=SHOME/NWChem --with-cca-chem-config=$HOME/CCA-Chem-Generic2-
Install/bin/cca-chem-config --with-nwchem-target=LINUX64

Currently, this allows the user to configure the value variables using values of --with-
nwchem-dir and --with-nwchem-target to set the environment variables NWCHEM_TOP and
NWCHEM_TARGET needed by NWChem for compilation. These varibales get exported
for use in configure by the AC_SUBST command so the variables can be used in the builds.
It also sets the location of the cca~-chem-config script that sets a group of other environment
variables such as CCA_CHEM_INCLUDE, CCA_CHEM_LIB, CCA_CHEM_REPO,
CCA_CHEM_BIN, CCA_CHEM_CONFIG, CCA_CHEM_PREFIX and CCAFE_CONFIG
that are needed for compiling with CCA and incorporating CCA-Chem-generic. Configure
also checks the CCA environment to make sure that everything is operational. Whenever, the
behavior of the configure program needs to be changed, configure.in file should be modified

and autoconf should be run to get a new configure script. When run, configure also creates
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several files, replacing configuration parameters in them with appropriate values. The files

that configure creates are:

Each subdirectory that contains something to be compiled or installed contains .
files such as ‘Makefile.in’. configure performs a simple variable substitution,
replacing occurrences of "@variable@' in ‘Makefile.in' with the value that
configure has determined for that variable and produces a ‘Makefile’.
configure processes all files with a “.in* extension replacing variables and
producing a file without the ‘.in’ extension.

a shell script called "config status' that, when run, will recreate the files (i.e.
reruns config with the options that you gave it).

a file called "config.log' containing any messages produced by the compiler

for debugging if configure failed.

There are several files residing in the SNWCHEM_TOP/src/cca/lib directory that get

used by the other makefiles in the code.

-2 ‘MakeVars.in’ which configure uses to generate ‘MakeVars’. This is
essentially an expanded list of all of the variables that will be used in the
makefiles. If a new variable is to be added, “MakeVars.in’ should be modified
and then configure should be run again. The variable definitions are not all
static, some of them are dependent on other variables that are in the Makefiles

in the subdirectories. For example the value of CLIENT_OR_SERVER is
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used in the SNWCHEM_TOP/src/cca/Chemistry/server/cxx/Makefile has an
effect on the variables that are used in the compile. Also, CLIENT OBJDIRS
and SERVER_OBJDIRS set in this ‘MakeVars’ is used by Makefile.libs in
the same directory.

—>’Makefile.objs’ holds all the compiling rules for the whole makefile
structure. For example, it gives the rules for creating the .d files and for
compiling the .c files to .1o files. Some of the variables in this file come from
the MakeVars file mentioned above. This is also the Makefile that has the
commands to run the Babel commands to generate the *Impl*, etc. files. It is
only included in the
$NWCHEM_TOP/src/cca/Chemistry/server/cxx/Makefile.

~> ‘Makefile.libs’ holds all of the information for linking the objects together
to create libraries. Here, libtools is used through the LTLINK variable to
create dynamically linked objects. This is included in the
$SNWCHEM_TOP/src/cca/lib/Makefile that does the linking of everything
together.

SNWCHEM_TOP/sre/cca/lib/Makefile.in sets a few environment variables
and does the linking step.

Makefile.babel sets up the XML repository. It is used to make the BABEL

process the .sidl files and update the XML repository.
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* ’components.cca.in’ is used to generate the components.cca file by configure.
It internally points to the actual libraries that comprise the component.
Ccaffeine uses a “path” to determine where it should look for CCA
components (specifically the .cca files) If you make a new component, you
will need to update the components.cca.in file and run configure again.

The Makefile.in at the SNWCHEM_TOP/src/cca level (and many of the other
Makefiles in the subdirectories), include lib/MakeVars to get the list of all of the variables.
This is the makefile that makes sure that all of the subdirectories get built and linked. It does
some of the BABEL preparation work of creating the repository of xml (.babel-stamp target)
and then compiles the chemistry server code (.chemistry-stamp target) by calling the
makefile in the SNWCHEM_ TOP/src/cca/Chemistry/server/f90 directory. This is also the
makefile that takes care of the cleaning and the installation.

The Makefile.in in the SNWCHEM_TOP/src/cca/Chemistry/server/f90 directory
defines the source directory that we are working in, the BABEL_TARGETS (note that these
should coincide with the classes in the SNWCHEM_TOP/src¢/cca/lib/components.cea file),
and defines if we are using the client or the server code. It also includes the
$NWCHEM_TOP/src/cca/lib/Makefile.objs file that gives the rules to generate the object
files.

The overall GNU build is shown in Figure 13. The final important discussion is

related to the ability of CCA components to interact with NWChem routines. This is possible
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by means of creating shared libraries i.¢ libraries which can be shared among programs.

Creation of a shared library is a two-step process:

Figure 13. GNU build system

1. First, create the object files that will go into the shared library using the —{PIC
option associated with the compiler (e.g. gee, ifort). The -fPIC option is
essential to produce Position-Independent Code (i.e. to generate code that can
be loaded anywhere in the process space of a process). It is also very
important for a shared object. By using this option, a number of relocations
that have to be performed are cut down to the very minimum. On loading a
shared object that is used by an executable, some space has to be allocated for

it and the text and data sections have to be allocated some locations. If they
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are not built in a position-independent way, then a fair amount of relocations
have to be done by the program loading the shared object, thus impacting
performance adversely.
2. The second step is to create a shared library using gec with the —shared option.
A shared object called ‘libnwchem-sumo.so’ is created which links the
different object files and libraries like Global Arrays, Memory Allocator,
ARMCI, etc. CCA then uses this single large shared object file to make
NWChem components. A single shared object files is important since there
are various dependencies at run-time and cannot be split into various shared
object files.
Once, NWChem is compiled and shared object file (libnwchem-sumo.so) is
generated, the next step is to write interface definitions and develop NWChem based CCA

application by implementing those interfaces.
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APPENDIX B. QM/MM INTERFACES

package Chemistry version 0.4.0 {
/** The Chemistry.Model interface provides energies and
gradients for a Molecule. This interface provides the
primary functionality of a chemistry code and can be
extended by QC, MM and combined QM/MM interfaces.
*/

interface ModelInterface

{

/// Returns the energy.
double get_energy();

/** Sets the accuracy for subsequent energy calculations.
{@param acc The new accuracy. */
void set_energy_accuracy(in double acc);

/** Returns the accuracy to which the energy is already computed.
The result is undefined if the energy has not already
been computed.
@return The energy accuracy. */

double get_energy_accuracy();

/** This allows a programmer to request that if any result
is computed,
then the energy is computed too. This allows, say, for a request
for a gradient to cause the energy to be computed. This computed
energy is cached and returned when the get_energy() member
is called.
@param doit Whether or not to compute the energy.

*/
void set_do_energy(in bool doit);
/** Returns the Cartesian gradient, */
array<double,1> get gradient();

/*¥* Sets the accuracy for subsequent gradient calculations
@param acc The new accuracy for gradients. */
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void set_gradient_accuracy(in double acc);

/** Returns the accuracy to which the gradient is already computed.
The result is undefined if the gradient has not already
been computed.
@return The current gradient accuracy. */

double get gradient_accuracy();

/** Returns the Cartesian Hessian. @return The Hessian. */
array<double,2> get_hessian();

/** Sets the accuracy for subsequent Hessian calculations.
@param acc The new accuracy for Hessians. */
void set_hessian_accuracy(in double acc);

/** Returns the accuracy to which the Hessian is already computed.
The result is undefined if the Hessian has not already
been computed. */

double get_hessian_accuracy();

/** Returns a Cartesian guess Hessian, */
array<double,2> get guess_hessian();

/** Sets the accuracy for subsequent guess Hessian calculations.
@param acc The new accuracy for guess Hessians. */
void set_guess_hessian_accuracy(in double acc);

/** Returns the accuracy to which the guess Hessian is
already computed. The result is undefined if the guess Hessian
has not already been computed.
@return The guess hessian accuracy. */
double get_guess hessian_accuracy(),

/** This should be called when the object is no longer needed.
No other members may be called after finalize. */
int finalize();

|

interface ModelFactoryInterface extends gov.cca.Port {

Modellnterface get_model();
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/** The Molecule interface provides a collection of atoms.

Each atom is associated with a charge, an atomic number, a Cartesian
coordinate, and an optional label.

Ghost atoms (atoms do not contribute a charge) have the appropriate
atomic number but a zero charge. Point charges have an atomic number
of zero, but have a nonzero charge.

*/
interface Moleculelnterface {

/** Initialize a molecule.
@param natom The number of atoms.
@param npcharge The number of point charges.
@param unitname The name of the units ("angstroms" or "bohr").
*/
void initialize(in long natom, in long npcharge, in string unitname);

/** Returns a units object that corresponds to the units that are used
by get_cart_coor or set_cart_coor.
@return The units of the coordinates.

*/

Physics.UnitsInterface get_units();

/** Returns the number of atoms.
@return The number of atoms.
*/
long get_n_atom();

/** Returns the number of point charges.
@return The number of point charges.
*/
long get_n_pcharge();

/** Returns the atomic number of an atom
@param atomnum The number of the atom.
@return The atomic number.
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*/
int get_atomic_number(in long atomnum);

/** Sets atomic number of an atom.
@param atomnum The number of the atom.
@param atomic_number The atom's new atomic number.
*/
void set_atomic_number(in long atomnum, in int atomic_number);

/** Returns net charge of the molecule.
@return The net charge.
*/
double get net_charge();

/** Sets the net charge of the molecule.
@parm charge The new net charge.
*/
void set_net_charge(in double charge);

/** Returns charge at an atom.
@param atomnum The number of the atom.
@return The charge on the atom.
*/
double get_charge(in long atomnum};

/** Sets charge of an atom.
set_net charge must called as well to ensure internal consistency.
@param atomnum The number of the atom.
*/
void set_charge(in long atomnum, in double charge);

/** Returns point charge value,
@param atomnum The number of the point charge.
@return The point charge value.
*/
double get point_charge(in long pchargenum);

/** Sets point charge value
@param atomnum The number of the point charge.
@param charge The point charge value,
*/
void set_point_charge(in long pchargenum, in double pcharge);
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/** Returns point charge array.
@return An array with all the point charge values.
*/

array<double,1> get _all point_charge();

/** Gets Cartesian coordinates for point charges.
@return The Cartesian coordinate array.
*/

array<double,1> get pcharge_coor();

/** Returns the Cartesian coordinate array.
@return An array with all Cartesian coordinates.
*/
array<double,1> get_coor();

/** Sets the Cartesian coordinates.
@param x The new coordinates.
*/
void set_coor(in array<double,1> x);

/** Gets individual Cartesian coordinate.
@param atomnum The atom number.
@param xyz Give 0 forx, 1 fory, and 2 for z.
@return The Cartesian coordinate.
*/
double get cart_coor(in long atomnum, in int xyz);

/** Sets individua! Cartesian coordinate.
{@param atomnum The atom number.
@param xyz Give 0 for x, 1 fory, and 2 for z.
@param val The new Cartesian coordinate.
*/
void set_cart_coor(in long atomnum, in int xyz, in double val};

/** Gets individual Cartesian coordinate for point charge.
@param pchargenum The point charge number.
@param xyz Give 0 for x, 1 for y, and 2 for z.

@return The Cartesian coordinate.
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*/
double get pcharge cart_coor(in long pchargenum, in int xyz);

/** Sets individual Cartesian coordinate for point charge.
@param pchargenum The point charge number.
@param xyz Give 0 forx, I fory, and 2 for z.
@param val The new Cartesian coordinate.
*/
void set_pcharge_cart_coor(in long pchargenum, in int xyz, in double val);

/** Returns label for atom @param atomnum */
string get_atomic_label(in long atomnumy);

/** Sets label for atom @param atomnum. */
void set_atomic_label(in long atomnum, in string label);

b
/** The MoleculeFactory is used to create Molecule objects.
A filename is given to MoleculeFactory which contains
the data that is used to generated a Molecule.
*/
interface MoleculeFactoryInterface extends gov.cca.Port {

/** Set the containing the Molecule data.
@param filename The filename. */
void set_molecule_filename(in string filename);

/** Return the a Molecule object.
@return A new instances of Molecule. */
Chemistry.Moleculelnterface get molecule();

/** Return a Molecule object.

@return A new instance of Molecule.

@param unitname unit name

@param atomic_nums atomic numbers

@param coords geometry coordinates

@param pcharge_coords point charge coordinates

@param pcharge_vals point charge values

*/
Chemistry. MoleculeInterface get molecule[ _qm](in string unitname, in

array<int,1> atomic_nums, in array<double, 1> coords, in array<double,1> pcharge coords,
in array<double,1> pcharge vals);
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/** This should be called when the object is no longer needed.
No other members may be called after finalize. */
int finalize();

}
package MM {

interface Modellnterface extends Chemistry. ModelInterface{};
interface ModelFactoryInterface extends gov.cca.Port {

/** Returns a newly created MM Model.

@return The new Model instance.
*/

Chemistry. MM.ModelInterface get_model();
1
15

package QMMM {
interface ModelInterface extends Chemistry.Modellnterface {
/** Sets a refernce of an instance of a MM Model
for combined QMMM calculation.
@param mm_model MM Model instance
*/
void set_mm_model(in Chemistry MM.ModelInterface mm_model);

/** Gets a refernce of an instance of a MM Model
for combined QMMM calculation.
@return The refemce of a QM Model instance
*/

Chemistry.MM.ModelInterface get mm_model();

/** Sets a refernce of an instance of a QC(a.k.a QM) Model
for combined QMMM calculation.

@param qm_model QM Model instance
*/

void set_gm_model(in Chemistry.QC.ModelInterface gm_model);
/%% Gets a refernce of an instance of a QM {a.ka. QC Model
for combined QMMM calculation. '
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@return The reference of a QM Model instance
*/

Chemistry.QC.ModelInterface get qm_model();
I8

interface ModelFactoryInterface extends gov.cca.Port {
/** Returns a newly created QMMM Model.
@return The new Model instance.
*/

Chemistry. QMMM.ModelInterface get _model();
3
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/*
Database acts as a storage model for geometry, point charge coordinates, energies,

ete,
*/

package Database version 0.1

{

/*
The Model interface provides the storage space for geometry coordinates,
point charges and energies

*/

interface ModelInterface

{

/* Connect to the database
@param mode : can take values like read or write
@return handle to control the database

*/

int connect(in string mode);

/'*
Disconnect from the database
@param handle database handle created by connect method
@return returns a flag value about the status of the termination
*/
int disconnect(in int handle);
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f*
insert cartesian coordinates in the database
(@param coords cartesian coordinates
*/
int insertCoords(in array<double, 1> coords);
/*
insert atomic numbers in the database

@param atomic_nums atomic numbers
*/

int insertAtomicNums(in array<int,1> atomic_nums);
/*

insert point charges in the database

(@param pcharges pcharges
*/

int insertPCharges(in array<double, 1> pcharges);

/*
insert cartesian coordinates for point charges in the database
@param coords cartesian coordinates for point charges
*/
int insertPChargeCoords(in array<double,1> pcharge coords);
/*
insert units of the coordinates in the database
@param units units of the coordinates
*/
int insertUnits(in string units);
/*
insert energy of a particular region
@param region region which can be either QM, MM or QMMM
@param energy energy value of the specified region
*/
int insertEnergy(in string region, in double energy);
/*
return the carteisan coordinates stored in the database
@return cartesian coordinates
*/
array<double, 1> retrieveCoords(};
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APPENDIX C. PROTIEN DATA BANK (PDB) FILE FORMAT

The prepare module in NWChem analyses the coordinates specified in PDB
formatted file. The typical extension for a PDB file is .pdb. The PDB format is generally
used for proteins but it can be used for other molecules as well. PDB file contains
information about the molecules in the form of 3D structures.

The PDB file can be viewed as collection of records. All the records must appear in a
defined order. Mandatory records are present in all the entries. HEADER, TITLE, REMARK
and CRYST] are some of the mandatory records present in a PDB file. There is another
record type called ATOM, which is critical in QM/MM calculation. The ATOM records
present the atomic coordinates in angstroms. They also present the occupancy and
temperature factor for each atom. The record format is

ATOM I N ALA 1 0.046 0.148 -5.010 000 N
where first column is the record name or type (in this case ATOM), second column denotes
the atom serial number, third column denotes the atom, fourth denotes the structure, fifth is
the alternate location indicator. Columns sixth, seventh and eight define X, Y and Z
orthogonal ceordinates respectively in angstroms. The last two columns specify the charge
on the atom and the atom name.

An example of PDB file of tripeptide alanine-serine-alanine is shown in Figure 14,
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Figure 14. Sample PDB file for tripeptide alanine-serine-alanine

The national PDB format is extremely complex and contains much more information.

I have extracted the information from the point of view of a QM/MM calculation.
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