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Preface 

The California Energy Commission’s Public Interest Energy Research (PIER) Program supports 

public interest energy research and development that will help improve the quality of life in 

California by bringing environmentally safe, affordable, and reliable energy services and 

products to the marketplace. 

The PIER Program conducts public interest research, development, and demonstration (RD&D) 

projects to benefit California. 

The PIER Program strives to conduct the most promising public interest energy research by 

partnering with RD&D entities, including individuals, businesses, utilities, and public or 

private research institutions. 

• PIER funding efforts are focused on the following RD&D program areas: 

• Buildings End Use Energy Efficiency 

• Energy Innovations Small Grants 

• Energy Related Environmental Research 

• Energy Systems Integration 

• Environmentally Preferred Advanced Generation 

• Industrial/Agricultural/Water End Use Energy Efficiency 

• Renewable Energy Technologies 

• Transportation 

Observation of CH4 and other Non-CO2 Green House Gas Emissions from California is the final report 

for the Natural Gas Observations from California project contract number 500-06-006 conducted 

by the Lawrence Berkeley National Laboratory. The information from this project contributes to 

PIER’s Energy Related Environmental Research Program. 

For more information about the PIER Program, please visit the Energy Commission’s website at 

www.energy.ca.gov/research/ or contact the Energy Commission at 916-654-4878. 

http://www.energy.ca.gov/research/
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Abstract 

In 2006, California passed the landmark assembly bill AB-32 to reduce California’s emissions of 

greenhouse gases (GHGs) that contribute to global climate change. AB-32 commits California to 

reduce total GHG emissions to 1990 levels by 2020, a reduction of 25 percent from current 

levels. To verify that GHG emission reductions are actually taking place, it will be necessary to 

measure emissions. We describe atmospheric inverse model estimates of GHG emissions 

obtained from the California Greenhouse Gas Emissions Measurement (CALGEM) project. In 

collaboration with NOAA, we are measuring the dominant long-lived GHGs at two tall-towers 

in central California. Here, we present estimates of CH4 emissions obtained by statistical 

comparison of measured and predicted atmospheric mixing ratios. The predicted mixing ratios 

are calculated using spatially resolved a priori CH4 emissions and surface footprints, that 

provide a proportional relationship between the surface emissions and the mixing ratio signal at 

tower locations.  The footprints are computed using the Weather Research and Forecast (WRF) 

coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model.  Integral to the 

inverse estimates, we perform a quantitative analysis of errors in atmospheric transport and 

other factors to provide quantitative uncertainties in estimated emissions. Regressions of 

modeled and measured mixing ratios suggest that total CH4 emissions are within 25% of the 

inventory estimates. A Bayesian source sector analysis obtains posterior scaling factors for CH4 

emissions, indicating that emissions from several of the sources (e.g., landfills, natural gas use, 

petroleum production, crops, and wetlands) are roughly consistent with inventory estimates, 

but livestock emissions are significantly higher than the inventory.  A Bayesian “region” 

analysis is used to identify spatial variations in CH4 emissions from 13 sub-regions within 

California. Although, only regions near the tower are significantly constrained by the tower 

measurements, CH4 emissions from the south Central Valley appear to be underestimated in a 

manner consistent with the under-prediction of livestock emissions. Finally, we describe a 

pseudo-experiment using predicted CH4 signals to explore the uncertainty reductions that 

might be obtained if additional measurements were made by a future network of tall-tower 

stations spread over California. These results show that it should be possible to provide high-

accuracy estimates of surface CH4 emissions for multiple regions as a means to verify future 

emissions reductions. 

 

 Keywords: non-CO2, methane, nitrous oxide, greenhouse gas, emissions, atmospheric, 

transport, footprint, inverse model, Bayesian 
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Executive Summary  

Introduction 
Atmospheric methane plays an essential role in Earth’s climate. CH4 currently accounts for 

about ½ of the change in non-CO2 radiative GHG forcing from pre-industrial times to the 

present (Hofman et al., 2006).  Consequently, reduction in anthropogenic emissions of CH4 and 

other non-CO2 GHGs may be an important component of an initial strategy for avoiding the 

most severe impacts of global warming (Hansen et al., 1998; Hansen, 2004; Shindell et al., 2005). 

In California, CH4 contributes approximately 6 % of total CO2 equivalent GHG emissions 

(CARB, 2007). Now that California has passed Assembly Bill 32, careful accounting of current 

CH4 emissions and of their future reductions is essential. Current inventory and model-based 

estimates of CH4 emissions are uncertain because many of the factors controlling emissions are 

poorly quantified. Atmospheric measurements and inverse modeling may provide an 

independent method to quantify local to regional CH4 emissions from California. 

Purpose 
The purpose of the following research is to provide California with the information necessary to 

plan a network for quantitative estimation of regional emissions of non-CO2 GHGs. 

Project Goals and Objectives 
The goals of this project are to 1) design and implement a baseline program to monitor 

atmospheric concentrations of CH4 and other GHGs in California, and (2) develop the basic 

information needed for the future deployment of more advanced and complete monitoring 

system. To accomplish these goals, the authors conducted research with the following 

objectives: 

• Identification of observing stations for atmospheric concentration measurements of non-

CO2 GHGs in California.  

• Implementation of trace gas concentration measurements at a subset of the identified 

tower stations, and quality control of the measured data.  

• Preliminary analysis to determine the desirability deploying a more spatially complete 

monitoring system.  

 Key Results of the project are that: 

• Estimated CH4 emissions from inventories exhibit high spatial variability due to the 

patchy distribution of urban and rural sources. 

• Atmospheric CH4 mixing ratio signals are predicted to be readily measurable with 

standard instrumentation at many locations in California. 

• Measurements of CH4, N2O, and other GHG gases, initiated at two tower sites Central 

California, regularly exceed values expected for marine background air, demonstrating 

that emissions from within California are measurable. 



 2  

• Atmospheric inverse model estimates of CH4 surface fluxes suggest that CH4 emissions 

from livestock in the Central Valley may be higher than the a priori emission inventory, 

but consistent with results of recent research on livestock CH4 emissions. 

• A pseudo-data modeling experiment shows that while the two initial towers are able to 

quantify CH4 emissions from a portion of Central California, additional measurement 

sites in other regions of California are required to accurately quantify California’s total 

CH4 emissions. 

Project Recommendations 
The recommendations resulting from the research conducted in this project are to: 

Estimate and reduce errors in the transport model used to estimate GHG emissions from tower 

observations.  This work should include model-measurement comparisons of wind velocities 

and mixed layer heights using data from profilers and other trace gases (e.g., 222Rn). 

Develop and maintain the capability for the long-term GHG measurements necessary to detect 

variations and the trends in spatial patterns, seasonal and inter-annual cycles of GHG mixing 

ratios, and underlying emissions. 

Evaluate the potential value of more intensive N2O and initial halocarbon measurements at 

tower sites in California to quantify regional emissions of these species using both 222Rn mixing 

model and atmospheric inverse model methods. 

Investigate whether some combination of stable and radiocarbon isotopic measurements of CH4 

would provide effective separation of the multiple sources of CH4 emitted from California.  

Initiate GHG measurements at additional strategic locations in California to establish a 

statewide GHG measurement network as well as beginning work to synthesize GHG 

measurements from aircraft and satellite platforms. 

Anticipated Benefits for California 
This work benefits California utility ratepayers by identifying the non-CO2 GHG emissions 

from California that contribute to global warming. These results set the stage for verifying 

progress on controlling GHG emissions. This project addresses state and national needs for 

reliable quantification of terrestrial sources and sinks of carbon cycle gases. Ultimately, 

California ratepayers will benefit from more-informed greenhouse gas policies developed by 

California decision makers.  

1.0 Introduction 

1.1. Background and Overview 
1.1.1. CH4 and other non-CO2 Greenhouse Gases 
Changes in atmospheric methane play an essential role in Earth’s climate. CH4 is now 

associated with a direct radiative forcing of ~ 0.48   (IPCC, 2007) and an indirect radiative 

forcing of ~0.13   (Lelieveld et al. 1998), which accounts for about ½ of the non-CO2 radiative 
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forcing (0.98 W m-2 in 2004) (Hofman et al., 2006) and about ¼ of the total radiative forcing 

(2.64 W m-2 from IPCC 2007) from all greenhouse gases (GHGs) in term of changes from pre-

industrial times to the present.  It has been argued that reducing anthropogenic emissions of 

methane may be an important component of an initial strategy for avoiding the most severe 

impacts of global warming (Hansen et al., 1998; Hansen, 2004; Shindell et al., 2005). In 

particular, reduction of anthropogenic methane emissions may be possible (e.g., improving CH4 

recovery from landfills and waste treatment, reducing industrial emissions, and improving 

agricultural practices) (Harriss, 1994). In view of methane’s role in the climate system, increased 

attention has been brought recently to assessing CH4 sources (Houweling et al., 2006, Gimson 

and Uliasz 2003, Miller et al. 2007, Kort et al. 2008) 

In California, total 2004 GHG emissions were approximately 480 MMT CO2 equivalent, with 

CH4 contributing approximately 6 % (CARB, 2007).  Now that California has passed Assembly 

Bill 32, which requires that greenhouse gases emissions be reduced to 1990 levels by 2020, 

careful accounting of current CH4 emissions and of their future reductions is essential. 

Unfortunately, current inventory and model-based estimates of CH4 emissions are uncertain 

because many of the factors controlling emissions are poorly quantified. Atmospheric 

measurements and inverse modeling may provide an independent method to quantify local to 

regional CH4 emissions from California. 

1.1.2. Atmospheric Inverse Methods 
Atmospheric inverse methods to estimate the surface CH4 fluxes from in-situ and remotely 

sensed CH4 mixing ratio measurements and modeled wind fields have been widely applied at 

both global and regional scales (Hein et al., 1997; Houweling et al., 1999; Vermeulen et al., 1999; 

Bergamaschi et al., 2000; Dentener et al., 2003; Gimson and Uliasz, 2003; Manning et al., 2003; 

Mikaloff Fletcher et al., 2004a, b; Bergamaschi et al., 2005; Chen and Prinn, 2006, Bergamaschi et 

al., 2007; Kort et al., 2008). In general, the components of atmospheric inverse emission 

estimates are CH4 mixing ratio measurements, an atmospheric transport model (including 

chemistry for global simulations), in some cases a priori estimates for CH4 emissions and sinks 

or their correlation structure, and a statistical technique to minimize differences between 

measured and predicted CH4 mixing ratios. To estimate CH4 emissions and their associated 

uncertainties, errors from each of these components should be accounted for and formally 

propagated through the inversion process.  In this study, the authors employ an approach 

originally developed to estimate regional CO2 emissions (Gerbig et al., 2003 a,b) that combines 

calculation of surface footprints (Lin et al., 2004) with procedures to estimate transport model 

uncertainty (Lin et al., 2005; Lin and Gerbig, 2005) using the Stochastic Time-Inverted 

Lagrangian Transport (STILT) model. Of particular relevance to our work, Kort et al. (2008) 

recently used observations of CH4 and N2O from an airborne platform in combination with 

STILT to infer CH4 and N2O emissions from the continental interior of North America in May-

June 2003. Our study also uses STILT, but applies it to a smaller model domain at finer spatial 

and temporal resolutions, taking advantage of unique computational benefits offered by the 

Lagrangian approach.  
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1.1.3. Project Goal and Objectives 
The goals of this project are to (1) design and implement a baseline program to monitor 

atmospheric concentrations of CH4 and other GHGs in California, and (2) develop the basic 

information needed for the future deployment of more advanced and complete monitoring 

system. To accomplish the project goals, the authors conducted a project with the following 

objectives: 

Identify observing stations for atmospheric concentration measurements of non-CO2 GHGs in 

California. 

Implement trace gas concentration measurements at a subset of the identified tower stations 

and perform quality control and data archiving for measured data. 

Perform a preliminary analysis with the data to determine the desirability of the deployment of 

a more sophisticated and spatially complete monitoring system. 

1.1.4. Report Organization 
This report is broken into the following three sections.  Section 2 describes the project 

approaches taken to identifying measurement stations (Section 2.1), measurement of CH4 and 

other GHGs (Section 2.2); preliminary estimates of CH4 emissions from Central California 

(Section 2.3); and design of an enhanced monitoring network to estimate total CH4 emissions 

from California (Section 2.4).  Section 3 then describes the results, of the each of the efforts 

described in section 2 above. Finally, section 4 presents conclusions and recommendations for 

further research. 

2.0 Approach 

2.1. Identification of Measurement Stations 
2.1.1. Inventory Estimates of CH4, N2O and 222Rn Emissions 
The authors used two methods to estimate CH4 emissions.  As a base-case, they used the North 

American maps of total anthropogenic CH4 from the EDGAR 3.2 model with 1 x 1 degree 

spatial resolution (Olivier et al. 2005). To provide finer spatial resolution inside California, they 

also estimated California CH4 emissions separately for six sources sectors: landfills (LF), 

livestock (LS), natural gas production and use (NG), petroleum refining (PL), crop agriculture 

(CP), and wetlands (WL). CH4 emissions from landfills were estimated by the California Air 

Resources board using IPCC methods (IPCC, 2006) driven by landfill specific waste application 

statistics from the CA Waste Management Board (e.g., Carr, 2004) and site-specific estimates of 

CH4 recovery.  CH4 from livestock was estimated using USDA county level animal stocking 

densities (Census 2002) and animal specific emission factors for dairy and beef cattle separately 

(Franco, 2002). CH4 from natural gas production and use and from petroleum refining activities 

were estimated as the difference of total minus reactive hydrocarbon emissions estimated from 

the CARB emission criteria pollutant emission inventory for those source sectors 

(http://www.arb.ca.gov/app/emsinv/fcemssumcat2006.php). CH4 emissions from crop 

agriculture were assumed to follow emissions from the DNDC model for an average climate 

year with high irrigation as described by Salas et al. (2006).  CH4 emissions from wetlands in 
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California were assumed to follow the NASA-CASA estimates from Potter et al. (2006).  

Although some of these sources are expected to vary on a seasonal basis, they do not 

incorporate temporal variation in current study, which may cause the a priori emissions to be 

slightly overestimated or underestimated.   

For nitrous oxide (N2O), soil fluxes from crop agriculture were assumed to follow emissions 

from the DNDC model for an average climate year with high irrigation as described by Salas et 

al. (2006). Other sources were not considered in this preliminary estimate, though total N2O 

emissions from internal combustion engines are estimated to be about 2/3 those from 

agriculture in California (Bemis, 2006), but presumably with a spatial distribution heavily 

weighted to urban regions with high motor vehicle use. 

Radon (222Rn), soil fluxes were estimated using a model generously provided by Segvary 

(private communication). The model, which used a constant linear proportionality between soil 

radon flux and surface gamma ray activity, was calibrated using soil radon flux measurements 

at three sites in northern Europe (Szegvary et al., 2007). Maps of soil radon flux for California 

were generated using the same coefficient applied to surface 238U concentrations estimated from 

aircraft gamma ray surveys (Duval et al., 1989). Given than the estimated radon fluxes are 

significantly lower than the value of 1 atom cm-2 s-1 commonly assumed in previous work (e.g., 

Biraud et al., 2000), there remains some question as to whether this scaling is appropriate and 

suggests that some measurements of soil radon flux should be performed. 

2.1.2. Predicted maps of time varying CH4, and 222Rn mixing ratios 
The authors used a previously developed, tested, and applied coupled atmosphere and land-

surface model to estimate atmospheric CH4, CO2, and N2O concentrations. This modeling 

framework couples MM5, LSM1, and emission fields so that interactions between the land-

surface and atmosphere are fully interactive. MM5 (Grell et al., 1995) is a nonhydrostatic, 

terrain-following sigma-coordinate mesoscale meteorological model used in weather 

forecasting and in studies of atmospheric dynamics, surface and atmosphere coupling, and 

pollutant dispersion. The model has been applied in many studies in a variety of terrains, 

including areas of complex topography and heterogeneous land-cover (for a partial list: 

http://www.mmm.ucar.edu/mm5/Publications/mm5-papers.html). The following physics 

packages were used for the simulations shown here: Grell convection scheme, simple ice 

microphysics, MRF planetary boundary layer (PBL) scheme, and the CCM2 radiation package. 

The MRF PBL scheme (Hong and Pan, 1996) is a high-resolution PBL transport model that 

includes both local and non-local vertical transport. The inert tracer model follows the current 

MM5 transport calculations for water vapor. They tested the numerical solution of the tracer 

transport predictions and successfully compared predicted and measured CO2 mixing ratios at 

the Trinidad Head station (located on the northern California coast) (Riley et al., 2005), against 

data from the FIFE campaign (Cooley et al.), and against 14C measurements in California (Riley 

et al. 2008). 

LSM1 (Bonan, 1996) is a “big-leaf” (e.g., Dickinson et al. (1986), Sellers et al. (1996)) land-surface 

model that simulates CO2, H2O, and energy fluxes between ecosystems and the atmosphere. 

Modules are included that simulate aboveground fluxes of radiation, momentum, sensible heat, 
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and latent heat; belowground energy and water fluxes, and coupled CO2 and H2O exchange 

between soil, plants, and the atmosphere. Twenty-eight land surface types, comprising varying 

fractional covers of thirteen plant types, are simulated in the model. Soil hydraulic 

characteristics are determined from soil texture. LSM1 has been tested in a range of ecosystems 

at the site level (e.g., Bonan et al., 1997; Bonan et al., 1995; and Riley et al., 2003). Cooley et al. 

(2005) described the integration of LSM1 with MM5 and demonstrated that the model 

accurately predicted surface latent, sensible, and ground heat fluxes; near-surface air 

temperatures; and soil moisture and temperature by comparing model simulations with data 

collected during the FIFE campaign (Betts and Ball, 1998).  

The authors used the standard initialization procedure for MM5v3.5, which applies first-guess 

and boundary condition fields interpolated from the NOAA National Center for Environmental 

Prediction (NCEP) reanalysis data (Kalnay et al., 1996; Kistler et al., 2001) to the outer 

computational grid. The model was run with a single domain with horizontal resolution of 36 

km and 18 vertical sigma layers between the surface and 5000 Pa; the time step used was 108 s, 

and output was generated every two hours. A second, high-resolution nest centered on the 

Walnut Grove Tower was also run at 6 km horizontal resolution and 33 vertical sigma layers. 

They simulated four months that spanned the annual cycle between October 2007 and July 2008.  

2.1.3. Candidate Measurement Stations 
Candidate measurement stations were identified from the combination of inspection of the 

predicted CH4 mixing ratio maps and consideration of available communications towers 

included in the US Federal Communication Commission listings (FCC). After identifying a 

larger set of towers, the authors contacted individual tower operators and found two towers for 

initial GHG measurements (see below).  A larger list containing the two initial measurement 

sites and five additional towers was also constructed to investigate the potential for a more 

complete measurement network. 

2.2. Measurement of CH 4 and other gases 
2.2.1. Measurements 

Mixing Ratio Measurements at Towers 

The authors initiated GHG measurements at a tower near Walnut Grove, CA (121.491 °W, 

38.265 °N, henceforth WGC), and a tower on Mount Sutro (122.4517 °W, 37.7553 °N) above San 

Francisco beginning in September 2007. Flask samples were collected at both WGC (at 91m) and 

STR (at 232m) twice daily (1000 and 2200 GMT), shipped to NOAA-ESRL, and analyzed for 

CO2, CH4, N2O and supporting tracer species (CO, SF6, H2). 

At Walnut Grove (WGC), continuous measurements include CO2, CH4, and CO at 30, 91 and 

483 m above ground level (site is at sea level), and 222Rn at 91 m. The in-situ measurements of 

CH4, CO2, and CO, were made using a sampling and analysis system combining pumps, air 

driers, and three gas analyzers. Briefly, air samples are drawn continuously from the different 

heights on the tower, are partially dried by a condensing system that lowers water vapor to a 5 

°C dew point, are sequentially applied on a 5 minute interval to a temperature stabilized 

membrane drier (Purmapure Inc.) which dries air to a -33 °C dew point, and then are supplied 
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to the gas analyzers.  The first 4.5 minutes of each measurement interval are used to allow 

equilibration of the gas concentrations and instrument response, while the last 30 seconds is 

used as the measurement interval.  In particular, CH4 is measured using a cavity ring-down 

spectrometer (Picarro EnviroSense 3000i) with an accuracy and precision of approximately 0.3 

ppbv.  

To quantify and correct instrument drifts in the in-situ measurements, the offset is measured 

and corrected every ½ hour using a reference gas, while the gain (and linearity) is checked and 

corrected every 12 hours using 4 NOAA gas primary standards. To provide additional quality 

assurance, the in-situ CH4 measurements were compared CH4 measurements obtained from 

twice-daily flask samples collected from a separate dedicated sample line at the same height on 

the tower as the in-situ measurement.  This redundancy allows the detection of even small 

sampling errors.   

Measurements of 222Rn mixing ratios in ambient air were made using a dual-filter continuous 
222Rn analyzer (Zahorowski et al., 2004), sampling air from an inlet at 91m on the WGC tower.  

The 222Rn instrument was calibrated monthly using a calibration standard with a known 

activity.  The calibration coefficient was constant to within 8% RMS over the 12 calibration 

events collected over the year-long data set. 222Rn concentrations (Bq m-3) were also converted to 

mixing ratios (atoms mol-1 air) using pressure, temperature, and relative humidity measured 

inside the radon detector. 

Soil Radon Flux Measurements 

Soil radon fluxes to the atmosphere were made using an automated soil gas flux chamber 

designed for soil CO2 fluxes (Licor LI-8100) combined with a portable alpha spectrometer to 

(Durridge Company, Rad-7). In this closed-loop measurement, air was circulated from the soil 

into the LI-8100, through a desiccant tube (Dririte) to remove water, and then through the Rad-7 

before returning to the soil chamber. The 222Rn flux, FRn, was determined from the time rate of 

change of Rn concentration, dRn/dt as FRn = V/A dRn/dt, where A is the surface area of the soil 

chamber, and V is the volume of the measurement system.  The calibration of the system 

volume was verified to within 10% using a source (Pylon Inc.) with known 222Rn emission. The 

automated measurements of dRn/dt each lasted 2 hours and were repeated every 6 hours over 

periods of about 10 days.   

 

Meteorological Measurements 

To quantify uncertainties in modeled atmospheric transport, hourly boundary layer heights and 

vertical profiles of winds were obtained from a radar wind profiler (RWP) operated by the 

Sacramento Metropolitan Air Quality Management District. The profiler is located (38.3025°N, 

121.4214°W) within 8 km of the tower used for the CH4 measurements, which given the level 

terrain of the delta region, is sufficiently close to provide an accurate assessment of winds and 

PBL heights at the tower.  The RWP wind data have a vertical resolution of about 100 m at 

heights from ~120 m up to ~3500 m agl.  Boundary layer heights were estimated from sub-

hourly RWP vertical velocity and returned signal strength (signal-to-noise ratio) data using 
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objective algorithms and qualitative analysis following techniques found in Wyngaard and 

LeMone (1980), Bianco and Wilczak (2002), and Bianco et al. (2008).  The RWP can detect 

boundary layer heights from about 120 m to 4,000 m with an estimated accuracy of ± 200 m 

(Dye et al., 1995).  For the work presented in this paper, the boundary layer heights were either 

the top of the marine boundary layer or convective boundary layer during the day and the 

marine boundary layer at night.  Shallow nocturnal boundary layers were rarely observed due 

to a persistent onshore marine flow that occurs in the summertime in the central Sacramento 

Valley.  The RWP wind and boundary layer height data were quality controlled prior to 

comparison with the model predictions. 

2.3. Preliminary Estimation of Regional CH 4 and N2O Emissions 
The goal of this task is to perform a proof-of-concept estimation of regional CH4 emissions and 

other GHG gases using initial GHG and 222Rn measurements, and the inverse and mixing 

model approaches described above. The inverse and mixed model approaches are techniques 

designed to estimate the geographical location from which the air mass being measure at a 

given time originates. 

Estimate CH4 emissions derived from initial measurements  

• Investigate the reduction in uncertainty of CH4 sources that can be obtained using data 

from additional measurement stations and/or 222Rn measurements. -CZ  - you need to do 

some runs combining data and simulations from both WGC and STR for Oct-Dec2007.  (Not 

here, this part is approach part, the simulations or estimates should be put in the results 

part) 

• Investigate the use of 14CH4 as a tracer of natural gas and other fossil fuel CH4 emissions-

WJR-can they use the output from the tracer runs to inform this?  

2.3.1. Radon Mixing Model Emission Estimates 
Following previous work, the authors estimate CH4 and N2O emissions using the radon mixing 

model approach (Levin et al., 1999, Biraud et al., 2000).  Here, the surface flux of an unknown 

species, Fx, is assumed to be spatially similar to the surface flux of 222Rn and undergo the same 

atmospheric transport to the measurement site.  Under these assumptions, the variations in 

mixing ratios are expected to be linearly related such that the flux can be determined as Fx = 

FRn dX/dRn, where X is CH4 or N2O mixing ratio respectively. In the following work, the 

authors compare the measured mixing ratios of CH4 and N2O to the measurements of Rn to 

determine best estimates for the footprint averaged surface fluxes of CH4 and N2O.  

2.3.2. Lagrangian Model Prediction of GHG Mixing Ratios 

Calculation of Footprints and Mixing Ratio Signals 

Lagrangian particle transport was calculated using the STILT model, run in the time-reversed 

(receptor-oriented) mode. STILT is a Lagrangian Particle Dispersion Model (LPDM) that has 

been specifically developed and applied to regional simulations and inverse flux estimates for 

CO2, other greenhouse gases, and CO. Its detailed description is provided elsewhere (Lin et al., 

2003, 2004a; Gerbig et al., 2003a; Matross et al., 2006; Kort et al., 2008; Miller et al., 2008) and, 
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consequently, only the most pertinent features will be summarized here. As in all LPDMs, 

transport in STILT includes both advective and turbulent components, with turbulence being 

responsible for the dispersion of particles. In this application, given input meteorological data, 

the STILT model transports ensembles of 100 particles (air parcels) backwards in time 5 days for 

a receptor point (WGC site here). The authors calculate the response of the target gas 

concentration at the receptor point to surface sources (“footprint”), in units of ppb/(nmol m-2 s-

1). The footprint, which represents the adjoint of the transport field, is calculated by counting the 

number of particles in a surface-influenced region (defined as ½ of the estimated PBL height in 

the STILT model, for example see Gerbig et al., 2003a; Kort et al., 2008) and the time spent in the 

region (for details, see Lin et al., 2003). When multiplied by the a priori field of surface flux, the 

footprint gives the associated contribution to the mixing ratio measured at the receptor, hence 

the footprints can be used to estimate parameters of the source functions and their respective 

uncertainties. 

The authors use a customized version of the Weather Research and Forecast (WRF) model 

(Skamarock et al. 2005) to drive STILT. This combined model will henceforth be referred to as 

WRF-STILT. Specifically, the WRF model version 2.2 has been modified to output time-

averaged (hourly in this study) values of the mass-coupled velocities, which significantly 

improve mass conservation in STILT (compared with the instantaneous advective velocities), as 

well as convective mass fluxes that are used directly in the STILT calculations. The main 

physical options are set as following: (a) Radiation: RRTM scheme (Mlawer et al., 1997) for the 

longwave and Goddard scheme (Chow and Suarez, 1994) for the shortwave; (b) Planetary 

Boundary Layer: Yonsei University (YSU) scheme coupled with the NOAH land surface model 

and the MM5 similarity theory based surface layer scheme. (c) Microphysics: Purdue Lin 

scheme (Lin et al., 1983; Chen and Sun, 2002) (d) Convection: Grell-Devenyi ensemble mass flux 

scheme (Grell and Devenyi, 2002).  The initial and boundary meteorology conditions for WRF 

are provided by the North American Regional Reanalysis (NARR, Mesinger et al., 2006). A one-

way nesting WRF running with 3 nest levels is used for the meteorology simulations around the 

WGC tower location, which is shown in Figure 1 (Domain 1: -149.16° < lon< –102.21°, 17.82° < lat 

< 50.53° on a 40 km grid; Domain 2: -123.53° < lon < -120.66°, 36.76° < lat < 38.94° on a 8 km grid; 

Domain 3: -121.71° < lon < -121.23°, 38.09° < lat < 38.45° on a 1.6 km grid). The vertical resolution 

is taken from the input meteorology from NARR with 30 layers. Each day was simulated 

separately using 30-hour run (including 6 hours from the previous day for spin-up) with hourly 

output. Growth in transport model errors were minimized by nudging the forecast fields to the 

gridded NARR analysis fields every 3 hours.  
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Figure 1. Map grids showing the three model domains  used in the meteorological 
predictions, and WGC tower location “X” (-121.49, 38 .26) of the measurements. 
 

Particle trajectories were calculated using STILT driven by the WRF winds.  One hundred 

particles are released every 3 hours (from UTC hour 00) at the tower locations and transported 

backward in time 5 days to insure a majority of the particles reach positions representative of 

the marine boundary layer.  Footprints are then calculated from the particle trajectories as in Lin 

et al. (2004). 

 

Predicted local CH4 signals ),( rrl tXC  (index ‘l’ denote local and ‘r’ denote receptor) from land 

surface emissions are calculated using the product of the footprint maps and the a priori 

emission maps, as  
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),,(),,,(),(
,,

mjimjirr
mji

rrl tyxFtyxtXftXC ⋅= ∑  (1) 

where rX  and rt  are receptor (tower) location and time, f (X r,tr X,tm )  is the footprint and 

),,( mji tyxF  is the surface emission map at location ),( ji yx  and time mt .  The total CH4 

mixing ratio at the receptor can be expressed as 

),(),(),( rrBGrrlrr tXCtXCtXC +=  (2) 

where ),( rrBG tXC  is the upstream CH4 background condition.  

In order to compare the simulated local CH4 mixing ratios to the tower measurements, the 

upstream CH4 background mixing ratios should be subtracted from the total measurements. For 

this study, the authors calculated the upstream CH4 mixing ratio using the final latitude of each 

particle as a lookup into the longitudinal average marine boundary layer CH4 mixing ratios for 

October-December, 2007 (NOAA Globalview CH4). The authors note, on average, persistent 

longitudinal gradients in CH4 at background sites up to ~10 ppb. Particularly, annual means at 

sites of SHM and CBA in the Pacific are typically about 10 ppb greater that site of MHT in the 

Atlantic. Therefore, our adoption of background CH4 mixing ratios might be somewhat 

underestimated, which causes the ‘measured’ local contributed CH4 mixing ratios a little higher 

than true values. For measurements at WGC site, the authors also use the daily minimum CH4 

mixing ratio measured at 483 m to evaluate the the error in CH4 background. The reason that 

the daily minimum CH4 mixing ratio at 483m often reflects that of background air is because the 

483m sample height decouples from the surface at night (when 91 m < Zi < 483 m). 

Analysis of Transport Model Errors 

As a first approximation to evaluate the transport errors in the WRF-STILT predictions of 

surface influence footprints, the authors compared the modeled estimates of WRF winds and 

WRF-STILT boundary layer heights (Zi) with corresponding profiler measurements of wind 

velocity and Zi. at Sacramento site. 

Errors in modeled winds are estimated by comparing WRF predictions with profiler or tower 

measurements of the u and v wind components. First, the authors compare the winds of u and v 

between measurements and WRF-STILT simulations, and figure out their residual errors uσ  

and  vσ  (RMS). Then, for simplicity, the authors assumed errors in u and v are independent, 

and hence that the RMS horizontal wind error can be calculated as 22
vuV σσσ += . 

The evaluation of errors in boundary layer height was performed when profiler measurements 

of Zi were available. The authors used a best fitting geometric regression method to find the 

linear relationship between WRF-STILT and radar profiler PBL heights. Considering the 

relatively bigger uncertainties in Zi for both WRF-STILT and radar profiler at night period, only 

the linear relationship determined by well-mixed daytime reliable PBLs (e.g. WRF-STILT Zi 

bigger than the minimum of 215 m) are used to correct the PBLs in WRF-STILT. After the 

correction of WRF-STILT PBL, the authors re-compared the PBLs between WRF-STILT and 

radar profiler to figure out the RMS residual error. The scaled Zi and new RMS residual error 
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will be used to estimate the footprints and the transport error due to PBL uncertainties in the 

following work.   

2.3.3. Linear Regression Analysis of Predicted and Measured CH4 Signals 
As a first order comparison of measured and predicted CH4 signals, the authors plot total 

predicted signal versus background-subtracted measured CH4 and compute a best-fit linear 

model.  In this case, the authors use a Chi-squared (fitexy, Press et al. 1992) mean linear 

regression model, which assumed the same relative errors in x and y components.  While this 

does not provide information on individual source sectors or spatial regions, a comparison of 

total signals provides and shows the degree to which the combination of the prior emission 

inventories and transport model captures the measured signal.  

2.3.4. Bayesian Inverse Estimates of CH4 Emissions 
A posteriori CH4 emissions were estimated by optimizing scaling factors for the a priori CH4 

emissions that provide the best fit between measured and predicted CH4 mixing ratios. This 

was done by scaling emissions from different sectors or sub-regions separately and incorporates 

individual estimates for the uncertainties in different a priori emissions. 

Combining Eq. (1) and (2), the difference between measured and predicted background CH4 

relates to the surface emission flux as 

FfCC BG =−  (3) 

where f  is footprints, F  is surface CH4 emission, C  and BGC  is CH4 mixing ratios from tower 

measurements and background calculations, respectively. Assuming mixing ratio 

measurements from local sources as BGCCy −= . Following Gerbig et al. (2003a), the authors 

introduce a model parameter or a state vector of scaling factors,λ , for the surface flux, )(λF . 

The inversion adjusts the model parameters λ  such that the modeled changes in CH4 

concentrations are optimally consistent (in standard least square sense) with the observed 

values.  In the study of surface CH4 emissions from different sources (“source analysis” 

hereafter), λ  represents the scaling factor for different sources; in the study of surface CH4 

emissions from different regions (“region analysis” hereafter), λ  represents the scaling factor 

for different areas. For both the “source analysis” and “region analysis” study, )(λF  is linearly 

dependent on λ : 

λφλ =)(F          (4) 

where φ   is the a priori emissions for different sources or regions in this study. 

 

Using the same method as Lin et al. (2004), the analytical solutions to Eqs (3) and (4) are 
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where φfK = , 
ε

S  is measurement error covariance matrix priorλ and λ̂  are the a priori and a 

posteriori vectors, and 
prior

S and  
λ

Ŝ are the a priori and a posteriori error matrices forλ . 

Corresponding to our initial estimate of 30% uncertainty in the CH4 emission maps, the initial 

value of 
prior

S  is 0.09. Note that the measurements and a priori emission error matrices are 

diagonal, equivalent to assuming that the prior errors are uncorrelated. . 

Measurement-Model Error Matrix 

In the Bayesian analysis, the authors put the errors in both measurements and model 

simulations together as an equivalent “measurement” error. The equivalent “measurement” 

error covariance matrix εS
 is formed as the sum of different components  

oceaneddyemisbkgdTransPBLTransWNDaggrpart
SSSSSSSSS +++++++=

ε
    (6) 

Here, as in Lin et al. (2004), the contribution of instrumentation error in the CH4 measurements 

is assumed to be random, uncorrelated, and negligible in magnitude relative to the other 

sources of error, and hence not considered further in the inverse model estimates. The authors 

consider each of the terms in Eq. (6) below. 

The particle number error ( partS ) is due to the finite number of released particles at the receptor 

location. It can be estimated by comparing the simulated signals from the STILT running with 

release of 1000 particles and those from the STILT running with release of 100 particles. The 

standard error between them will be used as the particle number error. For all of the following 

error analyses, the authors used 1000 particles in order to minimize the effect of particle number 

error. 

The “aggregation error” ( aggrS ) arises from aggregating heterogeneous fluxes within a grid cell 

into a single average flux (Kaminski et al., 2001). Gerbig et al. (2003b) demonstrated that a rough 

estimate of the aggregation error can be derived from the observed “representation error”, 

which is derived from the difference between a point observation and a value averaged over a 

specific grid size (Gerbig et al., 2003a).  Without multiple observation stations over a specific 

grid, the authors try to estimate the aggregation error based on the a priori CH4 emissions. 

Although the authors do not have high-resolution emission maps for all of the CH4 sources, the 

authors estimate aggregation error using landfill emissions, which are fully resolved. Here, the 

aggregation error is estimated by comparing the un-aggregated landfill signal from to the 

landfill signal estimated after averaging emissions over each county (the maximum aggregation 

used for the other sources).   

The transport error (
TransPBLTransWNDTrans

SSS += ) denotes the errors in modeling transport, 

which can be caused by the uncertainties in wind speeds and directions, and the uncertainties in 

PBL heights. Following Lin and Gerbig (2005), the transport error due to winds 
TransWND

S  is 

calculated as the RMS difference between signals predicted from simulations with and without 

input of an additional stochastic component of wind error Vσ  in STILT. 
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Uncertainty due to errors in modeled PBL heights 
TransPBL

S  is estimated by propagating the 

residual error Zi into the predicted CH4 signals. Here, the authors use the estimate of residual 

error in Zi determined from the comparison between predicted WRF-STILT PBL height and 

PBL height measured with the wind profiler. The sensitivity of CH4 signal to Zi is expressed as a 

first order perturbation in C as 

γ =
dC

dZi
            (7) 

where γ is estimated by calculating STILT footprints and then variations in C for small 

perturbations in Zi. The error due to error in Zi can then be estimated as 

StransPBL =
∆C

<C >
=
γ •∆Zi

<C >
          (8) 

where Zi∆ is the residual error in WRF-STILT Zi, and <C> is the mean total CH4 signal. Using 

Eqs. (7) and (8), the estimated transport error due to PBL uncertainties can be calculated. 

Assuming the transport errors due to winds and PBL height are independent, the total transport 

error is obtained by 
TransPBLTransWNDTrans

SSS += . 

The background error (
bkgd

S ) is due to the uncertainty in estimating the background 

contribution to the CH4 measurements at the tower location.  For this study, the authors 

estimate the upstream background CH4 mixing ratio using the final latitude of each particle as a 

lookup into the latitudinally averaged marine boundary layer (MBL) CH4 for October-

December, 2007 (NOAA Globalview CH4). Only time points (> 95% of the total) for which more 

than 80% of the particles reached longitudes 1.5 degrees from the coast were included in the 

study.  The authors expect that the NOAA MBL average will be a reasonable approximation for 

the CH4 background because it is heavily weighted to the Pacific and the typical CH4 gradients 

between Pacific and Atlantic are less than 10 ppb. For WGC site, the authors evaluate the error 

in CH4 background using the daily minimum CH4 mixing ratio measured at 483 m.  

 

emisS  indicates the emission error due to possible missing emission sources. The authors assume 

that there are no other emission sources and thus no emission error ( 0=emisS ) in this study. The 

eddy flux error ( eddyS ) specifies the fluctuations in column integrated CH4 due to contributions 

from turbulent eddies. Gerbig et al. (2003a) observed it is ~ 0.2 ppmv for CO2. For CH4 studied 

here, a value of 1% is assumed.  The error due to omitting ocean emissions (
ocean

S ) is assumed 

to be negligible.  To evaluate this assumption, the authors calculated the expected CH4 signal 

from the Coal Point field near Santa Barbara, the largest known coastal natural gas field near 

California (Mau et al., 2007), and found the signals to be less than 1 ppb.  

In order to combine the above errors from different sources, the authors need to know their 

correlations, which are unfortunately unknown. Assuming the errors from different sources are 
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independent, the above errors are combined in quadrature to yield a total expected model-

prediction mismatch error using Eq. (6). 

2.4. Design of an Enhanced Monitoring Network 
After completing the initial analysis of CH4 emissions, the authors considered the potential 

benefit of adding measurement sites to form a tower network, and the use of radiocarbon 

methane measurements for separating fossil and biogenic CH4 sources. 

2.4.1. Benefit of Additional Measurement Sites 
To evaluate the benefit of adding additional measurement stations, the authors conducted a 

synthetic data experiment to retrieve CA CH4 emissions using seven measurement stations 

distributed across California.  For each station, footprints and simulated tower CH4 mixing 

ratios are calculated as in section 2.3.2.  Synthetic “data” was generated by adding random noise 

(mean=0, std=10 ppb) to the simulated CH4 signals.  Different combinations of synthetic data 

from one or more of the seven stations are then used in joint inversions for regional emissions as 

in Section 2.3.4.  The reduction in uncertainty for the scaling factors for regional emissions is 

used to judge the effectiveness of adding additional measurement stations. 

2.4.2. Use of Radiocarbon Methane (14CH4) to Identify Fossil CH4 Emissions 
Atmospheric measurements of radiocarbon (14C) in CO2 have been used to estimate fossil fuel 

CO2 emissions (Turnbull et al., 2006; Levin et al., 1995; Hsueh et al., 2007; Riley et al., 2008). In 

the current study the authors tested an analogous approach using radiocarbon in atmospheric 

methane (14CH4). Because 14C has a relatively short half live (~5730 y) compared to the ancient 

plant material from which fossil fuels are derived, carbon in fossil fuels is effectively free of 14C 

(i.e., ∆14C =  -1000‰). Current atmospheric 14CH4 content is the result of previous atmospheric 

nuclear weapon testing, nuclear power sources, and terrestrial and aquatic exchanges (Lassey et 

al. 2007). To make a first estimate of the impact of fossil fuel CH4 emissions on atmospheric ∆14C 

of CH4, the authors used preliminary estimates of the 14C content of each CH4 source that the 

authors considered in California: anthropogenic natural gas and petroleum (-1000‰), landfills 

(100‰), livestock (100‰), wetlands (100 ‰), and boundary (60‰). The uncertainty in the 14C 

content of these sources is large; increasing confidence in the use of 14C in CH4 necessitates 

better characterization of these values.  

3.0 Results and Discussion 

3.1. Identification of Observing Stations 
3.1.1. Inventory Estimates of CH4, N2O and 222Rn Emissions 
Maps of the a priori CH4 emissions are shown in Fig. 2a-f for these six California-specific source 

sectors. For comparison, Fig. 2g shows total EDGAR 3.2 emissions for the Western US, while 

Fig. 2h shows the sum of the CA-specific CH4 emissions. Last, Fig. 2i shows a set of California 

sub-regions that roughly correspond to air basins that are nearby or distant from the 

measurement locations and will be used in following analysis. In the following work, the 

authors follow previous work on uncertainty analysis (USEPA, 2004; Farrel, 2005) and assign a 

30% uncertainty across the different sources as the a priori uncertainty on emissions estimates 
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used below. The authors consider the uncertainties in US total CH4 emissions only a rough 

estimate to the uncertainties for sub-regions of California (and over the time period of this 

study) because the 30% estimate was derived for more aggregated emissions over annual cycles 

and the entire continental US. 

Table 1 summarizes the CH4 emissions from different California-specific sources in the 13 sub-

regions.  CH4 emissions are scaled to equivalent CO2 forcing using a global warming potential 

of 25 (gCO2eq gCH4-1) (IPCC, 2007).  The total of the California-specific emissions is similar to 

total CH4 emissions (~ 31 MMT CO2eq ) reported by the California Air Resource Board (CARB, 

2007), but is approximately half the total emissions from California pixels in the Edgar 3.2 

inventory. Inspection of the Edgar 3.2 emissions shows that the largest sources are from natural 

gas (22.5 MMT CO2eq) and landfills (19.3 MMT CO2eq), suggesting very different assumptions 

about emissions from these sources.  

 

CH4    

(MMT CO2eq) 

CP LF LS NG PL WL CA.spec Edgar3.2 

Region 01 0.04 0.02 0.04 0.00 0.02 0.06 0.18 0.92 

Region 02 0.01 0.04 0.15 0.00 0.10 0.02 0.29 1.09 

Region 03 0.01 0.05 0.20 0.01 0.20 0.02 0.45 1.74 

Region 04 0.04 0.10 0.18 0.00 0.17 0.05 0.48 1.56 

Region 05 0.05 0.02 0.39 0.00 0.11 0.07 0.57 1.76 

Region 06 0.02 0.40 0.51 0.36 0.62 0.04 1.81 4.30 

Region 07 0.01 0.74 0.31 0.67 1.50 0.02 3.25 5.95 

Region 08 0.01 0.27 2.06 0.01 0.32 0.02 2.32 3.73 

Region 09 0.02 0.26 0.24 0.13 0.37 0.02 0.96 3.48 

Region 10 0.11 3.75 1.68 0.88 3.62 0.17 10.21 25.14 

Region 11 0.02 0.13 0.19 0.01 0.10 0.02 0.47 1.09 

Region 12 0.06 0.31 3.65 0.31 0.73 0.10 5.16 7.95 

Region 13 0.01 0.06 0.06 0.19 0.19 0.02 0.53 1.07 

Whole CA 0.42 6.15 9.66 2.57 8.03 0.63 27.46 59.78 

Table 1. Inventory estimates of a priori CH4 emissions from 6 different sources 
including crop agriculture  (CP), landfills (LF), l ivestock (LS), natural gas (NG), 
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petroleum (PL), wetlands (WL) and 13 California sub -regions identified in Error! 
Reference source not found.Fig. 2 i. 

 

 

Figure 2. The a priori emission maps and regions in California. a-f) are the CA-
specific surface CH4 emissions from different sources; g) is the sum of  
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anthropogenic surface CH4 emissions from Edgar 3.2;  h) is the sum of maps b -g) 
specific to California; and i) is an illustration o f the 13 California sub-regions 
considered in the spatial analysis. 
 

The authors also examined N2O emissions from crop agriculture estimated by Salas et al. (2006) 

and from Edgar3.2 for the year 2000.  As shown in the first three panels of Fig. 3, the emissions 

vary significantly with season, largely due to the combination of timing in fertilizer application 

and irrigation. Other significant sources of N2O in California include wastewater treatment and 

fuel combustion sources. Hence, total anthropogenic N2O emissions are likely to be temporally 

smoother (see lower right panel) because other N2O sources are likely to be more constant across 

seasons.   

 

Figure 3. The a priori N2O emissions simulated for a dry year (1997) with low  
irrigation in July, (upper left), October (upper ri ght), and annual mean (lower left) 
from Salas et al. (2006), while annual mean anthrop ogenic N2O emissions from 
Edgar3.2 are shown in lower right. 
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3.1.2. Predicted maps of time varying CH4 Mixing Ratios 

MM5 Results 

The authors compared radon-corrected CH4 predictions to CH4 measurements at the Walnut 

Grove Tower using the MM5-LSM model predictions.  As shown in Fig. 4, the model 

predictions followed many of the dynamics observed during October and February, with values 

falling within the ±1 SD of the measurements for much of these periods. During July, however, 

the model substantially under predicted the observations. 

 

 

Figure 4.  Comparison between predicted and observe d CH4  concentrations at 
the Walnut Grove Tower for October, 2007 (top), and  July, 2008 (bottom). Because 
the measurements are highly variable, a 6-hour runn ing averaged has been 
applied. The range shown for the measurements repre sents the ±±±± 1 SD range of 
the measurements at 91 m.  
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Predicted well-mixed afternoon (1400 local time) CH4 mixing ratio at 91 m varied substantially 

over the state and over time. Fig 5. shows predicted monthly-average midday CH4 mixing ratios 

for October, 2007, and July, 2008, calculated using the Edgar CH4 emission inventory. The 

largest predicted CH4 mixing ratios were found for the Los Angeles, where the Edgar inventory 

has very strong emissions, while the Central Valley also shows elevated mixing ratios that 

should be readily measured with current instrumentation.  The authors also predicted N2O 

mixing ratios, which were elevated by several 1-10 ppb due to emissions from agricultural 

regions of the Central Valley. 

 

Figure 5. Predicted monthly-average midday CH 4 mixing ratios at 91 m for 
October, 2007 and July, 2008.  
 

3.1.3. Locations of Potential Measurement Stations 
The authors identified a set of potential tower measurement stations from FCC lists using the 

predicted CH4 mixing ratios as a guide to where the different measurements could identify 

different sources: background air entering California, urban emissions, and rural emissions. The 

general locations of these sites correspond to a subset of the sites identified previously for CO2 

measurements (Fischer et al., 2005).  The seven potential measurement sites, spanning a range of 

emissions sources and air basins, are shown in Fig. 6 and listed in Table 2. 
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Figure 6. List of potential measurement sites for o bservation of CH4 and other 
GHG mixing ratios from background air, and urban an d rural sources in 
California. 
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Station 

 

Name 

 

Latitude 

 (degree) 

Longitude 

(degree) 

Measurement 

height (m agl) 

1 

LA Tower 

(near Mt Wilson)  34.223 -118.0625 296 

2 

South Coastal Tower 

(near Scripps Pier ) 32.867 -117.257 10 

3 Sutro Tower (STR) 37.755 -122.453 232 

4 

North Coastal Tower 

(near Trinidad Head) 41.050 -124.15 10 

5 

South Valley Tower 

(near Fresno, CA) 36.700 -119.300 259 

6 

Walnut Grove Tower 

(WGC) 38.2650 -121.4911 91 

7 

North Valley Tower  

(near Tuscan Buttes) 40.262 -122.093 304 

Table 2. List of seven potential measurement sites spanning a range of dominant 
emissions sources across California. Two of these t owers (Sutro Tower and 
Walnut Grove Tower) were instrumented for GHG measu rements. 
 

3.2. Gas Measurements 
3.2.1. Mixing Ratios Measured at Towers 
Flask measurements of CH4, CO2, N2O, CO, SF6, and H2, are shown for the Walnut Grove (WGC, 

at 91 m) and Sutro (STR, at 232 m) towers in Error! Reference source not found.Fig. 7 and Fig. 8 

respectively. Measurements, from October 2007 through September 2008 period, at both WGC 

and STR exhibit long term trends reflecting global buildup (IPCC(2007)of some of the gases 

(e.g., SF6), while other gases (e.g., CO2) exhibit seasonal variations in background mixing ratios. 

With the exception of some high mixing ratios measured during in winter and spring, the 

measurements at STR largely reflect background air, while those at WGC exhibit considerably 

more variability due to local to regional terrestrial sources. Gaps in the data sets are due to 

periods (e.g., STR in July, 2008) when sampling systems malfunctioned or leaks were detected. 
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QuickTime™ and a
 decompressor

are needed to see this picture.

 

Figure 7. Mixing ratios of CO2, CH4, N2O, CO, SF6, and H2 measured at 91m agl on 
the Walnut Grove (WGC) Tower. 
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Figure 8. Mixing ratios of CO2, CH4, N2O, CO, SF6, and H2 measured at 232m agl on 
Sutro Tower. 
 
In-situ measurements of CH4, CO2, CO, and 222Rn are shown for all sampling heights on the 

WGC tower.  As shown in Fig. 9, the measurements show both diurnal, synoptic, and seasonal 

variations reflecting the combined effects of boundary layer heights, air flow patterns, and 

varying emissions.  Generally the 30 and 91 m measurements reflect local to regional emissions 

and are tightly coupled through the planetary boundary layer, while the 483m measurements 

more reflect a combination of tropospheric or marine boundary layer air with comparatively 

small influence from regional emissions except during the summer or warm afternoons in 

winter or the boundary layer grows higher than 483m. To evaluate errors in the sampling and 

analysis, the authors computed the difference between the in-situ and flask analyses for 

daytime and nighttime flask samples separately.  For both of these periods, the differences 
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exhibit negligible bias and variance consistent with the larger of instrument precision and the 

atmospheric variability determined from the variance of in-situ measurements in 30 minute 

windows centered on the flask samples. 

 

Figure 9.  CO2, CH4, CO mixing ratios, and 222Rn mixing ratios measured at the 
Walnut Grove tower. 
 
To evaluate local to regional emissions, the authors focused on the continuous CH4 mixing ratio 

data measured at 91 m on the WGC tower in the October to December, 2007 period. Fig. 10 

shows 3-hour average of measured CH4 mixing ratios at 91 m and 483 m in October 2007. 
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Diurnal cycles due to changing boundary layer height are apparent in the data. The daily 

maximum CH4 mixing ratio measured at 91 m often occurs when the minimum is obtained at 

483 m. This would be expected to occur in cases when the boundary layer lies between 91 and 

483 m, trapping surface emissions within a shallow layer that is measured by 91 m sample 

height, while the 483 m sample height observes comparatively decoupled background air. The 

authors use the daily minimum CH4 measurements at 483 m to provide a check on the CH4 

background analysis. Moreover, the authors limited the inverse model study to only include 

measurements collected during well-mixed periods. Henceforth, the authors define the well-

mixed periods by using the criteria that the difference of measurements at 91 m and 483 m are 

less than 100 ppb, as shown by the black points in Figure 10. This criteria will also be evaluated 

with a more constricted value of 50 ppb in the authors’ study.   

 

Figure 10. CH 4 mixing ratios measured at 91 m (black) and 483 m ( red) at the WGC 
tower. Only data (black points) obtained during wel l-mixed periods (defined as 
when the difference between measurements at 91 m an d 483 m are less than 100 
ppb) are used in this study. 
 

3.2.2. Background GHG mixing ratio time series  
 Figure 11 shows the calculated values of background CH4 mixing ratios from the NOAA MBL 

average and WGC 483m minimum estimate as a function of time at WGC site during well-

mixed periods from October through December in 2007. The background CH4 mixing ratios 

obtained from NOAA latitudinal average over marine boundary layer mainly lie between 1850 

and 1880 ppb with a mean value of 1860 ppb, which have a much smaller variation than those 

from daily minimum at WGC 483 m. Figure 11 (b) shows that there is no systematic bias, 

although the minimum CH4 mixing ratio at 483 m is occasionally enhanced relative to the 

NOAA MBL average, likely due to local CH4 contributions. The authors estimate the error in 

CH4 background calculation as the RMS difference in Figure 11 (b), which is 15% of the mean 

background-subtracted measurements at 91 m. 
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Figure 11. Time series of background CH 4 mixing ratios, calculated from the 
NOAA global latitudinal average marine boundary lay er (red) and the daily 
minimum measured at 483 m (black) a), and the diffe rence of these signals b). 

3.2.3. Preliminary Measurement of Soil Radon Fluxes 
Preliminary measurements of soil radon flux to the atmosphere were conducted for 

approximately 10 day periods in November at the Lawrence Berkeley National Laboratory, and 

in December, 2008 at the WGC tower. The measured soil radon fluxes were 1.2 ± 0.15 and 1.1 ± 

0.1 atoms cm-1 s-1 at LBNL and WGC respectively. The authors note these values for soil radon 

flux are consistent with commonly held assumptions (e.g., Biraud et al., 2000).  However, the 
222Rn flux measurements do not sample the surface fluxes over the region contributing to the 

tower measurements.  Hence the uncertainty in average 222Rn flux is potentially significantly 

larger than the roughly 10% fractional uncertainty obtained from the chamber measurements. 

3.3. Preliminary Estimation of Regional CH 4 and N2O Emissions 
3.3.1. Radon Mixing Model Emission Estimates 
The authors estimated CH4 and N2O emissions in the footprint of the WGC tower for the 

October-December, 2007 period using the 222Rn mixing model. As shown in Figure 12, the slopes 

of CH4 and N2O to 222Rn determined from a geometric linear regression are 39 ± 3 (R2 = 0.67) and 

0.36 ± 0.04 (R2 = 0.48) ppb /(Bq m-3 ) respectively.  Assuming a mean Rn flux of 1 atom cm-2 s-1, the 

footprint averaged flux of CH4 and N2O using the mixing model method are 33 and 0.3 nmol m-2 

s-1 respectively.  The estimated CH4 and N2O emissions are approximately consistent with the 

average inventory emissions for Central California. However, the uncertainty in 222Rn emissions 

is large (likely significantly greater than the 10% obtained from soil chamber the 

measurements), creating a proportional error in CH4 and N2O emissions.  The authors note that 
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these comparisons are preliminary because uncertainty in the mixing model results are subject 

to uncertainty in the actual radon flux and errors inherent in the assumption that the 222Rn and 

GHG emissions are spatially correlated. The later assumption can, in principle, be tested if the 

spatial distributions are assumed to follow those represented by the a priori emission estimates 

using the method described in Hirsch (2006). 

 

 

Figure 12. Correlation plots of CH4 and N2O versus 222Rn measured at 91 m on the 
Walnut Grove tower over the period. Lines indicate best-fit geometric linear 
regressions.  
 

3.3.2. Lagrangian Model of GHG Mixing Ratios 
As described above, the authors use an inverse model to estimate the regional distributions of 

GHG fluxes which rely on numerical prediction of regional meteorology.  In this section the 

authors examine the errors in predicted meteorology and how those errors affect predicted 

GHG signals, and then provide initial estimates of CH4 emissions for Central California. 

 

Atmospheric Transport Model Errors 

The authors evaluated the errors in winds WRF-STILT winds using measurement from October 

2007. As shown in Figure 13, WRF-STILT winds highly agree well with the tower measured 

winds with good correlations in both u (r2=0.80) and v (r2=0.69). The RMS errors in horizontal 

winds at 137 m are 21.2=uσ and 86.2=vσ  m s-1. Some of this difference can be attributed to 

the fact that profiler winds are measured at a single site while the WRF winds are the averages 

over a grid of 1.6 km x 1.6 km. The authors note that the wind RMS error decreased by 

approximately a factor of 2 between 137 m and 1000 m, though the decrease was non-linear 

with most of the decrease occurring between 137 and about 500 m. Henceforth, the authors 

assume errors in u and v are constant with height and randomly distributed with an RMS 
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magnitude of 6.322 =+= vuV σσσ  m s-1. Following Lin and Gerbig (2005), the transport error 

due to winds 
TransWND

S  is calculated as the RMS difference between signals predicted from 

simulations with and without input of an additional stochastic component of wind error Vσ  

(3.6 m/s) in STILT. The resulting RMS signal is equivalent to 8% of the average predicted CH4 

signal.. 

 

Figure 13. The comparison of winds U and V componen ts between WRF-STILT 
simulations and tower measurements at WGC site. Sol id line is for tower 
measurements and dashed line is for WRF-STILT simul ations; and red, green and 
black dots represent night period (UTC hour time be tween 6 and 18), day period 
(UTC hour time between 18 and 6) and transition per iod (UTC hour time of 6 and 
18), respectively.  
 
For the transport error due to PBL heights, data in October through December 2007 were 

obtained and used in this analysis. Figure 14 shows the comparisons of daytime PBL heights 

between radar profiler measurements and WRF-STILT simulations.  Profiler data were selected 

to match the time of the WRF-predictions to within 1 hour.  In addition, the WRF-STILT 

simulations impose a lower limit value of 215 m on Zi, while the radar profiler has a minimum 

detection height of 120 m.  To avoid biasing the comparison and make sure CH4 well mixed 

from surface till heights above 483 m, the authors included WRF-STILT predictions of Zi greater 

than 215 m in the analysis. The resulting best fit geometric linear regression of WRF-STILT on 

radar profiler PBL heights yields a slope of 1.25±0.10 and intercept of -138±70 m. Based on this 
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result, the authors obtain a scale factor of 1/1.25 which is then applied to Zi when calculating 

footprints using STILT. This result is similar to that found in Lin et al. (2003), where STILT 

predictions of Zi were about 1.09 higher than Zi measurements at a site in Wisconsin. After 

scaling STILT Zi by a factor of 1/1.25, the RMS residual error between scaled WRF-STILT and 

profiler Zi is reduced by a factor of 1.5 to ~ 200 m, roughly consistent with the estimated error in 

the profiler measurements. () 

In the following work, the authors calculate particle trajectories and resulting footprints using 

the scaled parameterization of PBL height.  Using Eqs. (7) and (8), the estimated transport error 

TransPBL
S  at day time due to PBL uncertainties of 196 m is about 17 ppb, or about 22% of the 

mean signal. Assuming the transport errors due to winds and PBL height are independent, the 

total transport error 
Trans

S  is 23%. 

 

Figure 14. Comparison of daytime PBL heights betwee n radar profiler 
measurements and WRF-STILT simulations in October t hrough December 2007.  
Also shown are lines for a 1:1 relationship (grey) and the best-fit (black) from a 
geometric linear regression.  
 
Footprints for Measurement Sites 
The time-averaged footprint is shown in Figure 15 for the period between October and 

December in 2007. The high footprint values within approximately the Central California area 

near the tower site indicate that CH4 signals measured at 91 m at WGC will be strongly 

influenced by the CH4 emissions over Central California area. The low values in other areas 

indicate the low sensitivity of WGC tower measurements to the surface CH4 emissions in those 

areas. In the following study, the authors show the inversion results based on WGC site 

measurements, which will have a high reliability for central California area. In order to obtain 
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accurate inverse of CH4 emissions over the whole CA, a net of stations is proposed by the 

authors at the end of this report. 

 

Figure 15. Average footprint for CH 4 mixing ratio measurements made at 91 m on 
the Walnut Grove tower for the period from October through December 2007.  
 
Linear Regression Analysis of Predicted and Measure d CH4 Signals 
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The predicted WRF-STILT CH4 mixing ratio signals obtained for the period of October through 

December 2007, shown in Figure 16, agree qualitatively with the tower measurements. As 

described in sections 3.2.1 and Figure 10, data are selected to only include times with well-

mixed conditions and when background CH4 can be reliably, which are shown as black points 

in Figure 16. Diurnal cycles due to changing boundary layer height and synoptic variations due 

to frontal passages are apparent in the data. The measured and predicted CH4 mixing ratios 

show similar temporal variations, indicating partial success of the model. However, the 

predicted signals do not always capture the large CH4 measurements, indicating some 

combination of errors in the a priori emission model (e.g., spatial pattern or limited resolution) 

and atmospheric transport (e.g, wind fields, boundary layer height). A quantitative comparison 

of measured and predicted CH4 signals from the 91 m sampling height at WGC is shown for the 

October through December 2007 period in Figure 17. Without Zi scaling (Figure 17a), the best-fit 

slope between predicted and measured CH4 mixing ratios is 0.46 ± 0.07. After applying the Zi 

scaling to WRF-STILT (Figure 17b), the slope between predicted and measured CH4 is 0.73 ± 

0.11. The change in slope between Figure 17a and Figure 17b demonstrates that scaling the PBL 

heights affects the predicted CH4 signals, and any residual uncertainty in PBL height should be 

considered as a source of uncertainty in the Bayesian analyses that follow.  After the Zi scaling, 

the slope obtained in Figure 17b suggests that the actual emissions are higher than inventory 

estimates by a factor of 1.37 ± 0.21.  The authors note that the normalized Chi-square value for 

Figure 17b is 1.17, suggesting that the estimated errors do not completely explain the residual 

variance in the differences between the predictions and measurements. CH4 signals based on 

Edgar 3.2 emissions are also simulated and compared with the tower measurements in Figure 

17c, yielding a slope of 1.09 ± 0.14.  This slope is roughly consistent (p > 0.1 in a t test) with the 

slope (0.92 ± 0.03) obtained by Kort et al. (2008) in their comparison of measured and predicted 

CH4 signals using Edgar 3.2. However, the slopes obtained with the California specific (Figure 

17b) and Edgar (Figure 17c) emissions are significantly different (p < 0.01), as might be expected 

given the large difference in the a priori emissions shown in Table 1. For the central California 

region, the total emission estimated by Edgar 3.2 is about 75% more than that estimated from 

California specific sources, which is roughly consistent with the difference (~ 50%) of fitting 

slopes between Figure 17b and Figure 17c. 

 To evaluate the effect of the well-mixed data selection criteria, the authors also examined the 

slopes obtained with a more stringent requirement that the difference between CH4 mixing ratio 

measured at 91 m and 483 m is less than 50 ppb.  This subset of data are shown as triangles in 

Figure 17. Using the selection criteria of 50 ppb in Figure 17b, the authors obtain a slope of 0.86 

± 0.17, which is quite consistent with that obtained using the selection criteria of 100 ppb.  The 

following analyses include data based on the 100 ppb selection criteria.  



 33  

 

Figure 16. Background subtracted CH 4 measurements (black line) and predictions 
(red line) from 91 m as a function of time (top), a nd their difference (bottom) for 
well mixed conditions (black points). 
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Figure 17. Predicted versus measured CH 4 obtained (a) using California specific 
emissions without Zi correction, (b) with Zi correction, and (c) using Edgar 3.2 
emissions with Zi correction. The symbols indicate well-mixed period s when the 
difference between CH 4 mixing ratios measured at 91 and 483 m are less th an 100 
ppb (open circles) and less than 50 ppb (triangles) , respectively.  
 

3.3.3. Baysian Inverse Estimates of CH4 Emissions 

Error Covariance Matrix 

Using the WRF simulated meteorology in October 2007 and the total a priori emission map, the 

CH4 mixing ratios at WGC site are simulated for a release of 1000 particles and a release of 100 

particles. The authors found that the standard error between these two simulations is about 3 

ppb, indicating ~ 5% particle number error partS . This value is less than ~13% particle number 

error for CO2 indicated by Gerbig et al. (2003a). Considering the ~ 5% error determined by us 
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here and ~13% error determined by Gerbig et al., for signals in the mixed-layer, partS  for 100 

particles is assumed as 10% in this study. For all of the following error analyses, the authors 

used 1000 particles in order to minimize the effect of particle number error. As the authors have 

indicated, aggrS  is estimated by comparing the un-aggregated landfill signal from to the landfill 

signal estimated after averaging emissions over each county ,  which is about 11%. Transport 

error 
TransPBLTransWNDTrans

SSS +=  has been determined as 23% and the CH4 background error 

(
bkgd

S ) has been determined as 15% in section 3.3.2.  As the authors have indicated, eddyS  is 

assumed as 1%, and emisS  and 
ocean

S  are assumed to be negligible.  

With the assumption of independence for different error sources, the total equivalent 

“measurement” error is assumed to be 32% of each individual background-subtracted 

measurement. 

Source Sector Analysis 

The Bayesian “source” inverse analysis was carried out for the six source sectors for October 

through December 2007. As shown in Figure 18 (a), the a posteriori scaling factors for the crop 

agriculture (CP), landfill (LF), wetland (WL), petroleum (PL), and natural gas (NG) are not 

significantly different from unity (at 95 % confidence). The scaling factor for livestock is 1.63 ± 

0.22, suggesting the emissions from livestock are significantly (95% confidence) larger than the a 

priori inventory estimates. Considering that the linear regression (Figure 17b) estimates suggest 

that CH4 emissions from Central California are estimated to be 37 ± 21 % higher than the 

annually averaged California specific a priori inventories, the increase in overall emissions is 

largely due to the 63 ± 22 (1 σ) % increase in estimated emissions from livestock. State-wide a 

priori livestock emission are 9.7 MMT CO2eq (see Table 1), which includes 5.6 MMT CO2eq from 

dairies and 4.1 MMT CO2eq from other cattle. Scaling the a priori CH4 emissions from dairies 

suggests that actual dairy emissions are 9.1 ± 1.3 MMT CO2eq. This result is nominally consistent 

with or slightly less than the results of a recent study by Salas et al. (2008), which estimated total 

CH4 emissions from dairies in CA to be approximately 9.8 MMT CO2eq. Except for the livestock 

emission source, some other sources also showed smaller differences from inventory estimates. 

For example, inferred CH4 emissions from crop agriculture are smaller than the annually 

averaged inventory, consistent to the expectation of higher CH4 emissions from the north-

central Valley during the summer due to flooded rice agriculture (Salas et al., 2006).   
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Figure 18.  Inversion estimates for the “source” sect or analysis (a) and “region” 
analysis (b).  A priori and posterior scaling factors for the six source sectors and 
13 source regions are shown with corresponding 68% confidence level 
uncertainties.  
 
Region Specific Analysis 
The Bayesian “region” inverse analysis of emissions from the 13 California regions is shown in 

Figure 18(b).  The a posteriori uncertainties are noticeably reduced relative to the a priori 

uncertainties only for regions 6, 7, and 8, which have a strong influence on the CH4 

measurements either because the land surrounds the tower site (regions 6 and 8) or has a tele-

connection through the prevailing wind (region 7).  The a posteriori scaling factor for region 6 is 

1.08 ± 0.06, indicating that the posterior emissions agree well with the a priori inventory 

estimates.  Posterior scaling factors for region 7 and 8 are 1.55 ± 0.17 and 1.37 ± 0.15 respectively, 
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indicating that the a posteriori emissions are greater than the a priori estimates for these two 

regions. The authors also note that the region analysis is consistent with the source sector 

analysis in that increased emissions from region 8 are consistent increased emissions from 

livestock. 

Finally, the authors report the results of a sensitivity test in Section 6. The a priori uncertainties 

were varied from 30% to 50% to investigate the effect that loosening the a priori constraint on 

emissions had on the inverse model results.  The results of this test show that increasing the a 

priori uncertainties will allow posterior results to be more strongly driven by measurements that 

have a high overlap of footprint function with the spatial distribution of the emission source. In 

this study, the sensitivity is about 5-15% for different sources and 1-3% for regions near WGC 

site. 

Performance of Scaling Factors from Bayesian Invers e 
After applying the scaling factors obtained from Bayesian analyses, the posterior predicted CH4 

mixing ratios are compared with measurements in Figure 19. Figure 19a shows the comparison 

for results from the ‘source analysis’ with measurements. Compared to Figure 17b (before 

inverse optimization), the fitting slope is closer to unity, and the normalized Chi-square value is 

slightly reduced from 1.17 to 1.11.  This suggests that the inverse optimization has slightly 

improved the agreement between the measured and predicted CH4 signals but that on order 

10% of the variance remains unexplained.  It is possible that the apparent underestimation of 

the errors may be due to positive correlation between the error sources that the authors 

assumed independent.  Similar results are obtained for the region analysis, as shown in Figure 

19b. In both cases, the slopes after optimization are still slightly less than unity, likely because of 

the weight on the a priori scaling factors.  The authors note that relaxing the a priori uncertainties 

on the scaling factors from 30% to 50%, allows the optimization to adjust the posterior scaling 

factors further from their a priori values (Section 6). 
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Figure 19. Comparison of CH 4 mixing ratios between measurements and 
predictions modified using posterior scaling factor s obtained from the “source” 
analysis (a) and “region” analysis (b). 

3.4. Design of a Future Observation Network 
The above region analysis shows that emissions from regions 6, 7 and 8 are constrained by the 

91 m measurements at WGC.  This is because they either surround the tower (i.e., regions 6 and 

8) or have a strong influence on air reaching the tower through prevailing winds from the Bay 

Area to the Sacramento Valley (i.e., region 7). This observation provides an insight into the 

spatial domain that can be effectively investigated with the tower measurements and suggests 

that a network of towers would be required to accurately constrain the multiple regions and air 

basins in California.  In principle, measurements from multiple towers would also be combined 

in a larger inverse analysis to provide more stringent constraints on emissions from regions that 

influence several towers.  

3.4.1. Use of multiple measurement stations 
As shown in Fig. 20, the mean monthly footprint maps for 7 stations exhibit reasonably 

complete spatial coverage of the main regions of California. The exceptions are parts of regions 

1 and 10, where the CH4 inventory emissions are very small (see Fig. 2).  

 

Figure 20.  The monthly mean footprint maps for 7 o bservation stations simulated 
for Oct 2007 (left) and Jul 2008 (right).  
 
To evaluate the constraint of measurements from current stations and proposed stations to the 

inverse of California’s CH4 emissions, the authors first examined four ideal inverse tests using 

varied amounts of pseudo-data to retrieve emissions for the “source analysis” and “region 

analysis” described above. In both cases, the inverse results were calculated using pseudo-data 

computed for four cases in October 2007, and July 2008;, which are cases with 3 hour resolution 
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WGC data, 3 hour resolution WGC and 12 hour resolution STR data, 12 hour resolution data 

from all 7 stations, and 3 hour resolution data from all 7 stations. The results of all analyses are 

provided in Appendix 6.2. Here, the authors summarize the results from modeling with all 3 

hour resolution data from 7 stations in Fig. 21 and Fig. 22.  Because the different sources and 

regions have very different emissions levels, the results are re-plotted to show the CO2 

equivalent emissions of CH4 (rather than scaling factors). Generally, all source regions and 

source sectors are estimated with significant reduction in uncertainty, with the exception of 

regions 1, 2, 3, and 13. 

 

 

Figure 21. Inverse model estimates of total CH 4 emissions for 13 regions in 
California obtained for October 2007 (top) and July  2008 (bottom), based on the 
analysis of 3 hour resolution pseudo-data from 7 st ations. Units are MMTCO 2 
equivalent. 
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Figure 22. The inverse results of source analysis f or CH4 emissions from different 
sources in October 2007 (top) and July 2008 (bottom ), based on the analysis of 3 
hour pseudo-data from 7 stations. Units are MMTCO 2 equivalent.  
 

3.4.2. Use of Radiocarbon Methane (14CH4) to Identify Fossil CH4 Emissions 
The predicted radiocarbon content of atmospheric CH4 vary diurnally, synoptically, and 

monthly, but produce time averaged signals that are measurable, provided that large (~ 100 

liter) air samples can be collected and purified. As shown in Fig. 23, the monthly-mean midday 
14CH4 at 91 m across the state indicates that the largest depletions (corresponding to the largest 

fossil fuel inputs) occurred near San Francisco, Sacramento, and Los Angeles. The extent to 

which the CH4 sources in these regions affected the larger-scale CH4 radiocarbon content varied 

over the year as atmospheric mixing and source strength varied. For example, the radiocarbon 

content in the Los Angeles air basin in January was elevated 15-20‰ compared to the other 

three months simulated. There was also a large depleted plume moving out over the Pacific 

towards the south from the SF Bay region in January that was not present in the other months 
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simulated. This plume was likely caused by strong offshore winds in the region, which can be 

strong during the winter.  

 

Figure 23. Predicted monthly mean daytime 14CH4 signals (per mil) from fossil and 
biogenic CH4 emissions in California.  
 

4.0 Recommendations 

4.1. Refinement of Atmospheric Transport Model 
The results of this work highlight the need for careful estimation and minimization of errors in 

the transport model. The comparison between the radar profiler measurements and WRF-STILT 

predictions of PBL height show a systematic overestimation in the WRF-STILT predictions, 

while the sensitivity test shows that predicted CH4 emission estimates are sensitive to PBL 

height.  The error in WRF-STILT predictions of PBL height may be a result of imperfect land 

surface parameterization in WRF that does not account for a suppression of PBL height in the 

Central Valley. Possible causes for overestimation of PBL height include the Pacific low over 
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California’s interior and low ratios of sensible to latent heat (Bowen ratios) driven by 

agricultural irrigation as shown in recent model studies of California (Kueppers et al., 2008; 

Lobel and Bonfils, 2008). Because of the limited amount of PBL height data, the present work 

should be considered a first step toward a more comprehensive analysis employing profiler 

data from additional profiler sites and over longer periods. Other trace gases are also likely to 

provide important constraints on boundary layer mixing and their use should be explored. For 

example, sufficiently detailed inventories for reasonably long-lived criteria pollutants (e.g., CO) 

may allow effective testing of the transport model.  Similarly, although the absolute fluxes may 

of 222Rn fluxes are poorly known, as long as the diurnal variations in average flux are reasonably 

small, radon may provide a constraint in errors in modeling nighttime boundary layer heights. 

The authors expect that some combination of these efforts will substantially improve the fidelity 

of the WRF-STILT PBL predictions and hence accuracy of GHG emission inversions. 

4.2. Long-term Measurements for Trend Detection 
The first year of data from the observations at Walnut Grove and Sutro towers and the inverse 

modeling described above, provide a starting point for analyzing the magnitude of Central 

California’s GHG emissions.  Because emissions of GHGs from both natural and 

biogeochemical and anthropogenic processes depend on other time-varying drivers (e.g., 

climate, the economy, and human management), it is reasonable to expect that emissions will 

change from over multiple time scales from seasons to years to decades. Hence, efforts to 

control annual GHG emissions to within a target based on some reference point in time need to 

include a quantitative measure of both the trends and inter-annual variations in emissions.  This 

will require that GHG emissions need to be measured over multiple years.  

4.3. N2O and Halocarbon Measurements 
Recent revisions to California’s GHG emission inventory, suggest that N2O emissions constitute 

the second largest contribution to global warming after CO2 (Bemis, 2006), slightly greater than 

that from CH4.  However, like CH4, the inventory estimates of N2O emissions are highly 

uncertain (Farrell et al., 2004).  To address the gap in verified regional N2O emissions estimates, 

the authors expect estimates of N2O emissions from Central California (and other regions) could 

be achieved by applying a combination of continued flask measurements using a combination 

of the radon mixing model and the inverse model approaches applied to CH4 above in this 

report. However, further analysis of the N2O flask measurements is needed to determine 

whether the relatively infrequent (12 hour) measurements are sufficient for the inverse model 

analysis or whether continuous N2O measurements (as performed for CH4 at WGC) are 

necessary.  In addition to the measurements, the authors also note that bottom up modeling 

studies of N2O emissions from all source sectors (e.g., agriculture, waste water, and biomass and 

fossil fuel combustion) should be improved to provide a priori information for the inverse 

modeling. 

Although likely currently smaller than CH4 and N2O emissions on CO2 equivalent scale, 

halocarbon emissions are expected to increase over time, becoming a large fraction of 

California’s non-CO2 GHG budget.  Given the initial results from this study, measurement of 
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halocarbon mixing ratios at tower sites in California may offer the same potential for inverse 

model analysis as CH4, N2O.  As above, there is a question of how frequently measurements 

need to be taken in order to provide a sufficiently precise estimate of emissions.  However, 

given the very limited information currently available for most halocarbon species, even 12 

hourly flask sampling may provide sufficient data.  As with N2O, bottom up estimates of 

spatially resolved halocarbon emissions will be valuable for any inverse modeling efforts. 

 

  

4.4. Stable Isotopic CH4 Measurements 
Identifying which source sectors are actually responsible for the emissions in a given region 

(and which sectors are responsible for future reductions or increases) will be critical for 

determining the success of GHG emission control strategies being contemplated by California. 

Generally, multiple source sectors contribute to the emissions of nearly all GHGs at the regional 

scale in California.  As shown above, inventory estimates of CH4 emissions suggest significant 

emissions from landfills, livestock, natural gas transmission and use, and petroleum facilities 

and use. Hence, research is needed to investigate techniques that can separate the relative 

contributions of GHG emissions from different source sectors.  One promising avenue is the 

measurement and analysis of additional atmospheric trace gas species. In particular, stable (and 

radiocarbon) isotopes 13CO2 (Pataki et al., 2007) and 14CO2 (Turnbull et al., 2007) have been used 

effectively for this purpose in contemporary studies, while 13CH4 and CHD have been used in 

studies of global paleoclimate (Whiticar and Schaefer, 2007). Efforts to measure the stable 

isotopic signatures near individual sources as well in atmospheric samples collected at towers is 

hence likely to provide additional constraints on GHG emission sources in California. 

4.5. Radiocarbon CH4 Measurements 
Although preliminary, the results 14CH4 content in the atmosphere indicate that radiocarbon 

measurements are sensitive markers of fossil fuel sources of CH4 emission. Further work must 

be done to better constrain the 14C content of non-fossil sources (e.g., wetlands, agriculture) to 

improve the simple values applied here.  With this information, atmospheric 14CH4 mixing ratio 

predictions could be applied in an inverse approach, similar to that described above for CH4, to 

estimate the sensitivity of estimated emission fields to changes in diurnal, synoptic, monthly, 

and seasonal time frames. This sensitivity analysis will allow the design of a rational sampling 

strategy to best take advantage of the unique value of radiocarbon as a tracer of fossil CH4 

emissions.  

4.6. Statewide Measurement Network and Other Platfo rms 
Data from additional measurements locations will be necessary to broaden the spatial scale over 

which the inverse models can be applied to constrain the total GHG emissions from California.  

These should include tower measurements as explored in Section 3.4 above. However, given the 

difficulty of obtaining access to towers in desirable locations, the authors emphasize that site 

selection will likely require considerable effort to find candidate towers, model the footprints   
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In addition to the towers, intensives with aircraft, and remote sensing from space provide 

additional important data. For example, the California Air Resources Board and NASA 

conducted joint observations (ARCTAS-CA) of air quality and GHG species over California in 

June, 2008.  In winter 2009, the NASA Orbiting Carbon Observatory (OCO) and the Japanese 

Space Agency Greenhouse Gas Observing Satellite (GOSAT) are expected for launch.  Both 

satellites will provide column integrated CO2 measurements, but GOSAT, in particular, will 

provide column integrated CH4 which might be used in combination with other measurements 

to improve estimates of California’s CH4 budget.  Finally, future campaigns to study air quality 

and climate such as the joint CEC-CARB-NOAA CALNEX 2010 campaign will provide 

intensive measurements over approximately month-long time scales that will likely be useful 

for process-based studies. 
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6.0 Appendices 

6.1. Sensitivity Test for the a priori CH4 Emission Uncertainty 
In this study, the authors assumed the a priori uncertainty in the inventory CH4 emissions of 

30% based on previous work. To evaluate the effect of varying the assumed a priori uncertainty 

on the posterior emission estimates and uncertainties, the authors conducted a sensitivity test by 

comparing the inverse model results using a priori uncertainties of 30% and 50%. Generally 

speaking, increasing the a priori uncertainties will allow posterior results to be more strongly 

driven by measurements that have a high overlap of footprint function with the spatial 

distribution of the emission source. In the case of the source sector analysis shown in Fig. 24, 

using the WGC measurements, the scaling factors for sources sectors were different from unity 

were allowed to move even further from unity when a priori uncertainty was relaxed. For 

example, Table 3 lists the sensitivity of retrieved emissions (scaling factors) to the a priori 

uncertainties for source or regions with relatively big reductions in uncertainties. 

 

Figure 24. Sensitivity test of the source sector an alysis to increasing the a priori 
emission uncertainties from 30% to 50%.  
 

CH4 WL LF LS NG PL DNDC R06 R07 R08 

Sensitivity 16% 8% 12% 15% 7% 6% 1% 1% 3% 

Table 3. The sensitivity of retrieved emissions (sc aling factors) to the a priori 
uncertainties for 6 sources or 3 regions. 
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6.2. The Effects of Multiple Stations for Source Se ctor Analysis. 
The appendix shows the varied results for inverse modeling of CH4 emissions by adding 

measurements from more stations.  Four cases were run for both the region and source analysis: 

3 hour pseudo-data for WGC, 3 hour pseudo-data for WGC and 12 hour pseudo-data for STR 

site, and 3 and 12 hour pseudo-data from 7 stations respectively. The results for these cases are 

shown in Figure 25 through Figure 32. In general uncertainties in a posterior emissions are 

reduced for all sources as the number of stations and frequency of observations increase.  

As expected, uncertainties decrease with the frequency of sampling and very strongly with the 

addition of stations covering additional regions. For example, the results using the WGC site 

only or WGC and STR sites obtain increased accuracy in estimating emissions for region 6, 7 

and 8. Using all 7 stations, accurate posterior emissions are obtained for almost all regions 

except regions 1, 2, 3 and 13. The authors note that the inventory CH4 emissions from regions 1, 

2, 3, and 13 are significantly smaller than for most of the other regions. 

As observed for the source sector analysis using actual WGC measurements, there are 

significant reductions in the uncertainties for the LF, LS, NG and PL sources when using data 

from the WGC site alone, while WL and DNDC were not as effectively constrained. In addition, 

the WL and DNDC sources are significantly better constrained using 3 hour pseudo-data for 7 

sites, where the authors expect the principle leverage will be obtained from the additional sites 

in the Central Valley. 
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Figure 25. Inverse results of region analysis for ( a) October 2007 and (b) July 
2008, using 3 hour resolution pseudo-data for the W GC site. 
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Figure 26. Inverse results of region analysis for ( a) October 2007 and (b) July 
2008, using 3 hour resolution pseudo-data for the W GC site and 12 hour pseudo-
data for the STR site. 
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erse results of region analysis for ( a) October 2007 and (b) July 
2 hour resolution pseudo-data for all 7 stations. 
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verse results of region analysis for (a) October 2007 and (b) July 
 hour resolution pseudo-data for all 7  stations. 
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Figure 29. The inverse results of source sector ana lysis for October 2007 (top) 
and July 2008 (bottom) using 3 hour pseudo-data fro m the WGC site.  
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Figure 30. The inverse results of source sector ana lysis for October 2007 (top) 
and July 2008 (bottom) using 3 hour resolution pseu do-data for the WGC site and 
12 hour pseudo-data for the STR site. 
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Figure 31. The inverse results of source sector ana lysis for October 2007 (top) 
and July 2008 (bottom) using 12 hour resolution pse udo-data for all 7 stations. 
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Figure 32. The inverse results of source sector ana lysis for October 2007 (top) 
and July 2008 (bottom) using 3 hour resolution pseu do-data for all 7 stations. 




