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. : Light Cone Matrix Product

M. B. Hastings!

!Center for Nonlinear Studies and Theoretical Division,
Los Alamos National Laboratory, Los Alwmos, NM 87545

‘We show how to combine the light-cone and matrix product algorithms to simulate quantum
systems far from equilibrium for long times. For the case of the XXZ spin chain at A = 0.5, we
simulate to a time of & 22.5. While part of the long shimnlation time is due to the use of the light-cone
method, we also describe a modification of the ITEBD algoritlon with improved numerical stability,
and we describe how to incorporate syunnetry into this algorithin. While statistical sampling error
means that we are not yet able to make a definite statement, the behavior of the sinmlation at long
times indicates the appearance of “revivals” in the order parameter as predicted by {11

PACS numbers:

Over the last few years, it has become possible to sinmlate thme dynamies of one dimensional quantum systems
for very long times using matrix product methods such as the time-cvolving bond deeimation (TEBD) algorithm[1].
The computational effort required, in both tinie and memory, seales exponentially in the entanglement entropy of the
system, and hence these methods work most efficiently when the quantum state being simulated has a siall amount of
entanglement. There are, fortunately, many important exanples where the entanglement grows only logarithmically[2]
and these techniques work well. Broadly speaking, slow entanglement growth secms to happen when we take a systm
in its ground state, and then perturb it locally, by adding a particle or other perturbation at a single point.

On the other hand, a global perturbation of tlie system, such as by starting the system in the ground state of one
Hamiltonian and then evolving it under another, often gives rise to a linear growth of entanglement entropy with time,
making simulation exponentially difficult in time. This behavior has been studied from several directions, including
numerically[3], by conformal field theory techniques[4], and by mathematical physics methods giving general upper
bounds on the entanglement growth in time[5, 6].

One prototypical exaiuple of this behavior is the time dynamics of the spin-1/2 XXZ spin chain,

H =) 5rS7 +8YSY, +ASFSE,,. (1)
i

We start the system at tiine ¢ = 0 at the ground state of the Hamiltonian with infinite 4, and then evolve the system
for t > 0 under the Hamiltonian with some finite A. This is a sudden quench from infinite A to finite A. The starting
state at infinite A is given by

) =1.. 111l (2)

This problem was studied in [3] where the lincar entropy growth was found. A related problem of particles in an
optical lattice was also studied with matrix product methods|7].

In this paper, we present a new approach to simulating such systems far from equilibrium. This approach combines
the “light-cone” method introduced in [10] with matrix product techniques. The result enables us to simulate for
significantly longer times than possible with any other existing method.

The integrability of the XXZ Haruiltoniain docs not play any role in our approach. However, some of the physical
results seen in our simulations may be a result of integrability, as discussed later. Integrability has been exploited to
study the time dynamics of a BCS pairing modecl[8] after a sudden gnench. The model studied in [8] had no spatial
structure to the interactions; instead, each fermionic mode interacted with each other fermionic model, which perhaps
makes that model simpler to treat. However, even for that model it was necessary to use sophisticated numerical
calculations to exploit integrability, so that for the XXZ Hamiltonian above it is not surprising that we must use
numerics to understand the time dynamics.

Our main physical interest in this system is to study the possibility of “revivals” in the order parameter as predicted
by a nean-field study of the system in {11]. If one measures the expectation value of S* on a given site as a function of
time, (S7(t)), one observes an oscillating behavior as a function of time, with damped oscillations (similar oscillating
behavior is also observed for a related bosonic system in [7]). The expectation value also alternates sign as a function
of site index 7. By “revival”, we mean that the envelope of this damped oscillating function may stop decreasing and
instead increase for short periods of time; overall, the envelope decreases, but for short periods it may stop decreasing.
It is true that the XXZ spin chain may be quite far from mean-ficld, being in one-dimension. Further, in this paper



we.consider the case A == 0.5, which is a relatively strong interaction. However, we were interested to numerically test
the dynamics of the order parameter at large times to scc if some qualitative features of the mean-field carry over.
Unfortunately, even at A = 0.5, the first revivals in the mean-field occur at a large time {> 20) which means that
existing matrix product algorithms cannot reach the time to see this behavior. The light-cone method does reach
the desired times. Due to sampling error in the Moute Carlo sampling, we are not able to make a definite statement
that there are revivals based on our results, however the results strongly support the possibility of either revivals (an
increase in the envelope) or at least a tendency for thie envelope function to remain constant for periods of time rather
than decreasing.

The next section of the paper explains the basic idea of the light-cone, in a simpler setting of discrete time evolution.
We show how to significantly reduce the computational cost involved in computing (on a classical computer) the
expectation value of an operator after applying a quautwim cirenit to a state; the cost remains exponential, but with
a lower exponential, albeit at the cost of some additional statistical sampling. After that, we present the matrix
product method we used, a modified version of the iufinite time-evolving bond decimation algorithm (iTEBD}[9] with
improved numerical stability. This scction is logically separate from the rest of the paper; on the one hand, one could
use this modified iTEBD on its own, rather than as part of a light-cone simulation, while on the other hand the rest
of the paper simply relies on using some matrix product algorithm to do the early time simulation and indeed other
matrix product algorithms would work here. We chose this algorithm since it was best suited to our purposes with the
least numerical cffort. After that scction, we deseribe how to combine the light-cone and quantum circuit methods,
and in the section after that we describe our numerical results. All numerical work in this paper is done for the XX7Z
chain with A = 0.5.

LIGHT CONE FOR QUANTUM CIRCUITS

The algorithm in this paper is based on the idea of the “light-cone”. In relativistic systems, the importance of the
light-cone is well-known. For such systems, no influence oceurs outside the light-cone; equivalently, any two operators
which are space-like separated conunute with cach otlier. However, even in a system described by non-relativistic
quantum mechanics, such as a one-dimensional spin chain, there is still an upper limit to the speed at which any
influence can propagate through the system. This bound is expressed formally through Lieb-Robinson bounds{12-15].
Consider any operator O which acts on o siugle site, say site number 0. The Lieb-Robinson bounds can be used
to show for many systeus, including the XXZ spin chain, that exp(—iHt)O exp{i Ht) = O(t) can be approximately
described by an operator which has support only on a set of sites within distance vy gt of site zero, where v p is
called the Lieb-Robinson velocity. In contrast to relativistic systems, there is some “leakage” outside this light-cone;
however, we can make this leakage exponentially sinall by slightly enlarging the support of the operator we use to
approximate O(t}.

In this section, we explain how the presence of a light-cone can be used to simplify the calculation of time-
dependent. expectation values. We explain this idea in a siiipler setting, a quautum circuit iodel, in order to avoid
the complexities of the Lieb-Robinson bound. Suppose we have N qubits on aline, labelled = N/2, ~N/241, .., N/2-1,
and we consider a discrete time dynamics as follows: on the first time step (and ou all subsequent odd time steps), we
act with a set of 2-qubit gates which act on qubits —N/2 and —N/2 4+ 1. qubits ~N/2 + 2 aud —~N/2 + 3, and so on.
Then, on the second time step (and on all subsequent even time steps) we act with 2-qubit gates on qubits ~N/2 + 1
and ~N/2 + 2, qubits —N/2+ 2 and ~N/2+ 3 and so on.

We consider the following problem, which is a discrete-time aualogue of thie continuous time problem addressed
elsewhere in this paper. We initialize the system to some given product state, evolve for T = N/2 time steps, and
then measure the expectation value of the z-component of the spin at site 0.

How long does it take to compute this expectation value on a classical computer? The simplest algorithm is to
store the amplitudes for the quantum state as a 2¥-dimensional complex vector, and update this amplitude at cach
time step. The time required for a single time step for this algorithm is of order 2% = 22T and the total time is of
order T227,

We now explain how to reduce this exponential from 227 to 27 at the cost of having to do some statistical sampling
and of only approximating the expectation value. Consider Fig. 1, which shows a drawing of the gates in time. First,
note that the gates outside the triangle have no effect on the final output, lying cutside the discrete light-cone, and
so they can be ignored.

Before explaining how to actually do the calculation, let us motivate the approach physically, using the idea of
entanglement. After time T'/2, it is only necessary to consider the dynamics within region A marked in Fig. 1. Since
this dynamics occurs only on the sites within distance T/2 = N/4 of site 0, it occurs on a system of length T = N/2,
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and hence ¢he cost to simulate pure state evolution on these sities is of order 27, On the other hand, at early times
(before time T'/2) the system has less entanglement, and so also should be easier to simulate. The difficulty with
implementing this physical idea is that at time 7/2, the reduced density matrix on sites —77/2,...,7/2 is not a pure
state as those sites are entangled with the region outside. Simulating the time dynamics of a mixed state is much
more costly than simulating a pure state, taking 2°7 rather than 27. However, imagine that somcone did a projective
measurement of the system in some arbitrary basis of states on sites —=N/2,...,—N/4 — 1 at time T/2, and someone
else did a projective measurement on sites N/4 + 1,..., N/2 — 1. The measureniont has no cffect on the expectation
value of the spin on site 0. However, conditioned on the outcoine of the measurcuient, the reduced density matrix in
~T/2,...,T/2 becomes a pure state. Thus, we can statistically sample different measurement outcomes and then do
a simulation of pure state dynamics in ~7/2,...,T/2.

Now we explain the detailed approach. Let the initial state Wg = ¥y ) W, where ¥, g are states on the left and
right half of the system. Let Us,Ug, Ug, Up be the unitary operators associated with the gates in regions A, B, C, D.
Let 1% denote projection operators onto a complete basis of states, labelled by index o, on sites —N/2,...,~N/4 -1
and let Hf} denote projection operators onto a complete basis of states, labelled by index 4, on sites N/4+1,...,N/2.
We wish to compute

(U ® VRIUSULULUL (WL © U p|ULULULULSSUAUCUpUB W, 0 W) SiUAUCURUp| WL @ Bg)  (3)
(Up¥L) ® UpUp)|[UEULSEUAUCNULT L) & (Up¥p))
> {(Us¥L) @ (Up¥ ) MEMEULUL SSUAUCTIENG (U)o (Up W)
o, B
> ((Up¥L) @ (Up¥p)[METS (U i) & (Up¥g))
a,f3
y (Ug¥y) ® (Up¥Rp)NENFULU L S5UAUCTIETR (U ) ® (Up¥g))
(Up¥.) ® (Up¥p)TIENE(Up¥L) @ (Up¥ ) ’

i

it

where the second cquality follows because the projection operators TTZ, Hf} commute with the unitaries Uy, Ug; e,
because the projection operators arc outside the light-cone. Interpreting

(Us¥r) @ (Up¥r)TGIIF | (Up¥L) © (Up¥r)) (4)
as a statistical weight, we can compute the desired result by sampling

((Up¥:) ® (Up¥g)NENFULUL S;UUTETIE(Up Y1) @ (Up ¥ R)) (5)
(Up¥.) ® (Up¥p)|IEISI(Up¥L) @ (Up¥r))

with weight (4). Define ¥, g by

N (Ug¥ L) © (Up¥g))

Wap) = : (6)
NENG|(Up¥ L) @ (Up¥r))
Then Eq. (5) is equal to
(V8155 ¥a,8) (7
and (U, ® Up|ULULULUL SZUAUcUpUR|Y, ® ¥p) is equal to
(Vo655 Wa ) (8)

where (...) denotes an average over Monte Carlo steps with weight (4).

The light-cone algorithm for this quantum circuit is to sample (5) with weight (4). All the calculations described
here, such as calculating Ug ¥, or Up¥ R, can be done in a time of order T exp(T), rather than T exp(27'), and hence
the light-cone algorithm takes a time of order T exp(T") for each Monte Carlo sample. Since the operator S has
bounded operator norm, the root-mean square fluctuations in the expectation value are finite, and hence the sampling
error decreases as one over the square-root of the number of samples.

The basic idea of the light-cone quantum circuit method described in this section is the same idea used in [10] where
it was applied to continuous time dynamics. In the rest of this paper, we again treat continuous time dynamics, but
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FIG. 1: Using the light-cone methiod for a quantum circnit. Triangle includes sites within the light-cone. Qubits are arranged
along the horizontal axis, time increases vertically. We show the first round of the quantum circuit. Regions A,B,C,D are as
described in the text,

in contrast to [10] we use a matrix product algorithm to perform the early time simulation. The use of the matrix
product algorithin relies on the limited entanglement at early times (this contrasts with the approach in this section,
where instead we factorized the early time dynamics into a product of two different unitaries, Ug and Up, and relied
on the product nature of the initial state). One complexity in the matrix product simulation is that the probability
distribution of outconies o, 8 will not factorize into a product of separate distributions for o and 3 because there may
be some entanglement between those portions of the system. We will explain how to resolve this problem. Another
difference in the calculations in the rest of the paper is that the early time evolution using the matrix product evolution
will be done for a time which is slightly more than half the final time, rather than exactly half as it is here.

MATRIX PRODUCT ALGORITHM

Modified iTEBD

To do the matrix product simulations, we used a modified version of the iITEBD algorithm with improved numerical
stability. Before describing the improved algorithm, let us recall how iTEBD works. The algorithm stores a matrix
product state for an infinite system. We have matrices ['*(s) and I'®(s), for the even and odd sites respectively,
where s labels the spin on the site. There are also diagonal matrices A* and AP defined on the bonds directly to the
right of the even and odd sites. The wavefunction amplitude for a given configuration of spins, ..., sg, 81, 82, ... 1s equal
to ¥(...., 80,81, 82,....) = .["(s0)AATB(51)ABTA(52)A€... The matrices A8 are chosen such that their diagonal
coefficients coincide with the Schmidt coeflicients of the state decomposed across the given bond; this contrasts with
other matrix product state representations used in other algorithms where the algorithm only stores a single matrix
for each site.

The iTEBD matrix product state can represent a system with translational invariance of period 2. It is thus very
convenient to use for our system, which has such invariance in its initial conditions. The time evolution is simulated
using a Trotter-Suzuki method, The time evolution is broken up into small steps 8¢, and the time evolution is
approximated by a series of two-site unitary transformations, UAF = @, U2+ and UBA = @, UR 121 where
U+l = exp(—ihm"*+16§t) is a unitary acting on sites r,r + 1. By updating first with U458 and then with U54,
the state maintains translational invariance at all times. In our implementation of the modified iTEBD algorithin
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described below we use a second-order Trotter-Suzuki decomposition with a time step of 0.0625.

In a single update step, the iTEBD algorithm proceeds as follows. Consider the update under U AB " The matrix
U2n27+1] has matrix elements Uslf:f;'i,”s,ﬂ , where s4, sp represent the spins on the A and B sites after acting with
U and sy, s’y represent the spins on thg A and B sites before acting with U. First, compute the matrix

O(sa,s8) = APC(sa, 5p), 9)
where we define the matrix C by
Clsasp) = Y Ugij*j;j;}isg T4(s' ) AT B (s )AB. (10)
8'4,%p
Thus,
Osavsu) = 3 UL L APPASDAT 2 (/). (11)

o ?
s’ .8y

This matrix € is not part of the usual description of the iTEBD algorithm, but we define it for use later. Note that
in Eq. (10) the quantity Uii’f;’t; ]’S,B is a complex number, and all other quantities I'4% and A*Z represent matrices
which are multiplied following the usual rules of matrix multiplication.

The matrix #(s4, sp) has matrix elements 6(s4, 3p)a s- Thus, 6 is a four index tensor, with indices sa, sp, ¢, 8. In
the second step, do a singular value decomposition of § according to the index bipartition «, s4 and 3, sg, so that

0('(",43“”33)(:‘/1' = Zxﬂ,s,‘x;ﬁigﬁyﬁ;’y,sy' (12)
B

The subscript notation a, s; 3 is intended to indicate that we treat X as a matrix with rows labelled by a and s and
columns labelled by /.

In the third step, define the matrices [P by their matrix clements fA'B(S)aﬁ as follows:

T8}y = (/\ff,,)”lxn‘.q;;a, (13)
f‘r’("")s‘f’r = y;i?“r;f"(/\[y)'y) _1-

The matrices I'4, T8, A* replace the old matrices I', %, A% after this update step, while the matrix AB remains
unchanged under the update step. Finally, we perform a truncation of the state: in cach of the steps, the bond
dimension increases, and we truncate the state by keeping only the k,,,, largest singular values of 8, discarding the
others. The quantity ke, determines the maximum boud dimension, with increasing k,,,. lcading to an increascd
accuracy in return for additional numerical effort. The stop with the largest numerical cost is the singular value
decomposition, which requires a computational time scaling as O(k3, ).

Unfortunately, we found some difficulties with numerical stability in our implementation of this algorithm for larger
{> 1000) values of k,,,,. The matrices A will contain some very small diagonal entries, and therefore (A*)~? will be
very large. Therefore, any small error in the singular value decomposition will tend to get magnified when multiplying
by (A*)~!. Note the sequence of steps: first we multiply by A#, then we do a singular value decomposition, and then
we multiply by (A)™!, so that problems can arise if the singular value decomposition in between the multiplication
steps is not numerically exact.

The solution to this problem is simple. First, we changed which matrices arc stored by the algorithin, so that
instead of storing the matrices I'4, I'?, we store the matrices A%, AP defined by

Ad(s) =TA(s)A4, (14)
AB(s) =T8(s)AB.

These matrices A4, A® are the usual A matrices defining a matrix product state. Such a relation A(s) = I'(s)A was
used previously in [16], but [16] used a method of doing the update which still required a division by A while the point
of the method described below is that it does not require any division (other minor differences are that [16} was not in
the context of infinite systems and also in [16] reduced density matrices were diagonalized while we employ singular
value decomposition instead).



We continue to store the matrices A%, A%, Then, in an update step, we first compute

C(sa,sB) }:U“’“ AN () AP (). (15)

SAS88
Sy

Note that if we substitute Eq. {14) into (15) we find the sane result for C as (10). We then compute the matrix
O(sa,sp) from C(sA, sp following Eq. (10). We next do a singular value decomposition of 8 as in Eq. (12), obtaining
matrices X,Y, A, In analogy to Eq. (1 4), we now wish to compute the updated matrices A which are defined by:

AA(s) = TA(s)A4, (16)
AB(s) =TB(s)A".
However, in order to compute the updated matrices A, 47, we do not do this by computing I'4, T'2 and applying

(16). Instead, we compute them in a different way. To derive the approach that we use, note that Eq. (13) implies
that Eq. (16) is equivalent to

By = Vi a7)
and
Asadas = (W) X (18)
= (M) Osassan (Y1) smi8
= > Cloasnlaa (Y7 )78,

Y.

where the matrix Y ~! has the opposite index bipartition to matrix Y (that is, v, sp; 3 instead of 3;7, sp).

Note that Eq. (17) does not involve multiplying by A™'. Siwilarly, the last line of Eq. (18) gives an expression
for A® that does not involve multiplying by A7, so this method of computing 4 does not have the same problem of
numerical stability. Further, no extra CPU time is required to compute € on the last line of (18) since the algorithm
computes this already as part of computing the matrix 8. Further, since Y is unitary, we have Y1 = Y1 so there is
no overhead to compute the inverse of Y. That is, Eq. (18) implies that

AMsa)ap =D C(54,50)arYiy s (19)

7.8

Thus, we can use Eq. (17,19) to improve the stability of the algorithm. The only extra overhead required is one
extra matrix multiplication, to multiply by YT as in (19). The overhcad to do this is small compared to the time
required to do the singular value decomposition of #. The complete pseudo-code for a single update step is:

1. Compute C by Eq. (15) and then compute © by Eq. (9).
2. Do a singular value decomposition as in Eq. (12).

3. Update A4, A® by Eqgs. (17,19).

Incorporating Symmetry

Both the iTEBD algorithm and the modified iTEBD algorithm discussed here make it very easy to incorporate
symmetry such as conservation of total 5% as follows. For a Hamiltonian such as the XXZ Hamiltonian (1) and for
initial conditions which have definite S* on each site as we have considered, it is always possible to choose the basis
vectors of the Schmidt decomposition to have definite 5°. Thus, for each bond variable o, we can assign a definite
S*, giving the total 5% of the spins to the left site of the given bond. The infinite size of the system does not give any
trouble with assigning a definite 5%, as we simply define the S* of the system to the left of a given bond to be the
difference between the total spin to the left and the initial spin to the left. This difference can be easily kept track of
because it increases or decreases by one when a single spin up moves across the bond to the left or right.



After doing the singular value decomposition for each §%, we get a list of Schmidt coefficients for each §%. If there
are more than k.. different Schmidt coefficients, we truncate. To do the truncation, we merge these lists, sort the
merged list from largest to smallest, find the k., largest Schmidt coefficients, and keep those. This means that the
number of Schmidt coefficients we keep for each % will depend on §%; we find that we keep many Schinidt coefficients
for 5% near zero, and fewer for 8% far from zero.

Some fluctuation is observed in how many Schmidt cocfficients were kept for each S§%, but a typical set of values
for kpar = 4096 was 2 at $% == —5; 28 at §% = —4; 142 at §% = -3; 403 at §% = —2; 748 at §% = —1; 968 at §* = 0;
890 at 8% = +1; 576 at §* = 4+2; 254 at §% = +3; 71 at §% = +4; 12 at §° = +5; and 2 at 5% = +6. Note the
asymmetry between positive and negative 5%, since the alternating spins in the initial configuration, combined with
our definition of 8% as the total spin to the left of a given bond, breaks the symmetry. To explain this asymmetry
further, consider a site which in the initial configuration is spin up, with its neighbor spin down; the only way that
the spin to the left of this bond can change at the first iustant of time is for the up spin on the given site to hop to
the left, increasing the total spin to the left, but there is no corresponding process which would decrease the spin to
the left in the first instant of time.

The most computationally costly step is singular value decomposition. The bond variable 3 in Eq. (12) has an §°
which is equal to the §% of bond variable « plus the z-spin of s4. Thus since s4 takes two different values, there
are two different 5% values of bond variables o which contribute to a given S* value for bond variable 8. Thus, for
the specific number of Schmidt coefficients kept which is given in the above paragraph, the largest matrix that we
decompose has bond dimension 968+ 890 = 1858. Without the use of symmetry, keeping 4096 bond coefficients would
require decomposing matrices of size 8192,

COMBINING LIGHT-CONE AND MATRIX PRODUCT

We now describe how we combine the matrix product algorithm with the light-cone method. The matrix product
simulation will be accurate for a certain range of times; the larger k... is the longer it works. We run the algorithm
for as long a time as possible for the given k... Let this time be 5. For kpoe = 4096, we could take t,q slightly
larger than 16 before encountering appreciable truncation error. The kypnq, required to reach a given ti,: at a given
truncation error increased exponentially with ¢, After simulating to time #4,;, we save the matrices defining the
matrix product state. A separate program then perforins the sccond phase of the simulation as follows.

We wish to compute the expectation value of the z-component of the spin on a site, say site 0, at a time tg;, > tinge.
That is, (S§(tsin)). The matrix product simulation gives a matrix product state |[9%(t;n,,)) which is a good
approximation to the state |4 (t;.:)), where

6 (Fint)) = exP(—iHt i) 9. (20)
Then

(S5 (trin)) = (7P (tinit )| exp[iH (tfin — tinit)] S5 eXp[—tH (L fin — tinit)[|0™P% (tinar)). (21)

Fig. 1 shows a plot of what we want to calculate in space and time. Note the past light-cone of the spin; the dynamics
of the system outside this light-cone has little effect on the spin. The Lieb-Robinson bounds{12--15] make this intuition
precise; using these bounds we can prove that we can approximate (21) by

(SE(1)) = (™% (tinat )| expliH (trin — tinit)]SE exp[—iH " (tfin — tinit |0 (tinit)), (22)
where H!°¢ includes only the interaction of sites within some distance { of site i. Thus,

{—1
H'¢ = %" SFST, + SYS, + ASIS,. (23)

t=—1

Aslong as ! > vpp(fin — tini), then it is possible to use the Lieb-Robinson bounds to prove that the approximation
{22) is exponentially good, where vp is the Lieb-Robinson velocity. Previous experience with other light-cone
techniques tells us that in fact the approximation is good so long as { > vew{tin — tini) Where vy, is the spin-wave
velocity, given by

vsw = (7/2)sin(6)/8, (24)
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FIG. 2: Sketch of regions £, R for [ = 2.

where cos(8) = A[17]. Note that the dynamics we consider takes place in a highly excited state, rather than in the
ground state, so a priort it is not obvious that v, is the correct velocity for excitations, but numerical evidence both
previously and in this work indicates that it still is the correct velocity in this regiine. Note also that vs, < vpg for
this system.

Let £ denote the set of sites to the left of site —! and R denote the set of sites to the right of site +!, as shown
in Fig. . Imagine that at time #;,;; someone measured that state of the system on L, doing the measurement in
the Schmidt basis, and also measured the state of the system on R, again in the Schmidt basis. Physically, this
measurement, being outside the light-cone, should not affect the nicasurement of the spin on site 0 at time tg;,.
Mathematically, we can express this as

(B (i) | XDLH (i~ tinit )55 0xD[ =1 H' (¢ i — tina) ][ (i) (25)
= Z(zf;’mpﬂ(tinit)ln(l;ng exp[iHlm:(tfin - tém‘t)ls(? Cxp[_iggoc(tfin - tinit)}ngng]d)mps(tinit»;
o,

where ITIZ projects onto state a in L and 1‘1;} projects onto state 3 in R, with 3__IIZ = 1. Note that the correctness
of (25) depends on the fact that % and H}} commute with exp{il—[“’”(t;m — tinat )] SE exp[v—iH“’C(tﬁn — tinit)]-
Note that

D ™ (tinee) TIETL expliH' (¢ pin = tinie )] S§ exp—iH'* (t i — tinie) [ITATIF [P (£1000)) (26)
o,

= (W (tins IIETE W™ (binar)) ¥
o3

Zaﬁ(wmp (tznlt)lnl‘nﬂ CXP[ Hloc(tfm - imﬁé)]sg OXp[ Hm((tfm - tmlt)}HLHR]T'L'mps(t””t))
Z (q/)’”?’f mw)il’[LHR|me3(tm,g)>

Thus, if we statistically sample with the weight

(P (tinie) [TIETLS 9™ (10000 (27)

we find that

<,¢‘mps (tinit)l exp[igeoc(tfin - tinit)}Sg exp["i-[{[oc(tfin - znat)”wmpg(ttnzt)) (28)

(P8 (imee ) ITTETIE exp[i H'O(t i — tin52)] S exp=1H' (pin — tinst)JTIETIR[4P5(2i050))
Za,ﬁ <71L’1nps(tinit);H(I{Hglwmps (tinit)>

= ( mps(tunt)l exp[ZHloc(tfm - tinz’t)}*ggz exp{”i‘qzoc(t}’in - mzt)} mpq(tlmt))

where (...} denotes the average over Monte Carlo steps with weight (27), and
TIETTE Y™ (finie))

mes(tzmt» = .
DAL (tinic))|

(29)



The light-cone algorithm does the statistical sampling of (28) with weight {27). For each Monte Carlo step, the
algorithm does three things. (1): Pick «a,/ according to the probability distribution (27); (2): Calculate the state
[d}Z”f}”(tm“)) in the computational basis (a product basis in which each site has definite spin up or downj}; (3): Evolve
the state ]z/):;’,gs(t,»m-,)) forward in time for a time tgi, — tiny and compute the expectation value of S5. We explain
how to do each of these steps in turn.

Sampling «,

To sample «, 3 according to (27), we proceed in a series of steps. The difficulty that we encounter is that « and g8
are correlated: the probability distribution in (27) does not factorize. We will show how to overcome this by replacing
this probability distribution by a product of conditional probability distributions which are casier to compute, and
then sampling each of those probability distributions. Finally, after explaining our approach, we will explain why
an alternate approach, which at first sight seems more natural, is not good because it requires much mmore computer
time.

Note that
(WP (i ISR (tinar)) = P(e) P(Blax), (30)
where
P(er) = @™ (i 0 (inar)) (31)
and

(0 (b ST 9P (£00)
(P i TE[ T (F10))

P(3]a) = {32)

Note that

<v’,m;m (Im:f)}l’lf; Il:jlwlulin({m” )>
G LT )

=1, (33)
3

so that P{fla) ean indeed be interpreted as a conditional probability distribution. Therefore, we can first pick «
randomly according to the probability distribution P{«) and thew choose /1 randomly according to the probabitity
distribution P(Sla). Chousing « is casy, since P{a) is given by the square of the corresponding Schmidt coefficient,
and these Schmidt coefficients are the diagonal entries of A, Choosing 4 is more dithicult, since v and 3 are correlated.

To choose 3, we proceed as follows. Define ll% to project onto the state of site ¢ with spin up, and define Hj to
project onto the state with spin down. Then, we have

P(Bla) = ZH P(s_t|a)P(As_s0), (34)
where |
Pteale) = e -
and
P(Bls-10) = L IS TL M7 ) (36)

(023 (b | TTETL [ (ti))

Note that P(] |a) + P(] o) = 1 so that we can interpret P(s|a) as a conditional probability.
Repeating this, we find that

P(Bla) = Z(Z ( 3 (Z P(s_,{a))P(ﬁs,m[s_,a)),..P(ﬁsllslw,...s_la))P(ms[sl_l...s,ia), (37)

5 811 Sewigr Sy
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where

Si-1 8.2’

<1/)?"p3(tévict)1ilg._.}a H;a_zz edlg in(l; lwmps (tiﬂit»

3 <"/Jm"‘“(tme:)lU' - 11-11 2 -i Hi lwmp&(tnut»

(38)

Thus, we can first sample & randomly as before, and then randomly sample the spin on site —{ conditioned on that
«, randomly sample the spin on site —{+ 1 condditioned on the given  and s_;, and so on, until all spins are sampled,
and then finally sainple 8 according to

(s (i) TG LT TGP (Eiar))

P({Bs1..8 v} = ’
( 1 <l/"”7""’(t’im£)§n.!ﬁ"'Hs——lznélwmm(tm“))

(39)

Computing cach of these conditional probabilitics can be doue in a time O(k2, ) as follows. After j steps, we store
the vector AP (s_yp 1) AN (s YL (£1,0,4)). where the A matrices in this expression are alternately chosen
to be A4 or AZ depending on whether the site m on the odd or even sublattice. We then compute the two different
vectors AA'B(H_IH)AA'B(&.;““1).A,A"‘”(ss; Ll (¢4,00)) for the two different choices of $..14+5, and compute
the norms of these veetors to determine the mndmmml probability. After choosing -5_[+j, we keep the corresponding
vector and use it in the next step. The matrix-veetor multiplication takes a time O(k2, ).

This solves the problemn of statistically sampling «, 3. Finally. we would like to discuss why a different, seemingly
more natural approach to the problem is not as good as the approach explained here. This different approach would
be first statistically smmple a as discussed heve. Then, initialize a matrix p to the state |a){a|. The matrix product
state defines a CP map. In fnet, it defines two ditfferent CP maps, one for odd sites and one for even sites, which we
can call £ o Propagate the state p throngh these two CP maps, alternately applying the even and odd CP
maps, applying a total of 20 + T maps. 1f £ is even, the result is E700n (€4 (geven(p) ), while if { is odd then instead
we apply E2H(E T (E0M (p)...). The result gives the redueed density matrix on sites —o0, ..., +1, given that on sites
-0, ..., — the system is i state o The diagonal entries of this density matrix give the probability distribution of 3.
Howmv this approach, while more natural, requires performing watrix-matrix multiplications, and hence would be
much slower than the ln;m'ix-thm' wnltiplications that we used above.

It is bwportant to understand that after sampling o, 4, we do not make any further use of the randomly sampled
values of the spins <., 85 that we found in this step, We discard those vadnes s_ . ..., 5; and keep just the o, 8 for
the next step. Different spin configurations associated with n given e ;3 will be added coherently, as scen in the next
step where we commpute the amplitude to be i cach spin configuration for the given o, 3.

m/w

Computing ¥

The next step is to compute the amplitudes for W' in the computational basis. There are 224! different amplitudes
that we need to compute. We first explain a simple (and slow) way of computing these amplitudes, and then describe
a much faster “mect-in-the-middle” way to compute these amplitudes which is what we actually used.

The simple way is as follows. Suppose U is even (if [is odd, then the sublattice indices A, B will be reversed in this
paragraph and the next). We compnte the amplitude to be in each of the 22+ different states in turn for the state
H(‘gﬂg}zjz"‘”(timt)), and then we normalize the state after. To compute the unnormalized amplitude to be in the state
S1,S1—11 -, 81, first compute the inner product (a|A%(s_;)... AP (51 A% (5))|8), where (a] is the vector with a 1 in
the o-th entry, and zeroes elsewhere. Computing the inner product takes a time (20 + 1)O(k2,,.). Thus, the total
time is

21+ )22 Ok, (40)
Note that since we compute unnormalized amplitudes, it does not matter that the inner prod-
uct {(a]A?(s_¢)...AP(5;1)A%(51)|8) has an extra factor of A* at the end compared to the expression
(T4 (s )AL A AB (5, )ABT A (5))|3). We will nornialize the amplitndes later.

A much faster way is a meet-in-the-middle approach. For cach of the 2!*! different configurations of the spins
S_1,..., 81,80, we compute the vector (a|A”(s_;)...A"*(sp). Note that this vector is in the auxiliary Hilbert space of
dimension given by the bond dimension. Also, for cach of the 2¢ configurations of the spins s;, s;_1, ..., 81, We compute
the vector AB(s,)...A%(s;)|3). Computing all of these vectors takes a time

(L + 12 OkS ). (41)


http:pr()hahilit.ie

11

We save alt of these vectors (the memory requirement for this is O(kumae2!71) which means that as long as 21 < ky,q.
the additional memory required is negligible). Then, for each of the 22+1 spin configurations of spins s, ..., s_; we
compute the inner product of the vectors (a|A4(s_;)...A%(s¢) and AZ(s;)...A4(s;|8). This takes a time

22Ok (42)
and hence the total time required is

(1 + D2 OKG,0,) + 2 Ok ). (43)

Again it is possible to make use of symmetry in these caleulations. We compute the veetor A2(s))...A%(s;)|6)
in [ different multiplications, and after cacli multiplication the vector has a definite §%. This greatly speeds up the
matrix-vector multiplications. Also, tlie resulting veetor ‘I""';; has a non-vanishing amplitude only in a single S*
sector, which reduces the merory requirement aud speeds up the calenlation of the time evolution deseribed in the
next subsection.

Tihne Evolution of ‘If""”

lIll)N

Finally, we time cvolve the state for thme #5, — ting. We do this evolution using sparse matrix-vector
multiplication as follows. Before dmu;, .un Monte Carlo sampling of the states, we build a representation of the
Hamiltonian as a sparse matrix. Each row of the matrix has Q1) non-vanishing clements.

Then, we fix a small thne step 8t and evolve the vector over several of these small time steps. In the simulations
here, we choose 8t = 1/3. In this way, a single Monte Carlo sample allows us to compute the expectation value of 8§
at several different times. To evolve for a time step 8t we approximate

‘ ) Minar o Hn
exp(HIsN)[W) = > (-i) —1o), (44)

=0}

where we truncate the Taylor series expansion at a finite order ny,,,.. The vector H™*|W) can be comnputed using
sparse matlix-veetor mltiplication. The total computational time required is

C)(n,,,“‘,.(l + 1)2‘-”“). (45)

In practice, this step is very fast compared to the previous step of computing W' for the values of ke and [ that
we choose.

Psecudo-Code

We recap this description of the procedure by giving the psendo-code for a single Monte Carlo step.
1. Choose @ randomly according to the probability distribution [A2(a)|2.

2. For i = ~ltoi=+!{ do

2a. Use the stored vector AAB(s_yy 1) AMB (s _DTIL ™S (b)) to compute
AMB(s_ 1 VAP (51 j1). AMB (s )TTIE|¢™P3 (t,1)) for both choices of sy ;.
2b. Randomly choose s_;;; according to P(s;|si_1s;,...5_;c).

3. Randomly sample 8 according to P{3is;...s_;a).

4. For cach of the 2/*! configurations of spins —,...,0 compute the vector (a|A%(s_;)...A%(sy). Save for usc in
step 6.

5. For each of the 2° configurations of the spins s, s;_1, ..., 51, compute the vector AB(s;)...A%(s;)|3). Save for use
in step 6.
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8. For each of the 2%+! gpin configurations of spins s, ..,s-; compute the inner product of the vectors
(a] A% (s_;)...A%(s0) and AP(s))...A"%(s;)|8). Save the result as the amplitudes of the state \IIZ';';; in the com-
putational basis.

7. Normalize that state \I/Z‘}%‘",

8. Evolve state W'’ forward by a sequence of time steps 4t until tine t;,,. Compute spin expectation on site 0
after each time step.

Time Estimates

The total time required for all steps is

0 (‘{25 }‘.;znuzr + ‘{(f‘f“f /51‘}11’”"“‘22{) ’ (46)

The dependence on tyiy, and 7y, Is unimportant compared to the exponential dependence on 1, since it suffices to
take na. = O) to obtain accurate results. Looking only at exponential dependence on [ and polynomial dependence
on kyuaz, and ignoring any polynomial dependence on {, we find

2 ol 2l
”1"!).[2 + 2 * (47)
This is to be compared with a time Q(k? ) for the matrix product simulation (again, ignoring the dependence on
the number of Trotter-Suzuki states, and only considering the dependence on Ay, ). Thus, equating the two times,
we find that we can take

Ql ~ Kpar- (48)

This in fact is ronghly the regime in which we worked below, since we took I = 10 and k.., = 4096. Similarly, since
we work in the regime 2% < k00, our additional memory requirements are negligible.

In fact, our time to do a single Moute Carlo step was nmieh faster than our time to do the matrix product
simulation. This was balanced by the fact that we have to do many Monte Carlo steps. Fortunately, the Monte Carlo
steps parallelize trivially.

In principle one could avold any Monte Carlo sampling by summing over all possible values of «, 8, appropriately
weighted. While this calculation parallelizes well, it would not be practical for large values of kg

RESULTS

We siinulated using the stable iTEBD for k,,,, ranging up to 4096. Accurate results were found up to a time
slightly greater than 16, with low truncation crror. Unfortunately, we do not know a good way to directly compute
truncation error in iTEBD. For a finite size systemn, one can compute the difference between the state after truncation
and the state before truncation. This gives an upper bound on how the truncation affects expectation values, For an
infinite system, this doesn’t work. To see why this doesn’t work, consider a finite but large system: even if we make
only a small error in the state everywhere and are able to accurately approximate all the local expectation values, we
make a large total error in the state vector because the system is large. So, we estimated truncation crror in a few
different ways. We checked how certain observables, such as §§, depended on k... For a given k., < 4096, the
curve would follow the k... = 4096 curve for some time, and then deviate. We could see how the time of deviation
depended on kpmqz, and extrapolate to kg, = 4096,

Also, we took results from the ITEBD simulation at times 15.0625 and 16.0625 and started the Monte Carlo
sampling at those two different times and compared results. When we compared two different Monte Carlo averages,
one with £, = 16.0625 and one with ¢;,:;; = 15.0625, both having the same I, we ohserved that the results agreed,
up to statistical error, until a time ¢y, &~ 15.0625 4+ {/v,,,. That is, the deviation between the two curves ouly arose
because the curve started at t,;; = 15.0625 saw the finite-size effect of a finite [ carlier than did the curve started at
tinie = 15.0625. Thus, we are fairly confident about the accuracy of our stable iTEBD simulation up to time 16.0625
up to times of roughly 22.5 as shown in the figurcs below.

It took roughly 2 CPU days on a 2Ghz Opteron to do 1000 Monte Carlo samples for { = 10, We did 98000 samples
for tie = 15.0625 and 82000 for t;n;; = 16.0625. We additonally did several runs for smaller [ and smaller t;,,;¢ to
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FIG. 3: Comparison of iTEBD for k.. = 1024, 2048, 4096,

check the algorithm. In Fig. we show the computed behavior of the magnetization ((Sg(t))) as a function of time
using the modified iTEBD with kne: = 1024, 2048,4096. For any given k..., the accuracy of the algorithmm breaks
down badly at sufficiently long time. Doubling k., leads to only a constant increasc in the time which can be
simulated, which implies that reaching times > 20 will require proliibitively large matrices.

In Fig. ) we show a comparison of the light-cone method and iTEBD with k4, = 4096. The difference between
the two different light-cone curves is within sampling crror for the given number of samples. The root-mean square
sampling error was roughly 0.00025. By increasing the munber of samples this error can be reduced as the square-root
of the number of samples.

In Fig. } we show the mean-field of [11]. This curve shows an increase in the order parameter at times > 20,
followed by a decrease at later times. The curve is well-described by beating together two different cosines, with a
1/t3/% envelope. The revivals come from the beats.

In Fig. } we show the mean-field of [11]. This curve shows an increase in the order paramecter at times > 20,
followed by a decrease at later times. The curve is well-described by beating together two different cosines, with a
1/t%/? envelope. The revivals come from the beats.

In Fig. ) we show the time serics of peak heights for the each maximum in the absolute value of (5§(t)}. Each
circle represents a given time at which a maximum occured. Circles at early times are from iTEBD, circles at later
times are from light-cone. Note the non-monotonic behavior. The y-axis is a logarithmic scale. The non-monotonic
behavior is within sampling error, so it is possible that the peaks do decay monotonically. However, we are fairly
confident that even if the peaks do decay monotonically that the decay of the peaks does not follow a straight line on
the linear-log plot and instead flattens out.

It is possible to reduce the sampling error further by more runs. A ten-fold increase in runs would enable more
definite statements about the monotonicity of the peak heights. Interestingly, the root-mean-square fluctuation in the
mean of a given light-cone curve (such as the curve with ¢, = 16.0625) is much greater than the root-mean-square
fluctuation in the difference of the y-coordinate of the curve at two different times. So, it may be possible to reduce
sampling crror by shifting the y-axis by a constant to agree with the known correct result at carly times. We have
tested this, and the result continues to support a non-monotonic behavior of peak heights.
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FIG. 5: Mean-field of [11].

DISCUSSIONS

We have developed a mmethod combining the light-cone technique with matrix product methods. While the compu-
tational complexity is still exponentially large as a function of time, the exponent is lower than using matrix product
methods alone. As a result, we are able to go to significantly longer times for the same computational cffort. We have
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FIG. 6: Peak heights.

discussed several different ways of doing the sampling depending on the computational resources of time and memory.

While we used a cluster to perform statistical averaging, the liglht-cone method makes it possible to perform
simulations for shorter times with very small computational cost. If we reduce t;,,;¢, then the required k4, reduces
also, and then the statistical sampling becomes faster (the dominant cost in the statistical sampling is the O(2'k2, )
cost). For example, with knqaz = 128, it is possible to reach t;,; > L1; in that case if we take the same [ = 10, we
could recach a time of roughly 18. With k., = 128, the statistical sampling would of course be much faster than
with ke = 4096.

Our results support the possibility of revivals in the order parammeter. Perhaps at smaller A the system would be
closer to mean-field and so the revivals would be more clear; however, at the same time, the time before revivals occur
is longer in this case which makes the simulations more difficult.

The integrability of the system does not play any role in our method. However, it does play some role in the results.
Even in the mean-field studied in [11], breaking integrability leads to a large change in the asymptotic behavior of
the magnetization; the mean-field for the integrable system has a power law decay, while non-integrable perturbations
lead to a much faster exponential decay and can destroy the revivals if they are strong enough.
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