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Light Cone Matrix Product 

M. B. Ha.'itings 1 

1 Center for Nonlinear Studies and Theoretical Divis-ion, 
Los Alamos National Laliomtor1j, £08 Alnmos, NM 87545 

We show how to combine the light-cone and [Hat rix product algorithms to simulate quantum 
systems far from equilibrium for long tiuws. POI' tilt' (,IIS(, of the XXZ :-;pin chain at. ~ 0.5, we 
simulate to a time of ~ 22.5. While part of the long silllulat iOIl tinw i:-; dm.' to the use of the 
method, we also describe a modification of t.he iTE8D algorithm wit,h improved numerical 
and we describe how to incorporate sYlllmetry into this algorithm. While statistical ;iamplmg error 
mealls that we are not yet able to nmkp a dptinit.e statelllPlIt, the \)('havior of the sillllllat,lolI at 
times indicates the appearance of "revivals" in the order parallleter as pl'('dictt'd by lIl]. 

PACS numbers: 

Over the last few years, it Iw.s becollle pmisibl(· t () sinllllate lime dynalllics of Olte dimensional quantulll systems 
llH'thods snch as tile t.il\le-evolving hond dpcimatioll (TEBD) algorithm[I]. 

in both t ilue alld llwlllory. scales exporl('utially ill the eutanglement entropy of the 
system, and hence these methods work most efficiently when thp quantulll state being; simulated ha,'l a sillall amount of 
entanglelIlt'llt. There are, fortullately, many importallt (~xalllples where the entanglement g;rows 
and these techniques work well. Broadly speaking, :-;low cntallgiement growth seems to happen ,vhen we take a 
in its ground state. and then perturb it IO(~Hlly, by adding a particle or other perturbation at. a sillgie 

On the other hand, a global perturhation of the system, such a,.<; by starting the system ill the ground st.ate of one 
Hamiltonian and then evolving it under another, often gives rise to a linear growth of entanglemcnt entropy with time, 

simulation exponentially difficult in time. This behavior has been studied from several directions, including 
conformal field theory techniques[4]' and by mathematical physics methods giving general upper 

in 
of this behavior is the time of the xxz 

H L SiSi"t1 + S;S;+l + 

We start the system at t,ime t () at the ground state of the Hamiltonian with infinite .0., and then evolve the system 
for t > 0 ullder the Hamiltonian with some finite .0.. This is a sudden quench from infinite .0. to finite .0.. The starting 
state at infinite .0. is given by 

1 (2) 

was studied in was found. A related problem of in an 

In this paper, we present a new approach to simulating such far from equilibrium. This approach combines 
the "light-cone" method introduced ill [10] with matrix product techniques. The result enables us to simulate for 
significantly longer times than possible with any other existing method. 

The integrability of the XXZ Hamiltollian docs not play any role in 0111' approach. However, sOl1le of the physical 
results seen in our simulations may be a rmmlt of integrability, as disclI;-;sed later. Integrability ha.."l been exploited to 
study the time dynamics of a BCS pairiug modcl[8] after a sudden quench. The model studied in [8] had no spatial 
structure to the interactions; instead, each ferlllionic mode interacted with each other fermionic model. which 
makes that model simpler to treat. However, even for that model it was necessary to usc 
calculations to exploit integrability, so that for the XXZ Hamiltonian above it is not surpnsmg that we must usc 
numcrics to understand the time dynamics. 

Our main physical interest in this system is to study the possibility of "revivals" in the order parameter as 
by a mean-field study of the system in [11]. If one mea;-;ures the expectation value of SZ on a given site as a fUIlction of 
time, (St(t)), one observes an oscillating behavior as a function of t.ime, with damped oscillations (similar oscillating 
behavior is also observed for a related bosonic system in [7]). The expectation value also alternates sign as a function 
of site index i. By "revival", we mean that the envelope of this damped oscillating function may stop decreasing and 
instead increase for short periods of overall, the envelope but for short periods it may stop decreasing. 
It is true that the XXZ spin chain may be quite far from mean-ficld, being in one-dimension. Further, in this paper 
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we.collsidet' the case 6 0.5, which is a relatively strong interaction. However, we were interested to numerically test 
the dynamics of the order parameter at large times to see if some qualitative features of the mean-field carryover. 
Unfortunately, even at 6 = 0..5, the first revivals in the mean-field occur at a large time (> 20) which means that 
existing matrix product algorithms cannot reach the time to see this behavior. The light-cone method does reach 
the desired times. Due to sampling error in the Monte Carlo sampling, we are not able to make a definite statement 
that there are revivals based on our results, however the result.s strongly support the possibility of either revivals (an 
increase in the envelope) or at least a tendency for the ell velope function to remain constant for oeriods of time rather 
than decreasing. 

The next section of the paper explains the basic idea of the light -cone, in a simpler setting of discrete time evol ution. 
We show how to significantly reduce the computatiollal cost involved in computing (on a classical computer) the 
expectation value of an operator after <1pplyillg a quautum circuit to a state; the cOot remains expoIlential, but with 
a lower exponential, albeit at the cost of SOllle ad(litiollal statistical sampling. After that, we present the matrix 
product method we tlsed, a lllodified version of the illlluite time-evolving bond decimatioIl algorithm (iTEBD)[9] with 
improved numerical stability. This section is logically s('parate from the rest of the paper; on the one hand, one could 
use this modified iTEBD on its own, rather than us part of it light-cone simulation, while on the other hand the rest 
of the paper simply relies on using some matrix product algorithm to do the early time simulation and indeed other 
matrix product algorithms would work lwre. We dIOse this algorithm since it was best suited to our purposes with the 
least numerical effort. After that sect.ioll, we d(~scribe how to combine the light-cone and quantum circuit methods, 
and in the section after t.hat we deocrii>e O1lT 11ll11lcrical results. All numerical work in this paper is done for the XXZ 
chain with ~ = 0.5. 

LIGHT CONE FOR QUANTUM CIRCUITS 

The algorithm in this paper is hased OIl t lip idea of the "light-cone". In relativistic systems, the importance of the 
light-cone is well-knowIl. For such systellls, llO illflmmce occurs outside the light-cone; equivalently, any two operators 
which are space-like separated COnIlllutp wit h Pilch other. However, even in a system described by non-relativistic 
quantum mechanics, such a.'l a one-dillll'llsiollal Spill dmill, t.here is still an upper limit to the speed at which any 
influence can propagate through the system. This houlld is expressed formally through Lieb-Robinson bounds[12-15]. 
Consider any operator 0 which acts 011 a single site, say sit.e Humber O. The Lieb-Robinson bounds can be used 
to show for many systems, including the XXZ spin chain, that cxp( -iHt)Oexp(iHt) == Ott) can be approximately 
described by an operator which has support ollly Oil It sd of sit('s with ill distallce vLRt of site zero, where VLR io 
called the Lieb-Robinson velocity. In contrast to relat.ivistic SySt(~lllS, there is some "leakage" outside this light-cone; 
however, we can make this leakage exponentially slllall hy slightly enlargillg the support of the operator we use to 
approximate 

In this section, we explain how the presellce of a Iight-nlllc ('all he mi!~d to silllplify the calculation of time­
dependent expectation values. We explain this idea in it silllpl('r setting, a qlHlllt 1I1lI cir-cuit modd, in order to avoid 
the complexities of the Lieb-Robinson bound. Suppose we have N qllhits Oil a lim', lahelled - N /2, -N/2+ 1, ... , N/2-1, 
and we consider a discrete time dynamics as follows: on the first tilllo st.pp (amI 011 all snbseq1l<mt odd time steps), we 
act with a set of 2-qubit gates which act on qubits - N /2 and - N /2 + L quhits - N /2 + 2 amI - N /2 + 3, and so on. 

on the second time step (and on all subsequent even tillle stops) we act with 2-qllhit gates on qubits -N/2 + 1 
and -N/2 + 2, qubits -N/2 + 2 and -N/2 + 3 and so on. 

We consider the following problem, which is a discrete-time aualogue of the cOlltiuuOllS time oroblem addressed 
elsewhere in this paper. We initialize the system to some given product state, evolve for T 
then measure the expectation value of the z-cornponent of the spin at site O. 

How long does it take to compute this expectation value on a classical computer? The simpleot algorithm is to 
store the amplitudes for the quantum state as a 2N-dimensional complex vector, and update this amplitude at each 
time step. The time required for a single time step for this algorithm is of order 2N , and the total time is of 
order T22T. 

We now explain how to reduce this exponential from 22T to 2'1', at the cost of haviug to do some statistical sampling 
and of only approximating the expectation value. Consider 1, which ohows a drawing of the gates in time. 
note that the gates outside the triangle have no effect on the final output, lying outside the discrete light-cone, and 
so they can be 

Before explaining how to actually do the calculation, let us motivate the approach physically, using the idea of 
entanglement. After time T /2, it is only necessary to consider the dynamics within region A marked in 1. Since 
this dynamics occurs only on the sites within distance T /2 N/4 of site 0, it occurs on a system of length T 
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than simulating a pure state. 

and hence -the cost to simulate pure state evolution on these sities is of order 2T. On the other hand, at early times 
(before time T /2) the system has less entanglement, and so also should be easier to simulate. The difficulty with 
implementing this physical idea is that at time T /2, the reduced density matrix on sites - T /2, ... ,T /2 is not a pure 
state as those sites are entangled with the outside. Simulating the time dynamics of a mixed state is much 

rather than 2T. However, that someone did a projective 
basis of states on sites -N/2, ... , 1 at time T/2, and someone 

else did a projective measurement on sites N /4 + 1, ... , N /2 - 1. The measurement has 110 effect on the 
value of the spin on site O. However, conditioned on the outcollle of the measurcment, the reduced density matrix in 
-T/2, ... , T/2 becomes a pure state. Thus, we can statistically sample ditferC'ut lIleasurement outcomes and then do 
a simulation of pure state dynamics in ... , T /2. 

Now we explain the detailed approach. Let the initial state Il!o = Il! L C·) IjJ n, wlwl"c ill L.U arc states 011 the left and 
right half of the system. Let UA, UB, UC, UD be the unitary operators aSH()t'iat.cd wit.h the gates ill regions A, D. 
Let rr~ denote projection operators onto a complete basis of states, labelled by imkx n, on sitl';'; -N/2, ... , -N/4 1 
and let rr§ denote projection operators onto a complete basis of ~tatex, lahulll!!! hy index /1, on sites N /4 + 1, ... , N /2. 
\Ve wish to compute 

o ilIL N 1l!1l) (3) 

= 

= 
<> ,/3 

I:(UBill L) ® (UDIl! R) Irr~rral(UlJW IJ (~) (Uu IjJ H)) 

<>,/3 


((U B Il! L) ® (UDill R) Irr~rrlfu2·u.!18UUA ucrr;;rr/JI(U u ill d 0 (UDill n)) 

x {(U u ill L) ® (UDIjJ R)lrr!;ngl(UuljJ d (~(UlJll! a)) , 


where the second equality follows because the projection operators rr~, rr§ commute with the unitaries UA, Uc; i.e., 
because the projection operators are outside the light-cone. Interpreting 

@ d 
as a Htath;tical we can the desired result 

{(UBIl! d ® (UDili R)ln~rrgubu1sO'UAUcrr~rrgl(UBIl!L) (") (UDIl! R)) 

((UBIl!L) ® (UDIl!R)lrr~rr§l(UuIl!L) ® (UDIl!R)) 

with weight (4). Define ilI"',/3 by 

I(UBIl! d ® (UDIl! R))
Il! ",,{3) = ,---------"----------, (6) 

Then is to 

and (illL 01l! RIULububu1 soUAUC UDU BIll! L 01l! R) is equal to 

(Il! "',13 ISO' Iill <>,(3), (8) 

where ( ... ) denotes an average over Monte Carlo steps with weight (4). 
The light-cone algorithm for this quantum circuit is to sample (5) with weight (4). All the calculations described 

here, such as calculating UB Il! L or UDIl! R, can be done in a time of order T exp(T), rather than Texp(2T), and hence 
the light-cone algorithm takes a time of order T exp(T) for each Monte Carlo sample. Since the operator SO' has 
bounded operator norm, the root-mean square fluctuations in the expectation value are finite, and hence the sampling 
error decreases as one over the square-root of the number of samples. 

The basic idea of the light-cone quantum circuit method described in this scction is the same idea used in 
it was applied to continuous time dynamics. In the rest of this paper, we again treat continuous time 

http:aSH()t'iat.cd
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T 


T/2 


-N/2 o N/2 

F1C. I: [bill)!, till' Ii~ht-(,Olll~ mdhud for It quantulIl circuit. Triangle include~ sitel:i within the light-cone. Qubits are arranged 
along; t,lJ(' horizontal axis, time increa.'ieR vertically. We show the first round of the quantum circuit. Regiolll:i A,B,C,D are as 
descrilwd ill till' text. 

to perfonn the early time simulation. The use of the matrix 
entanglement at early times (this contrasts with the 

whpre illxtead we factorized the early time dynamics into a product of two different 
OIl the product nature of the initial state). One complexity in the matrix product simulation is that the PLVLJi:LUl 

distrihutioll of outcomes Q, f3 will not factorize into a product of separate distributions for Q and {; because there may 
be SOllie clItanglement between those portions of the system. We will explain how to re~lOlve this problem. Another 
dill"erence ill the calculations in the rest of the paper is that the early time evolution the matrix product evolution 
wlll he done for a time which is slightly more than half the final time, rather than exactly half as it is here. 

MATRIX PRODUCT ALGORITHM 

Modified iTEBD 

To do the matrix product simulations, we used a modified version of the iTEBD algorithm with improved numerical 
Htab:lity. Before describing the improved algorithm, let us recall how iTEBD works. The algorithm stores a matrix 
product state for an infinite system. We have matrices rA(8) and r13(8), for the even and odd sites respectively, 
where 8 labels the spin on the site. There are also diagonal matrices ,\A and ,\13 defined on the bonds directly to the 

of the even and odd sites. The wavefunction amplitude for a given configuration of spins, ... , su, 81,82, ... is equal 
to 1/I( .... ,80,81,S2, .... ) .. .rA(su).ArB(8d).BrA(82)'\c ... The matrices ).A.B arc chosen such that their diagonal 
coefficients coincide with the Schmidt coefficients of the state decomposed across the bond; this contra....,ts with 
other matrix product state representations l1.'5ed in other algorithms where the algorithm only stores a single matrix 
for each site. 

The iTEBD matrix product state can represent a system with translational invariance of period 2. It i;,; thus very 
convenient to use for our system, which has such invariance in its initial conditions. The time evolution i;,; simulated 

a Trotter-Suzuki method. The time evolution is broken up into small and the time evolution i;,; 
transformations, UAB and 0 r U[2r-1,2"I, where 

is a unitary acting on sites r, r + 1. By updating first with UA13 and then with 
the state maintains translational invariance at all times. In our implementation of the modified iTEBD algorit.hlil 
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deicribed below we use a second-order Trotter-Suzuki decomposition with a time step of 0.0625. 
In a single update step, the iTEBD algorithm proceeds as follows. Consider the update under U .'lB. The matrix 

has matrix elements U[2r,2r+~1 , , where SA, SB represent the spins on the A and B sites after acting with 
SA,SD'SA1SB 

U and s~, sB represent the spins on the A and B sites before acting with U. First, compute the matrix 

8(SA,SB) == ).BC(SA,SB)' (9) 

where we define the matrix C by 

,IjB) = L (10) 
SA,Sa 

Thus, 

8(.'iA, = '" U[2r,2r+;1 , ).BrA(s~).ArB(B~).B. (11)~ SA,SBlSA.'SB 

s~,s~ 

This matrix C is not part of the mmal description of the iTEBD algorithm, but we define it for use later. Note that 
in Eq. (10) the quantity . ~I , iH a complex number, and all other quantities rA,B and ).A,B represent matrices 

),'iB,.'i A )'~B 

which are multiplied following the usual rules of matrix multiplication. 
The matrix 8(sA' S lJ} haR matrix elements O( SA, s n )"JJ' Thus, 8 is a four index tensor, with indices BA, BB, (x, /3. In 

the second step, do a sillgular value decomposition of 61 according to the index bipartition (x, 8A and /3, SB, so that 

H( s;\, '" - A (12)= L.., X",8A;i3).i3i3Yi1;"SB· 
i1 

The subscript notation (x, s; /3 is illtended to illdicfLte that we treat X as a matrix with rows labelled by (X and sand 
columns labelled hy 

In the third steD, defille the matrices I'A.Ii by t hpir matrix clements rA,B (s )",13 as follows: 

•. 1 

(8)"11 = )(o,.~;/~' 

-1 
~,n . _ _. ),TJ .I (.<;Lh - YII;.." .. ( 11 ) 

The matrices rA,rB).A replace the old matrices 1'/\1' lJ ,)." after this update step, while the matrix).B remains 
unchanged under the update step. Finally, we perfol'lll a tl'llllmtioll of the state: in each of the steps, the bond 
dimension increases, and we truncate the state hy keeping only thE' k"",," largeHt singular values of e, discarding the 
others. The quantity kmax determines the maximulIl hond dilll()!IHion, with increasing leading to an increased 
accuracy in return for additional numerical effort. The step with the largest lllllllerical cust is the singular value 
decomposition, which requires a computational time sealing a.,", 

Unfortunately, we found some difficulties with numerical stability in om implementation of this algorithm for 
(> 1000) values of The matrices).A will contain some very small diagonal entries, and therefore ().A)-I will be 
very large. Therefore, any small error in the singular value decomposition will tend to get magnified when multiplying 

().A )-1. Note the sequence of steps: first we multiply by ).A, then we do a singular vallie decomposition, and then 
we multiply by ().A )-1, so that problems can arise if the singular vallie decomposition ill between the multiplication 
steps is not numerically exact. 

The solution to this problem is simple. First, we changed which matricm.; are stored hy t.he algorithm, HO that 
instead of storing the matrices rA, r B , we store the matrices AA, AB defined 

== rA(s).A, (14) 

== rB(8).B. 

These matrices AA,AB are the usual A matrices defining a matrix product state. Such a relation A(8) = r(s). was 
used previously in [16]' but [16] used a method of doing the update which still required a division hy ). while the point 
of the method described below is that it does not require any division (other minor differences are that [16] was not in 
the context of infinite systems and also in [16] reduced density matrices were diagonalized while we employ singular 
value decomposition instead), 
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We conti-nue to store the matrices AA, A8 . in an update step, we first 

C(s s)
A, B 

""' L-t U[21',21'+lj AA(s' )AB 
SA1 S B;S'Al'''e A 

S~,8~ 

Note that if we substitute Eq. (14) into (15) we find the salile result for C a.~ (10). We then compute the matrix 
G(SA, S8) from C(SA, SB following Eq. (10). We next do a singular value dc:composition of e as in Eq. (12), obtaining 
matrices X, Y, ).A. In analogy to Eq. (14), we now wbh to cOlilPute the updated matrices ji which are defined by: 

jiA(S) == l"A(8)A''', (16) 
jiB(s) I"H(s)AfJ. 

However, in order to compute the updated matrices jiA, AJI, we do not do this by computing fA, fB and applying 
Instead, we compute them in a different way. To derive the approach that we use, note that Eq. (13) implies 

that Ea. (16) is equivalent to 

(17) 

and 

/J )-1 ,
(SA ( Ano ); ".s;;; 

(AI;,,) --1 L H(.'i A,su)",(y- I)"SB;j3. 
,),SLJ 

= L C(8.\,8 11 )",(y- I ),,8/J;/3, 
1' ..' LJ 

where the matrix y-l has the opposite index hipartitioll to lIlatrix Y (that is, ,,88;13 instead of j3;"S8)' 
Note that Eq. (17) docs not involve llluitiplying by A-]. Similarly, the la...·;t line of Eq. (18) gives an expression 

for jia that does not involve multiplying by A -I, so this method of eOlllputillg Ii does not have the same problem of 
numerical stability. Further, no extra CPU time is reqllired to compute C 011 the ilu;t line of (18) since the algorithm 
computes this already as part of computing the matrix O. Further, since Y is unitary. we have y-I = yt so there is 
no overhead to compute the inverse of Y. That is, Eq, (18) inmiicH that 

,,8B 

we can use Eq. (17,19) to improve the stability of the algorithm. The only extra overhead 
extra matrix multiplication, to multiply by yt as in (19). The overhead to do thi~ is slllall 
required to do the singular value decomposition of e. The complete pseudo-code for a ~illglc update step is: 

1. Compute C by Eq. (15) and then compute G by Eq. (9). 

2. Do a singular value decomposition 8B in Eq. (12). 

3. Update jiA,jiB by Eqs. (17,19). 

Incorporating Symmetry 

Both the iTEBD algorithm and the modified iTEBD algorithm discussed here make it very ea."ly to incorporate 
symmetry such as conservation of total sz as follows. For a Hamiltonian such as the XXZ Hamiltonian (1) and for 
initial conditions which have definite sz on each site as we have considered, it is possible to choose the basis 
vectors of the Schmidt decomposition to have definite sz. Thus, for each bond variable 00, we can a.ssign a definite 
sz 1 giving the total sz of the spins to the left site of the given bond. The infinite size of the system does not give any 
trouble with assigning a definite SZ, as we simply define the sz of the to the left of a given bond to be the 

ifference between the total spin to the left and the initial spin to the left. This difference can be easily kept track of 
because it increases or decrea.<;es bv one when a single spin up moves across the bond to the left or 
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After doing the singular value decomposition for each SZ, we get a list of Schmidt coefficient;,; for each SZ, If there 
are more than kmax different Schmidt coefficient;,;, we truncate, To do the truncation, we merge these lists, sort the 
merged list from largest to smallest, find the kmax largest Schmidt coefficients, and keep those. This means that the 
number of Schmidt coefficients we keep for each S" will depend on SZ; we find that we keep many Schmidt coefficients 
for SZ near zero, and fewer for sz far from zero. 

Some fluctuation is observed in how many Schmidt coefficient;,; were kept for each SZ, but a typical set of values 
for kmax = 4096 was 2 at S" 28 at sz = ~4; 142 at sz -3; 403 at sz = ~2; 748 at sz ~1; 968 at sz = 0; 
890 at SZ = +1; 576 at sz 254 at sz = +3; 71 at sz = +4; 12 at SZ = +5; and 2 at sz = +6. Note the 

between and negative sz, ;,;ince the alternating spins in the initial configuration, combined with 
our definition of sz as the total to the left of a given hond, breaks the symmetry. To explain this asymmetry 

consider a site which in the initial configuratioIl is spill up, with its neighbor spin down; the only way that 
to the left of this bond can at the first iustant of time is for the up spin on the given site to hop to 

the total to the left, hut there is 110 corresponding process which would decrease the spin to 
the left in the first instant of time. 

is singular value deeolll)losition. The bOl1d variable (3 in Eq, (12) has an S" 
which is equal to the sz of bond variable u pins the Z-Spill of 8A. Thus since SA takes two different values, there 
arc two different sz values of bond variables (t which contrihute to a given sz vallie for bond variable Thus, for 
the specific number of Schmidt coefficients kept which is given in the above paragraph, the largest matrix that we 
decompose has bond dimension 968 + 890 = 1858, Without the use of symmetry, keeping 4096 bond coefficients would 
require decomposing matrices of size 8192. 

COMBINING LIGHT-CONE AND MATRIX PRODUCT 

We now describe how we combine the matrix product algorithm with the light-cone method. The matrix product 
simulation will be accurate for a certain range of tillles; the larger k"lIlx is the longer it works. We run the algorithm 
for as long a time as possible for the givf'n krrw:c. Let this till1e be tinit. For k",,,;r = 409G, we could take tinit slightly 
larger than 16 before encountering appreciable truncation error. The kmn.r wquired to reach a given tinit at a given 
truncation error increased exponentially with tinit. After simulatillg to time t'iTlit, we save the matrices defining the 
matrix product state. A separate program then perforllls the second phase of the simulation as follows. 

We wish to compute the expectation value of the Z-coIIlpOIwnt of the spin OIl a site, say site 0, at a time tfin > tinit. 

That is, (So (tfin)' The matrix product silllulation gives a matrix product state IVimp"(tinit) which is a good 
approximation to the state I·~!(ti'lif»' where 

1'Ij!(tinid) == exp( ~iHti1tid 	 (20) 

Then 

;:::; )1 exp['iH(tfin ~ So exp[~iH(tfin tinit)] 	 (21 ) 

1 shows a plot of what we want to calculate in space and time. Note the past light-cone of the the dynamics 
of the outside this light-cone has little effect on the spin. The Lieb-Robinson boundsr12·-151 make this intuition 

these bounds we can prove that we can approximate (21) by 

~ 

where includes the interaction of sites within some distance I of site i. 

1-1 

Hloe = 	L S[Sf+l + + !J.St S/+I' 
;=-1 

As long as I > v LR(t fin - t init ), then it is possible to use the Lieb-Robinson bounds to prove that the approximation 
(22) is exponentially good, where Vr,R is the Lieb-Robinson velocity. Previous experience with other light-cone 
techniques tells us that in fact the approximation is good so long as I > Vsw(tfin ~ tirtit) where Vsw is the spin-wave 
velocity, given by 

vsw = (n/2)sin(O)/B, 	 (24) 
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FIG. 2: Sketch of regions £, R for I = 2. 

where cos(9) = 6.[17]. Note that the dynamics we consider takes place in a highly excited state, rather than in the 
ground state, so a priori it is not obvious that VS11J is the correct velocity for excitations, but numerical evidence both 
previously and in this work indicates that it still is the correct velocity in this regime. Note also that VS11I < VLR for 
this system. 

Let C denote the set of sites to the left of site -I and 'R denote the set of sites to the right of site +l, as shown 
in . Imagine that at time tinit someone measured that state of the system on L, doing the measurement in 
the Schmidt basis, and also measured the state of the system on R, again in the Schmidt ba..,:;ls. Physically, this 
measurement, being outside the light-cone, should not affect the measurement of the spin on site 0 at time t fin. 
Mathematically, we can express this as 

( '",1'8(t )1 ['lllo"(t t )]SZ . ['H1o('(t t )]I.I,TI'1"'(t )}'1/J init exp ~ fin - init 0 ex}> -1 fin - init 0/ init (25) 

"'( 'mp.• ( ) ITILTIR ['Hloc(t )]SZ ['Hloc(t l'ljimpS(tinit)},~ '1/J tinit n (3 exp l 'fin tin;t () exp -l fin 
nJ-i 

where TI~ projects onto state 0: ill Land projects onto state {3 in R, with La: TI~ = 11.. Note that the correctness 

of (25) depends OIl the fact that TI~ and COlllmute with exp[iHloc(tfin - tinit)]Sij exp[-iHloc(tfin - tinit)]. 
Note that 

L(V;"'I'S(tinid exp[iHloc (t fin - t init )] SO' exp[_iHloc (t f in 
n,{1 

= L('ljimps(tinidITI~TIffl'ljimp8(tinit)) x 
a,{1 

L<>,{j{'ljimps (tinit) ITI~TIff exp[iH10C(t fin - tinit)]Sil exp[-iH1oc(t fin - tinit )lTI*TI~~ (tinit)} 

(26) 

La-,/3 ('ljimps (tinit) ITI~nff l'ljim p• (t init )) 

Thus, if we statistically with the 

ITI~ngl'ljimp" (tinit)) (27) 

we find that 

(tinit) Iexp[iH10C (t fin - tinit)]SO exp[-iIllOC(t fin - tinit)ll'ljirrtpS(tinit)) (28) 

('ljimp,,(timdlTI~TIff exp[iHloc( t fin tinid]So exp[ _iHloc( t fin - tin it )]TIk TIB 1'lji1n pS (tinit) ) 

L<>,/3 ('ljimps (tinid ITI~TIB 14,m1'8 (tinit)) 

('Iji::~S(tinidl exp[iHloc(tfin - tinit)]Sil exp[-iIllOC(tfin - tinit)] (tinid) 

where ( ... ) denotes the average over Monte Carlo with weight (27), and 

I'TILTIR 

a (31'Iji:'~8(tinid) = ITI~TIffl1jJmp8(tinit)) (29) 
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;';0 that P({11Q:) 

Note that 

The light-cone algorithm does the statistical sampling of with weight (27). For each Monte Carlo step, the 
algorithm does three things. (1): Pick a:, fJ according to the probability distribution (27); (2): Calculate the state 
11/)::~S(tinid) in the computational basis (a product basis in which each site has definite spin up or down); (3): Evolve 
the state 11/J;::~S(tinid) forward in time for a time tfin tinit and compute the expectation value of So. We explain 
how to do each of these steps in turn. 

Sampling 0:, (3 

To sample a:, fJ according to (27), we proceed in a series of steps. The difficulty that we encounter is that a: and fJ 
are correlated: the probability distribution in (27) does not factorize. We will show how to overcome this by replacing 
this probability distribution by a product of conditional probability distributions which are easier to compute. and 
then sampling each of those probability distributions. Finally, after explaining our approach, we will explain 
an alternate approach, which at first sight ;,;cems more natural, is not good because it require:> milch more computer 
time. 

Note that 

(:~O) 

where 

(31) 

and 

(tinid) 

P(n) = )In!: 

Note that 

I, (33) 

('all indeed ho intcrpretpd a:> a ('owlil jOllal prolmhility disl rihllt.ioll. Therefore, we can first pick a: 

""NH',lln<r to the probability dist.ribution P(n) HlId !.lIm dl()()S(' I; randolllly according to the probability 


Chousing H is f'asy, Sill(,(~ P( (t) is giwn hy till' sqllare of the COrI'('spondillg Schmidt coefficient, 

and these Schmidt coefficients are the diagonal (,lltries of A. Choosing d is Ill()n~ dillk1l1t, since nand (3 are correlated. 


To choose {i, we proceed as fullows. Deline 11\ to proj<'ct onlo I h(~ :-;tat<' of site i wit.h Spill up, and define n~ to 

project onto the state with Spill down. Then, we have 

= 2: P{H-l 
,'c=l.1 

where 

("I/nps (t ,) II'I-lrrD 1"I,mp"(t ))If Hut s n If 'intiP(.L1 
(I/Jmps (tinit) In~ l1/pnl'S (tilli!)) 

and 

= (36) 

la) + PO Ia:) = 1 so that we can interpret as a conditional probability. 
we find that 

(37)P(fJla:) (2: ... (2: (2: P(.Ldct) )P(fJ.L1+Ji.L1a)) ISI-1 P(fJIS/SI-I 
Sl Sl~ 1 S_l+l S_l 
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wh.·ere 

( .I.ml'·'(t )Ifli ni - 1 II i - 2 II-I nDlo/.mps(t ))
"0/ init,li, si_l Si-2 on S_t (X "f/ init 

P(S;!Si-l Si2" 

)1 11;-1 n;-2 II-lnDlo/.m.p .• 
8 l -1 8i-2'" S a "f/ 

Thus, we can first sample a randomly as bdore, amI tlH'1l sample the spin on site -I conditioned on that 
a, randomly sample the spin on site -I + 1 cowlitiolwd 011 the a and .'I_/, and so on, until all spins are sampled, 
and then finally sample f3 accordilll! 1.0 

))
P([jl."ii""~ 

Computing each of these cOllditiOlml pr()hahilit.ie~ can be dOlle in a time O(k?nax) as follows. After j steps, we store 
the vector AA,fJ(.Ll+j_t} ... AA·I1(.LdIJ:;I~,,,,,,··(t,,,,d), where the A matrices in this expression are alternately chosen 
to be AA or AI3 depellding; 011 wlwtlH'r tl)(· sill' is Oll Ihe odd or even sublattice. We then compute the two different 
vectors AA,lJ(.~_I+j)AA,I3(."i.l+J d... AA'/I(.'I_dll:;I,~,""j,'(ti"id) for the two different choices of , and compute 
the lIorms of these v(,ct,ors 10 dd(,l'lllilw the ('oudit.ional prohabilit.y. After S-l+j, we keep corresponding 
vector <tmlllsc it. ill the lwxl sh,p. Tli(' umtrix-n'('lor llHllliplicat.ioll takes a time O(k;wx)' 

This solves the prohlelll of stat.istkally ~al1lplillg 0, d. Finally. we would like to discuss why a different, seemingly 
more nat.1lI'al approach to tl)(' prolll(,lll is uot. w.; good H."i til(' approach explained here. This different approach would 
be fin;1 l'lt.ati~tkally l'llllllplc II a.." discllssnl Il<'n\ TI)(~Il, illitillli:lC a matrix p to the state la)(al. The matrix product 
state defiues It ep map. III fact, it dl'[ilWs tWI) dilkn'llt CP lIlapo, one for odd sites and one for even sites, which we 
can call £"'''", e'''id. Propag;atc tIle st.at n fl t hrolll!,"h these t.wo CP maps, alternately applying the even and odd CP 

n total of '21 + I 11 laPS. If I is (,V('ll, I lie !'<'slllt is £'l'''" (£odd".(£cven(p) ... ), while if I is odd then instead 
we apply £"d<l(e"""" .. ,([udrl(fl) ... )' TIl!' l'pstllt gi\'('s tlw l'cdll('('d dellsity matrix on sites -00, .'" +l, given that on sites 
-00, "., -I t IIp syst.('1lI is ill stat (' n. The diagollal ('llt rh's of this dCll~ity matrix give the probability (\h;tribution of ri. 
Howevn, t.hi~ approach, wllil!' IlIO!'!' 11at lIl'a!, n'l(llln'S 1)('rfol'lIlillg lllatrix-matrix multiplications, and hence would be 
lllllCh slow('r thall til!' lllHtrix-v(,(·tor IlilIltiplic"llolls thaI. WI' Ils('d above. 

It i~ illl»Ortallt 10 lIlld!'rsl aIHI I hal anl'r s;ullplilll!: II, i'l, W(' do 1101. lIlake allY fmtiler lIse of the randomly sampled 
val\l(~s of III!' spillS S I • ... , '~I that w!' f()lI11d ill this slPp. \\'(' discard t.hose vahles S.l> ... , Sl and keep just the a, f3 for 
the llext skp. Dillen'llI spill couligtlrnt iOlls a....sociat I'd wit It a )!,iV(,1l n. ;1 will he added coherently, as seen in the next 
step where W(' C()lllpllte til(' alllplit \l(1(~ to I)(~ ill ('adl Spill cOllfigurat.ioll for 111(' given 0:, /1. 

Compllting '-II::'.~~' 

The lIext step is to cOl1lpute t.he H1l1plitlld(,:,; for \I!/lI~~' ill l1i(' ('Olllplltatiollal hasis. There are 22l + 1 different amplitudes 
that we IIced to compute. We first pxplaiu H silllpl;:'(and slow) way of cOIIlJJllting these amplitudes, and then describe 
a much faster "mcet-in-the-middle" way 1.0 ('Olll)ltltn t Ii('S{' Hillplit.u«i('s which is what we actually used. 

The ;:;imole way is as follows. Suppose l is !'VC'll (if I is wId. t.lll'lI the sublattice indices A, B will be reversed in this 
and the next). We compute the alllplitude 10 Il(; ill ('a('h of the 221+1 different states in tl1rn for the state 
(tinitl), and then we normalize t.he st.ate aft.pr. To ('olupute the unnonrwlized amplitude to be in the state 

Sl, SI_I, ... , B-1, first compute the inlier product (nIAA ) ... ;\(J(.~i_1N\(sdlr1), where (al is the vector with a 1 in 
the a-th entry, and zeroes elsewhere. Computing the illllCf product takes a time (21 + l)O(k;nax). Thus. the total 
time is 

). 

Note we compute unnormalized Hlllplitlldes, it does not matter that the inner prod­
)AA(sl)If3) hal, an extra fact.or of .\A at the end compared to the expression 

d.\llrA(Sl)itj). We willnornmli:le the amplitndes later. 
A lIluch faster way is a rneet-in-the-middle approach. For each of the 21+1 different configurations of the spin;; 

B-1, ... , B-1, So, we compute the vector (aIAA(LI (so). Note that this vector is in the auxiliary Hilbert space of 
dimension by the bond dimension. Also, for each of the 21 configurations of the spins Sz, SI-1, ... , Sl, we compute 
the vector (s)) ...AA(SI)If3). Computing all of these vectors takes a time 

(l + 1)21+10(k;',ax)' 

http:pr()hahilit.ie
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W@ save alt of the!:!e vectors (the memory requirement for this is O(kma:t21+1) which means that as long as 21+1 :::: kma:t 
the additional memory required is negligible). Then, for each of the 221 +1 spin configurations of spins Sl, ... , LI we 
compute the inner product of the vectors (oIAA(L!) ... AA(so) and AB(sd ... AA(sIIBl. This takes a time 

221+10(k:mux), 	 ( 42) 

and hence the total time required is 

(I + 1)21+ 1O( .l.:~,a;!) + 2~1+ IO(k:""l<)' 	 (43) 

Again it is possible to make use of symllletry in tlwse calculatiolls. We compute the vector 
in l different multiplications, and after each 1IlIIItiplieatioll the wctor baH It definite sz. This greatly 
matrix-vector multiplications. AJ:.;o, the re~mltillg vpetor W'"~t has a l1ou-vanishillg amplitude only ill a 
sector, which reduces the melllory requirement alld speeds l;~ the calculation of the time evolutioll described in the 
next subsection. 

Time Evolution of 1J!;:'.~j' 

Finally, we tillle evolve the slate wJIl~~' ror tillle Ifin t;I!i/' We do this evolution mling sparse matrix-vector 
(t,j 

multiplicatioll as follows. 13dore doing allY I\lonte Carlo sampling of the states, we build It representation of the 
Hamiltonian (I."; II sparse matrix. Eacb row of the matrix has O(l) nOll-vanishing clements. 

we fix a small tillle sl.ep tit awl ('volvo Ihe vnctor over several of these small time steps. In the simulations 
we choose M 1;:3. III this way, It sillgl(~ I\lolltC' Carlo sample allows llS to compute the C'xpectation value of 

at several different lilllcs. To ('volv(~ for It I illl(, sU'p r5t wc approxilllate 

""11(.1' 

(·xp(i1l81) ~L Hn I\{I), 	 ( 44) 
,,=.() 

where we truncate the Taylor s('ril's ('xpallsion al. a lillit(~ ordel' nlllru:. The v(~ctor Hn call be computed using 
sparse matrix-vector Illultiplicatioll. 'I'll(' lo\.al ('Olllimtal.iolllli tilll(' 1'('(Juired is 

0('11 .(l + 1),)'21+1)I/j(LJ - . 

In practice, this step is very fa.">1. cOllIpan'd t.o I.h(· previolls sl,ep of cOlllplll.ing for the values of and l that 
we choose. 

Pseudo-Code 

We recap this description of the proeed1ll'c giving; the pseudo-code for a Monte Carlo step. 

1. 	Choose 0 randomly according to the distribution 1>,11 (aW. 

2. 	For i -l to i = +l do 

2a. 	Use the stored vector AA,li(Ll+j_l) ...AA,B(Ll}n~lvJmp" )) to compute 
AA,B(LI+j)AA,B(Ll+j_d ...AA.B(Lz)n~lv'rpS(tinit)) for both choices of L/+j' 

2b. 	Randomly choose Ll+j according to P(8ilsi-ISi2 

3. Randomly sample f3 according to ...LIO). 

4. 	For each of the 21+1 configurations of spins -I, ... ,0 compute the vector (aIAA(s_d ... AA(so). Save for use ill 
step 6. 

5. 	For each of the 21 configurations of the spins 81, SI-I) "'j 81, compute the vector A B ) ... A B (st) 1(3). Save for use 
in step 6. 
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o. 	For /;ach of the 221+1 spin configurations of spins BI, ... , 8-1 compute the inner product of the vectors 
(aIAI1(s_d ...AA(so) and AB(sd ...AA(sdlp). Save the result as the amplitudes of the state 1J!171',i in the com-

a,I' 

putational basis. 

7. Normalize that state 1J!~~•. 

8. 	Evolve state 1J!~~8 forward by a sequence of time stepH M until time t fin. Compute spin expectation on site 0 
after each time step. 

Time Estimates 

The total time for all is 

o 	 (46) 

The dependence on and Tl"",;r is QepCll(lenCe on I, since it suffices to 
take Tlma:r O(l) to obtain accurate result.H. on land 
on , and ignoring any 

k2 1)1 + 2'21. 
Hlfl.r-

This is to he compared with a time O(k;~IIL'l") for Ill(' \\lalrix prodllct Hilllulation (again, ignoring the UcpCllucm:e 

the number of Trotter-Suzuki states, and oIlly ('ollshh'rillg t.he dependence on kmax ). Thus, equating the two 
we find that we can take 

2l rv ,,"rna.]'. 

This in fact is rO\lghly the regime ill which w(' workpd hdow, silJ('c we took l = 10 and kIlt,,," = 4096. Similarly, since 
we work in the regillle 21+1 < k",,1.Cl our additiollal 1lH'lIIory )'('qllin'mcllts are rwgligiblc. 

In fact, our time to do a single MOIlt,{· Carlo step was nlllch faster than om time to do the matrix product 
simulation. This wa.<; balanced by the fact that W(' have to do ltlallY 1\Ionl<~ Carlo Hteps, Fortunately, the Monte Carlo 
steps parallelize trivially. 

In principle one could avoid any Mont(~ Carlo sHllIpliIlg by slIllIllling ovcr all pos.-;ible valucs of (~, 13, appropriately 
weighted. While this calculation parallelizeH well, it. w01lld lIot IJ(' practical for large value):; of 

RESULTS 

We simulated the stable iTEBD for kmax ranging up to 40!)(i. Accurate reHults were found up to a time 
than 16, with low truncation error. Unfortunately, we do not know It good way to directly compute 

truncation error in iTEBD. For a finite size system, one can compute the difference between the state after truncation 
and the state before truncation. This gives an upper bound on how the truncation affects expectation values. For an 
infinite this doesn't work. To see why this doesn't work, consider a fillite hut system: even if we make 

a small error in the state everywhere and are able to accurately approximate all the local expectation values. we 
make a total error in the state vector because the we estimated truncation error in a few 
different ways. We checked how certain depended Oil k,IlU,J:' For a < 4096, the 
curve would follow the = 4096 curve for some and then deviat.e. We eonld sec how the time of deviation 

on and extrapolate to krnax = 4096. 
we took results from the iTEBD simulation at times 15,0625 and 16.0625 and started the Monte Carlo 

MHljJ11l1g at those two different times and compared results. \Vhcn we compared two differellt Monte Carlo averages, 
one with 16.0625 and one with tinit = 15.0625, both having the same l, we ohserved that the results 
up to statistical error, until a time t fin R:; 15.0625 + llvsw . That is, the deviation between the two curves only arose 
because the curve started at 15.0625 saw the finite-size effect of a finite l earlier than did the curve started at 

15.0625. Thus, we are fairly confident about the accuracy of our stable iTEBD simulation up to time 16.0625 
up to times of roughly 22.5 as shown in the figures below. 

It took roughly 2 CPU days on a 2Ghz Opteron to do 1000 Monte Carlo samples for l 10. We did 98000 samples 
for 	ti"il 15.0625 and 82000 for tinit = 16.0625. We additonally did several runs for smaller l and smaller tmit to 

http:k",,1.Cl
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FIG. 3: Comparisoll of iTEBO for k""" = 1024,20·18, 40!)G. 

check the algorithm. In Fig. we show the computed hehavior of the magnetizat.ion ((S{Ht))) as a function of time 
using the modified iTEBD with kmax = 1024,2048,4096. For any given k"w:n t.he accuracy of the algorithm breaks 
down badly at sufficiently long time. Doubling k TlHLX leads to only a constant increa.<;e in the time which can be 
simulated, which implies that reaching times> 20 will require prohibitively matrices. 

In ) we show a comparison of the light-conc IllPthod and iTEBD with k"'<I;c 4096. The difference between 
the two different light-cone curves is within sampling error for the given Illlmhm of samples. The root-mean square 
sampling error was roughly 0.00025. By increasing the lllllllhcr of ~mrnplcs this error can he reduced as the square-root 
of the number of samples. 

In Fig. ) we show the mean-field of [11]. This curve shows an increase in the order parameter at times> 20, 
followed by a decrease at later times. The curve is well-described by beating together two different with a 
1/t3/2 envelope. The revivals come from the beats. 

In Fig. ) we show the mean-field of [11]. This curve shows 11n increase in the order parameter at times> 
followed by a decrease at later times. The curve is well-described by beating together two different cosines, with a 

envelope. The revivals corne from the beats. 
In Fig. ) we show the time series of peak heights for the each maximum in the absolute value of (SMt). Each 

circle represents a given time at which a maximum occured. Circles at early times arc from iTEBD, circles at later 
times are from light-cone. Note the non-monotonic behavior. The y-axis is a logarithmic scale. The non-monotonic 
behavior is within sampling error, so it is possible that the peaks do decay monotonically. However, we are fairly 
confident that even if the peaks do decay monotonically that the decay of the peaks does not follow a straight line on 
the linear-log plot and instead flattens out. 

lt is possible to reduce the sampling error further by more runs. A ten-fold increase in runs would enable more 
definite statements about the monotonicity of the peak heights. Interestingly, the root-mean-square fluctuation in the 
mean of a given light-cone curve (such as the curve with tinit 16.0625) is much greater than the root-mean-square 
fluctuation in the difference of the y-coordinate of the curve at two different times. it may be possible to reduce 
sampling error shifting the y-axis by a constant to agree with the known correct result at early times. We have 
tested this, and the result continues to support a non-monotonic behavior of peak 
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FIG. 4: Comparison of light-cone and iTEDD with kmux = 4096. 
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FIG. 5: Mean-field of [11]. 

DISCUSSIONS 

We have developed a method combining the light-cone technique with matrix product methods. While the compu­
tational complexity is still exponentially large as a function of the exponent is lower than llsing matrix 
methods alone. As a result. we arc able to go to significantIv longer times for the same comoutational effort. We have 
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discussed several different ways of doing the sampling depellding on the computational resources of time and memory. 
While we used a cluster to perform statistical averaging, the light-cone method makes it possible to perform 

simulations for shorter times with very small computatiollal cost. If we reduce tinit, then the required kmax reduces 
also, and then the statistical sampling becomes faster (the dominant cost in the statistical sampling is the O(2Ik;'ax) 

cost). For example, with kmax = 128, it is possible to reach tinit > 11; in that ca.<;e if we take the same l = 10, we 
could reach a time of roughly 18. With kmax = 128, the statistical sampling would of course be much faster than 
with kmax = 4096. 

Our results support the possibility of revivals in the order parameter. Perhaps at smaller b. the system would be 
closer to mean-field and so the revivals would be more clear; however, at the same time, the time before revivals occur 
is longer in this case which makes the simulations more difficult. 

The integrability of the system does not play any role in our method. However, it does play some role in the results. 
Even in the mean-field studied in [11], breaking integrability leads to a large change in the asymptotic behavior of 
the magnetization; the mean-field for the integrable system has a power law decay, while non-integrable perturbations 
lead to a much faster exponential decay and can destroy the revivals if they are strong enough. 
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